

MC2044C

Postamplifier/Quantizer for Applications from 200 to 622 Mbps
Data Sheet

	_IABLE OF CONTENTS
Features	2
Applications	
Connections	
Description	
Table 1 Ordering Information	
Top Level Diagram	
Table 2 Pin Description	4
Table 3 Absolute Maximum Ratings	
Table 4 Recommended Operating Conditions	
Table 5 DC Characteristics	
Table 6 AC Characteristics	
Typical Performance Curves	
Assert Deassert Level	
Functional Block Diagram	
Functional Description	8
Data Input	8
DC Offset Compensation	8
Signal Level Detector	
Setting Signal Detect Level	88
Typical Applications Circuit	9
Applications Information	9
JAM Function	9
PECL Termination	
Table 7 Termination Resistor Values	
AC-Coupled PECL Termination	
DC-Coupled PECL Termination	
Alternative PECL Termination	
Power supply de-coupling and optimizing sensitivity	
Differences between die and packaged parts	
Bare Die Information	
Table 8 Pad Centers	
BCC++16L Package Outline	
SOIC16 Package Information	
QSOP16 Package Information	
TSOP20 Package Information	
Package Dimensions	
Table 9 SOIC16 Dimensions	
Table 10 QSOP16 Dimensions	
Disclaimer	
Contact Information	10

DESCRIPTION

Postamplifier/Quantizer for Applications from 200 Mbps to 622 Mbps

FEATURES

- Low-cost IC, fabricated in advanced sub-micron BiCMOS process
- 2 mV typical input sensitivity
- ☐ Wide range programmable input-signal level detect
- Fully differential design
- ☐ Supports 3.3 V and 5 V supplies
- Available in die form, SOIC16, QSOP16 and BCC++16L packages
- □ Complimentary PECL data outputs
- □ Complimentary CMOS signal detect logic outputs

APPLICATIONS

- □ SDH/SONET/ATM
- Fast Ethernet
- □ FDDI
- ESCON
- Add/drop multiplexers

The MC2044C also includes a programmable signal-level detector, allowing the user to set thresholds at which the logic outputs are enabled. The signal detect function has

logic outputs are enabled. The signal detect function has typically 2.25 dB (optical) of hysteresis which prevents chatter at low input levels.

The MC2044C is an integrated, high gain limiting amplifier

intended for fiber optic communication to 622 Mbps.

Normally placed following the photodetector &

transimpedance amplifier, the post-amplifier provides the

necessary gain to give PECL compatible logic outputs.

A JAM function, which turns off the output when no signal is present, is provided by externally connecting the ST output to the JAM input.

CONNECTIONS

Fig. 1	C _{A7} - 1 0		16 V _{SET}
SOIC16 QSOP16 Package	C _{AZ} + 2 GNDA 3 D _{IN} 4 D _{IN} 5 V _{CC} A 6 C _F 7 JAM 8	MC2044C Date Code	15 NC 14 VCCE 13 DOUT 12 DOUT 11 GNDE 10 ST 9 ST
TSSOP20 Package	C _{AZ} - 1 O C _{AZ} + 2 NC 3 GNDA 4 D _{IN} 5 D _{IN} 6 V _{CCA} 7 C _F 8 NC 9 NC 10	Mindspeed MC2044C Date Code	20 V SET 19 V CCE 18 V CCE 17 D OUT 16 DOUT 15 GNDE 14 GNDE 13 ST 12 ST 11 JAM
BCC++16L Package	$\begin{array}{c c} V_{CCA} & \hline 1 & \hline 2 \\ \hline D_{IN} & \hline 2 \\ \hline D_{IN} & \hline 3 \\ \hline V_{CCA} & \hline 4 \\ \hline C_F & \hline 5 \\ \hline \end{array}$	GNDA GNDA	13 V _{CCE} 12 D _{OUT} 11 D _{OUT} 10 GNDE 9

Table 1 Ordering Information

Part Number	Pin Package
MC2044CWPDIE	Waffle pack
MC2044CWAFERSPBG	Expanded wafer on a grip ring
MC2044CS16	SOIC16
MC2044CQ16	QSOP16
Contact Sales Representative	TSSOP20
MC2044CB16	BCC++16L
MC2044C-BEVM	BCC16 evaluation board
MC2044C-EVM	QSOP evaluation board

