

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: <http://www.renesas.com>

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (<http://www.renesas.com>)

Send any inquiries to <http://www.renesas.com/inquiry>.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

4-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μPD753017A is one of the 75XL series 4-bit single-chip microcontroller chips and has a data processing capability comparable to that of an 8-bit microcontroller.

It has an on-chip LCD controller/driver with a larger ROM capacity and extended CPU functions compared with the conventional μPD75316B, and can provide high-speed operation at a low supply voltage of 1.8 V. It can be supplied in a small plastic TQFP package (12 × 12 mm) and is suitable for small sets using LCD panels.

Detailed descriptions of functions are provided in the following document. Be sure to read the document before designing.

μPD753017 User's Manual : U11282E

FEATURES

- Low voltage operation: V_{DD} = 1.8 to 5.5 V
 - Can be driven by two 1.5 V batteries
- On-chip memory
 - Program memory (ROM):
 - 12288 × 8 bits (μPD753012A)
 - 16384 × 8 bits (μPD753016A)
 - 24576 × 8 bits (μPD753017A)
 - Data memory (RAM):
 - 1024 × 4 bits
- Capable of high-speed operation and variable instruction execution time for power saving
 - 0.95, 1.91, 3.81, 15.3 μ s (at 4.19 MHz operation)
 - 0.67, 1.33, 2.67, 10.7 μ s (at 6.0 MHz operation)
 - 122 μ s (at 32.768 kHz operation)
- Internal programmable LCD controller/driver
- Small plastic TQFP (12 × 12 mm)
 - Suitable for small sets such as cameras
- One-time PROM: μPD75P3018A

APPLICATION

Remote controllers, camera-integrated VCRs, cameras, gas meters, etc.

In this document, unless otherwise specified, the description is made based on μPD753017A as typical product.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

ORDERING INFORMATION

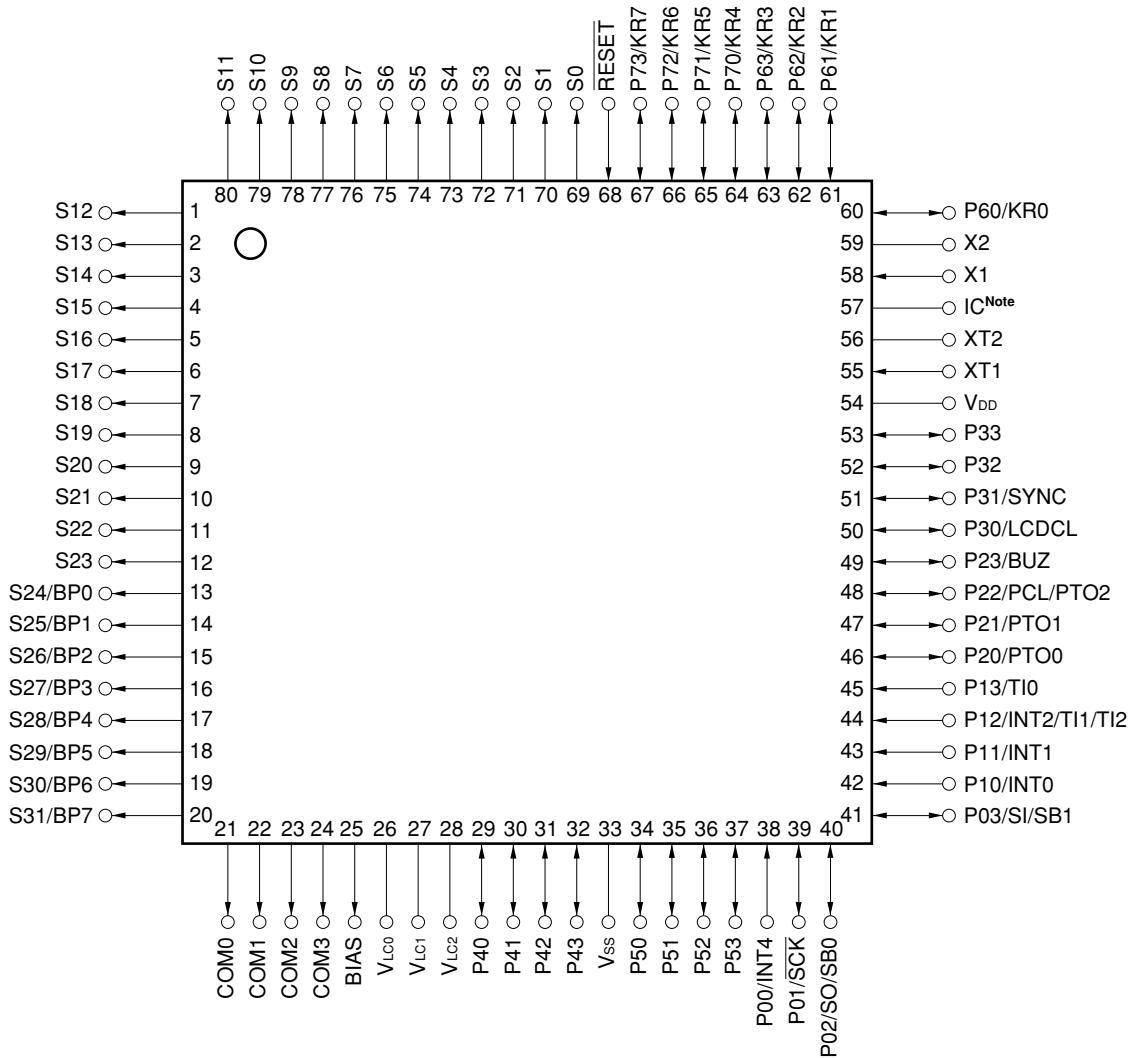
	Part number	Package
★	μPD753012AGC-XXX-3B9	80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)
★	μPD753012AGC-XXX-3B9-A	80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)
★	μPD753012AGC-XXX-8BT	80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)
★	μPD753012AGC-XXX-8BT-A	80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)
★	μPD753012AGK-XXX-BE9	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)
★	μPD753012AGK-XXX-BE9-A	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)
★	μPD753012AGK-XXX-9EU	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)
★	μPD753012AGK-XXX-9EU-A	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)
★	μPD753016AGC-XXX-3B9	80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)
★	μPD753016AGC-XXX-3B9-A	80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)
★	μPD753016AGC-XXX-8BT	80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)
★	μPD753016AGC-XXX-8BT-A	80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)
★	μPD753016AGK-XXX-BE9	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)
★	μPD753016AGK-XXX-BE9-A	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)
★	μPD753016AGK-XXX-9EU	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)
★	μPD753016AGK-XXX-9EU-A	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)
★	μPD753017AGC-XXX-3B9	80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)
★	μPD753017AGC-XXX-3B9-A	80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)
★	μPD753017AGC-XXX-8BT	80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)
★	μPD753017AGC-XXX-8BT-A	80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)
★	μPD753017AGK-XXX-BE9	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)
★	μPD753017AGK-XXX-BE9-A	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)
★	μPD753017AGK-XXX-9EU	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)
★	μPD753017AGK-XXX-9EU-A	80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)

Remarks 1. Products with “-A” at the end of the part number are lead-free products.

2. XXX indicates ROM code suffix.

FUNCTION OUTLINE

Parameter		Function	
Instruction execution time		<ul style="list-style-type: none"> 0.95, 1.91, 3.81, 15.3 μs (main system clock: at 4.19 MHz operation) 0.67, 1.33, 2.67, 10.7 μs (main system clock: at 6.0 MHz operation) 122 μs (subsystem clock: at 32.768 kHz operation) 	
Internal memory	ROM	12288 \times 8 bits (μ PD753012A)	
		16384 \times 8 bits (μ PD753016A)	
		24576 \times 8 bits (μ PD753017A)	
	RAM	1024 \times 4 bits	
General purpose register		<ul style="list-style-type: none"> 4-bit operation: 8 \times 4 banks 8-bit operation: 4 \times 4 banks 	
Input/ output port	CMOS input	8	On-chip pull-up resistors can be specified by using software: 23
	CMOS input/output	16	
	CMOS output	8	Also used for segment pins
	N-ch open-drain input/output	8	Withstands 13 V, on-chip pull-up resistors can be specified by using mask option
	Total	40	
LCD controller/driver		<ul style="list-style-type: none"> Segment number selection : 24/28/32 segments (can be changed to CMOS output port in 4 time-unit; max. 8) Display mode selection : Static, 1/2 duty (1/2 bias), 1/3 duty (1/2 bias), 1/3 duty (1/3 bias), 1/4 duty (1/3 bias) 	
		On-chip split resistor for LCD drive can be specified by using mask option	
Timer		<ul style="list-style-type: none"> 5 channels 8-bit timer/event counter: 3 channels (can be used for 16-bit timer/event counter, carrier generator, timer with gate) Basic interval timer/watchdog timer: 1 channel Watch timer: 1 channel 	
Serial interface		<ul style="list-style-type: none"> 3-wire serial I/O mode ... MSB or LSB can be selected for transferring first bit 2-wire serial I/O mode SBI mode 	
Bit sequential buffer		16 bits	
Clock output (PCL)		<ul style="list-style-type: none"> Φ, 524, 262, 65.5 kHz (main system clock: at 4.19 MHz operation) Φ, 750, 375, 93.8 kHz (main system clock: at 6.0 MHz operation) 	
Buzzer output (BUZ)		<ul style="list-style-type: none"> 2, 4, 32 kHz (main system clock: at 4.19 MHz operation or subsystem clock: at 32.768 kHz operation) 2.93, 5.86, 46.9 kHz (main system clock: at 6.0 MHz operation) 	
Vectored interrupt		External: 3, Internal: 5	
Test input		External: 1, Internal: 1	
System clock oscillator		<ul style="list-style-type: none"> Ceramic or crystal oscillator for main system clock oscillation Crystal oscillator for subsystem clock oscillation 	
Standby function		STOP/HALT mode	
Power supply voltage		$V_{DD} = 1.8$ to 5.5 V	
Package		<ul style="list-style-type: none"> 80-pin plastic QFP (14 \times 14 mm) 80-pin plastic TQFP (fine pitch) (12 \times 12 mm) 	

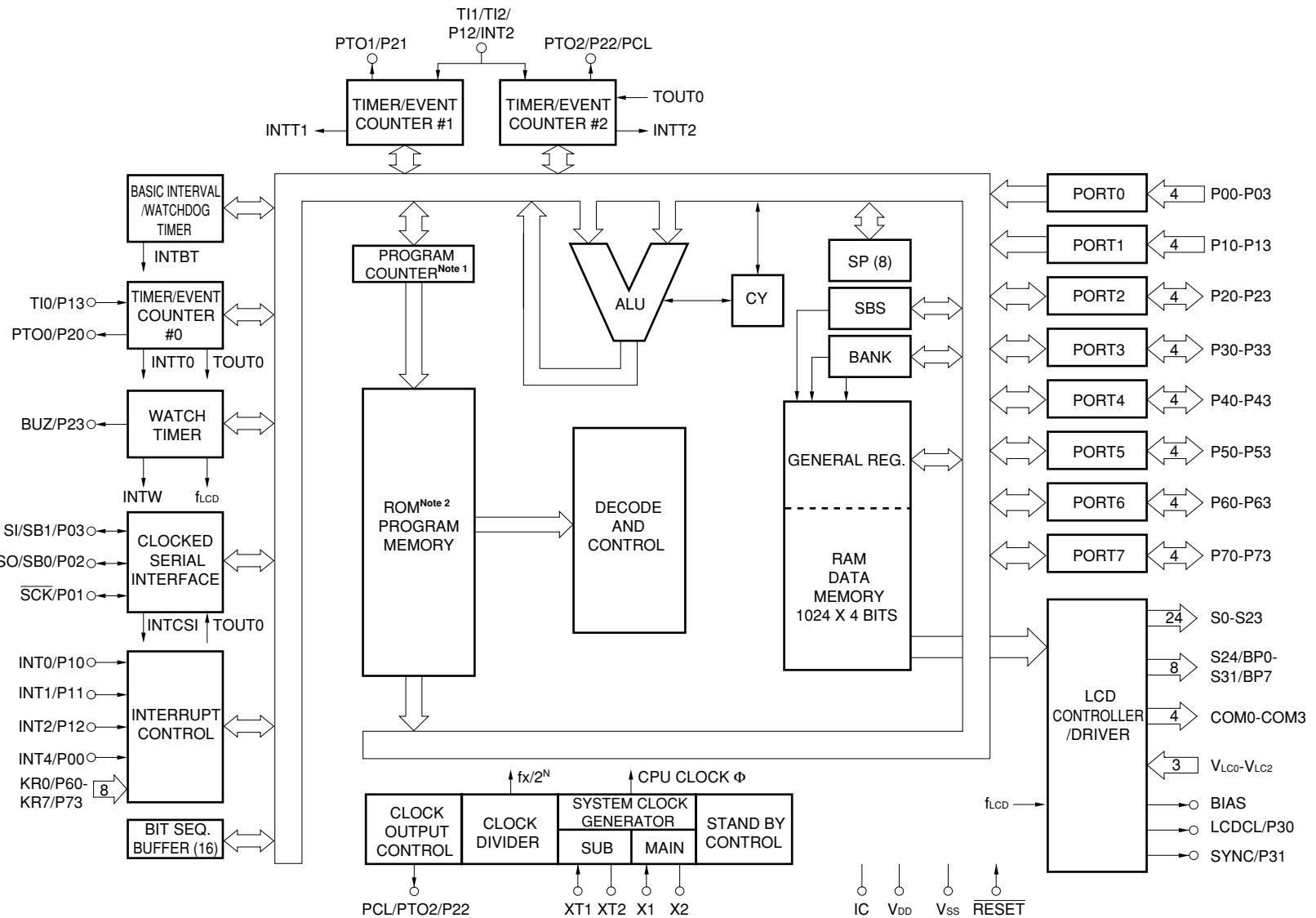

CONTENTS

1. PIN CONFIGURATION (Top View)	6
2. BLOCK DIAGRAM	8
3. PIN FUNCTION	9
3.1 Port Pins	9
3.2 Non-port Pins	11
3.3 Pin Input/Output Circuits	13
3.4 Recommended Connection for Unused Pins	15
4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE	16
4.1 Differences between Mk I Mode and Mk II Mode	16
4.2 Setting Method of Stack Bank Select Register (SBS)	17
5. MEMORY CONFIGURATION	18
6. PERIPHERAL HARDWARE FUNCTIONS	23
6.1 Digital Input/Output Ports	23
6.2 Clock Generator	24
6.3 Subsystem Clock Oscillator Control Functions	25
6.4 Clock Output Circuit	26
6.5 Basic Interval Timer/Watchdog Timer	27
6.6 Watch Timer	28
6.7 Timer/Event Counter	29
6.8 Serial Interface	33
6.9 LCD Controller/Driver	35
6.10 Bit Sequential Buffer	37
7. INTERRUPT FUNCTION AND TEST FUNCTION	38
8. STANDBY FUNCTION	40
9. RESET FUNCTION	41
10. MASK OPTION	44
11. INSTRUCTION SET	45
12. ELECTRICAL SPECIFICATIONS	57
★ 13. CHARACTERISTICS CURVES (REFERENCE VALUES)	71
14. PACKAGE DRAWINGS	73
15. RECOMMENDED SOLDERING CONDITIONS	77

APPENDIX A. μ PD75316B, 753017A AND 75P3018A FUNCTION LIST	81
APPENDIX B. DEVELOPMENT TOOLS	83
APPENDIX C. RELATED DOCUMENTS	87

1. PIN CONFIGURATION (Top View)

- 80-pin plastic QFP (14 × 14 mm)
 - ★ μPD753012AGC-XXX-3B9, 753012AGC-XXX-3B9-A, 753012AGC-XXX-8BT, 753012AGC-XXX-8BT-A
 - ★ μPD753016AGC-XXX-3B9, 753016AGC-XXX-3B9-A, 753016AGC-XXX-8BT, 753016AGC-XXX-8BT-A
 - ★ μPD753017AGC-XXX-3B9, 753017AGC-XXX-3B9-A, 753017AGC-XXX-8BT, 753017AGC-XXX-8BT-A
- 80-pin plastic TQFP (fine pitch) (12 × 12 mm)
 - ★ μPD753012AGK-XXX-BE9, 753012AGK-XXX-BE9-A, 753012AGK-XXX-9EU, 753012AGK-XXX-9EU-A
 - ★ μPD753016AGK-XXX-BE9, 753016AGK-XXX-BE9-A, 753016AGK-XXX-9EU, 753016AGK-XXX-9EU-A
 - ★ μPD753017AGK-XXX-BE9, 753017AGK-XXX-BE9-A, 753017AGK-XXX-9EU, 753017AGK-XXX-9EU-A



Note Connect the IC (Internally Connected) pin directly to V_{DD}.

Pin Identification

BIAS	:LCD Power Supply Bias Control	PCL	:Programmable Clock
BP0-BP7	:Bit Port	PTO0-PTO2	:Programmable Timer Output 0-2
BUZ	:Buzzer Clock	<u>RESET</u>	:Reset Input
COM0-COM3	:Common Output 0-3	S0-S31	:Segment Output 0-31
IC	:Internally Connected	SB0, SB1	:Serial Bus 0, 1
INT0, INT1, INT4	:External Vectored Interrupt 0, 1, 4	<u>SCK</u>	:Serial Clock
INT2	:External Test Input 2	SI	:Serial Input
KR0-KR7	:Key Return	SO	:Serial Output
LCDCL	:LCD Clock	SYNC	:LCD Synchronization
P00-P03	:Port 0	TI0-TI2	:Timer Input 0-2
P10-P13	:Port 1	V _{DD}	:Positive Power Supply
P20-P23	:Port 2	V _{LC0} -V _{LC2}	:LCD Power Supply 0-2
P30-P33	:Port 3	V _{SS}	:Ground
P40-P43	:Port 4	X1, X2	:Main System Clock Oscillation 1, 2
P50-P53	:Port 5	XT1, XT2	:Subsystem Clock Oscillation 1, 2
P60-P63	:Port 6		
P70-P73	:Port 7		

2. BLOCK DIAGRAM

3. PIN FUNCTION

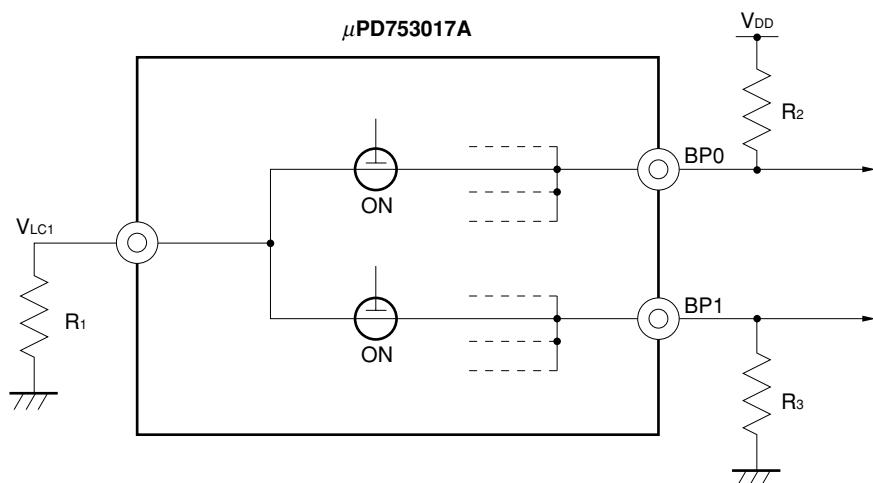
3.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function	8-bit I/O	After Reset	I/O Circuit Type ^{Note 1}
P00	Input	INT4	4-bit input port (PORT0). For P01 to P03, connection of on-chip pull-up resistors can be specified by software in 3-bit units.	No	Input	
P01		SCK				<F>-A
P02		SO/SB0				<F>-B
P03		SI/SB1				<M>-C
P10	Input	INT0	4-bit input port (PORT1). Connection of on-chip pull-up resistors can be specified by software in 4-bit units. Only P10/INT0 can select noise elimination circuit.	No	input	-C
P11		INT1				
P12		TI1/TI2/INT2				
P13		TI0				
P20	I/O	PTO0	4-bit input/output port (PORT2). Connection of on-chip pull-up resistors can be specified by software in 4-bit units.	No	Input	E-B
P21		PTO1				
P22		PCL/PTO2				
P23		BUZ				
P30	I/O	LCDCL	Programmable 4-bit input/output port (PORT3). This port can be specified for input/output bit-wise. Connection of on-chip pull-up resistor can be specified by software in 4-bit units.	No	Input	E-B
P31		SYNC				
P32		—				
P33		—				
P40-P43 ^{Note 2}	I/O	—	N-ch open-drain 4-bit input/output port (PORT4). A pull-up resistor can be contained bit-wise (mask option). Withstand voltage is 13 V in open-drain mode.	Yes	High level (when pull-up resistors are provided) or high impedance	M-D
P50-P53 ^{Note 2}	I/O	—	N-ch open-drain 4-bit input/output port (PORT5). A pull-up resistor can be contained bit-wise (mask option). Withstand voltage is 13 V in open-drain mode.		High level (when pull-up resistors are provided) or high impedance	M-D

Notes 1. Circuit types enclosed in brackets indicate the Schmitt trigger input.

2. If on-chip pull-up resistors are not specified by mask option (when used as N-ch open-drain input port), low level input leakage current increases when input or bit manipulation instruction is executed.

3.1 Port Pins (2/2)


Pin Name	I/O	Alternate Function	Function	8-bit I/O	After Reset	I/O Circuit Type ^{Note 1}		
P60	I/O	KR0	Programmable 4-bit input/output port (PORT6). This port can be specified for input/output bit-wise. Connection of on-chip pull-up resistors can be specified by software in 4-bit units.	Yes	Input	<F>-A		
P61		KR1						
P62		KR2						
P63		KR3						
P70	I/O	KR4	4-bit input/output port (PORT7). Connection of on-chip pull-up resistors can be specified by software in 4-bit units.	Yes	Input	<F>-A		
P71		KR5						
P72		KR6						
P73		KR7						
BP0	Output	S24	1-bit output port (BIT PORT). Also used for segment output pins.	No	Note 2	H-A		
BP1		S25						
BP2		S26						
BP3		S27						
BP4	Output	S28		No				
BP5		S29						
BP6		S30						
BP7		S31						

Notes 1. Circuit types enclosed in brackets indicate the Schmitt trigger input.

2. BP0 through BP7 select V_{LC1} as an input source.

However, the output levels change depending on the external circuit of BP0 through BP7 and V_{LC1} .

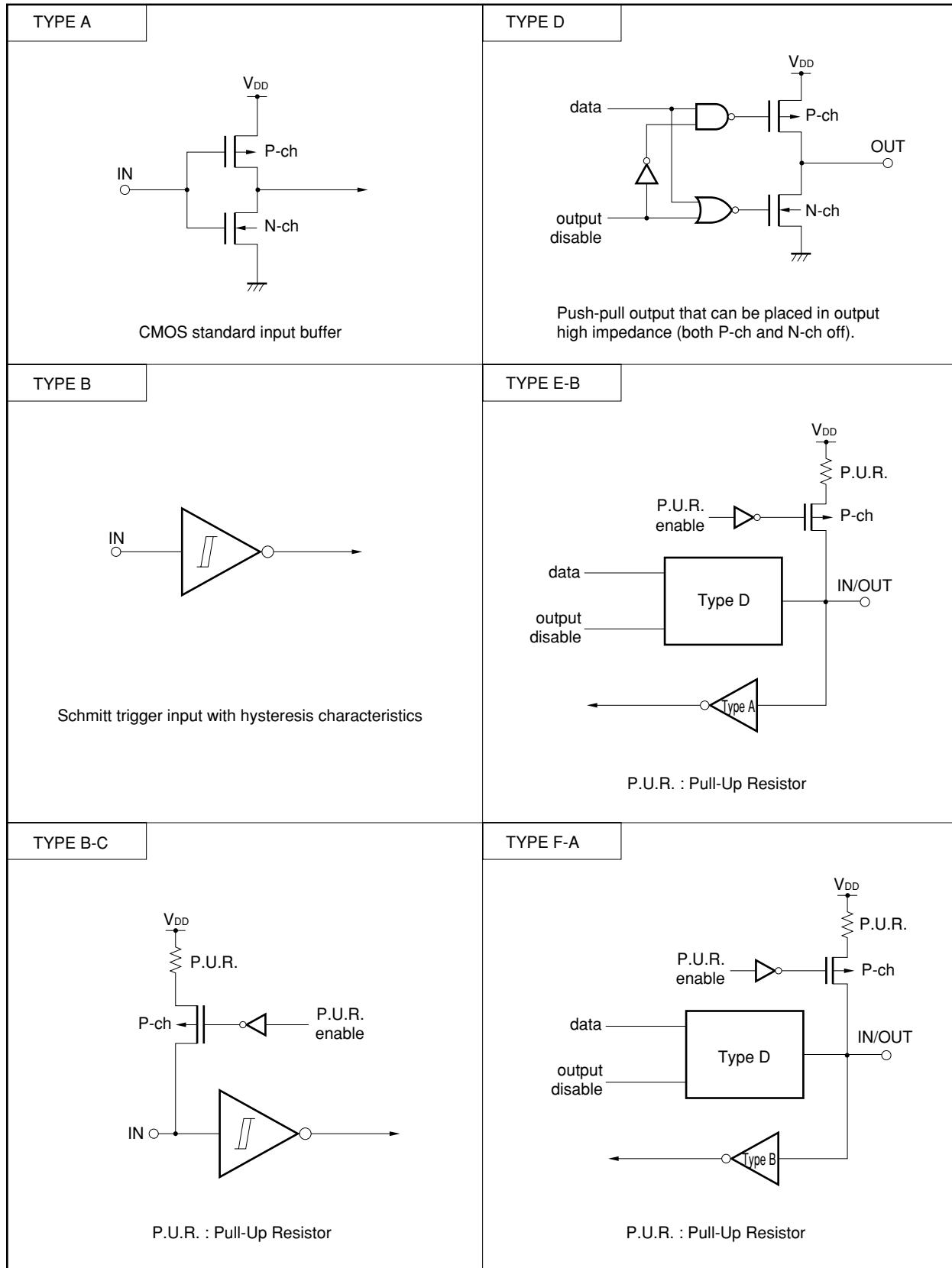
Example Because BP0 through BP7 are mutually connected inside the μPD753017A, the output levels of BP0 through BP7 are determined by R_1 , R_2 , and R_3 .

