N-Channel JFET

J210 - J212 / SSTJ210 - SSTJ212

FEATURES

- Low Noise
- Low Leakage
- High Power Gain

APPLICATIONS

- General Purpose Amplifiers
- VHF/UHF Amplifiers
- Mixers
- Oscillators

DESCRIPTION

The J210 Series is an N-Channel JFET single device encapsulated in a TO-92 plastic package well suited for automated assembly. The device features low leakage, typically under 2 pA, low noise, under 10 nano volts per square hertz at 10 hertz and high gain. This series is excellent for mixer, oscillators and amplifier applications.

ORDERING INFORMATION

Part	Package	Temperature Range			
J210-11	Plastic TO-92 Package	-55°C to +135°C			
SSTJ210-11	Plastic SOT-23	-55°C to +135°C			

J210 - J212 / SSTJ210 - SSTJ212

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Parameter/Test Condition	Symbol	Limit	Unit
Gate-Drain Voltage	$V_{\sf GD}$	-25	V
Gate-Source Voltage	VGS	-25	V
Gate Current	lg	10	mA
Power Dissipation	P_{D}	360	mW
Power Derating		3.27	mW/ °C
Operating Junction Temperature	TJ	-55 to 135	°C
Storage Temperature	T_{stq}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 seconds)	T_L	300	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

OVMDO	OUADA OTEDIOTOS	TYP ¹	210		211		212			TEGT COMPITIONS	
SYMBOL	CHARACTERISTCS		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
STATIC		•									
V _{(BR)GSS}	Gate-Source Breakdown Voltage	-35	-25		-25		-25		V	$I_G = -1\mu A$, $V_{DS} = 0V$	
V _{GS(OFF})	Gate-Source Cut off Voltage		-1	-3	-2.5	-4.5	-4	-6	ľ	V _{DS} = 15V, I _D = 1nA	
I _{DSS}	Saturation Drain Current ²		2	15	7	20	15	40	mA	$V_{DS} = 15V$, $V_{GS} = 0V$	
Igss Gate Rev	Gate Reverse Current	-1		-100		-100		-100	pA	V _{GS} = -15V, V _{DS} = 0V	
	Gate Neverse Guiterit	-0.5							nA	T _A = 125°C	
IG	Gate Operating Current	-1							pA	V _{DG} = 10V, I _D = 1mA	
I _{D(OFF)}	F) Drain Cutoff Current								pA	V _{DS} = 10V, V _{GS} = -8V	
V _{GS(F)}	V _{GS(F)} Gate-Source Forward Voltage								V	I _G = 1mA, V _{DS} = 0V	
DYNAMIC											
g fs	Common-Source Forward Transconductance		4	12	6	12	7	12	mS	V _{DS} = 15V, V _{GS} = 0V	
gos	Common-Source Output Conductance			150		200		200	μS	f = 1kHz	
C _{iss}	Common-Source Input Capacitance	4								V _{DS} = 15V, V _{GS} = 0V f = 1MHz	
C _{rss}	Common-Source Reverse Transfer Capacitance	1.5							pF		
e _n	Equivalent Input Noise Voltage	5							nV/√Hz	V _{DS} = 15V, V _{GS} = 0V f = 1kHz	

NOTES: 1. For design aid only, not subject to production testing. 2. Pulse test; PW = 300μs, duty cycle ≤ 3%.