TOP LEVEL DIAGRAM

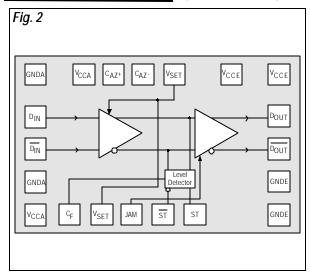


TABLE 2______PIN DESCRIPTION

Name	QSOP16 SOIC16	TSSOP20	BCC++16L	Function	
C _{AZ} -	1	1	15	Auto-zero capacitor pin. Connect C_{AZ} between this pin and C_{AZ} +	
C _{AZ} +	2	2	16	Auto-zero capacitor pin. Connect C_{AZ} between this pin and C_{AZ}	
GNDA	3	4	-	Analog section ground pin. Connect to most negative supply. Must be at the same potential as GNDE pin	
D _{IN}	4	5	2	Differential data input	
D _{IN}	5	6	3	Inverse differential data input	
V _{CCA}	6	7	1, 4	Analog section power pin. Connect to most positive supply. Must be at the same potential as V_{CCE} pin	
C _F	7	8	5	Level-detect filter capacitor pin. Connect a capacitor between this pin and $\rm V_{\rm CCA}$	
JAM	8	11	6	CMOS and ECL compatible input controlling output buffers (D $_{\rm OUT}$ and $\overline{\rm D}_{\rm OUT}$ pins). On chip pull down defaults to low. Can be driven from CMOS	
ST	9	12	7	Logical inverse of ST pin. Maybe connected to JAM pin to enable automatic squelch function to operate CMOS output	
ST	10	13	8	Input signal level status. This CMOS output is LOW when the input signal is below the threshold set by the users	
GNDE	11	14, 15	10	Digital section ground pin, Connect to the most negative supply. Must be the same potential as GNDA pin	
D _{OUT}	12	16	11	$\frac{\text{Differential data output. Logical inverse of D}_{\text{OUT}} \text{ pin. JAM high forces}}{\overline{\text{D}}_{\text{OUT}} \text{ High}}$	
D _{OUT}	13	17	12	Differential data output. PECL compatible differential data output. JAM high forces D _{OUT} LOW	
V _{CCE}	14	18, 19	13	Digital output section power pin. Connect the most positive supply. Must be at same potential as V_{CCA} pin	
NC	15	3, 9, 10	9	Not connected	
V _{SET}	16	20	14	Input threshold-level setting circuit. Connect to GND via a resistor	

Note:

Pin 17 (center pin) on the BCC++16L package should be connected to GndA.

TABLE 3_____ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Rating	Units
V _{CC}	Power supply (V _{CC} - GND)	6	V
T _A	Operating ambient	-40 to +85	°C
T _{STG}	Storage temperature	-65 to +150	°C

These are the absolute maximum ratings at or beyond which the IC can be expected to fail or be damaged. Reliable operation at these extremes for any length of time is not implied.

Table 4______Recommended **O**perating **C**onditions

Symbol	Parameter	Rating	Units
V_{CC}	Power supply (V _{CC} -GND)	3.0 to 5.5	V
T _A	Operating ambient	-40 to +85	°C

TABLE 5______DC CHARACTERISTICS

(V_{CC} = +3.3V ± 10%, T_A = -40°C to +85°C, unless otherwise noted)

