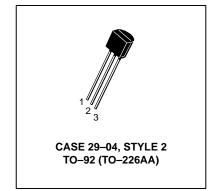

VHF Transistor

NPN Silicon

MAXIMUM RATINGS

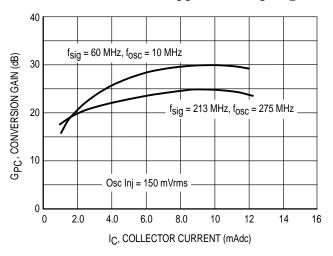
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current – Continuous	IC	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{Stg}	-55 to +135	°C


THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	357	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	30	_	_	Vdc	
Collector-Base Breakdown Voltage (IC = 100 µAdc, IE = 0)	V(BR)CBO	40	_	_	Vdc	
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V(BR)EBO	4.0	_	_	Vdc	
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	ICBO	_	_	50	nAdc	
ON CHARACTERISTICS						
DC Current Gain (IC = 8.0 mAdc, VCE = 10 Vdc)	hFE	30	_	_	_	
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (I _C = 8.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	fT	400	620	_	MHz	
Collector–Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	0.25	0.36	pF	
Conversion Gain	GC				dB	
(213 MHz to 45 MHz) ($I_C = 8.0 \text{ mAdc}$, $V_{CC} = 20 \text{ Vdc}$, Oscillator Injection = 150 mVrms) (60 MHz to 45 MHz)		19	24	_		
(I _C = 8.0 mAdc, V _{CC} = 20 Vdc, Oscillator Injection = 150 mVrms)		24	29	_		



CONVERSION GAIN CHARACTERISTICS

(TEST CIRCUIT FIGURE 7)

 $(V_{CC} = 20 \text{ Vdc}, R_S = R_L = 50 \text{ Ohms}, f_{if} = 44 \text{ MHz}, B.W. = 6.0 \text{ MHz})$

40

f_{sig} = 60 MHz, f_{osc} = 104 MHz

20

f_{sig} = 213 MHz, f_{osc} = 275 MHz

I_C = 8.0 mAdc

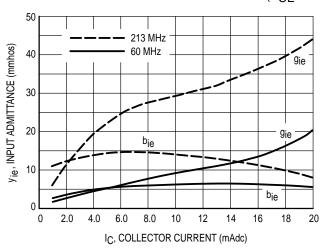

V_i, OSCILLATOR INJECTION (mV)

Figure 1. Conversion Gain versus Collector Current

Figure 2. Conversion Gain versus Injection Level

COMMON-EMITTER y PARAMETERS

 $(VCE = 15 Vdc, TA = 25^{\circ}C)$

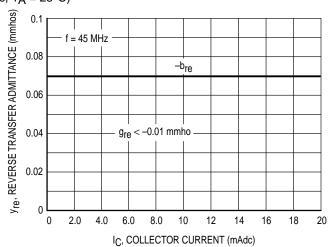


Figure 3. Input Admittance

y_{fe}, FORWARD TRANSFER ADMITTANCE (mmhos) 200 = 45 MHz 160 120 80 bfe 0 2.0 4.0 8.0 10 12 16 18 20 IC, COLLECTOR CURRENT (mAdc)

Figure 4. Reverse Transfer Admittance

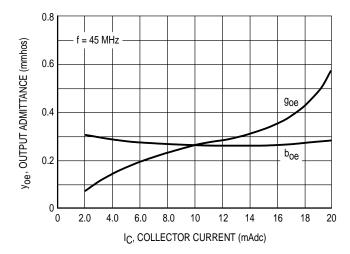


Figure 5. Forward Transfer Admittance

Figure 6. Output Admittance

fsig	60 MHz	213 MHz
fosc	105 MHz	258 MHz
C1	1.5–20 pF	1.5–20 pF
C2	8.0–60 pF	6.0–12 pF
C3	8.0–60 pF	1.5–20 pF
C4	3.0–35 pF	_
C5	1.5–20 pF	_
L1	5 Turns #26 Air, Tap 1 Turn	3 Turns #16 Air, Tap ¹ / ₂ Turn
L2	10 Turns #26 Air	10 Turns #26 Arnold A1–10 Core
L3	Ohmite Z235	_

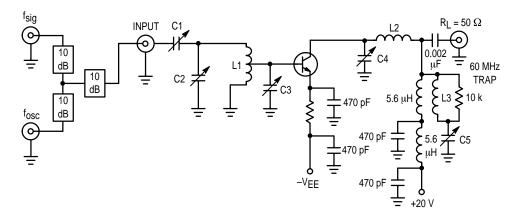
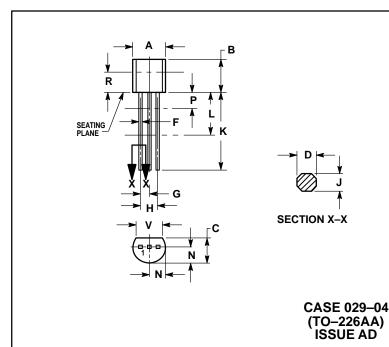



Figure 7. VHF Mixer Test Circuit (f_{if} = 44 MHz, B.W. = 6.0 MHz)

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- DIMENSION F APPLIES BETWEEN P AND L DIMENSION P APPLIES BETWEEN F AND L.
 DIMENSION D AND J APPLY BETWEEN L AND K
 MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.022	0.41	0.55
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
V	0.135		3 43	

PIN 1. BASE

2. EMITTER 3. COLLECTOR

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MPSH24/D