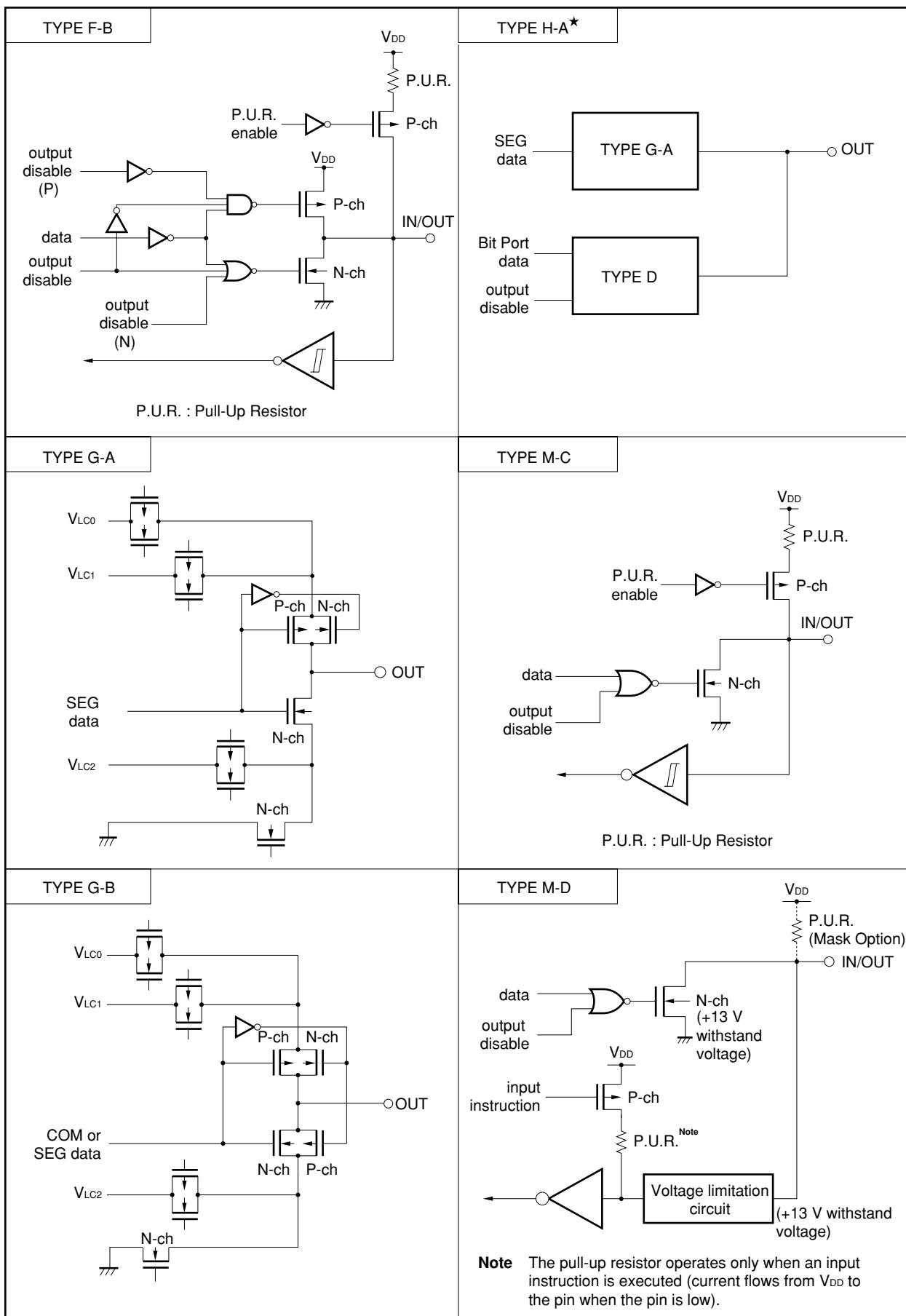
3.2 Non-port Pins (1/2)

Pin Name	I/O	Alternate Function	Function	After Reset	I/O Circuit Type ^{Note 1}		
TI0	Input	P13	Inputs external event pulses to the timer/event counter.	Input	-C		
TI1		P12/INT2					
TI2	Output	P20	Timer/event counter output	Input	E-B		
PTO0		P21					
PTO1		P22/PCL	Clock output				
PTO2		P22/PTO2					
PCL		P23	Optional frequency output (for buzzer output or system clock trimming)				
BUZ	I/O	P01	Serial clock input/output	Input	<F>-A		
SCK		P02	Serial data output Serial data bus input/output		<F>-B		
SO/SB0		P03	Serial data input Serial data bus input/output		<M>-C		
SI/SB1	Input	P00	Edge detection vectored interrupt input (both rising edge and falling edge detection)	Input			
INT4		P10	Edge detection vectored interrupt input (detection edge can be selected) INT0/P10 can select noise elimination circuit.	Input	-C		
INT0	Input	P11					
INT1			Asynchronous				
INT2	Input	P12/TI1/TI2	Rising edge detection testable input	Asynchronous	Input -C		
KR0-KR3	Input	P60-P63	Falling edge detection testable input	Input	<F>-A		
KR4-KR7	Input	P70-P73	Falling edge detection testable input	Input	<F>-A		
S0-S23	Output	—	Segment signal output	Note 2	G-A		
S24-S31	Output	BP0-BP7	Segment signal output	Note 2	H-A		
COM0-COM3	Output	—	Common signal output	Note 2	G-B		
V _{LC0} -V _{LC2}	—	—	LCD drive power On-chip split resistor is enable (mask option).	—	—		
BIAS	Output	—	Output for external split resistor disconnect	Note 3	—		
LCDCL ^{Note 4}	Output	P30	Clock output for externally expanded driver	Input	E-B		
SYNC ^{Note 4}	Output	P31	Clock output for externally expanded driver synchronization	Input	E-B		

Notes 1. Circuit types enclosed in brackets indicate the Schmitt trigger input.

- Each display output selects the following V_{LCX} as input source.
S0-S23: V_{LC1}, COM0-COM2: V_{LC2}, COM3: V_{LC0}
- When a split resistor is contained Low level
When no split resistor is contained High impedance
- These pins are provided for future system expansion. At present, these pins are used only as pins P30 and P31.


3.2 Non-port Pins (2/2)


Pin Name	I/O	Alternate Function	Function	After Reset	I/O Circuit Type ^{Note}
X1	Input	–	Crystal/ceramic connection pin for the mainsystem clock oscillation. When inputting the external clock, input the external clock to pin X1, and the inverted phase of the external clock to pin X2.	–	–
X2	–	–			
XT1	Input	–	Crystal connection pin for the subsystem clock oscillation. When the external clock is used, input the external clock to pin XT1, and the inverted phase of the external clock to pin XT2. Pin XT1 can be used as a 1-bit input (test) pin.	–	–
XT2	–	–			
<u>RESET</u>	Input	–	System reset input (low level active)	–	
IC	–	–	Internally connected. Connect directly to V _{DD} .	–	–
V _{DD}	–	–	Positive power supply	–	–
V _{SS}	–	–	GND	–	–

Note Circuit types enclosed in brackets indicate the Schmitt trigger input.

3.3 Pin Input/Output Circuits

The μPD753017A pin input/output circuits are shown schematically.

3.4 Recommended Connection for Unused Pins

Table 3-1. List of Recommended Connection for Unused Pins

Pin	Recommended Connection
P00/INT4	Connect to V _{SS} or V _{DD}
P01/SCK	Connect to V _{SS} or V _{DD} via a resistor individually
P02/SO/SB0	
P03/SI/SB1	Connect to V _{SS}
P10/INT0, P11/INT1	Connect to V _{SS} or V _{DD}
P12/TI1/TI2/INT2	
P13/TI0	
P20/PTO0	Input: Connect to V _{SS} or V _{DD} via a resistor individually
P21/PTO1	Output: Leave open
P22/PTO2/PCL	
P23/BUZ	
P30/LCDCL	
P31/SYNC	
P32	
P33	
P40-P43	Input: Connect to V _{SS}
P50-P53	Output: Connect to V _{SS} (do not connect a pull-up resistor of mask option)
P60/KR0-P63/KR3	Input: Connect to V _{SS} or V _{DD} via a resistor individually
P70/KR4-P73/KR7	Output: Leave open
S0-S23	Leave open
S24/BP0-S31/BP7	
COM0-COM3	
V _{LC0} -V _{LC2}	Connect to V _{SS}
BIAS	Only if all of V _{LC0} -V _{LC2} are unused, connect to V _{SS} . In other cases, leave open.
XT1	Connect to V _{SS}
XT2 ^{Note}	Leave open
IC	Connect to V _{DD} directly

Note When the subsystem clock is not used, set SOS.0 to 1 (so as not to use the internal feedback resistor).

4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE

4.1 Differences between Mk I Mode and Mk II Mode

The CPU of μPD753017A has the following two modes: Mk I and Mk II, either of which can be selected. The mode can be switched by the bit 3 of the stack bank select register (SBS).

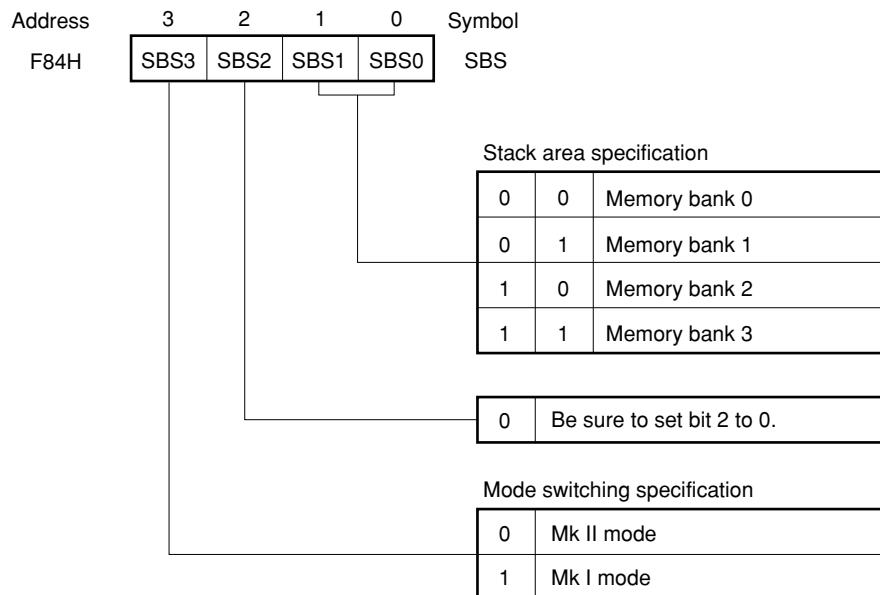
- Mk I mode: Upward compatible with μPD75316B.
Can be used in the 75XL CPU with a ROM capacity of up to 16K bytes.
- Mk II mode: Incompatible with μPD75316B.
Can be used in all the 75XL CPU's including those products whose ROM capacity is more than 16K bytes.

Table 4-1. Differences between Mk I Mode and Mk II Mode

	Mk I Mode	Mk II Mode
Program memory (bytes)	<ul style="list-style-type: none"> • μPD753012A : 12288 • μPD753016A, 753017A : 16384 	<ul style="list-style-type: none"> • μPD753012A : 12288 • μPD753016A : 16384 • μPD753017A : 24576
Number of stack bytes for subroutine instructions	2 bytes	3 bytes
BRA !addr1 instruction CALLA !addr1 instruction	Not available	Available
CALL !addr instruction	3 machine cycles	4 machine cycles
CALLF !faddr instruction	2 machine cycles	3 machine cycles

Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75X and 75XL series. Therefore, this mode is effective for enhancing software compatibility with products exceeding 16 Kbytes.

When the Mk II mode is selected, the number of stack bytes used during execution of subroutine call instructions increases by one byte per stack compared to the Mk I mode. When the CALL !addr and CALLF !faddr instructions are used, the machine cycle becomes longer by one machine cycle. Therefore, use the Mk I mode if the RAM efficiency and processing performance are more important than software compatibility.


4.2 Setting Method of Stack Bank Select Register (SBS)

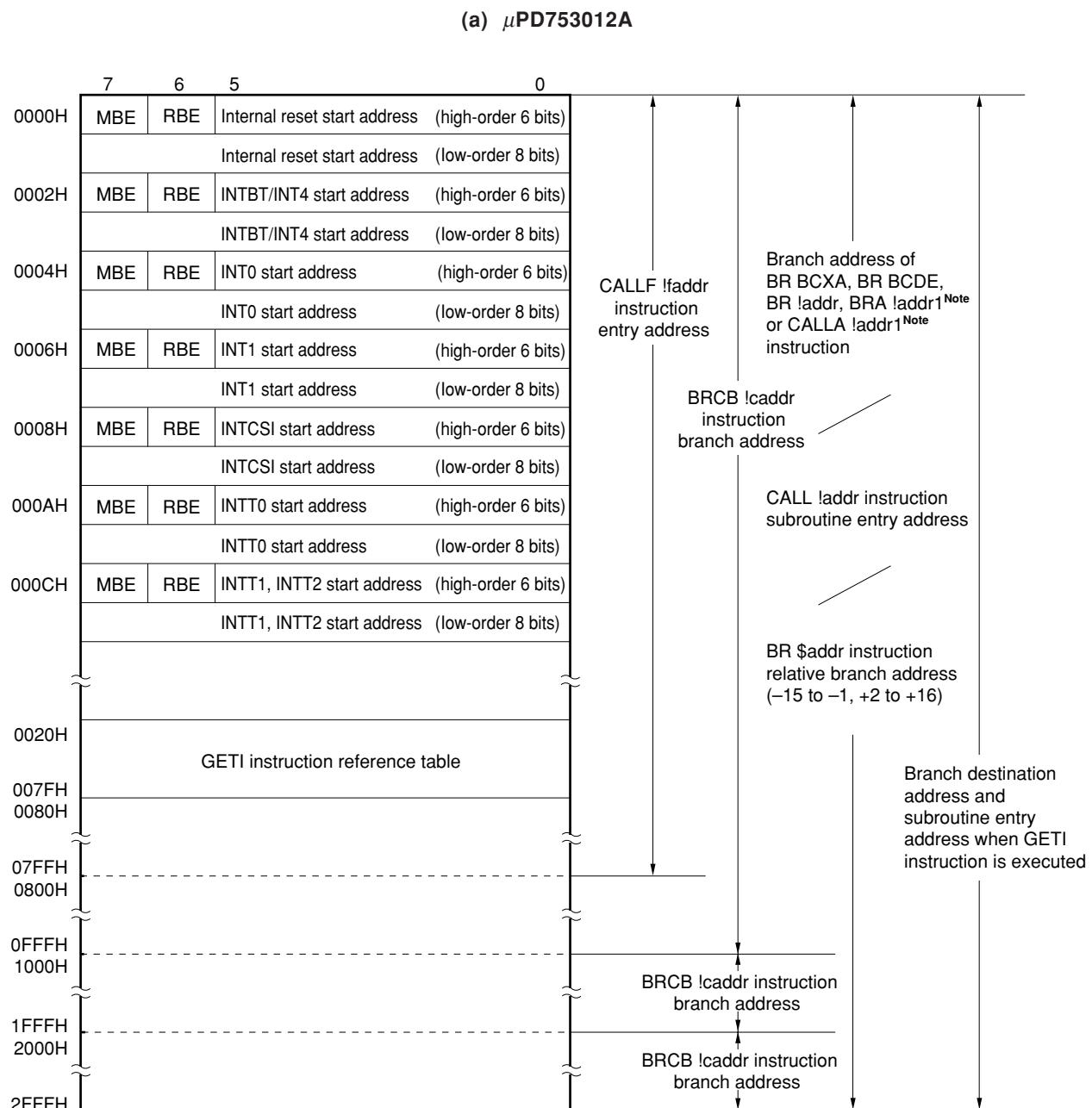
Switching between the Mk I mode and Mk II mode can be done by the stack bank select register (SBS). Figure 4-1 shows the format.

The SBS is set by a 4-bit memory manipulation instruction. When using the Mk I mode, the SBS must be initialized to 10XXB^{Note} at the beginning of a program. When using the Mk II mode, it must be initialized to 00XXB^{Note}.

Note Set the desired value in the XX positions.

Figure 4-1. Stack Bank Select Register Format

Caution Since SBS. 3 is set to "1" after a RESET signal is generated, the CPU operates in the Mk I mode. When executing an instruction in the Mk II mode, set SBS. 3 to "0" to select the Mk II mode.

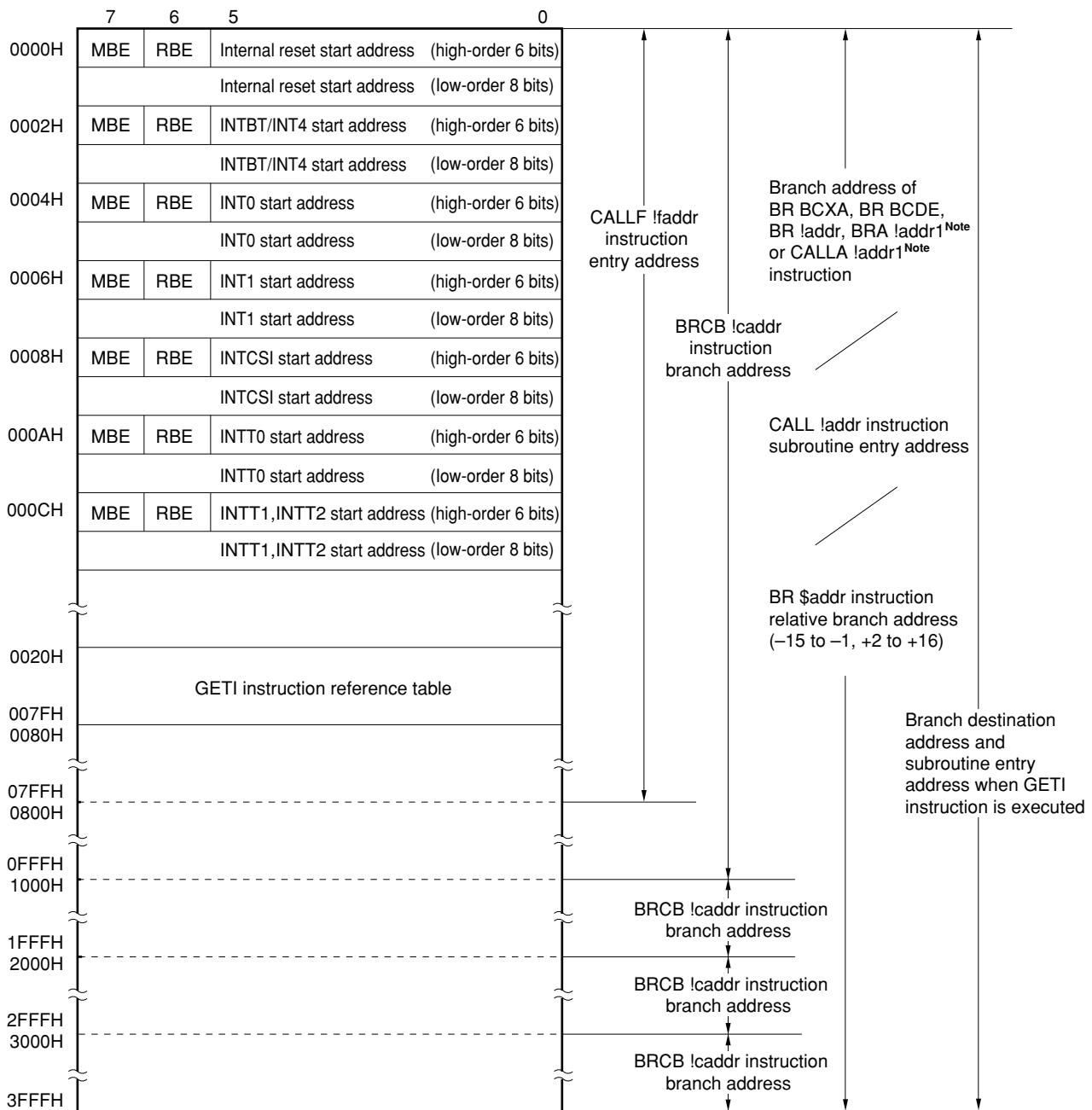

5. MEMORY CONFIGURATION

- Program memory (ROM) 12288 × 8 bits (μ PD753012A)
..... 16384 × 8 bits (μ PD753016A)
..... 24576 × 8 bits (μ PD753017A)
- Addresses 0000H and 0001H
Vector table wherein the program start address and the values set for the RBE and MBE at the time a $\overline{\text{RESET}}$ signal is generated are written. Reset start is possible from any address.
- Addresses 0002H to 000DH
Vector table wherein the program start address and the values set for the RBE and MBE by each vectored interrupt are written. Interrupt processing can start from any address.
- Addresses 0020H to 007FH
Table area referenced by the GETI instruction^{Note}.

Note The GETI instruction realizes a 1-byte instruction on behalf of any 2-byte/3-byte instruction, or two 1-byte instructions. It is used to decrease the number of program steps.

- Data memory (RAM)
 - Data area ...1024 words × 4 bits (000H to 3FFH)
 - Peripheral hardware area...128 × 4 bits (F80H to FFFH)

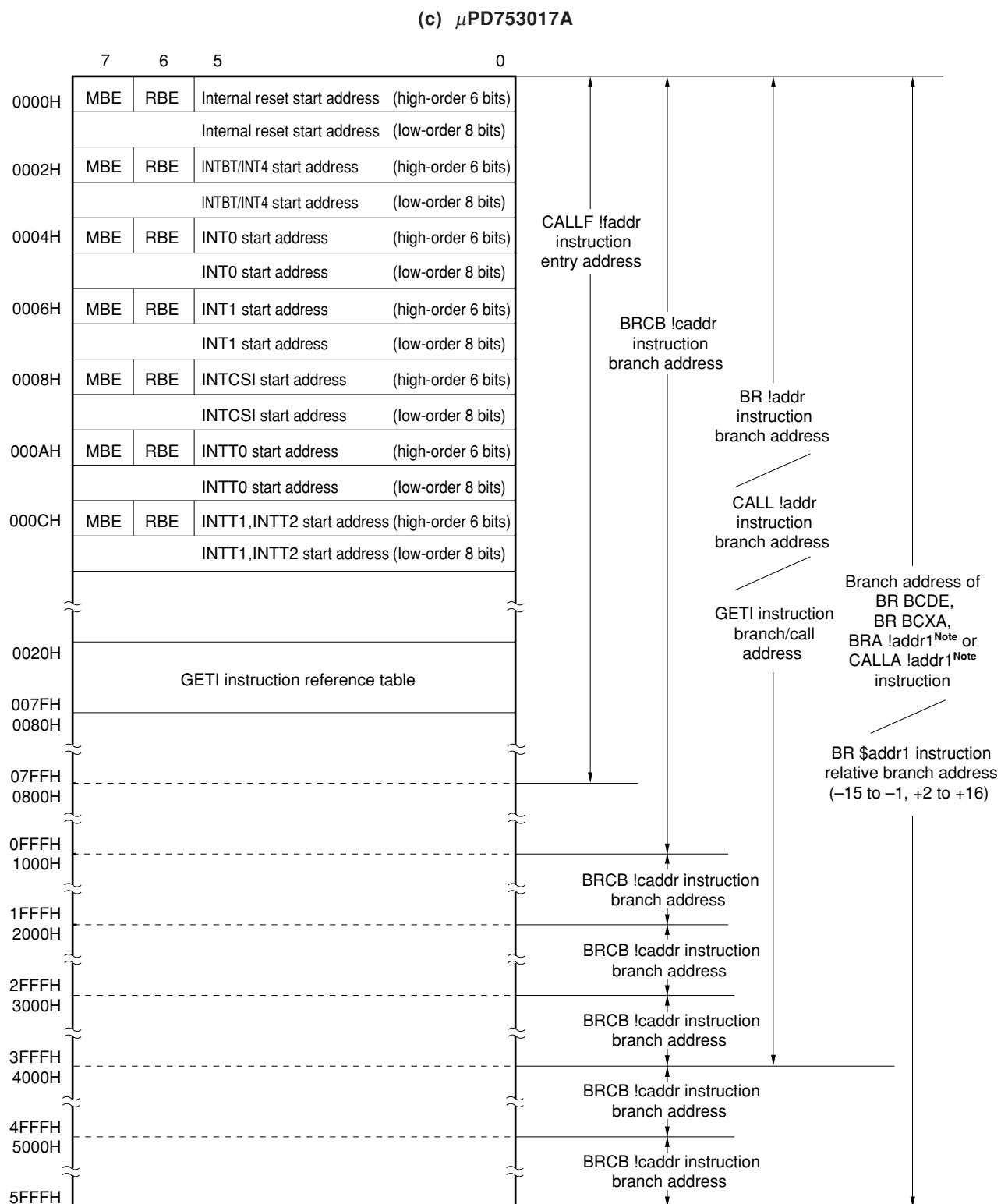
Figure 5-1. Program Memory Map (1/3)



Note Can be used only in the Mk II mode.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order 8 bits of PC by executing the BR PCDE, BR PCXA instruction.