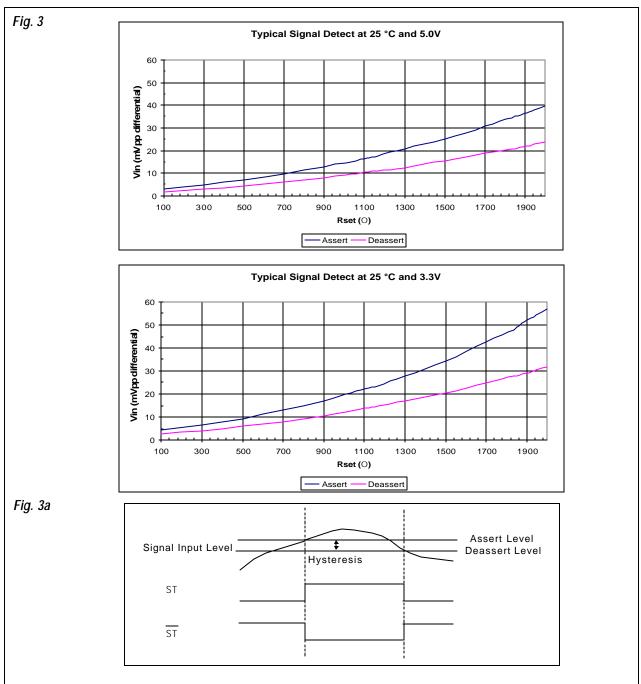
Symbol	Parameter	Min.	Тур.	Max.	Units
I _{CC}	Supply current (excluding output current) ⁽¹⁾	-	20	35	mA
V _{OS}	Effective input offset voltage	-	-	50	μV
R _{INJ}	JAM input resistance to ground	-	10	-	kΩ
R _{IN}	Differential Input resistance	-	20	-	kΩ
V _{POH}	PECL ⁽²⁾ output HIGH	V _{CC} - 1.025	-	V _{CC} - 0.880	V
V _{POL}	PECL ⁽²⁾ output LOW	V _{CC} - 1.810	-	V _{CC} - 1.620	V

Dice are designed to operate over an ambient temperature range of -40°C to +85°C (T_A) range, but are tested and guaranteed only at T_A = +25°C.

Note 1: $V_{CC} = +3.3 \text{ V or } +5 \text{ V}.$

Note 2: Load is 50 Ω to $\mbox{V}_{\mbox{\footnotesize CC}}$ - 2 V.

TABLE 6______AC CHARACTERISTICS

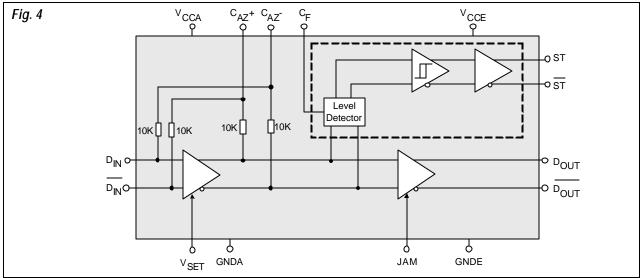

(V_{CC} = +3.3 V ±10%, T_A = -40°C to +85°C, unless otherwise noted, Guaranteed by design and characterization.)

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{IN_MIN}	Input Sensitivity (BER < 10 ⁻⁹)	-	2	2.8	mVpp
V _{IN_MAX}	Differential Input Overload (BER < 10 ⁻⁹) ⁽¹⁾	800	-	-	mVpp
V _{TH}	Input level detect programmability	2	-	20	mVpp
HYS	Level detect hysteresis (optical)	1.75	2.25	2.75	dB
BW	Small Signal Bandwidth	-	450	-	MHz
C _{IN}	Input capacitance	-	-	2	pF
t _{PWD}	Pulse width distortion	-	-	30	ps
t _R , t _F	Data output rise/fall times (20 - 80%)	-	210	-	ps
T _{LD}			40 40	100 100	μs
V _N	Input noise in 311 MHz	-	200	-	μV _{RMS}

Dice are designed to operate over an ambient temperature range of -40°C to +85°C (T_A) range, but are tested and guaranteed only at T_A = +25°C.

Note 1: Differential voltage is $|V_{DIN} - V_{\overline{DIN}}|$. No single input should exceed 400 mVpp.

JYPICAL PERFORMANCE CURVES



_Assert **D**eassert **L**evel

Fig. 3a shows the operation of the signal detect function as the signal level varies. The top line indicates the assert level, the bottom the deassert level. The difference between the two levels is the hysteresis. When the signal level goes above the assert level the ST output switches

high (\overline{ST} switches low). When the signal leve<u>l</u> falls below the deassert level, ST output switches low (\overline{ST} switches high).

_Functional Block Diagram

FUNCTIONAL **D**ESCRIPTION

Data Input

The Data Input pins are internally DC-biased at approximately V_{CC} - 1V. The MC2044C inputs are AC coupled, using external capacitors. The capacitors must be large enough to pass the lowest frequencies of interest (consecutive '1's or '0's) considering the input resistance. For example, at 155 Mbps SONET, there can be up to a maximum of 72 consecutive '1's, which is 465 ns.

To minimize the data dependant jitter, the low frequency cut-off needs to be lower by a factor of 10. However, it is better to set it a further decade lower due to the interaction of the time constants for the input stage and the DC restore circuitry. For example setting C1, C2 (Fig. 5) to 10 nF will give a typical -3 dB point of approximately 3.5 kHz.

