Power MOSFET

40 V, 38 A, Single N-Channel, DPAK

Features

- Low R_{DS(on)}
- High Current Capability
- Low Gate Charge
- These are Pb-Free Devices

Applications

- Electronic Brake Systems
- Electronic Power Steering
- Bridge Circuits

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

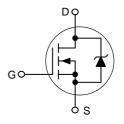
Paran	Symbol	Value	Units		
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain	Steady T _C = 25°C		I _D	38	Α
Current – $R_{\theta JC}$ (Note 1)	State	T _C = 100°C		27	
Power Dissipation – R _{θJC} (Note 1)	Steady State	, I a - 75°C		75	W
Pulsed Drain Current	t _p =	= 10 μs	I _{DM}	75	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 175	°C
Source Current (Body Diode)			IS	36	Α
Single Pulse Drain-to Source Avalanche Energy – (V_{DD} = 50 V, V_{GS} = 10 V, I_{PK} = 17 A, L = 1 mH, R_G = 25 Ω)			EAS	150	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS (Note 1)

Parameter	Symbol	Max	Units
Junction-to-Case (Drain)	$R_{\theta JC}$	2.0	°C/W

Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX (Note 1)	
40 V	21 mΩ @ 10 V	38 A	

N-Channel

DPAK CASE 369C STYLE 2

07NG

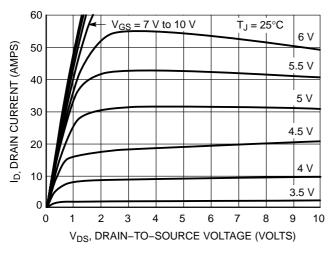
MARKING DIAGRAM

YWW

Y = Year WW = Work Week 5407N = Specific Device Code G = Pb-Free Device

ORDERING INFORMATION

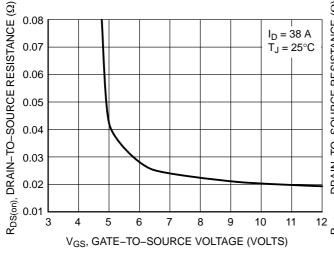
Device	Package	Shipping†
NTD5407NG	DPAK (Pb-Free)	75 Units / Rail
NTD5407NT4G	DPAK (Pb-Free)	2500 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter	Symbol	Test Con	dition	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				39		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	T _J = 25°C			1.0	μΑ
		$V_{DS} = 40 \text{ V}$	T _J = 100°C			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{C}$	_{3S} = ±30 V			±100	nA
ON CHARACTERISTICS (Note 2)							•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{I}$	_ = 250 μΑ	1.5		3.5	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-6.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	I _D = 20 A		21	26	mΩ
		V _{GS} = 5.0 V,	I _D = 10 A		32	40	
Forward Transconductance	9FS	V _{GS} = 10 V,	I _D = 18 A		15		S
CHARGES AND CAPACITANCES	•		•				
Input Capacitance	C _{ISS}				615	1000	pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = V_{DS} = 3$: 1.0 MHz,		173		
Reverse Transfer Capacitance	C _{RSS}	VDS - V	52 V		80		
Total Gate Charge	Q _{G(TOT)}				20		nC
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 10 \text{ V}, V_{DS} = 32 \text{ V},$ $I_{D} = 38 \text{ A}$			2.25		
Gate-to-Drain Charge	Q_{GD}				10.5		
SWITCHING CHARACTERISTICS, Vo	_{SS} = 10 V (Note	3)					•
Turn-On Delay Time	t _{d(ON)}				6.8		ns
Rise Time	t _r	V _{GS} = 10 V, V	nn = 32 V,		17		
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = 10 \text{ V}, V_{DD} = 32 \text{ V},$ $I_{D} = 38 \text{ A}, R_{G} = 2.5 \Omega$			66		
Fall Time	t _f				51		
SWITCHING CHARACTERISTICS, Vo	_{SS} = 5 V (Note 3)					•
Turn-On Delay Time	t _{d(ON)}				10		ns
Rise Time	t _r	$V_{GS} = 5 \text{ V}, V_{I}$	nn = 20 V.		175		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 20 \text{ A}, R_G = 2.5 \Omega$			13		
Fall Time	t _f				23		
DRAIN-SOURCE DIODE CHARACTE	RISTICS (Note	2)	<u>.</u>				
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V}.$	T _J = 25°C		0.9	1.1	V
	VGS = 0 V,		T _J = 125°C		0.75		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 15 \text{ A}$			38		ns
Charge Time	t _a				20.5		
Discharge Time	t _b				17		
Reverse Recovery Charge	Q _{RR}				40		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES