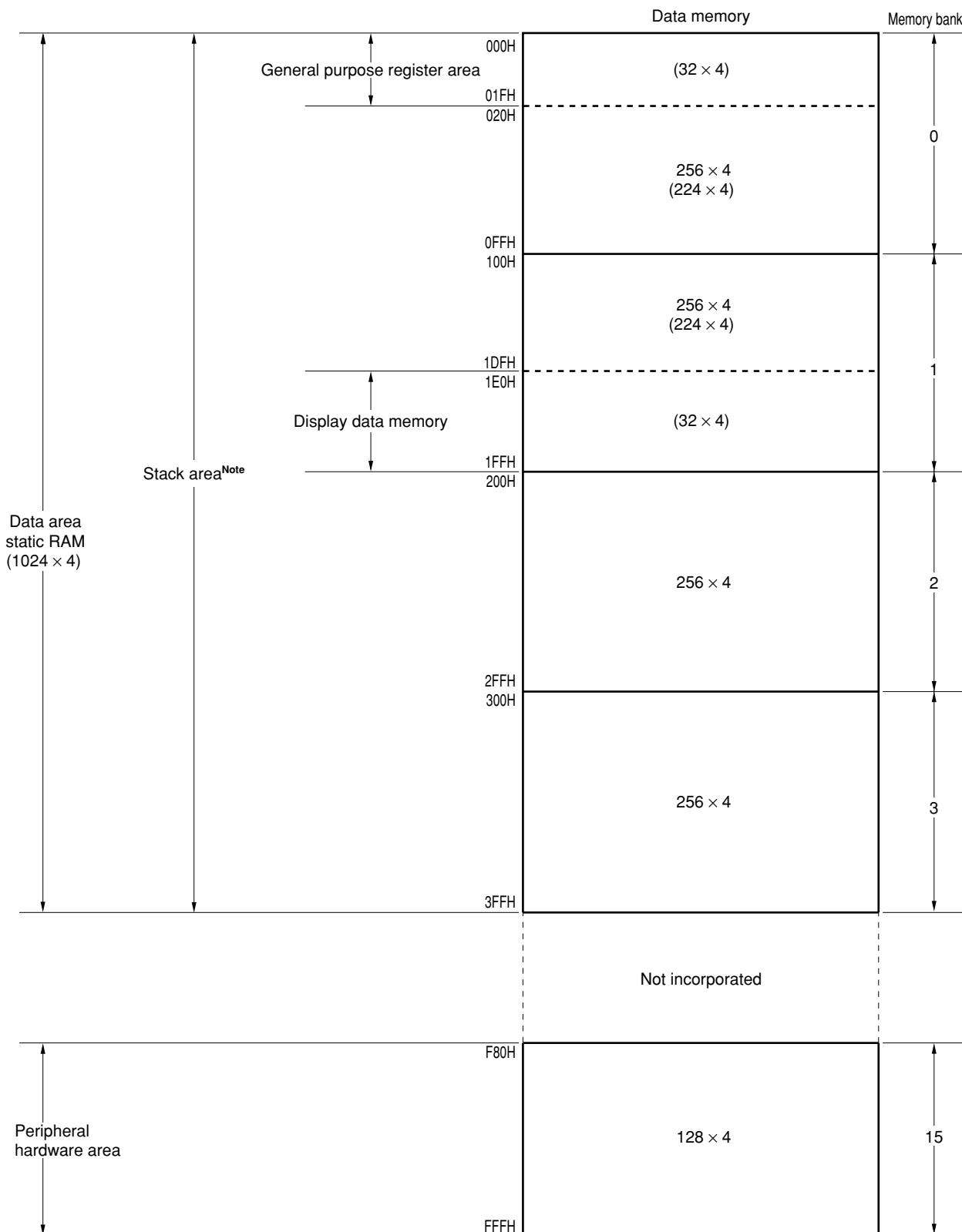
Figure 5-1. Program Memory Map (2/3)


(b) μPD753016A

Note Can be used only in the Mk II mode.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order 8 bits of PC by executing the BR PCDE, BR PCXA instruction.

Figure 5-1. Program Memory Map (3/3)



Note Can be used only in the Mk II mode.

Caution The interrupt vector start address shown above consists of 14 bits. Set it in 16K space (0000H-3FFFH).

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order 8 bits of PC by executing the BR PCDE, BR PCXA instruction.

Figure 5-2. Data Memory Map

Note For stack area, one memory bank can be selected among memory banks 0 to 3.

6. PERIPHERAL HARDWARE FUNCTIONS

6.1 Digital Input/Output Ports

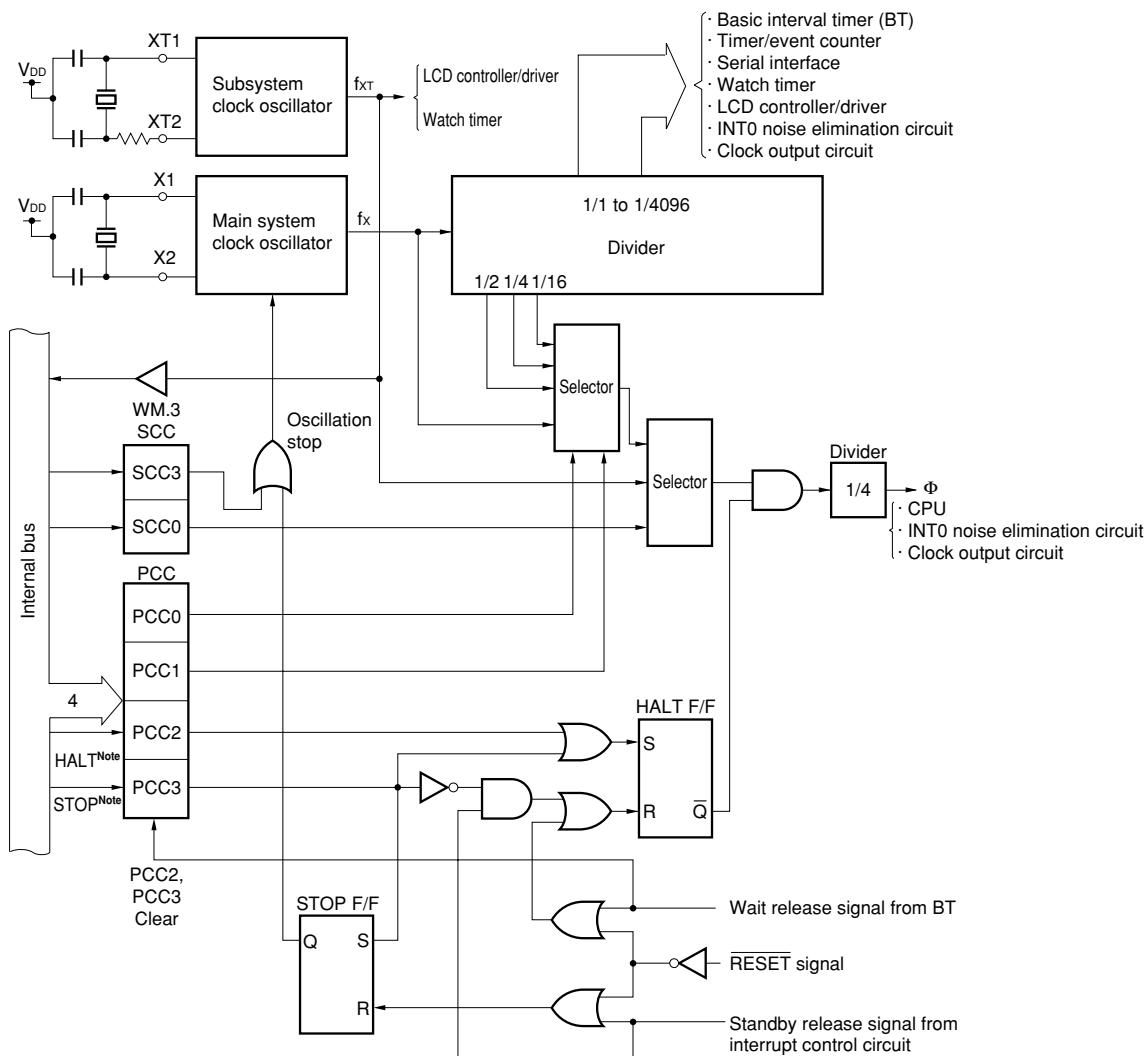
There are four types of I/O ports as follows.

· CMOS input (PORT0, 1)	:	8
· CMOS input/output (PORT2, 3, 6, 7)	:	16
· N-channel open-drain input/output (PORT4, 5)	:	8
· Bit port output (BP0-BP7)	:	8
Total		40

Table 6-1. Types and Features of Digital Ports

Port (Pin Name)	Function	Operation and Features		Remarks
PORT0 (P00-P03)	4-bit input	When the serial interface function is used, the alternate function pins function as output ports depending on the operation mode.		Also used for the INT4, SCK, SO/SB0, SI/SB1 pins.
PORT1 (P10-P13)		Input-only port		Also used for the INT0-INT2 and TI0-TI2 pins.
PORT2 (P20-P23)	4-bit I/O	Can be set to input mode or output mode in 4-bit units.		Also used for the PTO0-PTO2, PCL, BUZ pins.
PORT3 (P30-P33)		Can be set to input mode or output mode in 1/4-bit units.		Also used for the LCDCL, SYNC pins.
PORT4 (P40-P43)	4-bit I/O (N-channel open-drain, 13 V withstanding)	Can be set to input mode or output mode in 4-bit units.	Ports 4 and 5 are paired and data can be input/output in 8-bit units.	On-chip pull-up resistor can be specified bit-wise by mask option.
PORT5 (P50-P53)				
PORT6 (P60-P63)	4-bit I/O	Can be set to input mode or output mode in 1/4-bit units.	Ports 6 and 7 are paired and data can be input/output in 8-bit units.	Also used for the KR0-KR3 pins.
PORT7 (P70-P73)		Can be set to input mode or output mode in 4-bit units.		Also used for the KR4-KR7 pins.
BP0-BP7	1-bit output	Outputs data bit-wise. Can be switched to LCD drive segment output S24-S31 by software.		—

6.2 Clock Generator


Operation of the clock generator is determined by the processor clock control register (PCC) and system clock control register (SCC).

The two clocks, the main system clock and subsystem clock, are available.

The instruction execution time can be altered.

- $0.95 \mu\text{s}$, $1.91 \mu\text{s}$, $3.81 \mu\text{s}$, $15.3 \mu\text{s}$ (main system clock : at 4.19 MHz operation)
- $0.67 \mu\text{s}$, $1.33 \mu\text{s}$, $2.67 \mu\text{s}$, $10.7 \mu\text{s}$ (main system clock : at 6.0 MHz operation)
- $122 \mu\text{s}$ (subsystem clock : at 32.768 kHz operation)

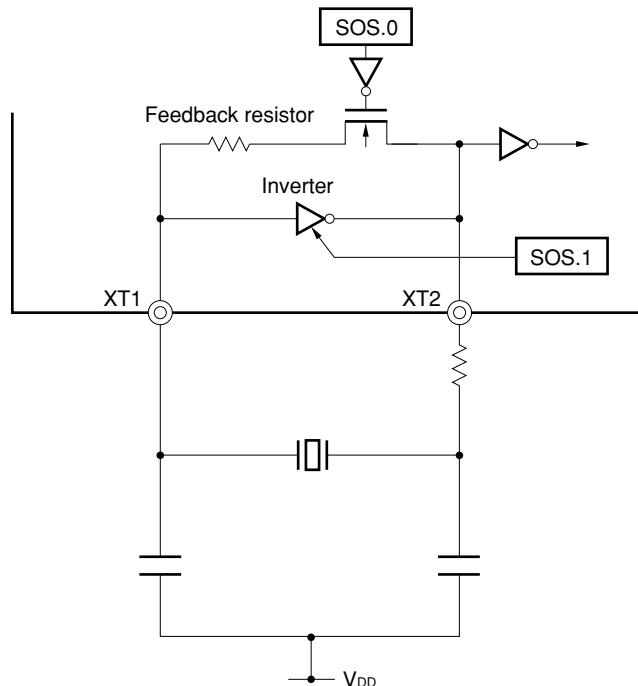
Figure 6-1. Clock Generator Block Diagram

Note Instruction execution

Remarks

1. f_x = Main system clock frequency
2. f_{XT} = Subsystem clock frequency
3. Φ = CPU clock
4. PCC: Processor Clock Control Register
5. SCC: System Clock Control Register
6. One clock cycle (t_{CY}) of Φ equal to one machine cycle of the instruction.

6.3 Subsystem Clock Oscillator Control Functions

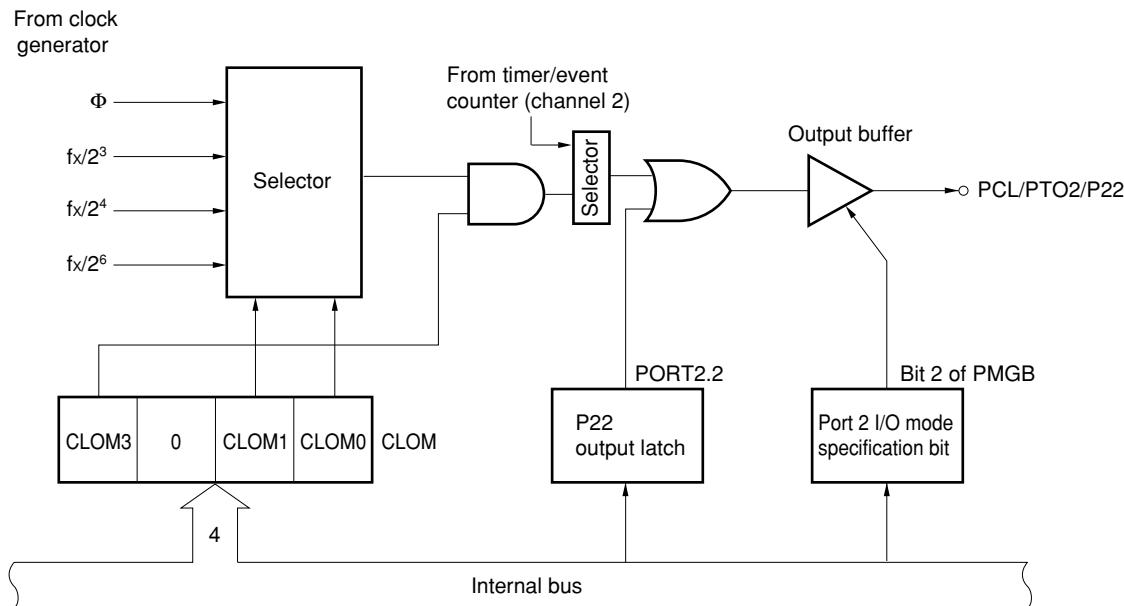

The μPD753017A subsystem clock oscillator has the following two control functions.

- Selects by software whether an internal feedback resistor is to be used or not^{Note}.
- Reduces current consumption by decreasing the drive current of the on-chip inverter when the supply voltage is high ($V_{DD} \geq 2.7$ V).

Note When the subsystem clock is not used, set SOS.0 to 1 (so as not to use the internal feedback resistor) by software, connect XT1 to Vss, and open XT2. This makes it possible to reduce the current consumption in the subsystem clock oscillator.

The above functions can be used by switching the bits 0 and 1 of the sub-oscillator control register (SOS). (See Figure 6-2.)

Figure 6-2. Subsystem Clock Oscillator

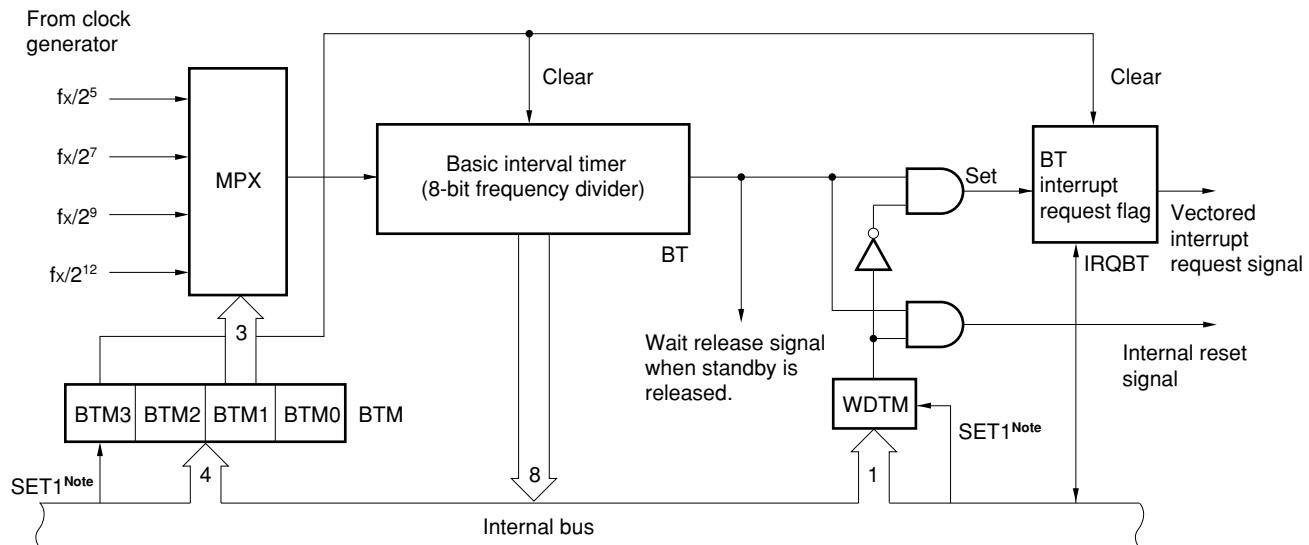


6.4 Clock Output Circuit

The clock output circuit is provided to output the clock pulses from the P22/PTO2/PCL pin to the application of remote control wave outputs and peripheral LSI's.

- Clock output (PCL) : Φ , 524, 262, 65.5 kHz (at 4.19 MHz operation)
 Φ , 750, 375, 93.8 kHz (at 6.0 MHz operation)

Figure 6-3. Clock Output Circuit Block Diagram

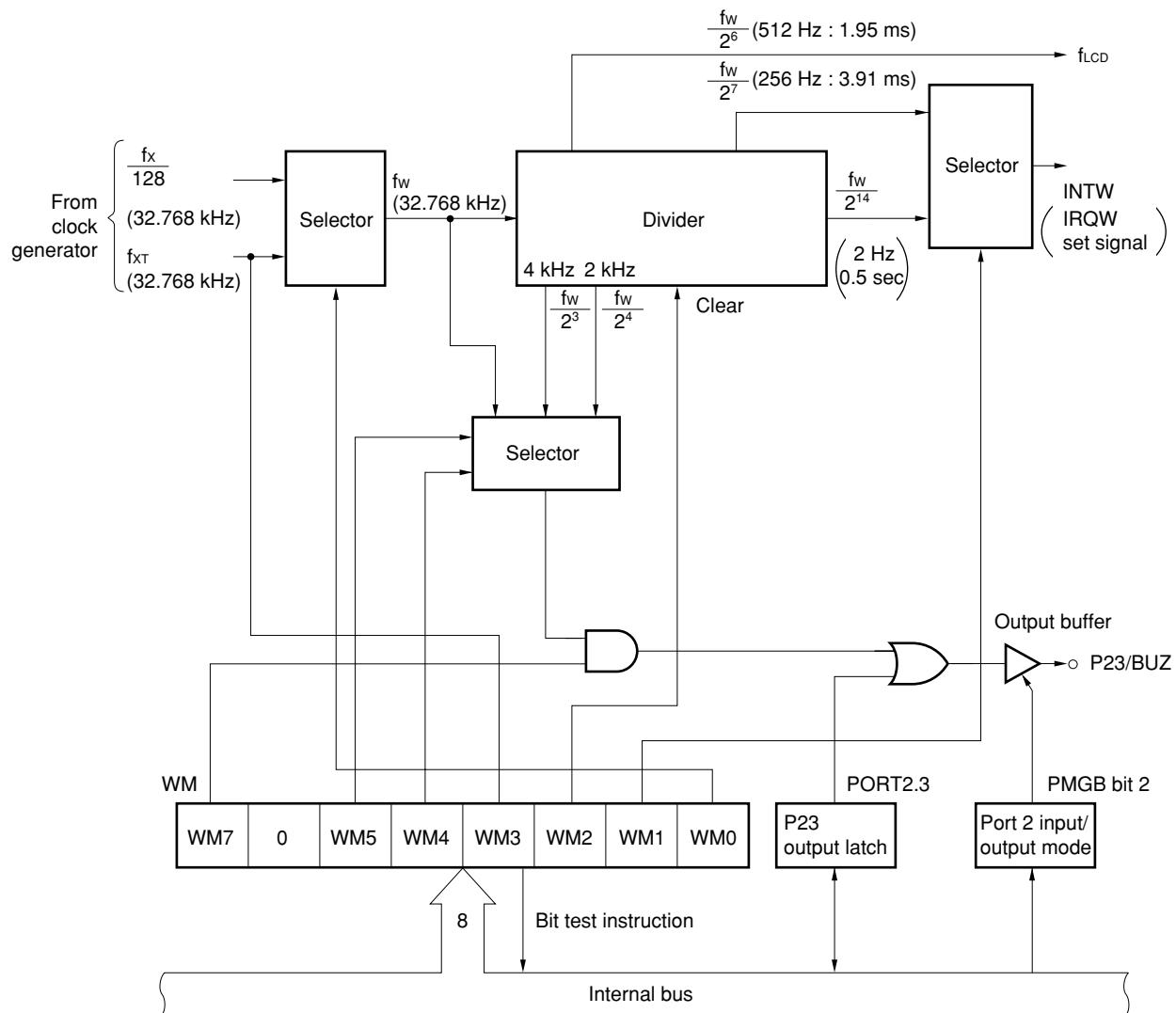

Remark Special care has been taken in designing the chip so that small-width pulses may not be output when switching clock output enable/disable.

6.5 Basic Interval Timer/Watchdog Timer

The basic interval timer/watchdog timer has the following functions.

- Interval timer operation to generate a reference time interrupt
- Watchdog timer operation to detect a runaway of program and reset the CPU
- Selects and counts the wait time when the standby mode is released
- Reads the contents of counting

Figure 6-4. Basic Interval Timer/Watchdog Timer Block Diagram


Note Instruction execution

6.6 Watch Timer

The μ PD753017A has one channel of watch timer. The watch timer has the following functions.

- Sets the test flag (IRQW) with 0.5 sec interval.
The standby mode can be released by the IRQW.
- 0.5 sec interval can be created by both the main system clock (4.19 MHz) and subsystem clock (32.768 kHz).
- Convenient for program debugging and checking as interval becomes 128 times longer (3.91 ms) with the fast feed mode.
- Outputs the frequencies (2.048, 4.096, 32.768 kHz) to the P23/BUZ pin, usable for buzzer and trimming of system clock oscillation frequencies.
- Clears the frequency divider to make the clock start with zero seconds.

Figure 6-5. Watch Timer Block Diagram

The values enclosed in parentheses are applied when $f_x = 4.19$ MHz and $f_{XT} = 32.768$ kHz.

6.7 Timer/Event Counter

The μPD753017A has three channels of timer/event counter. The timer/event counter has the following functions.

- Programmable interval timer operation
- Square wave output of any frequency to the PTO_n pin (n = 0, 1)
- Event counter operation
- Divides the frequency of signal input via the TIn pin to 1-Nth of the original signal and outputs the divided frequency to the PTO_n pin (frequency division operation).
- Supplies the shift clock to the serial interface circuit (channel 0 only).
- Calls the count value.

The timer/event counter operates in the following four modes as set by the mode register.

