

32192 Group

32-BIT RISC MICROCOMPUTER

REJ03B0019-0100Z Rev.1.00 July 08, 2004

Description

The 32192 Group is a 32-bit, single-chip RISC microcomputer with built-in flash memory, which was developed for use in general industrial and household equipment. To accomplish high-precision arithmetic operations, it incorporates a fully IEEE754 compliant, single-precision FPU.

This microcomputer contains a variety of peripheral functions. With the software necessary to run these peripheral functions stored in its large-capacity flash memory, this microcomputer meets the needs of application systems for high functionality, high-performance arithmetic capability, and sophisticated control, thereby adaptation to the embedded applications can be easily configured.

Table 1.0.1 Product List

	ROM RAM		Power sup	ply voltage	Temperature range	
Type name	Type name ROM RAM capacity capac		Frequency		at double- supplies	(Note 1)
M32192F8VFP	1 Mbytes	176 Kbytes	128MHz	3.3V	5V, 3.3V	-40°C to +125°C
M32192F8UFP	1 Mbytes	176 Kbytes	160MHz	3.3V	5V, 3.3V	-40°C to +105°C
M32192F8TFP	1 Mbytes	176 Kbytes	160MHz	5V or 3.3V	5V, 3.3V	-40°C to +85°C

Note 1: This does not guarantee continuous operation and there is a limitation on the length of use (temperature profile).

Features

CPU M32R-FPU core (M32R Family common instruc-	tion set + single-precision FPU / bit manipulation instructions)
	6-stage structure
• Instruction set	100 discrete instructions / 6 addressing modes
Instruction format	
 Built-in multiplier-accumulator (DSP function instruction) 	
Built-in flash memory	
Built-in RAM	
	8 Kbytes x 16 blocks
	ended 0-15 wait cycles and external signal for each of 4 areas
• External interrupt input pin	
Multiunation timers (MIT)	
	55 channels
	4 channels (clock synchronized/UART), 2 channels (UART)
	2 channels (Gock synchronized/OAKT), 2 channels (OAKT)
Direct RAM Interface (DRI)	Ordernoto, each having 52 message stots
Real-time debugger (RTD)	
Non-Break Debug (NBD)	
JTAG (boundary scan function)	
• Debug interface common to the M32R Family (SDI: S	calable Debug Interface)
-	• • • • • • • • • • • • • • • • • • • •

Applications

Automobile equipment control (e.g., Engine, ABS, AT, CCD, and Radar sensing applications), industrial equipment system control, and high-function OA equipment (e.g., PPC)

Since this group is under development, its specifications are subject to change.

1.1 Outline of the 32192 Group

1.1.1 M32R Family CPU Core with Built-in FPU (M32R-FPU)

(1) Based on a RISC architecture

- The 32192 group (hereafter simply the 32192) is a 32-bit RISC single-chip microcomputer. The M32R-FPU incorporates a fully IEEE 754-compliant, single-precision FPU in order to materialize the common instruction set and the high-precision arithmetic operation of the M32R CPU. The 32192 products are built around the M32R-FPU and incorporates flash memory, RAM and various peripheral functions, all integrated into a single chip.
- The M32R-FPU is constructed based on a RISC architecture. Memory is accessed using load/store instructions, and various arithmetic/logic operations are executed using register-to-register operation instructions.
- The M32R-FPU internally contains sixteen 32-bit general-purpose registers. The instruction set consists of 100 discrete instructions in total (83 instructions common to the M32R family plus 17 FPU and extended instructions). These instructions are either 16 bits or 32 bits long.
- In addition to the ordinary load/store instructions, the M32R-FPU supports compound instructions such as Load & Address Update and Store & Address Update. These instructions help to speed up data transfers.

(2) Five-stage pipelined processing

- The M32R-FPU supports five-stage pipelined instruction processing consisting of Instruction Fetch, Decode, Execute, Memory Access and Write Back (processed in six stages when performing floating-point arithmetic). Not just load/store instructions and register-to-register operation instructions, but also floating-point arithmetic instructions and compound instructions such as Load & Address Update and Store & Address Update are executed in one CPUCLK period (which is equivalent to 6.25 ns when f(CPUCLK) = 160 MHz).
- Although instructions are supplied to the execution stage in the order in which they were fetched, it is possible that if the load/store instruction supplied first is extended by wait cycles inserted in memory access, the subsequent register-to-register operation instruction will be executed before that instruction. Using such a facility, which is known as the "out-of-order-completion" mechanism, the M32R-FPU is able to control instruction execution without wasting clock cycles.