60 $V_{DS} \ge 10 \text{ V}$ ID, DRAIN CURRENT (AMPS) 50 40 30 20 $T_J = 100^{\circ}C$ 10 $T_J = 25^{\circ}C$ $T_J = -55^{\circ}C$ 0 0 2 6 8 3 5 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

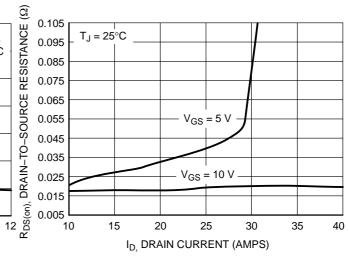
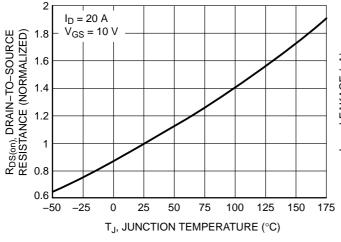



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

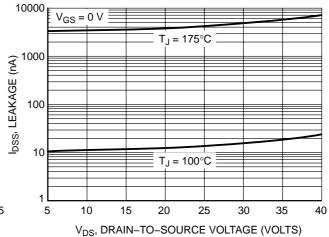
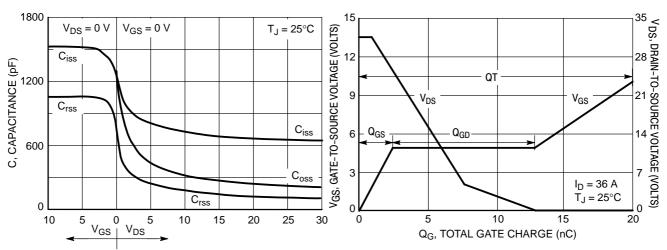



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

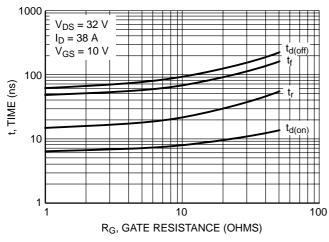


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

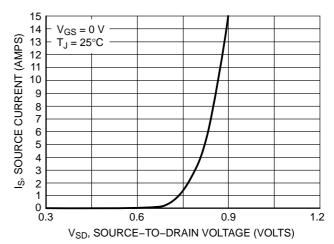
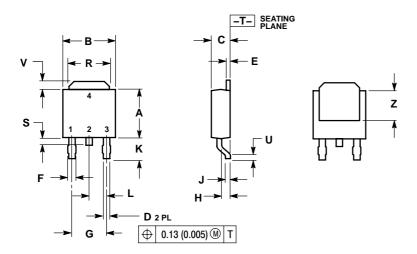
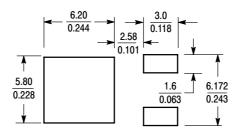



Figure 10. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

DPAK CASE 369C-01 **ISSUE O**



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.22	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.180	BSC	4.58 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.102	0.114	2.60	2.89	
L	0.090	BSC	2.29 BSC		
R	0.180	0.215	4.57	5.45	
S	0.025	0.040	0.63	1.01	
U	0.020		0.51		
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

- STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.