Table 6-2. Operation Modes of Timer/Event Counter

Mode	Channel	Channel 0	Channel 1	Channel 2
8-bit timer/event counter mode	Yes	Yes	Yes	
Gate control function	No ^{Note}	No	Yes	
PWM pulse generator mode	No	No	Yes	
16-bit timer/event counter mode	No		Yes	
Gate control function	No ^{Note}		Yes	
Carrier generator mode	No		Yes	

Note Used for gate control signal generation

Figure 6-6. Timer/Event Counter Block Diagram (Channel 0)

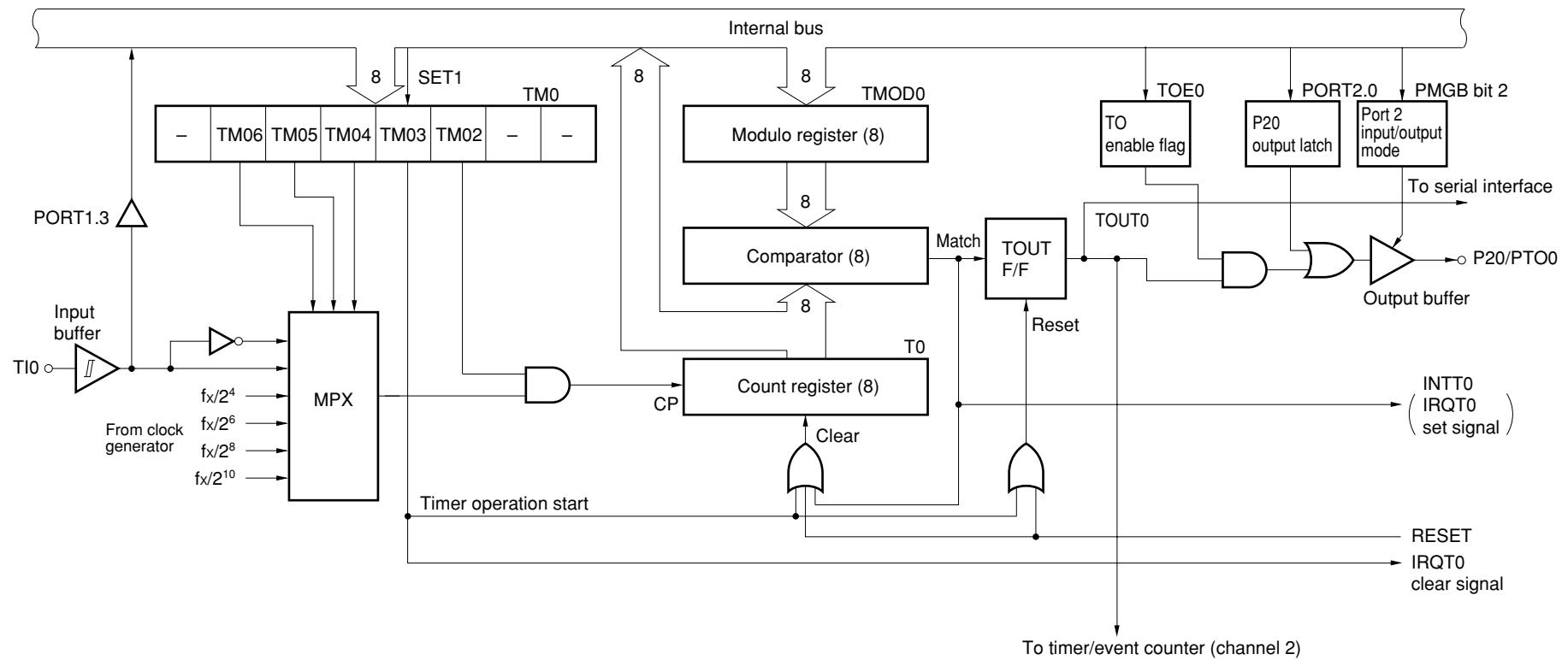


Figure 6-7. Timer/Event Counter Block Diagram (Channel 1)

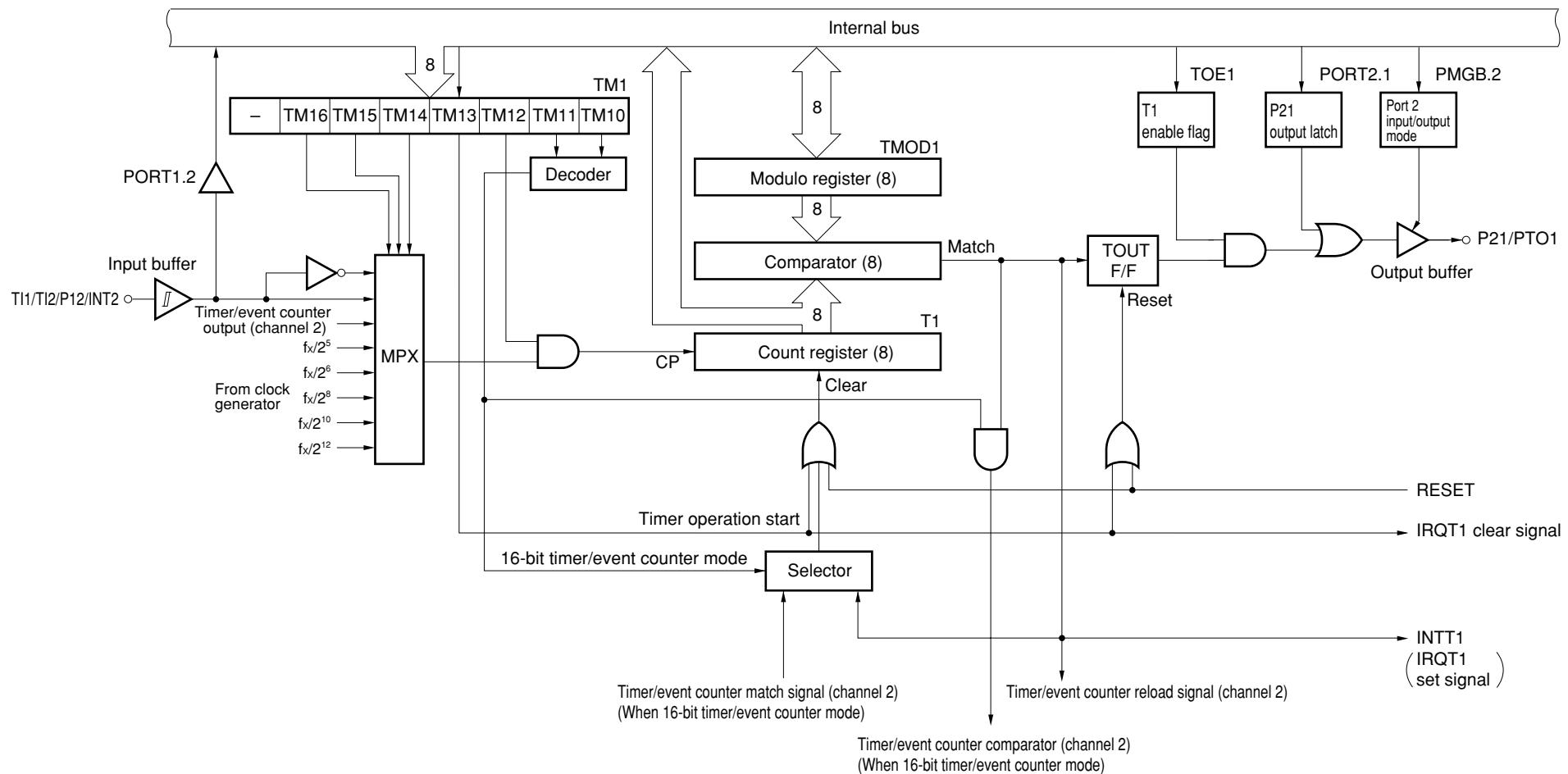
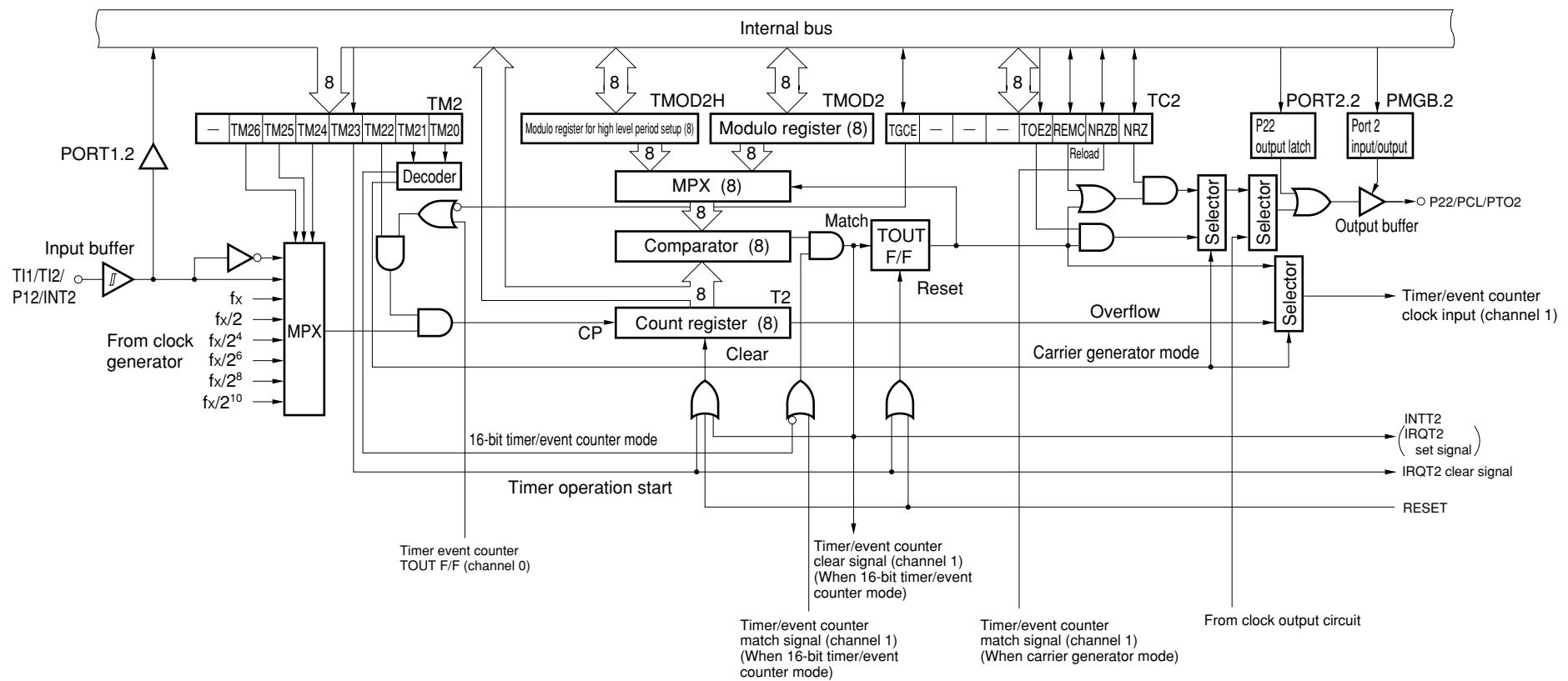
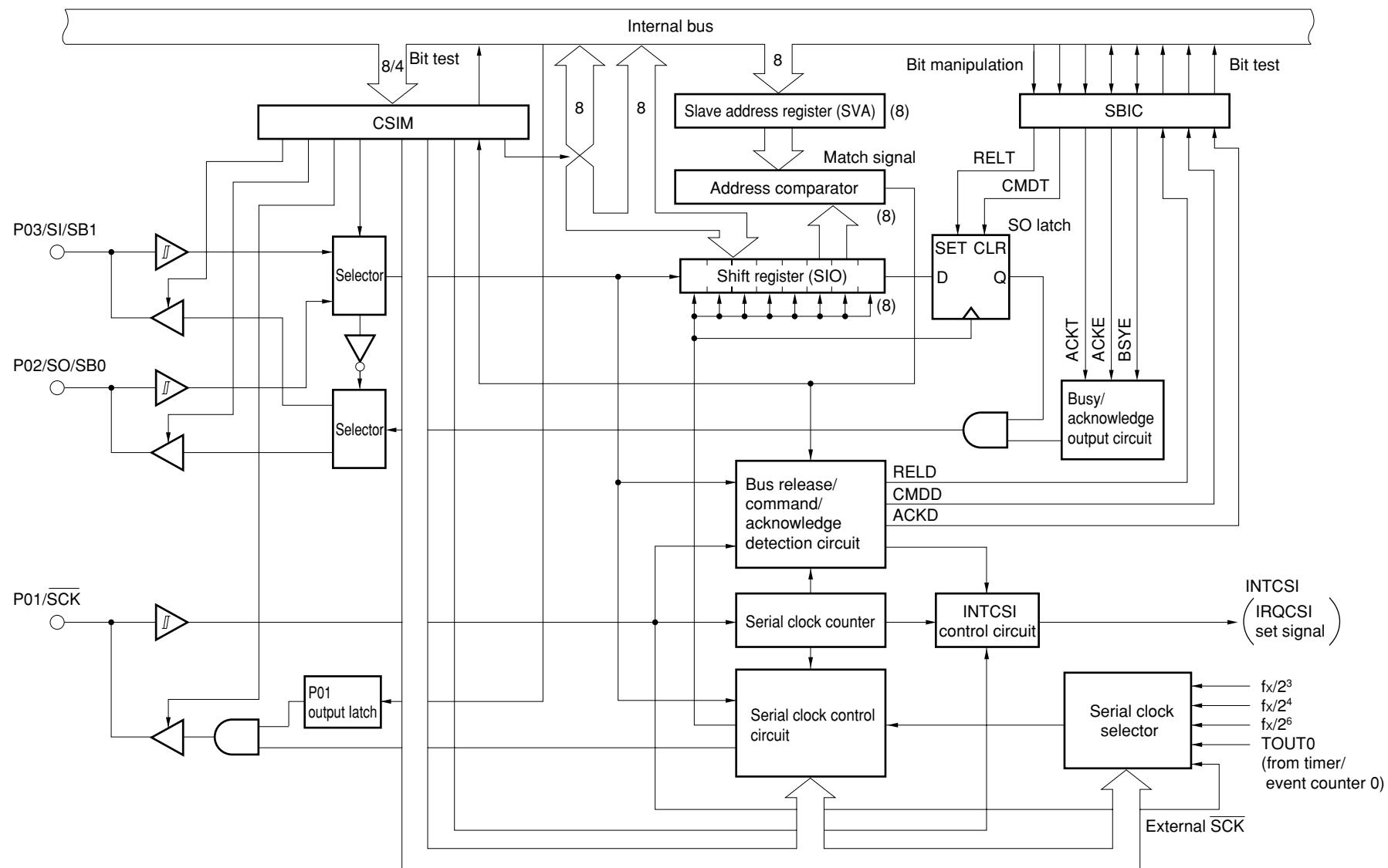



Figure 6-8. Timer/Event Counter Block Diagram (Channel 2)*

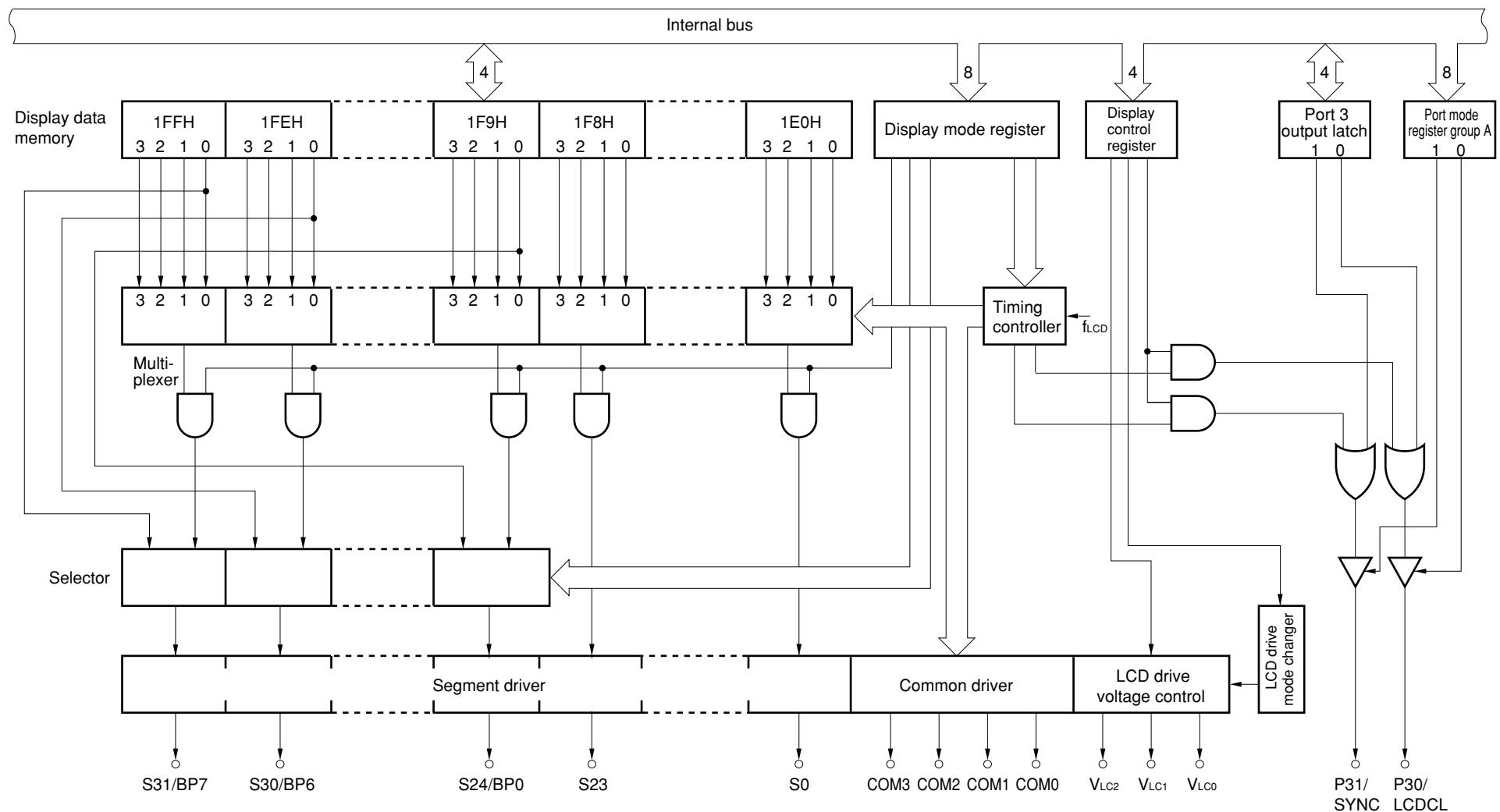


6.8 Serial Interface

The μ PD753017A is provided with an 8-bit clocked serial interface. This serial interface operates in the following four modes:

- Operation stop mode
- 3-wire serial I/O mode
- 2-wire serial I/O mode
- SBI mode

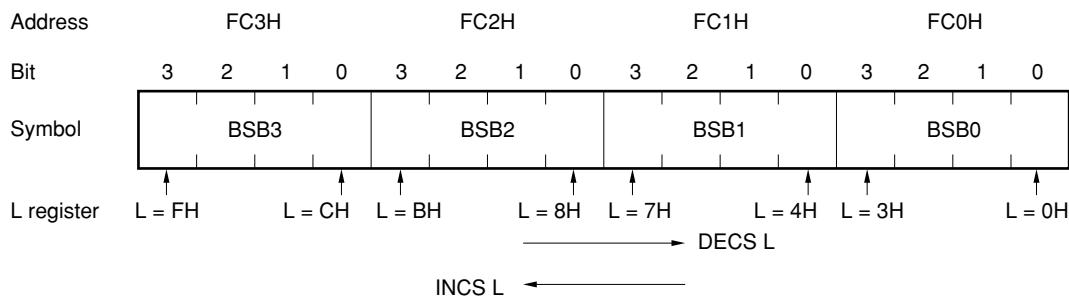
Figure 6-9. Serial Interface Block Diagram


6.9 LCD Controller/Driver

The μPD753017A incorporates a display controller which generates segment and common signals according to the display data memory contents and incorporates segment and common drivers which can drive the LCD panel directly.

The μPD753017A LCD controller/driver functions are as follows:

- Display data memory is read automatically by DMA operation and segment and common signals are generated.
- Display mode can be selected from among the following five:
 - ⟨1⟩ Static
 - ⟨2⟩ 1/2 duty (time multiplexing by 2), 1/2 bias
 - ⟨3⟩ 1/3 duty (time multiplexing by 3), 1/2 bias
 - ⟨4⟩ 1/3 duty (time multiplexing by 3), 1/3 bias
 - ⟨5⟩ 1/4 duty (time multiplexing by 4), 1/3 bias
- A frame frequency can be selected from among four in each display mode.
- A maximum of 32 segment signal output pins (S0-S31) and four common signal output pins (COM0-COM3).
- The segment signal output pins (S24-S27 and S28-S31) can be changed to the output ports in 4-pin units.
- Split-resistor can be incorporated to supply LCD drive power (mask option).
 - Various bias methods and LCD drive voltages can be applicable.
 - When display is off, current flow to the split resistor is cut.
- Display data memory not used for display can be used for normal data memory.
- It can also operate by using the subsystem clock.


Figure 6-10. LCD Controller/Driver Block Diagram

6.10 Bit Sequential Buffer ... 16 Bits

The bit sequential buffer (BSB) is a special data memory for bit manipulation and the bit manipulation can be easily performed by changing the address specification and bit specification in sequence, therefore it is useful when processing a long data bit-wise.

Figure 6-11. Bit Sequential Buffer Format

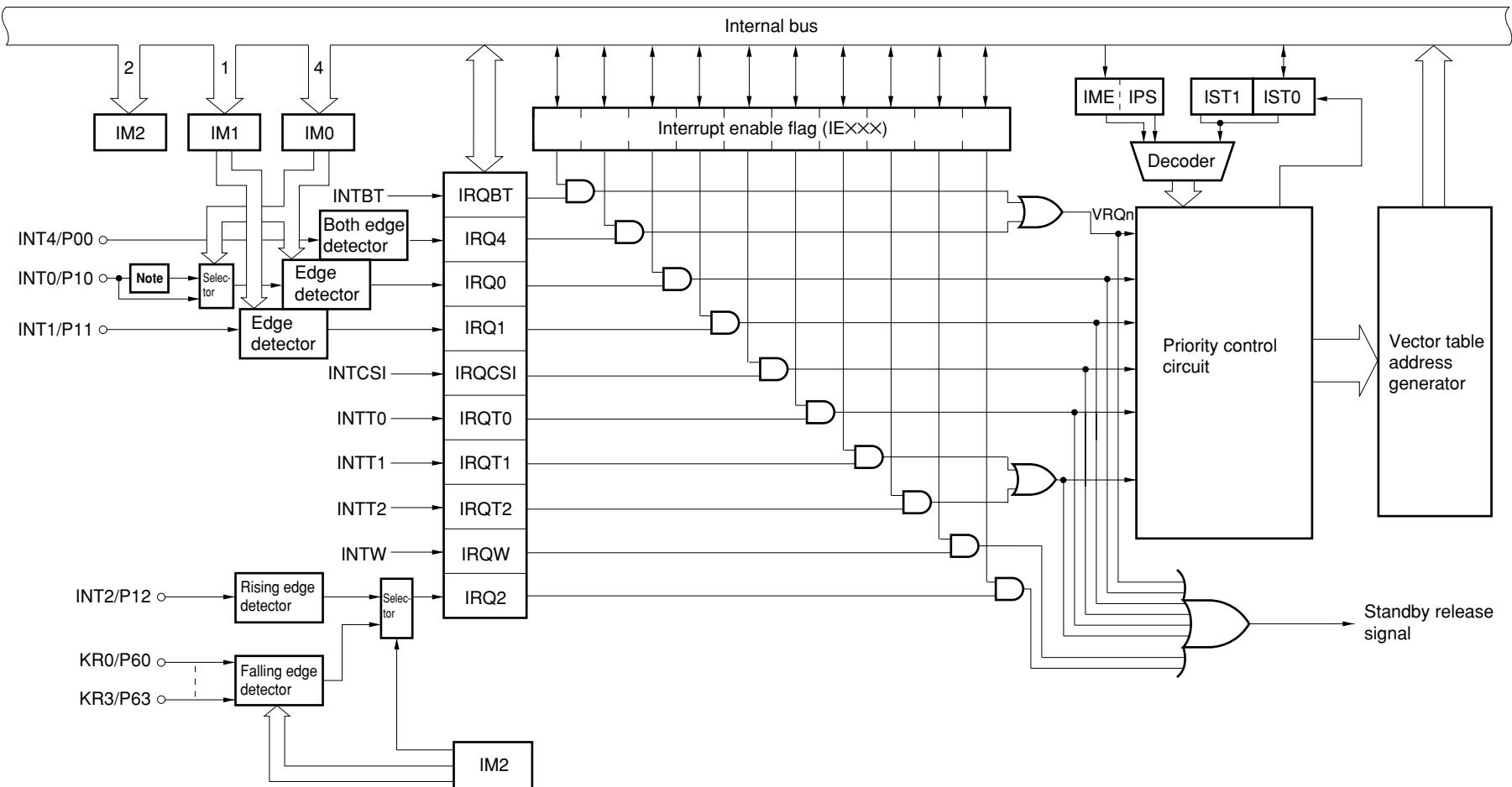
Remarks

1. In the pmem.@L addressing, the specified bit moves corresponding to the L register.
2. In the pmem.@L addressing, the BSB can be manipulated regardless of MBE/MBS specification.

7. INTERRUPT FUNCTION AND TEST FUNCTION

μ PD753017A has eight types of interrupt sources and two types of test sources. Among the test sources, INT2 is provided with two testable inputs for edge detection.

μ PD753017A has the following functions in the interrupt control circuit.


(1) Interrupt function

- Vectored interrupt function for hardware control, enabling/disabling the interrupt acceptance by the interrupt enable flag (IEXXX) and interrupt master enable flag (IME).
- Can set any interrupt start address.
- Nesting interrupts wherein the order of priority can be specified by the interrupt priority select register (IPS).
- Test function of interrupt request flag (IRQXXX). An interrupt generated can be checked by software.
- Release the standby mode. A release interrupt can be selected by the interrupt enable flag.

(2) Test function

- Test request flag (IRQXXX) generation can be checked by software.
- Release the standby mode. The test source to be released can be selected by the test enable flag.

Figure 7-1. Interrupt Control Circuit Block Diagram

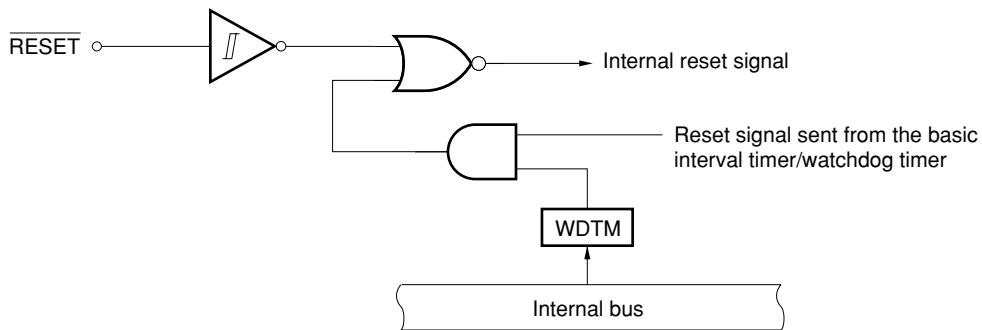
Note Noise elimination circuit (Standby release is disabled when noise elimination circuit is selected.)

8. STANDBY FUNCTION

In order to save power consumption while a program is in a standby mode, two types of standby modes (STOP mode and HALT mode) are provided for the μPD753017A.

Table 8-1. Operation Status in Standby Mode

		STOP Mode	HALT Mode
Set instruction		STOP instruction	HALT instruction
System clock when set		Settable only when the main system clock is used.	Settable both by the main system clock and subsystem clock.
Operation status	Clock generator	Only the main system clock stops oscillation.	Only the CPU clock Φ halts (oscillation continues).
	Basic interval timer/watchdog timer	Operation stops	Operable. (The IRQBT is set in the reference interval.) ^{Note 1}
	Serial interface	Operable only when an external \overline{SCK} input is selected as the serial clock.	Operable ^{Note 1}
	Timer/event counter	Operable only when a signal input to the T10-T12 pins is specified as the count clock.	Operable ^{Note 1}
	Watch timer	Operable when f_{XT} is selected as the count clock.	Operable
	LCD controller/driver	Operable only when f_{XT} is selected as the LCDCL.	Operable
	External interrupt	The INT1, 2, and 4 are operable. Only the INT0 is not operated. ^{Note 2}	
	CPU	The operation stops.	
★	Release signals	<ul style="list-style-type: none"> • Interrupt request signal sent from the operable hardware enabled by the interrupt enable flag. • Test request signal sent from the test source enabled by the test enable flag. • \overline{RESET} input 	


Notes

1. Cannot operate only when the main system clock stops.
2. Can operate only when the noise elimination circuit is not used (IM02 = 1) by bit 2 of the edge detection mode register (IM0).

9. RESET FUNCTION

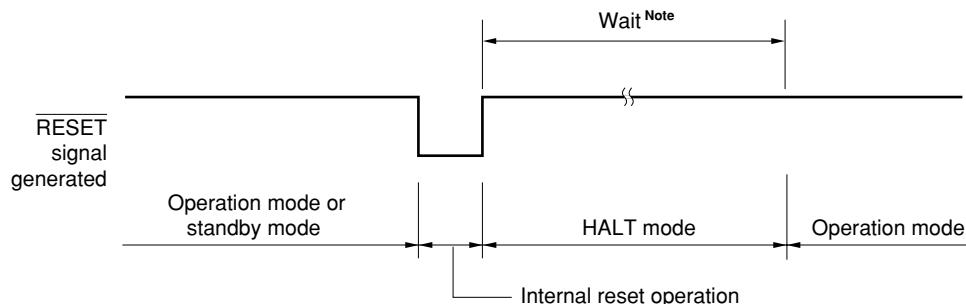

There are two reset inputs: external reset signal ($\overline{\text{RESET}}$) and reset signal sent from the basic interval timer/watchdog timer. When either one of the reset signals are input, an internal reset signal is generated. Figure 9-1 shows the circuit diagram of the above two inputs.