DC Offset Compensation

Internal feedback is included to remove the effects of DC offsets and acts as a DC auto zero circuit. An external capacitor (C_{AZ}) acting with the internal circuit feedback resistors (typically 10 k Ω) ensures that the feedback is effective only at frequencies below the lowest frequency of interest. C_{AZ} is normally set to 10 nF.

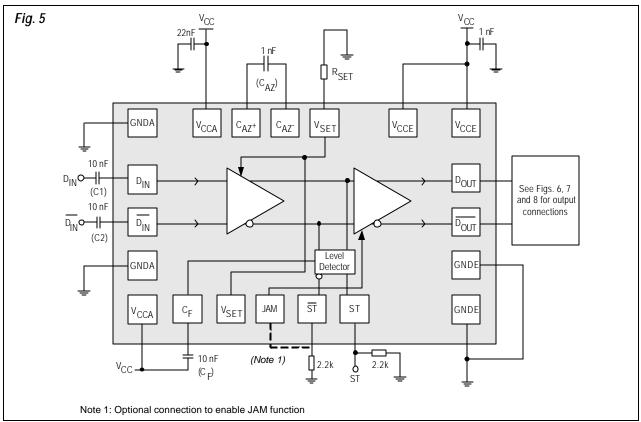
Signal Level Detector (Fig. 5)

The gain of the first stage is determined by R_{SET} . This amplification sets the level of input at which the status

thresholds operate. The data is then rectified and low-pass filtered before being compared with a reference voltage. The low-pass filter is formed by C_F (Fig. 5) and an on chip resistor.

With C_F equal to 10 nF the time constant is nominally 2 μ s, avoiding false triggering due to variation in edge density of data.

Setting Signal Detect Level


 R_{SET} is chosen using the graphs in Fig. 3 to determine the input signal level at which ST goes high (Assert). The value is dependant on supply voltage and should be chosen for 3.3 V or 5 V operation. If 3.3 V and 5 V operation are to be supported interchangeably set R_{SET} based on the 3.3 V graphs.

The comparator following the level detector has the equivalent of 2.25 dB (typical) of optical hysteresis, and this determines the deassert level (ST goes LOW).

If the level detect function is not required connect $\rm V_{\rm SET}$ to GndA (maximum gain).

TYPICAL APPLICATIONS CIRCUIT

APPLICATIONS INFORMATION

JAM Function

The JAM function sets the data output to a fixed state when no valid signal is present at the input. This is implemented by externally connecting the \overline{ST} output to the JAM input.

This is normally used to allow data to propagate only when the signal is above the users' Bit-Error-Rate (BER) requirement. It therefore stops the data outputs toggling due to noise when no signal is present.

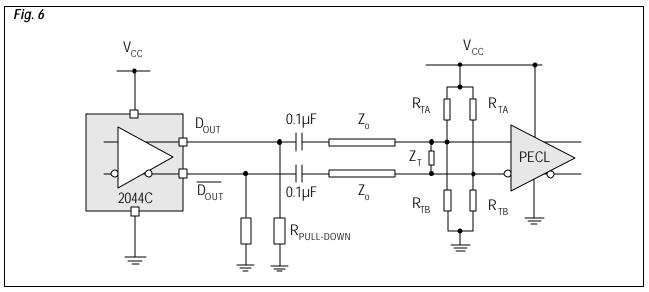
D_{OUT} and D_{OUT} PECL Termination

The outputs of the MC2044C are PECL compatible and any standard AC or DC-coupling termination technique can be used. Fig. 6 and 7 illustrate typical AC and DC terminations.

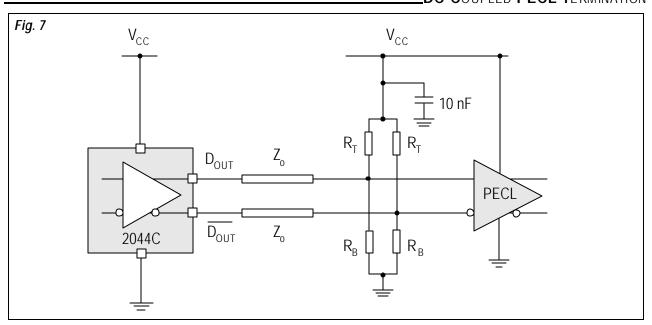
AC-coupling is used in applications where the average DC content of the data is zero e.g. SONET. The advantage of this approach is lower power consumption,

no susceptibility to DC drift and compatibility with non-PECL interfaces. Fig. 6 shows the circuit configuration and Table 7 the resistor values. If using transmission lines other than 50 ohms, the shunt terminating resistance Z_T should equal twice the impedance of the transmission line (Z_Ω) .

