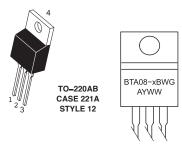


Surface Mount - 600 - 800V > BTA08-600BW3G, BTA08-800BW3G


BTA08-600BW3G, BTA08-800BW3G

Pin Out

Description

Designed for high performance full-wave ac control applications where high noise immunity and high commutating di/dt are required.

Features

- Blocking Voltage to 800 V
- On-State Current Rating of 8 A RMS at 80°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dV/dt 2000 V/s minimum at 125°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220AB Package
- High Commutating dl/dt 1.5 A/ms minimum at 125°C
- Internally Isolated (2500 V_{RMS})
- These Devices are Pb-Free and are RoHS Compliant

Functional Diagram

Additional Information

Resources

Samples

Maximum Ratings † $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Rating	Part Number	Symbol	Value	Unit	
Peak Repetitive Off-State Voltage (Note 1)	BTA08-600BW3G	$V_{DRM_{\ell}}$	600	V	
$(T_J = -40 \text{ to } 125^{\circ}\text{C}, \text{ Sine Wave, } 50 \text{ to } 60 \text{ Hz, Gate Open})$	BTA08-800BW3G	V _{RRM}	800	V	
On-State RMS Current (180° Conduction Angles; T _C = 80°C)			8.0	А	
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _C = 80°C)			90	А	
Circuit Fusing Considerations (t = 8.3 ms)			36	A²sec	
Non-Repetitive Surge Peak Off-State Voltage (TJ = 25°C, t = 10ms)			V _{DRM} /V _{RRM} +100	V	
Peak Gate Current ($T_J = 125$ °C, $t = 20$ ms)			4.0	А	
Peak Gate Power (Pulse Width ≤ 1.0 μs, TC = 80°C)			20	W	
Average Gate Power ($T_J = 125^{\circ}C$)			1.0	W	
Operating Junction Temperature Range			-40 to +125	°C	
Storage Temperature Range			-40 to +150	°C	
RMS Isolation Voltage (t = 300 ms, R.H. ≤ 30%, TA = 25°C)			2500	V	

[†] Indicates JEDEC Registered Data

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Maximum Ratings † $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (AC)	R _{eJC}	2.5	°C/W
Thermal Resistance, Junction-to-Ambient	R _{eJA}	63	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T _L	260	°C

[†] Indicates JEDEC Registered Data

V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall
not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the
voltage ratings of the devices are exceeded.

$Surface\ Mount-600-800V\ >\ BTA08-600BW3G,\ BTA08-800BW3G$

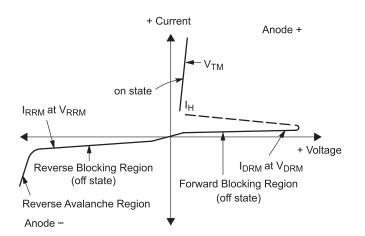
Electrical Characteristics - **OFF** (T_c = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	T _J = 25°C	l _{DRM} ,	-	-	0.005	mA
$(V_{AK} = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 125°C	I _{RRM}	-	-	2.0	THA THA

Electrical Characteristics - ON

Characteristic		Symbol	Min	Тур	Max	Unit
Peak On-State Voltage (Note 2) (I _{TM} = ±11 A Peak)			_	_	1.55	V
	MT2(+), G(+)		2.5	-	50	
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}, R_L = 30 \Omega$)	MT2(+), G(-)	l _{GT}	2.5	-	50	mA
	MT2(-), G(-)		2.5	_	50	
Holding Current $(V_D = 12 \text{ V, Gate Open, Initiating Current} = \pm 100 \text{ mA})$			-	-	60	mA
	MT2(+), G(+)	IL.	_	_	70	mA .
Latching Current $(V_D = 24 \text{ V}, I_G = 42 \text{ mA})$	MT2(+), G(-)		-	-	90	
	MT2(-), G(-)		_	_	70	
	MT2(+), G(+)		0.5	-	1.7	
Gate Trigger Voltage $(V_D = 12 \text{ V}, R_L = 30 \Omega)$	MT2(+), G(-)	V _{GT}	0.5	_	1.1	V
	MT2(-), G(-)		0.5	_	1.1	
	MT2(+), G(+)		0.2	_	-	
Gate Non-Trigger Voltage (T _J = 125°C)	MT2(+), G(-)	t _{gt}	0.2	-	-	V
	MT2(-), G(-)		0.2	-	-	

$Surface\ Mount-600-800V\ >\ BTA08-600BW3G,\ BTA08-800BW3G$


Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current, See Figure 10. (Gate Open, TJ = 125°C, No Snubber)	(dl/dt) _C	3.0	_	_	A/ms
Critical Rate of Rise of On-State Current (TJ = 125°C, f = 120 Hz, IG = 2 x IGT, tr \leq 100 ns)	dl/dt	-	-	50	A/µs
Critical Rate-of-Rise of Off-State Voltage $(V_D = 0.66 \times V_{DRM}, Exponential Waveform, Gate Open, T_J = 125°C)$	dv/dt(c)	1500	-	-	V/µs

Voltage Current Characteristic of SCR

Symbol	Parameter	
V_{DRM}	Peak Repetitive Forward Off State Voltage	
I _{DRM}	Peak Forward Blocking Current	
V _{RRM}	Peak Repetitive Reverse Off State Voltage	
I _{RRM}	Peak Reverse Blocking Current	
V _{TM}	Maximum On State Voltage	
I _H	Holding Current	