Figure 9-1. Configuration of Reset Function

The $\mu\text{PD}753017\text{A}$ is set by the $\overline{\text{RESET}}$ signal generated and each hardware is initialized as listed in Table 9-1. Figure 9-2 shows the timing chart of the reset operation.

Figure 9-2. Reset Operation by $\overline{\text{RESET}}$ Signal Generation

Note The following two times can be selected by the mask option.

$2^{17}/fx$ (21.8 ms : at 6.0 MHz operation, 31.3 ms : at 4.19 MHz operation)

$2^{15}/fx$ (5.46 ms : at 6.0 MHz operation, 7.81 ms : at 4.19 MHz operation)

Table 9-1. Status of Each Hardware after Reset (1/2)

Hardware		RESET Signal Generation in Standby Mode	RESET Signal Generation in Operation
Program counter (PC)		Sets the low-order 6 bits of program memory's address 0000H to the PC13-PC8 and the contents of address 0001H to the PC7-PC0. Resets the PC14 of the μPD753017A to 0.	Sets the low-order 6 bits of program memory's address 0000H to the PC13-PC8 and the contents of address 0001H to the PC7-PC0. Resets the PC14 of the μPD753017A to 0.
PSW	Carry flag (CY)	Held	Undefined
	Skip flag (SK0-SK2)	0	0
	Interrupt status flag (IST0)	0	0
	Bank enable flag (MBE, RBE)	Sets the bit 6 of program memory's address 0000H to the RBE and bit 7 to the MBE.	Sets the bit 6 of program memory's address 0000H to the RBE and bit 7 to the MBE.
Stack pointer (SP)		Undefined	Undefined
Stack bank select register (SBS)		1000B	1000B
Data memory (RAM)		Held	Undefined
General-purpose register (X, A, H, L, D, E, B, C)		Held	Undefined
Bank select register (MBS, RBS)		0, 0	0, 0
Basic interval timer/ watchdog timer	Counter (BT)	Undefined	Undefined
	Mode register (BTM)	0	0
	Watchdog timer enable flag (WDTM)	0	0
Timer/event counter (T0)	Counter (T0)	0	0
	Modulo register (TMOD0)	FFH	FFH
	Mode register (TM0)	0	0
	TOE0, TOUT F/F	0, 0	0, 0
Timer/event counter (T1)	Counter (T1)	0	0
	Modulo register (TMOD1)	FFH	FFH
	Mode register (TM1)	0	0
	TOE1, TOUT F/F	0, 0	0, 0
Timer/event counter (T2)	Counter (T2)	0	0
	Modulo register (TMOD2)	FFH	FFH
	High level period setting modulo register (TMOD2H)	FFH	FFH
	Mode register (TM2)	0	0
	TOE2, TOUT F/F	0, 0	0, 0
	REMC, NRZ, NRZB	0, 0, 0	0, 0, 0
	TGE	0	0
Watch timer	Mode register (WM)	0	0

Table 9-1. Status of Each Hardware after Reset (2/2)

Hardware		RESET Signal Generation in Standby Mode	RESET Signal Generation in Operation
Serial interface	Shift register (SIO)	Held	Undefined
	Operation mode register (CSIM)	0	0
	SBI control register (SBIC)	0	0
	Slave address register (SVA)	Held	Undefined
Clock generator, clock output circuit	Processor clock control register (PCC)	0	0
	System clock control register (SCC)	0	0
	Clock output mode register (CLOM)	0	0
Sub-oscillator control register (SOS)		0	0
LCD controller/ driver	Display mode register (LCDM)	0	0
	Display control register (LCDC)	0	0
Interrupt function	Interrupt request flag (IRQXXX)	Reset (0)	Reset (0)
	Interrupt enable flag (IEXXX)	0	0
	Interrupt master enable flag (IME)	0	0
	INT0, 1, 2 mode registers (IM0, IM1, IM2)	0, 0, 0	0, 0, 0
	Interrupt priority selection register (IPS)	0	0
Digital port	Output buffer	Off	Off
	Output latch	Cleared (0)	Cleared (0)
	I/O mode registers (PMGA, PMGB)	0	0
	Pull-up resistor specification register (POGA)	0	0
Bit sequential buffer (BSB0-BSB3)		Held	Undefined

10. MASK OPTION

The μ PD753017A has the following mask options.

- P40-P43, P50-P53 mask options
On-chip pull-up resistors can be connected.
 - <1> On-chip pull-up resistors are specifiable bit-wise.
 - <2> On-chip pull-up resistors are not specifiable.
- VLC0-VLC2 pins, BIAS pin mask option
On-chip split resistor for LCD drive can be connected.
 - <1> Split resistor is not connected.
 - <2> Four 10 k Ω (TYP.) split resistors are connected at the same time.
 - <3> Four 100 k Ω (TYP.) split resistors are connected at the same time.
- Standby function mask option
Wait times can be selected by a $\overline{\text{RESET}}$ signal.
 - <1> $2^{17}/f_x$ (21.8 ms : at $f_x = 6.0$ MHz, 31.3 ms : at $f_x = 4.19$ MHz)
 - <2> $2^{15}/f_x$ (5.46 ms : at $f_x = 6.0$ MHz, 7.81 ms : at $f_x = 4.19$ MHz)
- Subsystem clock mask option
Use of the internal feedback resistor can be selected.
 - <1> Internal feedback resistor can be used.
(Switched ON/OFF via software)
 - <2> Internal feedback resistor cannot be used.
(Switched out in hardware)

11. INSTRUCTION SET

(1) Expression formats and description methods of operands

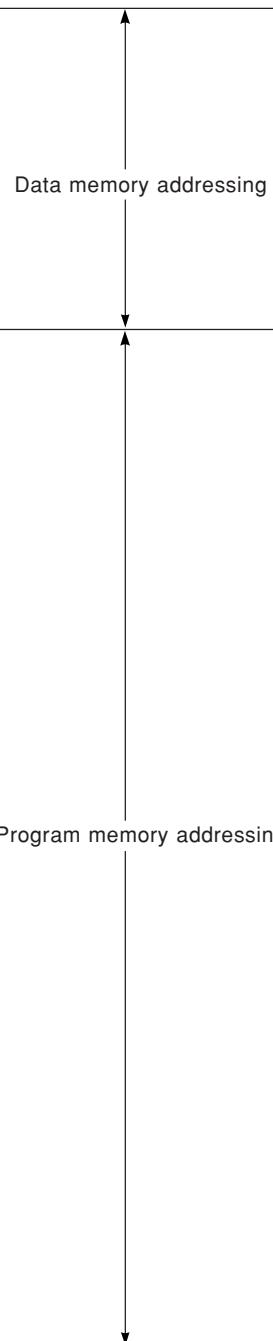
The operand is described in the operand column of each instruction in accordance with the description method for the operand expression format of the instruction. For details, refer to **RA75X Assembler Package User's Manual—Language (U12385E)**. If there are several elements, one of them is selected.

★ Capital letters and the + and – symbols are key words and are described as they are.

For immediate data, appropriate numbers and labels are described.

Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the registers can be described. However, there are restrictions in the labels that can be described for fmem and pmem. For details, see User's Manual.

Expression Format	Description Method
reg reg1	X, A, B, C, D, E, H, L X, B, C, D, E, H, L
rp rp1 rp2 rp' rp'1	XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL'
rpa rpa1	HL, HL+, HL-, DE, DL DE, DL
n4 n8	4-bit immediate data or label 8-bit immediate data or label
mem bit	8-bit immediate data or label ^{Note} 2-bit immediate data or label
fmem pmem	FB0H-FBFH, FF0H-FFFH immediate data or label FC0H-FFFH immediate data or label
addr addr1 caddr faddr	0000H-2FFFH immediate data or label (μPD753012A) 0000H-3FFFH immediate data or label (μPD753016A, 753017A) 0000H-5FFFH immediate data or label 12-bit immediate data or label 11-bit immediate data or label
taddr	20H-7FH immediate data (where bit0 = 0) or label
PORTn IEXXX RBn MBn	PORT0-PORT7 IEBT, IET0-IET2, IE0-IE2, IE4, IECSI, IEW RB0-RB3 MB0, MB1, MB2, MB3, MB15


Note mem can be only used even address in 8-bit data processing.

(2) Legend in explanation of operation

A	: A register; 4-bit accumulator
B	: B register
C	: C register
D	: D register
E	: E register
H	: H register
L	: L register
X	: X register
XA	: XA register pair; 8-bit accumulator
BC	: BC register pair
DE	: DE register pair
HL	: HL register pair
XA'	: XA' expanded register pair
BC'	: BC' expanded register pair
DE'	: DE' expanded register pair
HL'	: HL' expanded register pair
PC	: Program counter
SP	: Stack pointer
CY	: Carry flag; bit accumulator
PSW	: Program status word
MBE	: Memory bank enable flag
RBE	: Register bank enable flag
PORTn	: Port n (n = 0-7)
IME	: Interrupt master enable flag
IPS	: Interrupt priority selection register
IEXXX	: Interrupt enable flag
RBS	: Register bank selection register
MBS	: Memory bank selection register
PCC	: Processor clock control register
.	: Separation between address and bit
(XX)	: The contents addressed by XX
XXH	: Hexadecimal data

(3) Explanation of symbols under addressing area column

*1	MB = MBE•MBS (MBS = 0-3, 15)	
*2	MB = 0	
*3	MBE = 0 : MB = 0 (000H-07FH) MB = 15 (F80H-FFFH) MBE = 1 : MB = MBS (MBS = 0-3, 15)	
*4	MB = 15, fmem = FB0H-FBFH, FF0H-FFFH	
*5	MB = 15, pmem = FC0H-FFFH	
*6	μPD753012A	addr = 0000H-2FFFFH
	μPD753016A 753017A	addr = 0000H-3FFFFH
*7	μPD753012A 753016A 753017A (In Mk I mode)	addr = (Current PC) – 15 to (Current PC) – 1 (Current PC) + 2 to (Current PC) + 16
	μPD753017A (In Mk II mode)	addr1 = (Current PC) – 15 to (Current PC) – 1 (Current PC) + 2 to (Current PC) + 16
*8	μPD753012A	caddr = 0000H-0FFFH (PC _{13, 12} = 00B) or 1000H-1FFFH (PC _{13, 12} = 01B) or 2000H-2FFFH (PC _{13, 12} = 10B)
	μPD753016A	caddr = 0000H-0FFFH (PC _{13, 12} = 00B) or 1000H-1FFFH (PC _{13, 12} = 01B) or 2000H-2FFFH (PC _{13, 12} = 10B) or 3000H-3FFFH (PC _{13, 12} = 11B)
	μPD753017A	caddr = 0000H-0FFFH (PC _{14, 13, 12} = 000B) or 1000H-1FFFH (PC _{14, 13, 12} = 001B) or 2000H-2FFFH (PC _{14, 13, 12} = 010B) or 3000H-3FFFH (PC _{14, 13, 12} = 011B) or 4000H-4FFFH (PC _{14, 13, 12} = 100B) or 5000H-5FFFH (PC _{14, 13, 12} = 101B)
*9	faddr = 0000H-07FFFH	
*10	taddr = 0020H-007FH	
*11	μPD753012A	addr1 = 0000H-2FFFFH
	μPD753016A	addr1 = 0000H-3FFFFH
	μPD753017A	addr1 = 0000H-5FFFFH

Remarks

1. MB indicates memory bank that can be accessed.
2. In *2, MB = 0 independently of how MBE and MBS are set.
3. In *4 and *5, MB = 15 independently of how MBE and MBS are set.
4. *6 to *11 indicate the areas that can be addressed.

(4) Explanation of number of machine cycles column

S denotes the number of machine cycles required by skip operation when a skip instruction is executed.

The value of S varies as follows.

- When no skip is made: S = 0
- When the skipped instruction is a 1- or 2-byte instruction: S = 1
- When the skipped instruction is a 3-byte instruction^{Note}: S = 2

Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr or CALLA !addr1 instruction

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of CPU clock Φ (= t_{CY}); time can be selected from among four types by setting PCC.

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Transfer	MOV	A, #n4	1	1	A \leftarrow n4		String effect A
		reg1, #n4	2	2	reg1 \leftarrow n4		
		XA, #n8	2	2	XA \leftarrow n8		String effect A
		HL, #n8	2	2	HL \leftarrow n8		String effect B
		rp2, #n8	2	2	rp2 \leftarrow n8		
		A, @HL	1	1	A \leftarrow (HL)	*1	
		A, @HL+	1	2+S	A \leftarrow (HL), then L \leftarrow L+1	*1	L = 0
		A, @HL-	1	2+S	A \leftarrow (HL), then L \leftarrow L-1	*1	L = FH
		A, @rpa1	1	1	A \leftarrow (rpa1)	*2	
		XA, @HL	2	2	XA \leftarrow (HL)	*1	
		@HL, A	1	1	(HL) \leftarrow A	*1	
		@HL, XA	2	2	(HL) \leftarrow XA	*1	
		A, mem	2	2	A \leftarrow (mem)	*3	
		XA, mem	2	2	XA \leftarrow (mem)	*3	
		mem, A	2	2	(mem) \leftarrow A	*3	
		mem, XA	2	2	(mem) \leftarrow XA	*3	
		A, reg1	2	2	A \leftarrow reg1		
		XA, rp'	2	2	XA \leftarrow rp'		
		reg1, A	2	2	reg1 \leftarrow A		
		rp'1, XA	2	2	rp'1 \leftarrow XA		
Transfer	XCH	A, @HL	1	1	A \leftrightarrow (HL)	*1	
		A, @HL+	1	2+S	A \leftrightarrow (HL), then L \leftarrow L+1	*1	L = 0
		A, @HL-	1	2+S	A \leftrightarrow (HL), then L \leftarrow L-1	*1	L = FH
		A, @rpa1	1	1	A \leftrightarrow (rpa1)	*2	
		XA, @HL	2	2	XA \leftrightarrow (HL)	*1	
		A, mem	2	2	A \leftrightarrow (mem)	*3	
		XA, mem	2	2	XA \leftrightarrow (mem)	*3	
		A, reg1	1	1	A \leftrightarrow reg1		
		XA, rp'	2	2	XA \leftrightarrow rp'		

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Table reference	MOVT ^{Note 1}	XA, @PCDE	1	3	XA $\leftarrow (PC_{13-8}+DE)_{ROM}$ • μPD753017A XA $\leftarrow (PC_{14-8}+DE)_{ROM}$		
		XA, @PCXA	1		XA $\leftarrow (PC_{13-8}+XA)_{ROM}$ • μPD753017A XA $\leftarrow (PC_{14-8}+XA)_{ROM}$		
		XA, @BCDE ^{Note 2}	1	3	XA $\leftarrow (B_{1,0}+CDE)_{ROM}$ • μPD753017A XA $\leftarrow (B_{2-0}+CDE)_{ROM}$	*6	
		XA, @BCXA ^{Note 2}	1		XA $\leftarrow (B_{1,0}+CXA)_{ROM}$ • μPD753017A XA $\leftarrow (B_{2-0}+CXA)_{ROM}$	*6	
Bit transfer	MOV1	CY, fmem.bit	2	2	CY $\leftarrow (fmem.bit)$	*4	
		CY, pmem.@L	2	2	CY $\leftarrow (pmem_{7-2}+L_{3-2}.bit(L_{1-0}))$	*5	
		CY, @H+mem.bit	2	2	CY $\leftarrow (H+mem_{3-0}.bit)$	*1	
		fmem.bit, CY	2	2	(fmem.bit) $\leftarrow CY$	*4	
		pmem.@L, CY	2	2	(pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀)) $\leftarrow CY$	*5	
		@H+mem.bit, CY	2	2	(H+mem ₃₋₀ .bit) $\leftarrow CY$	*1	
Operation	ADDS	A, #n4	1	1+S	A $\leftarrow A+n4$		carry
		XA, #n8	2	2+S	XA $\leftarrow XA+n8$		carry
		A, @HL	1	1+S	A $\leftarrow A+(HL)$	*1	carry
		XA, rp'	2	2+S	XA $\leftarrow XA+rp'$		carry
		rp'1, XA	2	2+S	rp'1 $\leftarrow rp'1+XA$		carry
	ADDC	A, @HL	1	1	A, CY $\leftarrow A+(HL)+CY$	*1	
		XA, rp'	2	2	XA, CY $\leftarrow XA+rp'+CY$		
		rp'1, XA	2	2	rp'1, CY $\leftarrow rp'1+XA+CY$		
	SUBS	A, @HL	1	1+S	A $\leftarrow A-(HL)$	*1	borrow
		XA, rp'	2	2+S	XA $\leftarrow XA-rp'$		borrow
		rp'1, XA	2	2+S	rp'1 $\leftarrow rp'1-XA$		borrow
	SUBC	A, @HL	1	1	A, CY $\leftarrow A-(HL)-CY$	*1	
		XA, rp'	2	2	XA, CY $\leftarrow XA-rp'-CY$		
		rp'1, XA	2	2	rp'1, CY $\leftarrow rp'1-XA-CY$		

Notes

1. The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.
2. Only the following bits are valid for the B register.
 μ PD753012A, 753016A : low-order 2 bits
 μ PD753017A : low-order 3 bits

Remark When the μ PD753017A is set in the Mk I mode, PC₁₄ is fixed to 0.

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Operation	AND	A, #n4	2	2	A \leftarrow A \wedge n4		
		A, @HL	1	1	A \leftarrow A \wedge (HL)	*1	
		XA, rp'	2	2	XA \leftarrow XA \wedge rp'		
		rp'1, XA	2	2	rp'1 \leftarrow rp'1 \wedge XA		
	OR	A, #n4	2	2	A \leftarrow A \vee n4		
		A, @HL	1	1	A \leftarrow A \vee (HL)	*1	
		XA, rp'	2	2	XA \leftarrow XA \vee rp'		
		rp'1, XA	2	2	rp'1 \leftarrow rp'1 \vee XA		
	XOR	A, #n4	2	2	A \leftarrow A \oplus n4		
		A, @HL	1	1	A \leftarrow A \oplus (HL)	*1	
		XA, rp'	2	2	XA \leftarrow XA \oplus rp'		
		rp'1, XA	2	2	rp'1 \leftarrow rp'1 \oplus XA		
Accumulator manipulation	RORC	A	1	1	CY \leftarrow A ₀ , A ₃ \leftarrow CY, A _{n-1} \leftarrow A _n		
	NOT	A	2	2	A \leftarrow \bar{A}		
Increment and Decrement	INCS	reg	1	1+S	reg \leftarrow reg+1		reg = 0
		rp1	1	1+S	rp1 \leftarrow rp1+1		rp1 = 00H
		@HL	2	2+S	(HL) \leftarrow (HL)+1	*1	(HL) = 0
		mem	2	2+S	(mem) \leftarrow (mem)+1	*3	(mem) = 0
	DECS	reg	1	1+S	reg \leftarrow reg-1		reg = FH
		rp'	2	2+S	rp' \leftarrow rp'-1		rp' = FFH
Comparison	SKE	reg, #n4	2	2+S	Skip if reg = n4		reg = n4
		@HL, #n4	2	2+S	Skip if (HL) = n4	*1	(HL) = n4
		A, @HL	1	1+S	Skip if A = (HL)	*1	A = (HL)
		XA, @HL	2	2+S	Skip if XA = (HL)	*1	XA = (HL)
		A, reg	2	2+S	Skip if A = reg		A = reg
		XA, rp'	2	2+S	Skip if XA = rp'		XA = rp'
Carry flag manipulation	SET1	CY	1	1	CY \leftarrow 1		
	CLR1	CY	1	1	CY \leftarrow 0		
	SKT	CY	1	1+S	Skip if CY = 1		CY = 1
	NOT1	CY	1	1	CY \leftarrow \bar{CY}		

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Memory bit manipulation	SET1	mem.bit	2	2	(mem.bit) ← 1	*3	
		fmem.bit	2	2	(fmem.bit) ← 1	*4	
		pmem.@L	2	2	(pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀)) ← 1	*5	
		@H+mem.bit	2	2	(H+mem ₃₋₀ .bit) ← 1	*1	
	CLR1	mem.bit	2	2	(mem.bit) ← 0	*3	
		fmem.bit	2	2	(fmem.bit) ← 0	*4	
		pmem.@L	2	2	(pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀)) ← 0	*5	
		@H+mem.bit	2	2	(H+mem ₃₋₀ .bit) ← 0	*1	
	SKT	mem.bit	2	2+S	Skip if (mem.bit)=1	*3	(mem.bit)=1
		fmem.bit	2	2+S	Skip if (fmem.bit)=1	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if (pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀))=1	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if (H+mem ₃₋₀ .bit)=1	*1	(@H+mem.bit)=1
	SKF	mem.bit	2	2+S	Skip if (mem.bit)=0	*3	(mem.bit)=0
		fmem.bit	2	2+S	Skip if (fmem.bit)=0	*4	(fmem.bit)=0
		pmem.@L	2	2+S	Skip if (pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀))=0	*5	(pmem.@L)=0
		@H+mem.bit	2	2+S	Skip if (H+mem ₃₋₀ .bit)=0	*1	(@H+mem.bit)=0
	SKTCLR	fmem.bit	2	2+S	Skip if (fmem.bit)=1 and clear	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if (pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀))=1 and clear	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if (H+mem ₃₋₀ .bit)=1 and clear	*1	(@H+mem.bit)=1
	AND1	CY, fmem.bit	2	2	CY ← CY ∧ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY ← CY ∧ (pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀))	*5	
		CY, @H+mem.bit	2	2	CY ← CY ∧ (H+mem ₃₋₀ .bit)	*1	
	OR1	CY, fmem.bit	2	2	CY ← CY ∨ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY ← CY ∨ (pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀))	*5	
		CY, @H+mem.bit	2	2	CY ← CY ∨ (H+mem ₃₋₀ .bit)	*1	
	XOR1	CY, fmem.bit	2	2	CY ← CY ∨ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY ← CY ∨ (pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀))	*5	
		CY, @H+mem.bit	2	2	CY ← CY ∨ (H+mem ₃₋₀ .bit)	*1	

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Branch	BR ^{Note 1}	addr	—	—	PC ₁₃₋₀ ← addr Select appropriate instruction from among the following instructions according to the assembler being used. BR laddr BRCB !caddr BR \$addr	*6	
		addr1	—	—	• μPD753012A, 753016A PC ₁₃₋₀ ← addr1 Select appropriate instruction from among the following instructions according to the assembler being used. BR laddr BRA !addr1 BRCB !caddr BR \$addr1	*11	
					• μPD753017A PC ₁₄₋₀ ← addr1 Select appropriate instruction from among the following instructions according to the assembler being used. BR laddr BRA !addr1 BRCB !caddr BR \$addr1		
	!addr		3	3	PC ₁₃₋₀ ← addr	*6	
					• μPD753017A PC ₁₄ ← 0, PC ₁₃₋₀ ← addr		
	\$addr		1	2	PC ₁₃₋₀ ← addr	*7	
	\$addr1		1	2	• μPD753017A PC ₁₄₋₀ ← addr1		
	PCDE		2	3	PC ₁₃₋₀ ← PC ₁₃₋₈ +DE		
					• μPD753017A PC ₁₄₋₀ ← PC ₁₄₋₈ +DE		
	PCXA		2	3	PC ₁₃₋₀ ← PC ₁₃₋₈ +XA		
					• μPD753017A PC ₁₄₋₀ ← PC ₁₄₋₈ +XA		
BCDE ^{Note 2}			2	3	PC ₁₃₋₀ ← BCDE	*6	
					• μPD753017A PC ₁₄₋₀ ← BCDE	*11	
BCXA ^{Note 2}			2	3	PC ₁₃₋₀ ← BCXA	*6	
					• μPD753017A PC ₁₄₋₀ ← BCXA	*11	

Notes 1. The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

2. Only the following bits are valid for the B register.

μPD753012A, 753016A : low-order 2 bits

μPD753017A : low-order 3 bits

Remark When the μPD753017A is set in the Mk I mode, PC₁₄ is fixed to 0.

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Branch	BRA ^{Note}	!addr	3	3	• μ PD753012A, 753016A $PC_{13-0} \leftarrow addr$	*6	
		!addr1	3	3	• μ PD753017A $PC_{14-0} \leftarrow addr1$	*11	
	BRCB ^{Note}	!caddr	2	2	$PC_{13-0} \leftarrow PC_{13,12} + caddr_{11-0}$ • μ PD753017A $PC_{14-0} \leftarrow PC_{14,13,12} + caddr_{11-0}$	*8	
Subroutine stack control	CALLA ^{Note}	!addr	3	3	• μ PD753012A, 753016A (SP-6)(SP-3)(SP-4) $\leftarrow PC_{11-0}$ (SP-5) $\leftarrow 0, 0, PC_{13,12}$ (SP-2) $\leftarrow x, x, MBE, RBE$ $PC_{13-0} \leftarrow addr, SP \leftarrow SP-6$	*6	
		!addr1	3	3	• μ PD753017A (SP-6)(SP-3)(SP-4) $\leftarrow PC_{11-0}$ (SP-5) $\leftarrow 0, PC_{14,13,12}$ (SP-2) $\leftarrow x, x, MBE, RBE$ $PC_{14-0} \leftarrow addr1, SP \leftarrow SP-6$	*11	
	CALL ^{Note}	!addr	3	3	(SP-4)(SP-1)(SP-2) $\leftarrow PC_{11-0}$ (SP-3) $\leftarrow MBE, RBE, PC_{13}, PC_{12}$ $PC_{13-0} \leftarrow addr, SP \leftarrow SP-4$	*6	
				4	• μ PD753012A, 753016A (SP-6)(SP-3)(SP-4) $\leftarrow PC_{11-0}$ (SP-5) $\leftarrow 0, 0, PC_{13,12}$ (SP-2) $\leftarrow x, x, MBE, RBE$ $PC_{13-0} \leftarrow addr, SP \leftarrow SP-6$		
				4	• μ PD753017A (SP-6)(SP-3)(SP-4) $\leftarrow PC_{11-0}$ (SP-5) $\leftarrow 0, PC_{14,13,12}$ (SP-2) $\leftarrow x, x, MBE, RBE$ $PC_{14} \leftarrow 0, PC_{13-0} \leftarrow addr, SP \leftarrow SP-6$		
	CALLF ^{Note}	!faddr	2	2	(SP-4)(SP-1)(SP-2) $\leftarrow PC_{11-0}$ (SP-3) $\leftarrow MBE, RBE, PC_{13}, PC_{12}$ $PC_{13-0} \leftarrow 000+faddr, SP \leftarrow SP-4$	*9	
				3	• μ PD753012A, 753016A (SP-6)(SP-3)(SP-4) $\leftarrow PC_{11-0}$ (SP-5) $\leftarrow 0, 0, PC_{13,12}$ (SP-2) $\leftarrow x, x, MBE, RBE$ $PC_{13-0} \leftarrow 000+faddr, SP \leftarrow SP-6$		
				3	• μ PD753017A (SP-6)(SP-3)(SP-4) $\leftarrow PC_{11-0}$ (SP-5) $\leftarrow 0, PC_{14,13,12}$ (SP-2) $\leftarrow x, x, MBE, RBE$ $PC_{14-0} \leftarrow 0000+faddr, SP \leftarrow SP-6$		

Note The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Remark When the μ PD753017A is set in the Mk I mode, PC_{14} is fixed to 0.