DC-coupling can be used when driving PECL interfaces and has the advantage of a reduced component count. A Thevenin termination is used at the receive end to give a 50 Ω load and the correct DC bias. Fig. 7 shows the circuit configuration and Table 7 the resistor values.

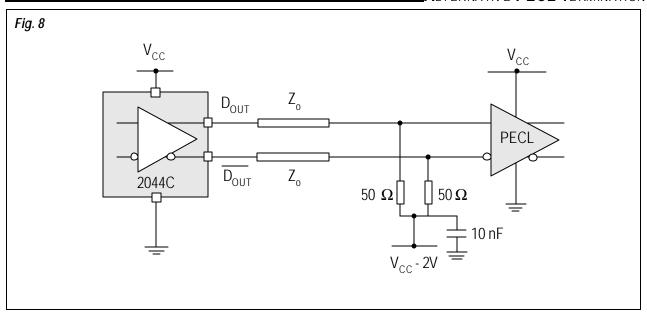

Alternatively, if available, terminating to V_{CC} - 2V as shown in Fig. 8 has the advantage that the resistance value is the same for 3.3 V and 5 V operation and it also has performance advantages at high data rates.

APPLICATIONS INFORMATION


Table 7 ______Termination **R**esistor **V**alues

Supply	Output Impedance	R _{PULL-DOWN}	Z _T	R _{TA} / R _{TB}	R _T /R _B
5 V	50 Ω	270 Ω	100 Ω	$2.7 \text{ k}\Omega$ / $7.8 \text{ k}\Omega$	82 Ω / 130 Ω
3.3 V	50 Ω	150 Ω	100 Ω	2.7 kΩ / 4.3 kΩ	130 Ω / 82 Ω

AC-COUPLED PECL TERMINATION


_DC-COUPLED PECL TERMINATION

_APPLICATIONS INFORMATION

ALTERNATIVE **PECL** TERMINATION

Power supply decoupling & optimizing sensitivity

In most applications the MC2044C will give adequate performance without ferrite beads. In applications where maximum sensitivity is required V_{CCA} and GNDA may be connected to their respective power rails via a ferrite suppressor, such as a Murata BLM31A601SPT.

Capacitors should be chosen with low effective series resistance, low dissipation factor and high Q. NPO or COG temperature characteristics are preferred because they provide more reliable performance over a wide range of environmental conditions.

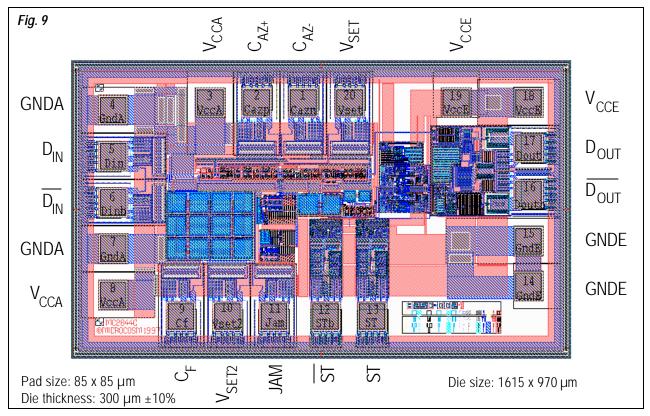
Small surface mount packages are recommended since they exhibit less parasitic inductance which can lower the overall effectiveness of the bypass capacitor at high frequencies. Filter capacitors should be placed close to power and ground pins to minimize noise coupling.