Thyristors

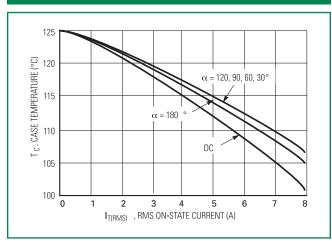


Figure 3. On-State Characteristics

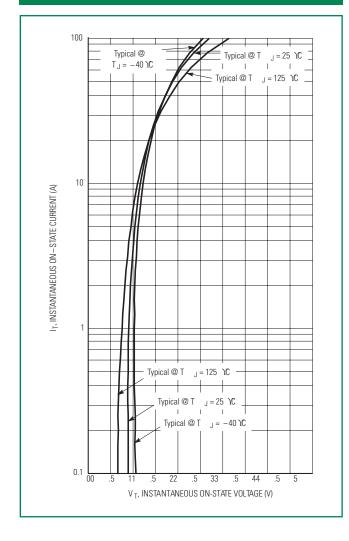


Figure 2. On-State Power Dissipation

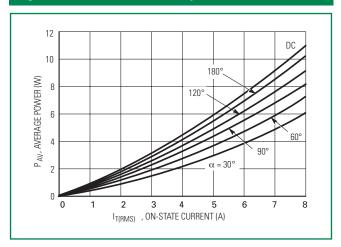


Figure 4. Thermal Response

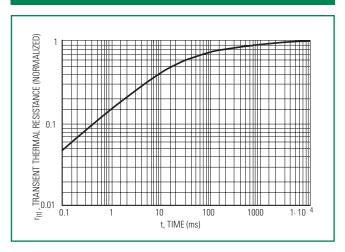
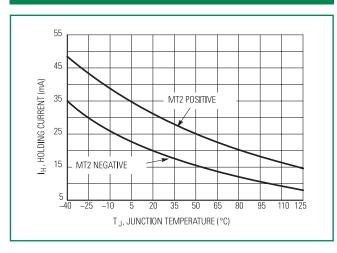



Figure 5. Holding Current Variation

Typical Characteristics

Figure 6. Typical Gate Trigger Current vs. Pulse Width

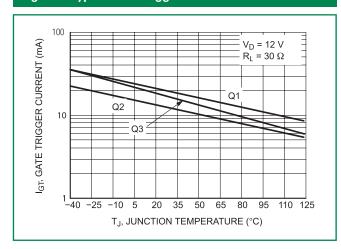


Figure 7. Typical Gate Trigger Current vs. Junction Temperature

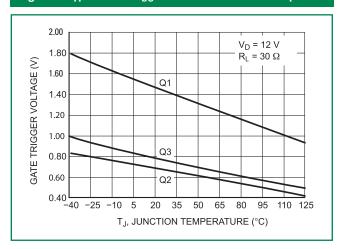


Figure 8. Typical Gate Trigger Voltage vs. Junction Temperature

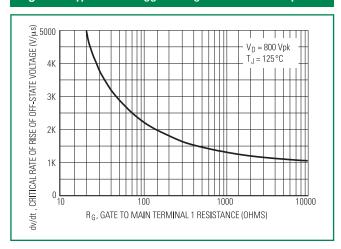
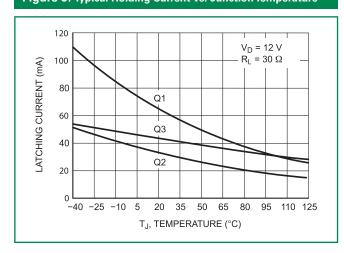
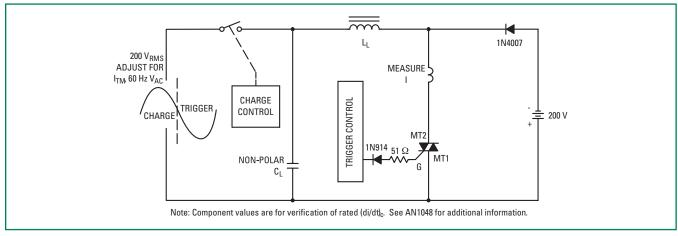
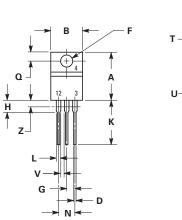
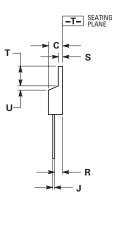


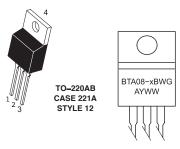
Figure 9. Typical Holding Current vs. Junction Temperature


Figure 9. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)

Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information

Dimensions



<u>.</u>	Inches		Millimeters		
Dim	Min	Max	Min	Max	
А	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.014	0.022	0.36	0.55	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
V	0.045		1.15		
Z		0.080		2.04	

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Part Marking System

= 6 or 8

= Assembly Location (Optional)

/ = Year

WW = Work Week
G = Pb-Free Package

* The Assembly Location code (A) is optional. In cases where the Assembly Location is stamped on the package the assembly code may be blank.

Pin Assignment				
1	Main Terminal 1			
2	Main Terminal 2			
3	Gate			
4	Main Terminal 2			

Ordering Information Device Package Shipping BTA08-600BW3G TO-220AB PTA08-000BW3G (Pb-Free) 50 Units / Retail

BTA08-800BW3G

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littlefuse.com/disclaimer-electronics.