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Subroutine stack control	RET ^{Note}		1	3	MBE, RBE, PC ₁₃ , PC ₁₂ ← (SP+1) PC ₁₁₋₀ ← (SP)(SP+3)(SP+2), SP ← SP+4		
					• μPD753012A, 753016A x, x, MBE, RBE ← (SP+4) 0, 0, PC ₁₃ , PC ₁₂ ← (SP+1) PC ₁₁₋₀ ← (SP)(SP+3)(SP+2), SP ← SP+6		
					• μPD753017A x, x, MBE, RBE ← (SP+4) 0, PC ₁₄ , PC ₁₃ , PC ₁₂ ← (SP+1) PC ₁₁₋₀ ← (SP)(SP+3)(SP+2), SP ← SP+6		
	RETS ^{Note}		1	3+S	MBE, RBE, PC ₁₃ , PC ₁₂ ← (SP+1) PC ₁₁₋₀ ← (SP)(SP+3)(SP+2), SP ← SP+4 then skip unconditionally		Unconditional
					• μPD753012A, 753016A x, x, MBE, RBE ← (SP+4) 0, 0, PC ₁₃ , PC ₁₂ ← (SP+1) PC ₁₁₋₀ ← (SP)(SP+3)(SP+2), SP ← SP+6 then skip unconditionally		
					• μPD753017A x, x, MBE, RBE ← (SP+4) 0, PC ₁₄ , PC ₁₃ , PC ₁₂ ← (SP+1) PC ₁₁₋₀ ← (SP)(SP+3)(SP+2), SP ← SP+6 then skip unconditionally		
	RETI ^{Note}	!faddr	1	3	MBE, RBE, PC ₁₃ , PC ₁₂ ← (SP+1) PC ₁₁₋₀ ← (SP)(SP+3)(SP+2) PSW ← (SP+4)(SP+5), SP ← SP+6		
					• μPD753012A, 753016A 0, 0, PC ₁₃ , PC ₁₂ ← (SP+1) PC ₁₁₋₀ ← (SP)(SP+3)(SP+2) PSW ← (SP+4)(SP+5), SP ← SP+6		
					• μPD753017A 0, PC ₁₄ , PC ₁₃ , PC ₁₂ ← (SP+1) PC ₁₁₋₀ ← (SP)(SP+3)(SP+2) PSW ← (SP+4)(SP+5), SP ← SP+6		

Note The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Remark When the μPD753017A is set in the Mk I mode, PC₁₄ is fixed to 0.

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Subroutine stack control	PUSH	rp	1	1	$(SP-1)(SP-2) \leftarrow rp, SP \leftarrow SP-2$		
		BS	2	2	$(SP-1) \leftarrow MBS, (SP-2) \leftarrow RBS, SP \leftarrow SP-2$		
	POP	rp	1	1	$rp \leftarrow (SP+1)(SP), SP \leftarrow SP+2$		
		BS	2	2	$MBS \leftarrow (SP+1), RBS \leftarrow (SP), SP \leftarrow SP+2$		
Interrupt control	EI		2	2	$IME(IP.S.3) \leftarrow 1$		
		IEXXX	2	2	$IEXXX \leftarrow 1$		
	DI		2	2	$IME(IP.S.3) \leftarrow 0$		
		IEXXX	2	2	$IEXXX \leftarrow 0$		
Input/output	IN ^{Note 1}	A, PORTn	2	2	$A \leftarrow PORTn \quad (n = 0-7)$		
		XA, PORTn	2	2	$XA \leftarrow PORTn+1, PORTn \quad (n = 4, 6)$		
	OUT ^{Note 1}	PORTn, A	2	2	$PORTn \leftarrow A \quad (n = 2-7)$		
		PORTn, XA	2	2	$PORTn+1, PORTn \leftarrow XA \quad (n = 4, 6)$		
CPU control	HALT		2	2	Set HALT mode (PCC.2 $\leftarrow 1$)		
	STOP		2	2	Set STOP mode (PCC.3 $\leftarrow 1$)		
	NOP		1	1	No operation		
Special	SEL	RBn	2	2	$RBS \leftarrow n \quad (n = 0-3)$		
		MBn	2	2	$MBS \leftarrow n \quad (n = 0-3, 15)$		
	GETI ^{Notes 2, 3}	taddr	1	3	<ul style="list-style-type: none"> When TBR instruction $PC_{13-0} \leftarrow (taddr)_{5-0} + (taddr+1)$ When TCALL instruction $(SP-4)(SP-1)(SP-2) \leftarrow PC_{11-0}$ $(SP-3) \leftarrow MBE, RBE, PC_{13}, PC_{12}$ $PC_{13-0} \leftarrow (taddr)_{5-0} + (taddr+1)$ $SP \leftarrow SP-4$ When instruction other than TBR and TCALL instructions $(taddr) (taddr+1)$ instruction is executed 	*10	Depending on the reference instruction
		1	3	3	<ul style="list-style-type: none"> μPD753017A When TBR instruction $PC_{13-0} \leftarrow (taddr)_{5-0} + (taddr+1)$ $PC_{14} \leftarrow 0$ 		
		4	4	3	<ul style="list-style-type: none"> When TCALL instruction $(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$ $(SP-5) \leftarrow 0, 0, PC_{13, 12}$ $(SP-2) \leftarrow x, x, MBE, RBE$ $PC_{13-0} \leftarrow (taddr)_{5-0} + (taddr+1)$ $SP \leftarrow SP-6, PC_{14} \leftarrow 0$ When instruction other than TBR and TCALL instructions $(taddr) (taddr+1)$ instruction is executed 		

Notes 1. While the IN instruction and OUT instruction are being executed, the MBE must be set to 0 or 1 and MBS must be set to 15.

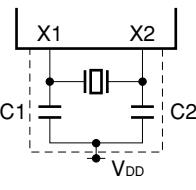
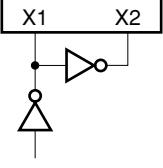
2. The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

3. The TBR and TCALL instructions are the table definition assembler pseudo instructions of the GETI instruction.

Remark When the μ PD753017A is set in the Mk I mode, PC_{14} is fixed to 0.

12. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)



Parameter	Symbol	Conditions		Ratings	Unit
Supply voltage	V _{DD}			−0.3 to +7.0	V
Input voltage	V _{I1}	Other than ports 4, 5		−0.3 to V _{DD} + 0.3	V
	V _{I2}	Ports 4, 5	Pull-up resistor provided	−0.3 to V _{DD} + 0.3	V
			N-ch open-drain	−0.3 to +14	V
Output voltage	V _O			−0.3 to V _{DD} + 0.3	V
High-level output current	I _{OH}	Per pin		−10	mA
		Total of all pins		−30	mA
Low-level output current	I _{OL}	Per pin		30	mA
		Total of all pins		220	mA
Operating ambient temperature	T _A			−40 to +85	°C
Storage temperature	T _{stg}			−65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Capacitance (T_A = 25°C, V_{DD} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	C _{IN}	f = 1 MHz Unmeasured pins returned to 0 V			15	pF
Output capacitance	C _{OUT}				15	pF
I/O capacitance	C _{IO}				15	pF

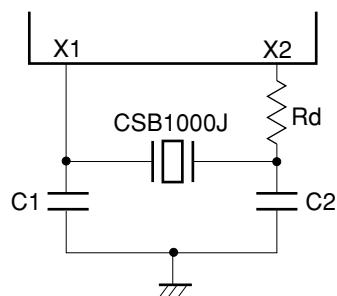
Main System Clock Oscillator Characteristics ($T_A = -40$ to $+85^\circ\text{C}$, $V_{DD} = 1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (f_x) ^{Note 1}		1.0		6.0 ^{Note 2}	MHz
		Oscillation stabilization time ^{Note 3}	After V_{DD} has reached MIN. value of oscillation voltage range			4	ms
Crystal resonator		Oscillation frequency (f_x) ^{Note 1}		1.0		6.0 ^{Note 2}	MHz
		Oscillation stabilization time ^{Note 3}	$V_{DD} = 4.5$ to 5.5 V			10	ms
						30	
External clock		X1 input frequency (f_x) ^{Note 1}		1.0		6.0 ^{Note 2}	MHz
		X1 input high-, low-level width (t_{xH} , t_{xL})		83.3		500	ns

Notes

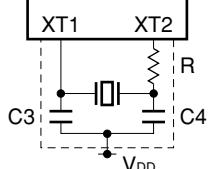
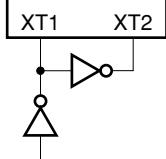
1. The oscillation frequency and X1 input frequency shown above indicate characteristics of the oscillator only. For the instruction execution time, refer to **AC Characteristics**.
2. If the oscillation frequency is $4.19 \text{ MHz} < f_x \leq 6.0 \text{ MHz}$ at $1.8 \text{ V} \leq V_{DD} < 2.7 \text{ V}$, do not set the processor clock control register (PCC) to 0011. If PCC = 0011, one machine cycle time is less than $0.95 \mu\text{s}$, falling short of the rated value of $0.95 \mu\text{s}$.
3. The oscillation stabilization time is the time required for oscillation to be stabilized after V_{DD} has been applied or STOP mode has been released.

Caution When using the main system clock oscillator, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influence due to wiring capacitance:


- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillator at the same potential as V_{DD} .
- Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillator.

Recommended Oscillator Constant

Ceramic resonator ($T_A = -20$ to $+80^\circ\text{C}$)



Manufacturer	Part Number	Frequency (MHz)	Recommended Circuit Constant (pF)		Oscillation Voltage Range (V)		Remarks	
			C1	C2	MIN.	MAX.		
TDK Corp.	CCR1000K2	1.0	100	100	1.8	5.5	—	
	CCR2.0MC33	2.0	—	—			On-chip capacitor	
	CCR4.19MC3	4.19						
	FCR4.19MC5							
	CCR6.0MC3	6.0						
Murata Mfg. Co., Ltd.	CSB1000J ^{Note}	1.0	100	100	2.1	5.5	$R_d = 5.6 \text{ k}\Omega$	
	CSA2.00MG040	2.0	100	100	1.9		—	
	CST2.00MG040		—	—			On-chip capacitor	
	CSA4.19MG	4.19	30	30	1.8		—	
	CST4.19MGW		—	—			On-chip capacitor	
	CSA6.00MG	6.0	30	30	2.3		—	
	CST6.00MGW		—	—			On-chip capacitor	
Kyocera Corp.	KBR-1000F/Y	1.0	100	100	1.8	5.5	—	
	KBR-2.0MS	2.0	68	68				
	KBR-4.0MSA/MSB	4.0	33	33			On-chip capacitor	
	KBR-4.0MKC		—	—				
	KBR-4.0MKD							
	KBR-4.0MKS							
	PBRC4.00A	4.0	33	33			—	
	PBRC4.00B		—	—			On-chip capacitor	
	KBR-4.19MSA	4.19	33	33			—	
	KBR-4.19MSB		33	33				
	KBR-4.19MKC	4.19	—	—			On-chip capacitor	
	KBR-4.19MKD							
	KBR-4.19MKS							
	PBRC4.19A	6.0	33	33			—	
	PBRC4.19B		—	—			On-chip capacitor	
	KBR-6.0MSA/MSB	6.0	33	33			—	
	KBR-6.0MKC		—	—			On-chip capacitor	
	KBR-6.0MKD							
	KBR-6.0MKS							
	PBRC6.00A	6.0	33	33			—	
	PBRC6.00B		—	—			On-chip capacitor	

Note When using the CSB1000J (1.0 MHz) by Murata Mfg. Co., Ltd. as a ceramic resonator, a limiting resistor ($R_d = 5.6 \text{ k}\Omega$) is necessary (refer to the figure below). The resistor is not necessary when using the other recommended resonators.

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

Subsystem Clock Oscillator Characteristics ($T_A = -40$ to $+85^\circ\text{C}$, $V_{DD} = 1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency (f_{XT}) ^{Note 1}		32	32.768	35	kHz
		Oscillation stabilization time ^{Note 2}	$V_{DD} = 4.5$ to 5.5 V		1.0	2	s
						10	
External clock		XT1 input frequency (f_{XT}) ^{Note 1}		32		100	kHz
		XT1 input high-, low-level width (t_{xTH} , t_{xTL})		5		15	μs

Notes 1. The oscillation frequency shown above indicates characteristics of the oscillator only. For the instruction execution time, refer to **AC Characteristics**.

2. The oscillation stabilization time is the time required for oscillation to be stabilized after V_{DD} has been applied.

Caution When using the subsystem clock oscillator, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influence due to wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillator at the same potential as V_{DD} .
- Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

The subsystem clock oscillator has a low amplification factor to reduce current consumption and is more susceptible to noise than the main system clock oscillator. Therefore, exercise utmost care in wiring the subsystem clock oscillator.

★ **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

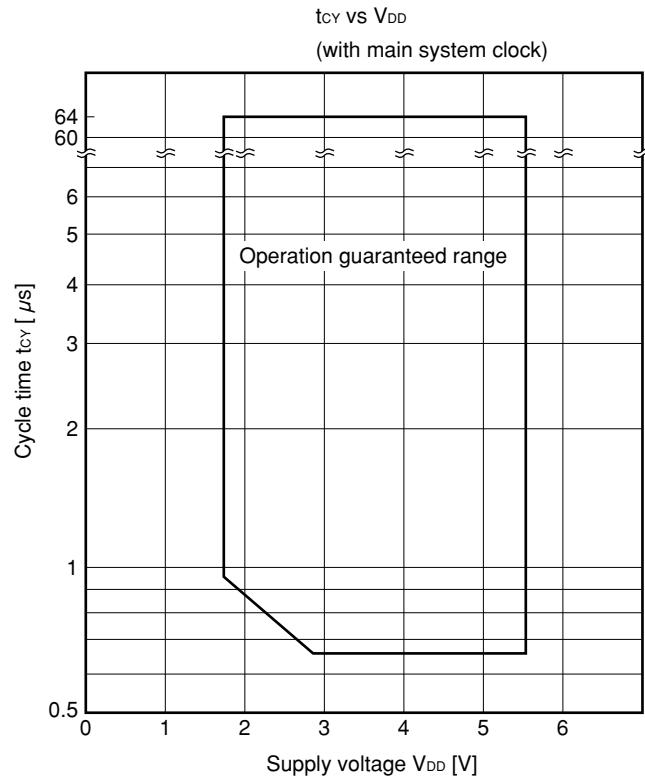
Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit	
Low-level output current	I _{OL}	Per pin					15	mA	
		Total of all pins					150	mA	
High-level input voltage	V _{IH1}	Ports 2, 3		V _{DD} = 2.7 to 5.5 V	0.7 V _{DD}		V _{DD}	V	
				V _{DD} = 1.8 to 2.7 V	0.9 V _{DD}		V _{DD}	V	
	V _{IH2}	Ports 0, 1, 6, 7, <u>RESET</u>		V _{DD} = 2.7 to 5.5 V	0.8 V _{DD}		V _{DD}	V	
				V _{DD} = 1.8 to 2.7 V	0.9 V _{DD}		V _{DD}	V	
	V _{IH3}	Ports 4, 5	Pull-up resistor provided	V _{DD} = 2.7 to 5.5 V	0.7 V _{DD}		V _{DD}	V	
				V _{DD} = 1.8 to 2.7 V	0.9 V _{DD}		V _{DD}	V	
		N-ch open-drain		V _{DD} = 2.7 to 5.5 V	0.7 V _{DD}	13	V		
				V _{DD} = 1.8 to 2.7 V	0.9 V _{DD}	13	V		
	V _{IH4}	X1, XT1			V _{DD} -0.1		V _{DD}	V	
Low-level input voltage	V _{IL1}	Ports 2, 3, 4, 5		V _{DD} = 2.7 to 5.5 V	0		0.3 V _{DD}	V	
				V _{DD} = 1.8 to 2.7 V	0		0.1 V _{DD}	V	
	V _{IL2}	Ports 0, 1, 6, 7, <u>RESET</u>		V _{DD} = 2.7 to 5.5 V	0		0.2 V _{DD}	V	
				V _{DD} = 1.8 to 2.7 V	0		0.1 V _{DD}	V	
	V _{IL3}	X1, XT1			0		0.1	V	
High-level output voltage	V _{OH}	<u>SCK</u> , SO, Ports 2, 3, 6, 7, BP0-BP7 I _{OH} = -1 mA			V _{DD} -0.5			V	
Low-level output voltage	V _{OL1}	<u>SCK</u> , SO, Ports 2-7, BP0-BP7		I _{OL} = 15 mA V _{DD} = 5.0 V ±10%		0.2	2.0	V	
				I _{OL} = 1.6 mA			0.4	V	
	V _{OL2}	SB0, SB1	N-ch open-drain Pull-up resistor ≥ 1 kΩ				0.2 V _{DD}	V	
High-level input leakage current	I _{LIH1}	V _{IN} = V _{DD}	Pins other than X1, XT1, ports 4, 5				3	μA	
	I _{LIH2}		X1, XT1				20	μA	
	I _{LIH3}	V _{IN} = 13 V	Ports 4, 5 (N-ch open-drain)				20	μA	
Low-level input leakage current	I _{LIL1}	V _{IN} = 0 V	Pins other than X1, XT1, ports 4, 5				-3	μA	
	I _{LIL2}		X1, XT1				-20	μA	
	I _{LIL3}		Ports 4, 5 (N-ch open-drain) When input instruction is not executed				-3	μA	
	Ports 4, 5 (N-ch open-drain) When input instruction is executed	V _{DD} = 5 V V _{DD} = 3 V					-30	μA	
						-10	-27	μA	
						-3	-8	μA	
High-level output leakage current	I _{LOH1}	V _{OUT} = V _{DD}	<u>SCK</u> , SO/SB0, SB1, ports 2, 3, 6, 7, ports 4, 5 (pull-up resistor provided), BP0-BP7				3	μA	
	I _{LOH2}		V _{OUT} = 13 V	Ports 4, 5 (N-ch open-drain)			20	μA	
Low-level output leakage current	I _{OL}	V _{OUT} = 0 V					-3	μA	
Internal pull-up resistor	R _{L1}	V _{IN} = 0 V	Ports 0, 1, 2, 3, 6, 7 (except P00 pin)			50	100	kΩ	
	R _{L2}		Ports 4, 5 (mask option selected)			15	30	kΩ	

★

DC Characteristics ($T_A = -40$ to $+85^\circ\text{C}$, $V_{DD} = 1.8$ to 5.5 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit	
LCD drive voltage ^{Note 1}	V _{LCD}	VAC0 = 0			2.2		V _{DD}	V	
		VAC0 = 1			1.8		V _{DD}	V	
VAC current ^{Note 2}	I _{VAC}	VAC0 = 1, $V_{DD} = 2.0$ V $\pm 10\%$				1	4	μA	
		R_{LCD1}			50	100	200	$\text{k}\Omega$	
LCD split resistor ^{Note 3}	R _{LCD2}				5	10	20	$\text{k}\Omega$	
LCD output voltage deviation ^{Note 4} (common)	V _{ODC}	I _O = ± 1.0 μA	V _{LCD0} = V _{LCD} V _{LCD1} = V _{LCD} $\times 2/3$ V _{LCD2} = V _{LCD} $\times 1/3$			0		± 0.2 V	
LCD output voltage deviation ^{Note 4} (segment)	V _{ODS}	I _O = ± 0.5 μA	1.8 V \leq V _{LCD} \leq V _{DD}			0		± 0.2 V	
Supply current ^{Notes 2, 5}	I _{DD1}	6.00 MHz ^{Note 6} crystal oscillation C ₁ = C ₂ = 22 pF	V _{DD} = 5.0 V $\pm 10\%$ ^{Note 7}			2.2	6.6	mA	
			V _{DD} = 3.0 V $\pm 10\%$ ^{Note 8}			0.6	2.0	mA	
	I _{DD2}	HALT mode	V _{DD} = 5.0 V $\pm 10\%$			0.72	2.1	mA	
			V _{DD} = 3.0 V $\pm 10\%$			0.27	0.8	mA	
	I _{DD1}	4.19 MHz ^{Note 6} crystal oscillation C ₁ = C ₂ = 22 pF	V _{DD} = 5.0 V $\pm 10\%$ ^{Note 7}			1.7	5.1	mA	
			V _{DD} = 3.0 V $\pm 10\%$ ^{Note 8}			0.3	0.9	mA	
	I _{DD2}	HALT mode	V _{DD} = 5.0 V $\pm 10\%$			0.7	2.0	mA	
			V _{DD} = 3.0 V $\pm 10\%$			0.23	0.7	mA	
	I _{DD3}	32.768 kHz ^{Note 9} crystal oscillation	Low voltage mode ^{Note 10}	V _{DD} = 3.0 V $\pm 10\%$			15	45 μA	
				V _{DD} = 2.0 V $\pm 10\%$			8	24 μA	
			Low current consumption mode ^{Note 11}	V _{DD} = 3.0 V, $T_A = 25^\circ\text{C}$			15	30 μA	
				V _{DD} = 3.0 V $\pm 10\%$			12	36 μA	
	I _{DD4}		HALT mode	V _{DD} = 3.0 V, $T_A = 25^\circ\text{C}$			12	24 μA	
				Low voltage mode ^{Note 10}	V _{DD} = 3.0 V $\pm 10\%$			8.5	25 μA
					V _{DD} = 2.0 V $\pm 10\%$			4	12 μA
				Low current consumption mode ^{Note 11}	V _{DD} = 3.0 V, $T_A = 25^\circ\text{C}$			8.5	17 μA
					V _{DD} = 3.0 V $\pm 10\%$			3.5	12 μA
	I _{DD5}	XT1 = 0 V ^{Note 12} STOP mode	V _{DD} = 5.0 V $\pm 10\%$	V _{DD} = 3.0 V $\pm 10\%$			0.05	10 μA	
							0.02	5 μA	
			T _A = 25°C			0.02	3	μA	

Notes


- When 1.8 V \leq V_{DD} < 2.7 V, $T_A = -10$ to $+85^\circ\text{C}$.
- Clear VAC0 to 0 in the low current consumption mode and STOP mode. When VAC0 is set to 1, the current increases by about 1 μA .
- Either R_{LCD1} or R_{LCD2} can be selected by mask option.
- Voltage deviation is the difference between the ideal values (V_{LCDn}; n = 0, 1, 2) of the segment and common outputs and the output voltage.
- The current flowing through the internal pull-up resistor and the LCD divider resistor is not included.
- Including the case when the subsystem clock oscillates.
- When the device operates in high-speed mode with the processor clock control register (PCC) set to 0011.
- When the device operates in low-speed mode with PCC set to 0000.
- When the device operates on the subsystem clock, with the system clock control register (SCC) set to 1001 and oscillation of the main system clock stopped.
- When the sub-oscillator control register (SOS) is set to 0000.
- When SOS is set to 0010.
- When SOS is set to 00X1, and the feedback resistor of the sub-oscillator is not used (X: don't care).

AC Characteristics ($T_A = -40$ to $+85^\circ\text{C}$, $V_{DD} = 1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time ^{Note 1} (minimum instruction execution time = 1 machine cycle)	t _{cy}	Operates with main system clock	$V_{DD} = 2.7$ to 5.5 V	0.67		64	μs
				0.95		64	μs
		Operates with subsystem clock		114	122	125	μs
T _{I0} , T _{I1} , T _{I2} input frequency	f _{TI}	$V_{DD} = 2.7$ to 5.5 V		0		1	MHz
				0		275	kHz
T _{I0} , T _{I1} , T _{I2} input high-, low-level width	t _{TIH} , t _{TIL}	$V_{DD} = 2.7$ to 5.5 V		0.48			μs
				1.8			μs
Interrupt input high-, low-level width	t _{INTH} , t _{INTL}	INT0	IM02 = 0	Note 2			μs
			IM02 = 1	10			μs
		INT1, 2, 4		10			μs
		KR0-KR7		10			μs
RESET low-level width	t _{RS}			10			μs

Notes 1. The cycle time of the CPU clock (Φ) is determined by the oscillation frequency of the connected resonator, the system clock control register (SCC), and processor clock control register (PCC). The figure on the right shows the supply voltage V_{DD} vs. cycle time t_{cy} characteristics when the device operates with the main system clock.

2. $2t_{cy}$ or $128/f_x$ depending on the setting of the interrupt mode register (IM0).