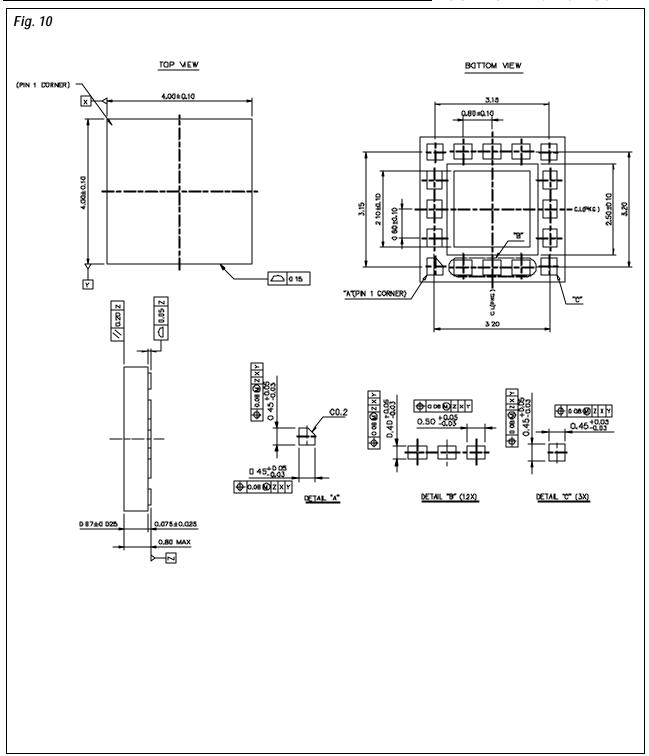
Differences between die and packaged parts

The die has two V $_{\mbox{\footnotesize SET}}$ pads. Connect one or the other, but not both.

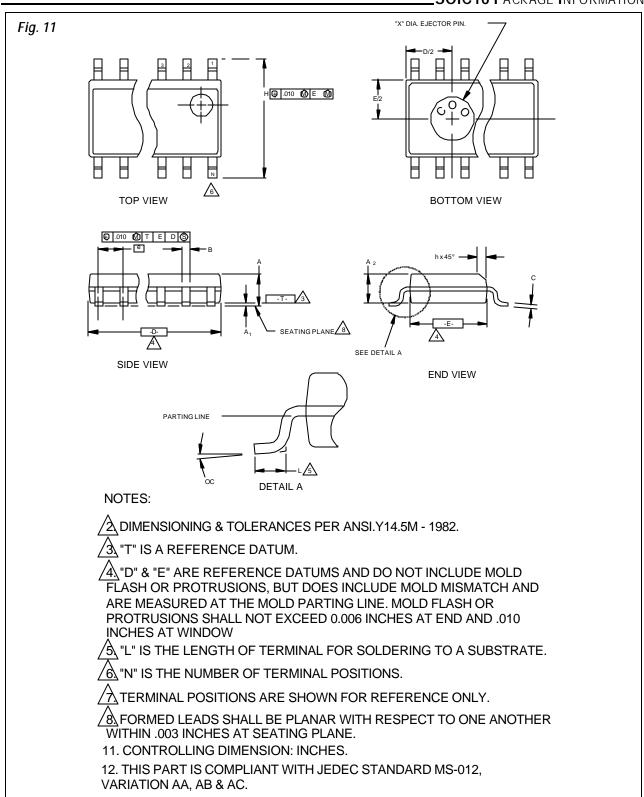
There are two sets of V_{CCA} and GNDA pads on the left of the die. Although two pairs are provided only one pair need be connected. On the TSSOP package, pairs of V_{CCF} and GNDE pins are connected.

BARE DIE INFORMATION



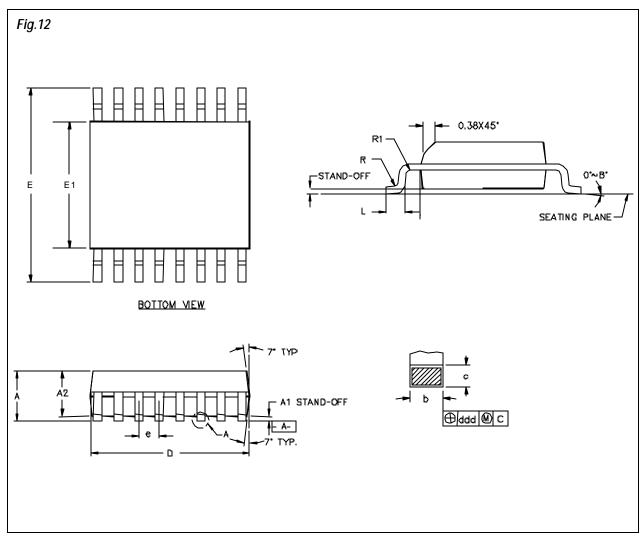

TABLE 8_____PAD CENTERS

Description	Х	Υ
C _{AZ} -	-55	350
C _{AZ} +	-205	350
V _{CCA}	-360	350
GNDA	-670	320
D _{IN}	-670	170
D _{IN}	-670	20
GNDA	-670	-130
V _{CCA}	-670	-280
C _F	-450	-350
V_{SET2}	-300	-350