Serial transfer operation

2-wire and 3-wire serial I/O modes ($\overline{\text{SCK}}$... internal clock output): ($T_A = -40$ to $+85^\circ\text{C}$, $V_{DD} = 1.8$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
SCK cycle time	t_{KCY1}	$V_{DD} = 2.7$ to 5.5 V	1300			ns	
			3800			ns	
SCK high-, low-level width	t_{KL1}	$V_{DD} = 2.7$ to 5.5 V	$t_{KCY1}/2-50$			ns	
			$t_{KCY1}/2-150$			ns	
S _I ^{Note 1} setup time (to $\overline{\text{SCK}} \uparrow$)	t_{SIK1}	$V_{DD} = 2.7$ to 5.5 V	150			ns	
			500			ns	
S _I ^{Note 1} hold time (from $\overline{\text{SCK}} \uparrow$)	t_{KSI1}	$V_{DD} = 2.7$ to 5.5 V	400			ns	
			600			ns	
SCK $\downarrow \rightarrow$ SO ^{Note 1} output delay time	t_{KSO1}	$R_L = 1 \text{ k}\Omega$, ^{Note 2}	$V_{DD} = 2.7$ to 5.5 V	0		250	ns
		$C_L = 100 \text{ pF}$		0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.

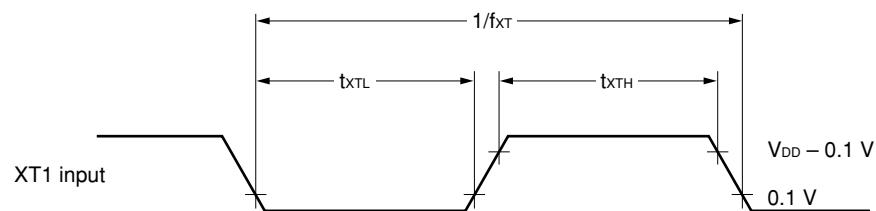
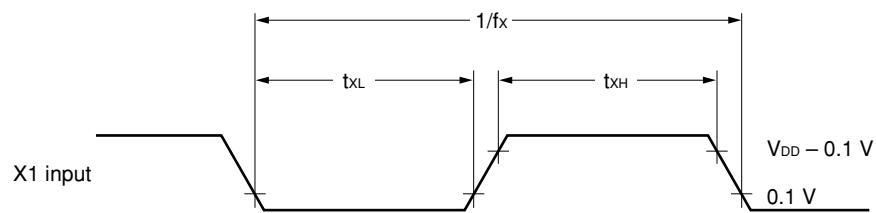
2. R_L and C_L respectively indicate the load resistance and load capacitance of the SO output line.2-wire and 3-wire serial I/O modes ($\overline{\text{SCK}}$... external clock input): ($T_A = -40$ to $+85^\circ\text{C}$, $V_{DD} = 1.8$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
SCK cycle time	t_{KCY2}	$V_{DD} = 2.7$ to 5.5 V	800			ns	
			3200			ns	
SCK high-, low-level width	t_{KL2}	$V_{DD} = 2.7$ to 5.5 V	400			ns	
			1600			ns	
S _I ^{Note 1} setup time (to $\overline{\text{SCK}} \uparrow$)	t_{SIK2}	$V_{DD} = 2.7$ to 5.5 V	100			ns	
			150			ns	
S _I ^{Note 1} hold time (from $\overline{\text{SCK}} \uparrow$)	t_{KSI2}	$V_{DD} = 2.7$ to 5.5 V	400			ns	
			600			ns	
SCK $\downarrow \rightarrow$ SO ^{Note 1} output delay time	t_{KSO2}	$R_L = 1 \text{ k}\Omega$, ^{Note 2}	$V_{DD} = 2.7$ to 5.5 V	0		300	ns
		$C_L = 100 \text{ pF}$		0		1000	ns

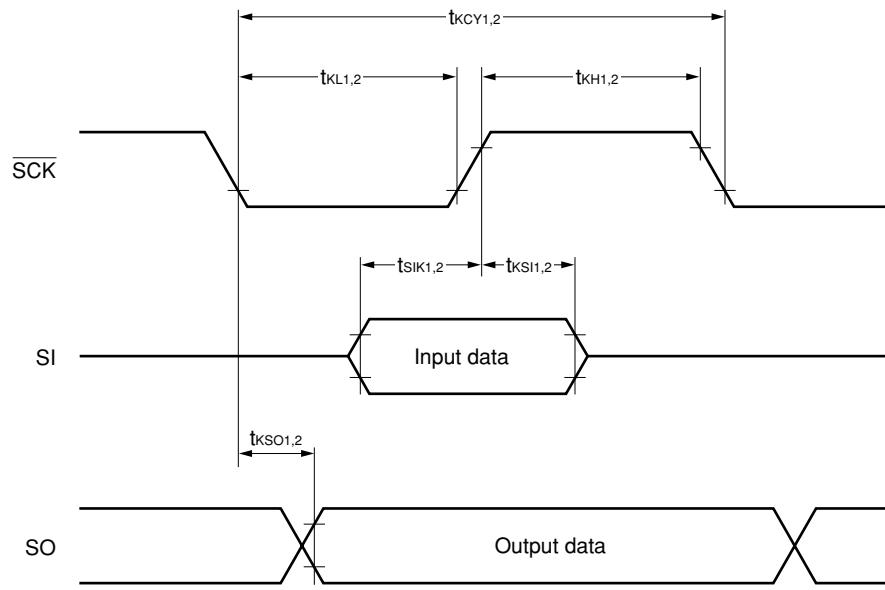
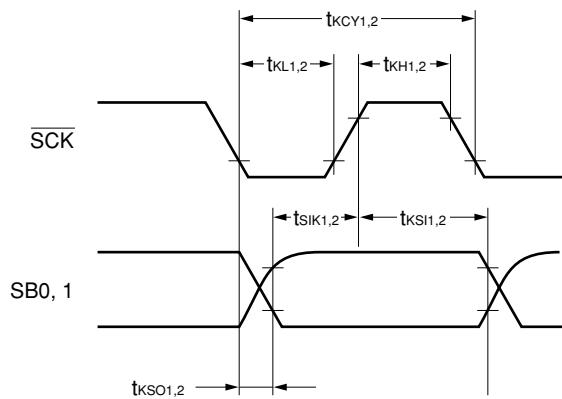
Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.

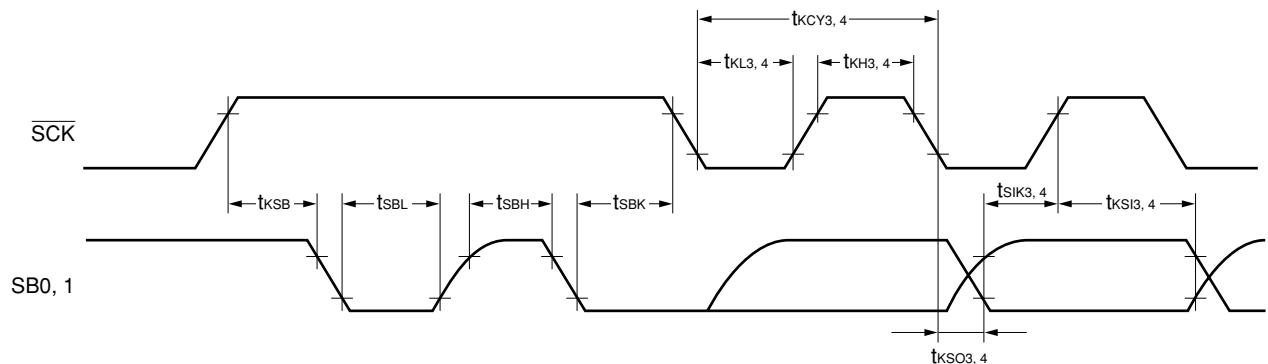
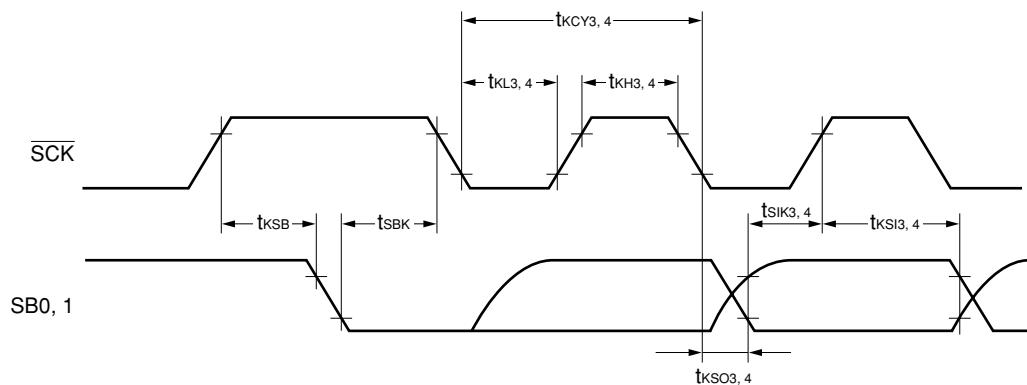
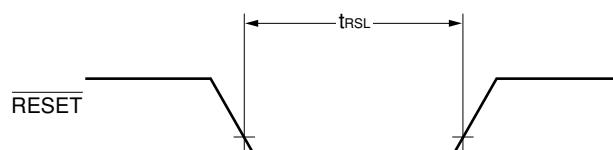
2. R_L and C_L respectively indicate the load resistance and load capacitance of the SO output line.

SBI mode (SCK → internal clock output (master)): (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
SCK cycle time	t _{KCY3}	V _{DD} = 2.7 to 5.5 V		1300			ns	
				3800			ns	
SCK high-, low-level width	t _{KL3}	V _{DD} = 2.7 to 5.5 V		t _{KCY3} /2-50			ns	
				t _{KCY3} /2-150			ns	
SB0, 1 setup time (to SCK ↑)	t _{SIK3}	V _{DD} = 2.7 to 5.5 V		150			ns	
				500			ns	
SB0, 1 hold time (from SCK ↑)	t _{KSI3}			t _{KCY3} /2			ns	
SCK ↓ → SB0, 1 output delay time	t _{KSO3}	R _L = 1 kΩ, <small>Note</small>	V _{DD} = 2.7 to 5.5 V	0		250	ns	
				C _L = 100 pF		0	1000	
SCK ↑ → SB0, 1 ↓	t _{KS}			t _{KCY3}			ns	
SB0, 1 ↓ → SCK ↓	t _{SBK}			t _{KCY3}			ns	
SB0, 1 low-level width	t _{SB}			t _{KCY3}			ns	
SB0, 1 high-level width	t _{SBH}			t _{KCY3}			ns	



Note R_L and C_L respectively indicate the load resistance and load capacitance of the SB0, 1 output line.




SBI mode (SCK → external clock input (slave)): (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
SCK cycle time	t _{KCY4}	V _{DD} = 2.7 to 5.5 V		800			ns	
				3200			ns	
SCK high-, low-level width	t _{KL4}	V _{DD} = 2.7 to 5.5 V		400			ns	
				1600			ns	
SB0, 1 setup time (to SCK ↑)	t _{SIK4}	V _{DD} = 2.7 to 5.5 V		100			ns	
				150			ns	
SB0, 1 hold time (from SCK ↑)	t _{KSI4}			t _{KCY4} /2			ns	
SCK ↓ → SB0, 1 output delay time	t _{KSO4}	R _L = 1 kΩ, <small>Note</small>	V _{DD} = 2.7 to 5.5 V	0		300	ns	
				C _L = 100 pF		0	1000	
SCK ↑ → SB0, 1 ↓	t _{KS}			t _{KCY4}			ns	
SB0, 1 ↓ → SCK ↓	t _{SBK}			t _{KCY4}			ns	
SB0, 1 low-level width	t _{SB}			t _{KCY4}			ns	
SB0, 1 high-level width	t _{SBH}			t _{KCY4}			ns	

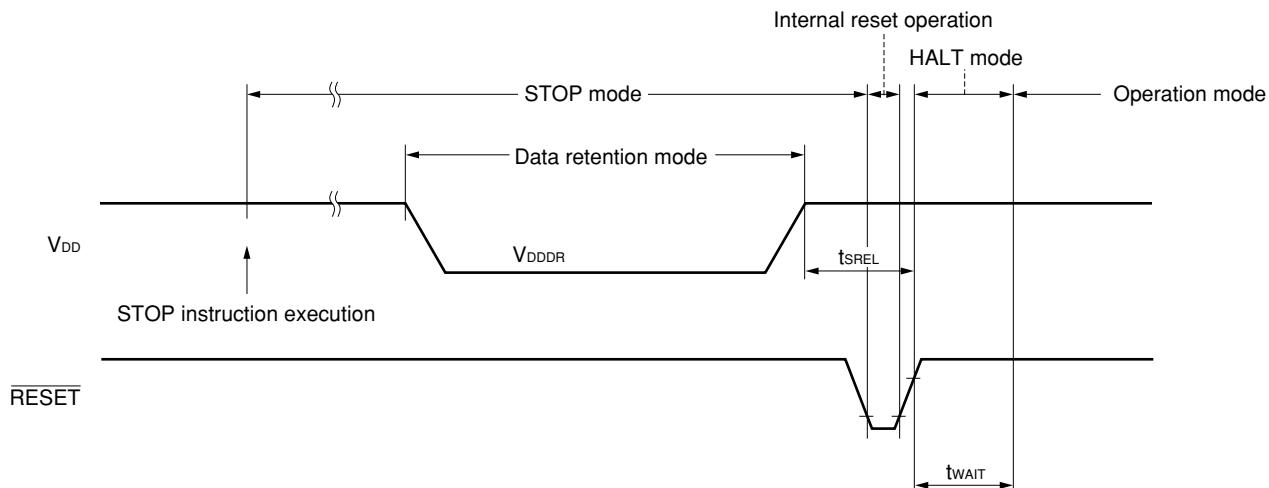
Note R_L and C_L respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

AC timing test points (except X1 and XT1 inputs)**Clock timing****TI0, TI1, TI2 timing**

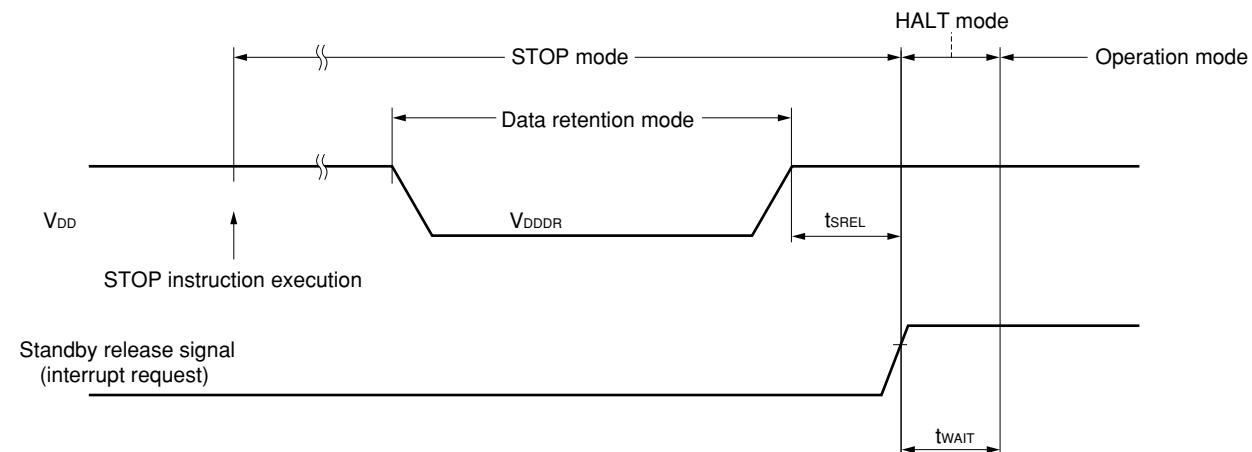
Serial transfer timing**3-wire serial I/O mode****2-wire serial I/O mode**

Serial transfer timing**Bus release signal transfer****Command signal transfer****Interrupt input timing****RESET input timing**

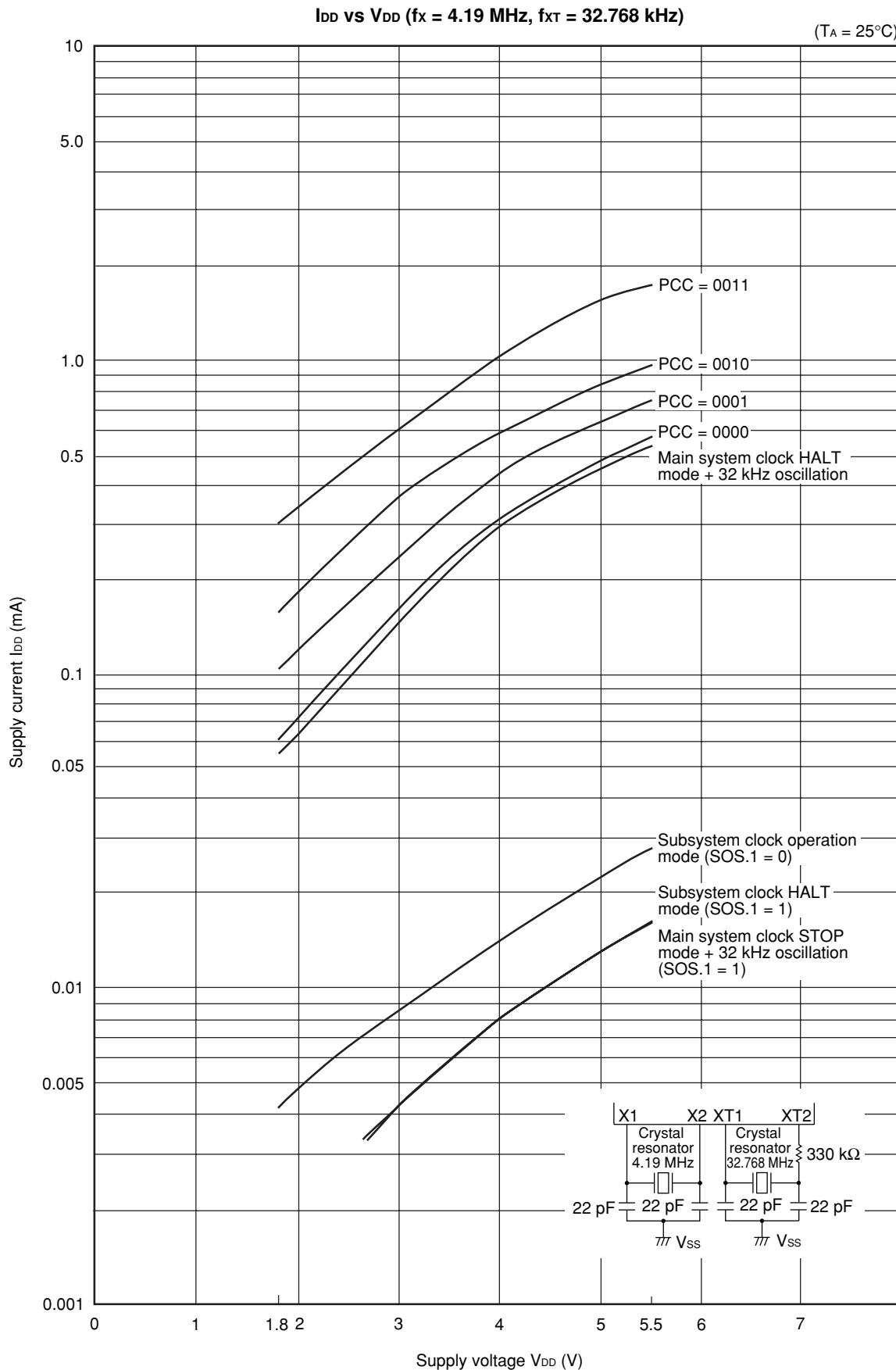
Data retention characteristics of data memory in STOP mode and at low supply voltage
($T_A = -40$ to $+85^\circ\text{C}$)

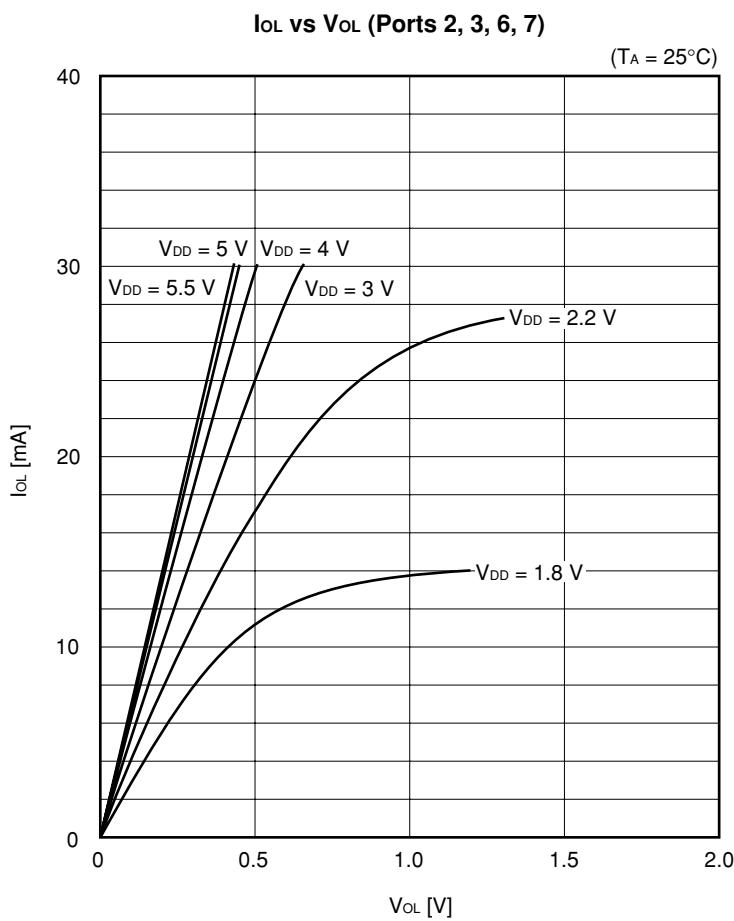
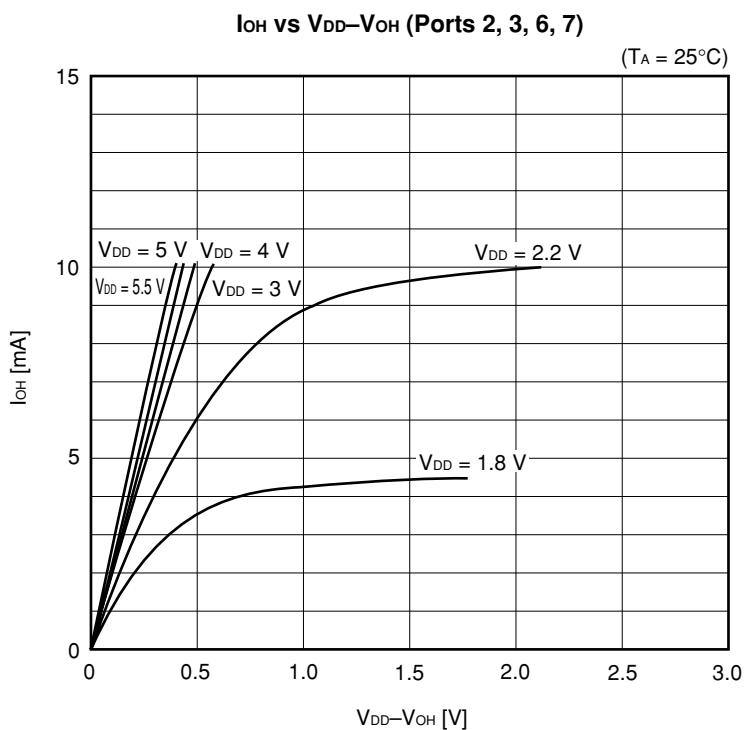

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	V_{DDDR}		1.8		5.5	V
Release signal setup time	t_{SREL}		0			μs
Oscillation stabilization wait time ^{Note 1}	t_{WAIT}	Released by <u>RESET</u>		Note 2		ms
		Released by interrupt request		Note 3		ms

Notes

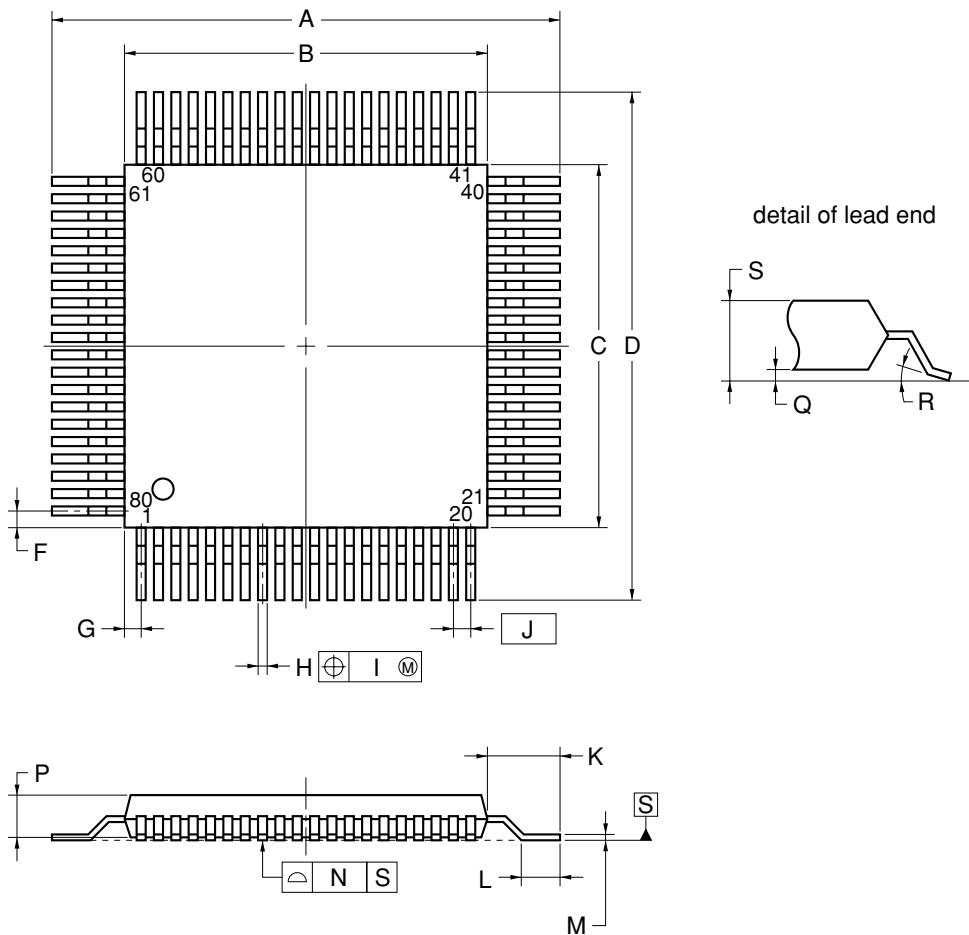

1. The oscillation stabilization wait time is the time during which the CPU stops operating to prevent unstable operation when oscillation is started.
2. Either $2^{17}/fx$ or $2^{15}/fx$ can be selected by mask option.
3. Set by the basic interval timer mode register (BTM). (Refer to the table below.)

BTM3	BTM2	BTM1	BTM0	Wait Time	
				$fx = 4.19 \text{ MHz}$	$fx = 6.0 \text{ MHz}$
–	0	0	0	$2^{20}/fx$ (approx. 250 ms)	$2^{20}/fx$ (approx. 175 ms)
–	0	1	1	$2^{17}/fx$ (approx. 31.3 ms)	$2^{17}/fx$ (approx. 21.8 ms)
–	1	0	1	$2^{15}/fx$ (approx. 7.81 ms)	$2^{15}/fx$ (approx. 5.46 ms)
–	1	1	1	$2^{13}/fx$ (approx. 1.95 ms)	$2^{13}/fx$ (approx. 1.37 ms)


Data retention timing (when STOP mode released by RESET)

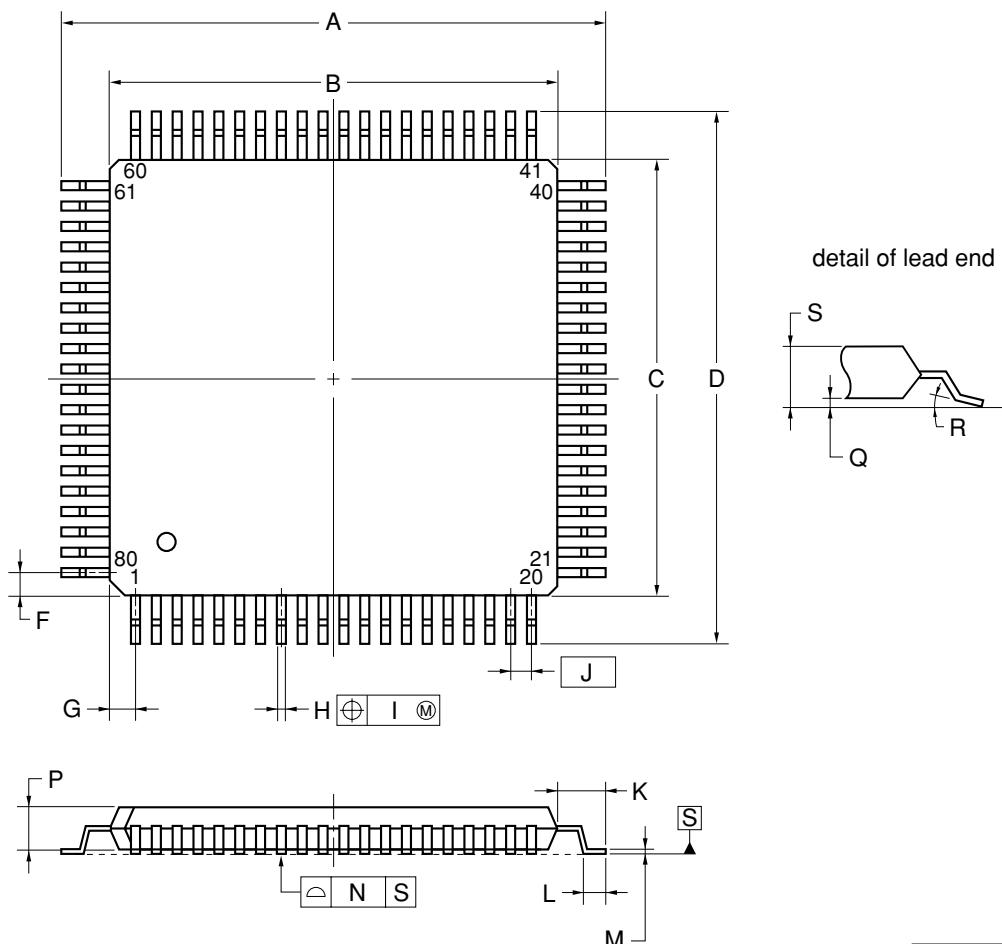



Data retention timing (standby release signal: when STOP mode released by interrupt signal)


★ 13. CHARACTERISTICS CURVES (REFERENCE VALUES)

14. PACKAGE DRAWINGS

80-PIN PLASTIC QFP (14x14)

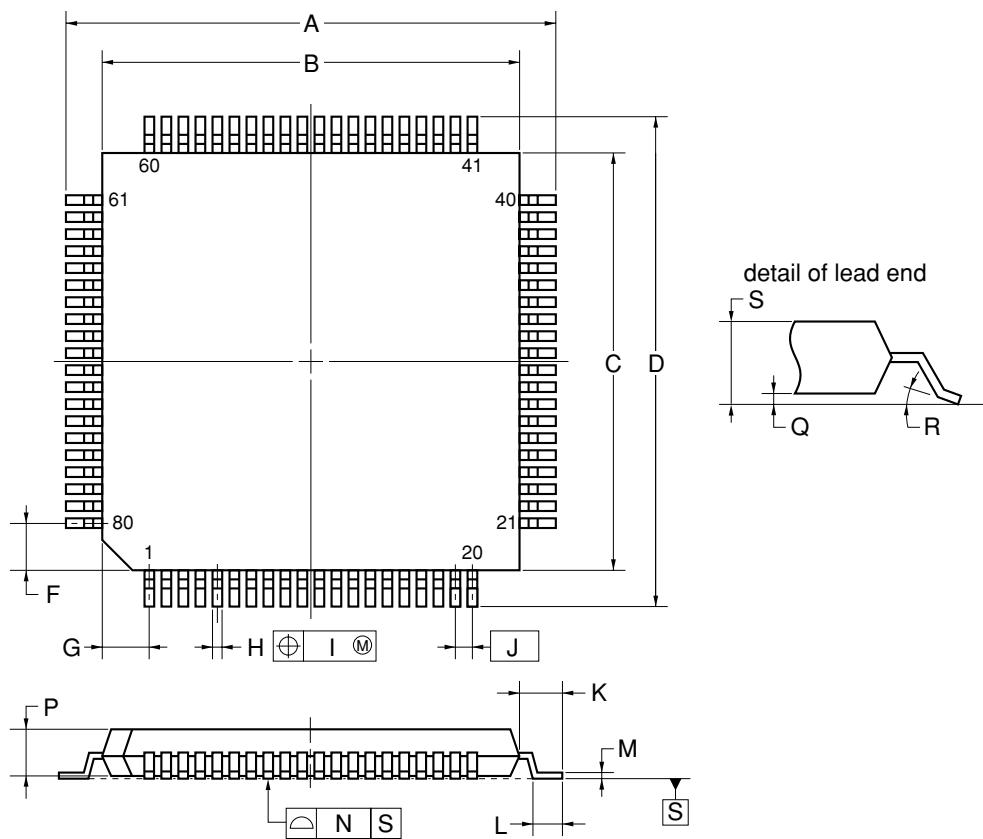

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	17.2±0.4
B	14.0±0.2
C	14.0±0.2
D	17.2±0.4
F	0.825
G	0.825
H	0.30±0.10
I	0.13
J	0.65 (T.P.)
K	1.6±0.2
L	0.8±0.2
M	0.15 ^{+0.10} _{-0.05}
N	0.10
P	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.

S80GC-65-3B9-6

★ 80-PIN PLASTIC QFP (14x14)

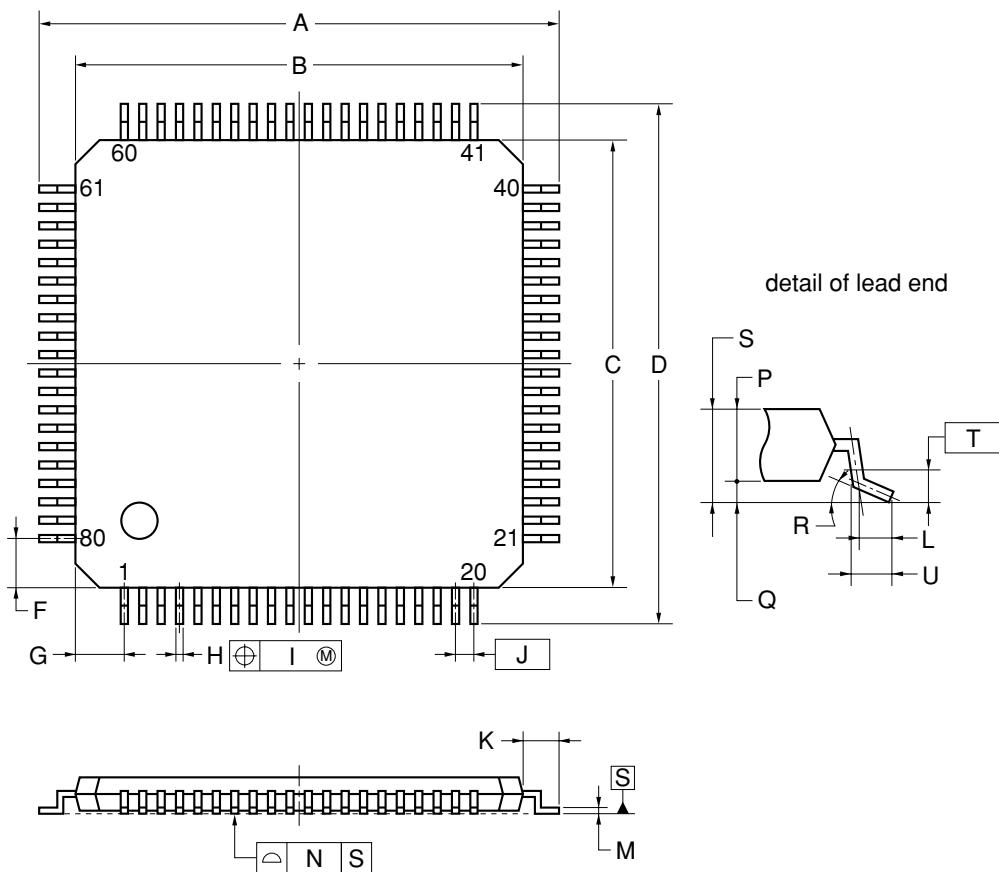

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	17.20 \pm 0.20
B	14.00 \pm 0.20
C	14.00 \pm 0.20
D	17.20 \pm 0.20
F	0.825
G	0.825
H	0.32 \pm 0.06
I	0.13
J	0.65 (T.P.)
K	1.60 \pm 0.20
L	0.80 \pm 0.20
M	0.17 $^{+0.03}_{-0.07}$
N	0.10
P	1.40 \pm 0.10
Q	0.125 \pm 0.075
R	3° $^{+7}_{-3}$ °
S	1.70 MAX.

P80GC-65-8BT-1

80 PIN PLASTIC TQFP (FINE PITCH) (12x12)


NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	14.00±0.20
B	12.00±0.20
C	12.00±0.20
D	14.00±0.20
F	1.25
G	1.25
H	0.22 ^{+0.05} _{-0.04}
I	0.10
J	0.50 (T.P.)
K	1.00±0.20
L	0.50±0.20
M	0.145 ^{+0.055} _{-0.045}
N	0.10
P	1.05±0.07
Q	0.10±0.05
R	5°±5°
S	1.27 MAX.

P80GK-50-BE9-6

★ 80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	14.0±0.2
B	12.0±0.2
C	12.0±0.2
D	14.0±0.2
F	1.25
G	1.25
H	0.22±0.05
I	0.08
J	0.5 (T.P.)
K	1.0±0.2
L	0.5
M	0.145±0.05
N	0.08
P	1.0
Q	0.1±0.05
R	3°+4° -3°
S	1.1±0.1
T	0.25
U	0.6±0.15

P80GK-50-9EU-1

15. RECOMMENDED SOLDERING CONDITIONS

The μPD753012A, μPD753016A, and μPD753017A should be soldered and mounted under the following recommended conditions.

For technical information, see the following website.

Semiconductor Device Mount Manual (<http://www.necel.com/pkg/en/mount/index.html>)

Table 15-1. Surface Mounting Type Soldering Conditions (1/4)

(1) **μPD753012AGC-xxxx-3B9: 80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)**

μPD753016AGC-xxxx-3B9: 80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)

μPD753017AGC-xxxx-3B9: 80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	—

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

★

(2) **μPD753012AGC-xxxx-8BT: 80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)**

μPD753016AGC-xxxx-8BT: 80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)

μPD753017AGC-xxxx-8BT: 80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Twice or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Twice or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	—

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

Table 15-1. Surface Mounting Type Soldering Conditions (2/4)

(3) **μPD753012AGK-xxxx-BE9: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)**
μPD753016AGK-xxxx-BE9: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)
μPD753017AGK-xxxx-BE9: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	IR35-107-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	VP15-107-3
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	—

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

★ (4) **μPD753012AGK-xxxx-9EU: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)**
μPD753016AGK-xxxx-9EU: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)
μPD753017AGK-xxxx-9EU: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Twice or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Twice or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	VP15-107-2
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	—

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

Table 15-1. Surface Mounting Type Soldering Conditions (3/4)

★ (5) μPD753012AGC-xxxx-3B9-A:80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)
μPD753012AGC-xxxx-8BT-A:80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)
μPD753016AGC-xxxx-3B9-A:80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)
μPD753016AGC-xxxx-8BT-A:80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)
μPD753017AGC-xxxx-8BT-A:80-pin plastic QFP (14 × 14 mm, resin thickness 1.4 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Wave soldering	For details, contact an NEC Electronics sales representative.	—
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	—

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remarks 1. Products with “-A” at the end of the part number are lead-free products.
2. For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

★ (6) μPD753012AGK-xxxx-BE9-A: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)
μPD753016AGK-xxxx-BE9-A: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)
μPD753017AGK-xxxx-BE9-A: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	IR60-107-3
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	—

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remarks 1. Products with “-A” at the end of the part number are lead-free products.
2. For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

Table 15-1. Surface Mounting Type Soldering Conditions (4/4)

- ★ (7) μPD753012AGK-xxxx-9EU-A:80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)
 μPD753016AGK-xxxx-9EU-A:80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)
 μPD753017AGK-xxxx-9EU-A:80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	—

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remarks 1. Products with “-A” at the end of the part number are lead-free products.
 2. For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

- ★ (8) μPD753017AGC-xxxx-3B9-A: 80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)

Undefined

Remark Products with “-A” at the end of the part number are lead-free products.

APPENDIX A. μPD75316B, 753017A AND 75P3018A FUNCTION LIST

Parameter	μPD75316B	μPD753017A	μPD75P3018A
Program memory	Mask ROM 0000H-3F7FH (16256 × 8 bits)	Mask ROM 0000H-5FFFH (24576 × 8 bits)	One-time PROM 0000H-7FFFH (32768 × 8 bits)
Data memory	000H-3FFFH (1024 × 4 bits)		
CPU	75X Standard	75XL CPU	
Instruction execution time	When main system clock is selected	0.95, 1.91, 15.3 μs (at 4.19 MHz operation)	<ul style="list-style-type: none"> 0.95, 1.91, 3.81, 15.3 μs (at 4.19 MHz operation) 0.67, 1.33, 2.67, 10.7 μs (at 6.0 MHz operation)
	When subsystem clock is selected	122 μs (32.768 kHz operation)	
Pin connection	44	P12/INT2	P12/INT2/TI1/TI2
	47	P21	P21/PTO1
	48	P22/PCL	P22/PCL/PTO2
	50-53	P30-P33	P30/MD0-P33/MD3
	57	IC	V _{PP}
Stack	SBS register	None	SBS.3 = 1: Mk I mode selection SBS.3 = 0: Mk II mode selection
	Stack area	000H-0FFH	n00H-nFFH (n = 0-3)
	Subroutine call instruction stack operation	2-byte stack	Mk I mode: 2-byte stack Mk II mode: 3-byte stack
Instruction	BRA !addr1 CALLA !addr1	Unavailable	Mk I mode: unavailable Mk II mode: available
	MOVT XA, @BCDE MOVT XA, @BCXA BR BCDE BR BCXA		Available
	CALL !addr	3 machine cycles	Mk I mode: 3 machine cycles, Mk II mode: 4 machine cycles
	CALLF !faddr	2 machine cycles	Mk I mode: 2 machine cycles, Mk II mode: 3 machine cycles
Timer	3 channels <ul style="list-style-type: none"> Basic interval timer: 1 channel 8-bit timer/event counter: 1 channel Watch timer: 1 channel 	5 channels <ul style="list-style-type: none"> Basic interval timer/watchdog timer: 1 channel 8-bit timer/event counter: 3 channels (can be used as 16-bit timer/event counter, carrier generator, timer with gate) Watch timer: 1 channel 	

Parameter	μPD75316B	μPD753017A	μPD75P3018A
Clock output (PCL)	Φ, 524, 262, 65.5 kHz (Main system clock: at 4.19 MHz operation)	<ul style="list-style-type: none"> Φ, 524, 262, 65.5 kHz (Main system clock: at 4.19 MHz operation) Φ, 750, 375, 93.8 kHz (Main system clock: at 6.0 MHz operation) 	
BUZ output	2 kHz (Main system clock: at 4.19 MHz operation)	<ul style="list-style-type: none"> 2, 4, 32 kHz (Main system clock: at 4.19 MHz operation or subsystem clock: at 32.768 kHz operation) 2.93, 5.86, 46.9 kHz (Main system clock: at 6.0 MHz operation) 	
Serial interface		3 modes are available <ul style="list-style-type: none"> 3-wire serial I/O mode ... MSB/LSB can be selected for transfer first bit 2-wire serial I/O mode SBI mode 	
SOS register	Feedback resistor cut flag (SOS.0)	None	Provided
	Sub-oscillator current cut flag (SOS.1)	None	Provided
Register bank selection register (RBS)	None	Yes	
Standby release by INT0	Unavailable	Available	
Interrupt priority selection register (IPS)	None	Yes	
Vectored interrupt	External: 3, internal: 3	External: 3, internal: 5	
Supply voltage	V _{DD} = 2.0 to 6.0 V	V _{DD} = 1.8 to 5.5 V	
Operating ambient temperature	T _A = -40 to +85°C		
Package	<ul style="list-style-type: none"> 80-pin plastic TQFP (fine pitch) (12 × 12 mm) 80-pin plastic QFP (14 × 14 mm) 		

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are provided for system development using the μPD753017A. The 75XL series uses a common relocatable assembler, in combination with a device file matching each machine.

Language processor

RA75X relocatable assembler	Host Machine			Part Number (product name)
		OS	Supply media	
	PC-9800 series	MS-DOS™ Ver. 3.30 to Ver. 6.2 ^{Note}	3.5-inch 2HD	μS5A13RA75X
	IBM PC/AT™ and compatible machines	Refer to OS for IBM PC	3.5-inch 2HC	μS7B13RA75X

Device file	Host Machine			Part Number (product name)
		OS	Supply media	
	PC-9800 series	MS-DOS Ver. 3.30 to Ver. 6.2 ^{Note}	3.5-inch 2HD	μS5A13DF753017
	IBM PC/AT and compatible machines	Refer to OS for IBM PC	3.5-inch 2HC	μS7B13DF753017

Note Ver. 5.00 or later is provided with a task swap function, but it does not work with this software.

Remark The operation of the assembler and device file is guaranteed only on the above host machines and OSs.

PROM write tools

★ ★	Hardware	PG-1500	PG-1500 is a PROM programmer which enables you to program single-chip microcontroller containing PROM by stand-alone or host machine operation by connecting an attached board and optional programmer adapter to PG-1500. It also enables you to program typical PROM devices of 256K bits to 4M bits.
	PA-75P316BGC	PROM programmer adapter common to μPD75P3018AGC-3B9. Connect the programmer adapter to PG-1500 for use.	
	PA-75P316BGK	PROM programmer adapter common to μPD75P3018AGK-BE9. Connect the programmer adapter to PG-1500 for use.	
	PA-75P3018AGC-8BT	PROM programmer adapter common to μPD75P3018AGC-8BT. Connect the programmer adapter to PG-1500 for use.	
	PA-75P3018AGK-9EU	PROM programmer adapter common to μPD75P3018AGK-9EU. Connect the programmer adapter to PG-1500 for use.	
Software	PG-1500 controller	PG-1500 and a host machine are connected by serial and parallel interfaces and PG-1500 is controlled on the host machine.	
		Host machine	Part number (product name)
		PC-9800 series	MS-DOS Ver. 3.30 to Ver. 6.2 ^{Note}
		IBM PC/AT and compatible machines	3.5-inch 2HD Refer to OS for IBM PC

Note Ver.5.00 or later is provided with a task swap function, but it does not work with this software.

Remark The operation of the PG-1500 controller is guaranteed only on the above host machines and OSs.

Debugging tool

The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the μPD753017A.

The system configurations are described as follows.

Hardware	IE-75000-R ^{Note 1}	<p>In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X series and 75XL series. When developing a μPD753017 subseries, the emulation board IE-75300-R-EM and emulation probe that are sold separately must be used with the IE-75000-R.</p> <p>By connecting with the host machine and the PROM programmer, efficient debugging can be made.</p> <p>It contains the emulation board IE-75000-R-EM which is connected.</p>		
	IE-75001-R	<p>In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X series and 75XL series. When developing a μPD753017 subseries, the emulation board IE-75300-R-EM and emulation probe which are sold separately must be used with the IE-75001-R.</p> <p>It can debug the system efficiently by connecting the host machine and PROM programmer.</p>		
	IE-75300-R-EM	<p>Emulation board for evaluating the application systems that use the μPD753017 subseries. It must be used with the IE-75000-R or IE-75001-R.</p>		
	EP-753017GC-R	<p>Emulation probe for the μPD753017AGC.</p> <p>It must be connected to the IE-75000-R (or IE-75001-R) and IE-75300-R-EM.</p>		
	EV-9200GC-80	<p>It is supplied with the 80-pin conversion socket EV-9200GC-80 which facilitates connection to a target system.</p>		
	EP-753017GK-R	<p>Emulation probe for the μPD753017AGK.</p> <p>It must be connected to the IE-75000-R (or IE-75001-R) and IE-75300-R-EM.</p>		
Software	IE control program	<p>It is supplied with the 80-pin conversion adapter TGK-080SDW which facilitates connection to a target system.</p>		
		<p>Connects the IE-75000-R or IE-75001-R to a host machine via RS-232-C and Centronics I/F and controls the IE-75000-R or IE-75001-R on a host machine.</p>		
		Host machine	OS	Supply media
			MS-DOS (Ver. 3.30 to Ver. 6.2 ^{Note 3})	3.5-inch 2HD
		PC-9800 series		μS5A13IE75X
		IBM PC/AT and compatible machines	Refer to OS for IBM PC	3.5-inch 2HC
				μS7B13IE75X

Notes 1. Maintenance parts

2. This is a product of TOKYO ELETECH CORPORATION.

For further information, contact: Daimaru Kogyo, Ltd.

 Tokyo Electronics Department (TEL +81-3-3820-7112)

 Osaka Electronics 2nd Department (TEL +81-6-6244-6672)

3. Ver.5.00 or later is provided with a task swap function, but it dose not work with this software.

Remarks 1. The operation of the IE control program is guaranteed only on the above host machines and OSs.

2. The μPD753012, 753016, 753017, 75P3018, 753012A, 753016A, 753017A, and 75P3018A are commonly referred to as the μPD753017 subseries.

OS for IBM PC

The following IBM PC OS's are supported.

OS	Version
PC DOS™	Ver. 5.02 to Ver. 6.3 J6.1/V ^{Note} to J6.3/V ^{Note}
MS-DOS	Ver. 5.0 to Ver. 6.22 5.0/V ^{Note} to 6.2/V ^{Note}
IBM DOS™	J5.02/V ^{Note}

Note Only English version is supported.

Caution Ver. 5.0 or later is provided with a task swap function, but it does not work with this software.

★ APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device Related Documents

Document Name	Document No.	
	Japanese	English
μPD753012A, 753016A, 753017A Data Sheet	U11662J	U11662E (this document)
μPD75P3018A Data Sheet	U11917J	U11917E
μPD753017 User's Manual	U11282J	U11282E
μPD753017 Instruction Table	IEM-5598	—
75XL Series Selection Guide	U10453J	U10453E

Development Tool Related Documents

Document Name	Document No.			
	Japanese	English		
Hardware	IE-75000-R/IE-75001-R User's Manual	EEU-846	EEU-1416	
	IE-75300-R-EM User's Manual	U11354J	U11354E	
	EP-753017GC/GK-R User's Manual	EEU-967	EEU-1494	
	PG-1500 User's Manual	U11940J	U11940E	
Software	RA75X Assembler Package User's Manual	Operation	U12622J	U12622E
		Language	U12385J	U12385E
	PG-1500 Controller User's Manual	PC-9800 Series (MS-DOS) Base	EEU-704	EEU-1291
		IBM PC Series (PC DOS) Base	EEU-5008	U10540E

Other Related Documents

Document Name	Document No.	
	Japanese	English
SEMICONDUCTOR SELECTION GUIDE Products & Package (CD-ROM)		X13769X
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Guide to Microcontroller-Related Products by Third Parties	U11416J	—

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

NOTES FOR CMOS DEVICES**① VOLTAGE APPLICATION WAVEFORM AT INPUT PIN**

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

② HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

⑤ POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

⑥ INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]

<http://www.necel.com/en/support/support.html>

NEC Electronics America, Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65030

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318

- **Sucursal en España**
Madrid, Spain
Tel: 091-504 27 87
- **Succursale Française**
Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
- **Filiale Italiana**
Milano, Italy
Tel: 02-66 75 41
- **Branch The Netherlands**
Eindhoven, The Netherlands
Tel: 040-265 40 10
- **Tyskland Filial**
Taeby, Sweden
Tel: 08-63 87 200
- **United Kingdom Branch**
Milton Keynes, UK
Tel: 01908-691-133

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737

NEC Electronics Shanghai Ltd.
Shanghai, P.R. China
Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country.

Diversion contrary to the law of that country is prohibited.

- **The information in this document is current as of August, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.**
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).