Description	Х	Υ
JAM	-150	-350
ST	15	-350
ST	165	-350
GNDE	670	-250
GNDE	670	-100
D _{OUT}	670	50
D _{OUT}	670	200
V _{CCE}	670	350
V _{CCE}	440	350
V _{SET}	90	350

Note: Pad coordinates are in µm, and are measured from the center of the die to the center of the pad.

BCC++16L PACKAGE OUTLINE



SOIC16 PACKAGE INFORMATION

Note: Please see dimensions in Table 9.

_QSOP16 PACKAGE INFORMATION

Note: Please see dimensions in Table 10.

TSSOP20 PACKAGE INFORMATION

Note: Please see dimensions in Table 11.

_PACKAGE DIMENSIONS

TABLE 9____SOIC16 DIMENSIONS


Symbol	Min.	Nom.	Max.	
А	1.55	1.63	1.73	
A1	0.127	0.15	0.25	
A2	1.40	1.47	1.55	
В	0.35	0.41	0.49	
С	0.19	0.20	0.25	
D	9.80	9.93	9.98	
E	3.81	3.94	3.99	
е		1.27 BSC		
Н	5.84	5.99	6.20	
h	0.25	0.33	0.41	
L	0.41	0.64	0.89	
N	16			
α	0°	5°	8°	
Х	2.16	2.36	2.54	

TABLE 11____TSSOP20 DIMENSIONS

Symbol	Tols/leads	TSSOP20L
А	MAX	1.20
A1		0.5MIN/.10MAX.
A2	NOM	.90
D	±.05	6.50
E	±.10	6.40
E1	±.10	4.40
L	+.15/10	.60
L1	REF.	1.00
Zp	REF.	.325
е	BASIC	.65
b	±.05	.22
С		.13MIN/.20MAX
е	±4°	4°
aaa	MAX.	.10
bbb	MAX.	.10
CCC	MAX	.05
ddd	MAX.	.20

TABLE 10____QSOP16 DIMENSIONS

Symbol	Tols/N	QSOP16
А	MAX.	1.60
A1	±.05	0.1
A2	±.05	1.40
D	±.05	4.95
E	±.10	6.00
E1	±.05	3.90
L	±.15	0.60
CCC	MAX.	0.080
ddd	MAX.	0.10
е	BASIC	0.635
b	±.025	0.224
С	±.02	0.22
R	±.05	0.25
R1	Min.	0.20

_**D**ISCLAIMER

© 2003 Mindspeed Technologies[™], as a wholly owned subsidiary and the Internet infrastructure business of Conexant Systems, All Rights are Reserved.

Information in this document is provided in connection with Mindspeed Technologies. "Mindspeed" products. These materials are provided by Mindspeed as a service to its customers and may be used for informational purposes only. Mindspeed assumes no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and product descriptions at any time, without notice. Mindspeed makes no commitment to update the information contained herein. Mindspeed shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Mindspeed Terms and Conditions of Sale for such products, Mindspeed assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Mindspeed further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. Mindspeed shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

Mindspeed products are not intended for use in medical, life saving or life sustaining applications. Mindspeed customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to fully indemnify Mindspeed for any damages resulting from such improper use or sale.

The following are trademarks of Mindspeed Technologies,. the symbol M1, Mindspeed[™], and "Build It First[™]" Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.

Reader Response: Mindspeed Technologies, strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions to mailto:tech.pubs@mindspeed.com. For technical questions, or to talk to a field applications engineer contact your local Mindspeed™ sales office listed below. For literature send email request to literature@mindspeed.com.

Headquarters

Newport Beach Mindspeed Technologies 4000 MacArthur Boulevard, East Tower Newport Beach, CA 92660 Phone: (949) 579-3000 Fax: (949) 579-3020

www.mindspeed.com