(3) Compact instruction code

- The M32R-FPU supports two instruction formats: one 16 bits long, and one 32 bits long. Use of the 16-bit instruction format especially helps to suppress the code size of a program.
- Moreover, the availability of 32-bit instructions makes programming easier and provides higher performance at the same clock speed than in architectures where the address space is segmented. For example, some 32-bit instructions allow control to jump to an address 32 Mbytes forward or backward from the currently executed address in one instruction, making programming easy.

1.1.2 Built-in Multiplier/Accumulator

(1) Built-in high-speed multiplier

• The M32R-FPU contains a 32 bits × 16 bits high-speed multiplier which enables the M32R-FPU to execute a 32 bits × 32 bits integral multiplication instruction in three CPUCLK periods.

(2) DSP-comparable multiply-accumulate instructions

- The M32R-FPU supports the following four types of multiply-accumulate instructions (or multiplication instructions) which each can be executed in one CPUCLK period using a 56-bit accumulator.
- (1) 16 high-order bits of register \times 16 high-order bits of register
- (2) 16 low-order bits of register × 16 low-order bits of register
- (3) All 32 bits of register × 16 high-order bits of register
- (4) All 32 bits of register \times 16 low-order bits of register
- The M32R-FPU has some special instructions to round the value stored in the accumulator to 16 or 32 bits or shift the accumulator value before storing in a register to have its digits adjusted. Because these instructions too are executed in one CPUCLK period, when used in combination with high-speed data transfer instructions such as Load & Address Update or Store & Address Update, they enable the M32R-FPU to exhibit superior data processing capability comparable to that of a DSP.

1.1.3 Built-in Single-precision FPU

• The M32R-FPU supports single-precision floating-point arithmetic fully compliant with IEEE 754 standards. Specifically, five exceptions specified in IEEE 754 standards (Inexact, Underflow, Division by Zero, Overflow and Invalid Operation) and four rounding modes (round to nearest, round toward 0, round toward + Infinity and round toward – Infinity) are supported. What's more, because general-purpose registers are used to perform floating-point arithmetic, the overhead associated with transferring the operand data can be reduced.

1.1.4 Built-in Flash Memory and RAM

- The 32192 contains a RAM that can be accessed with zero wait state, allowing to design a high-speed embedded system.
- The internal flash memory can be written to while mounted on a printed circuit board (on-board writing). Use of flash memory facilitates development work, because the chip used at the development stage can be used directly in mass-production, allowing for a smooth transition from prototype to mass-production without the need to change the printed circuit board.
- The internal flash memory can be rewritten as many as 100 times.

Page 3 of 46

- The internal flash memory has a virtual flash emulation function, allowing the internal RAM to be superficially mapped into part of the internal flash memory. When combined with the internal Real-Time Debugger (RTD) and the M32R family's common debug interface (Scalable Debug Interface or SDI), this function makes the ROM table data tuning easy.
- The internal RAM can be accessed for reading or rewriting data from an external device independently of the M32R-FPU by using the Real-Time Debugger. The external device is communicated using the Real-Time Debugger's exclusive clock-synchronized serial interface.

1.1.5 Built-in Clock Frequency Multiplier

• The 32192 contains a clock frequency multiplier, which is schematically shown in Figure 1.1.1 below.

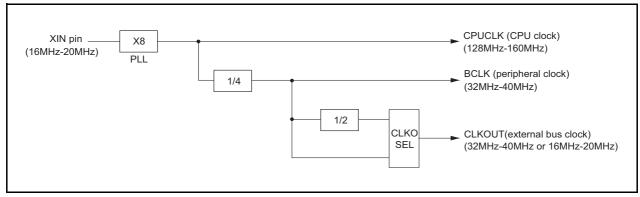


Figure 1.1.1 Conceptual Diagram of the Clock Frequency Multiplier

Table 1.1.1 Clock

Functional Block	Features
CPUCLK	CPU clock: Defined as f(CPUCLK) when it indicates the operating clock frequency for the M32R-FPU core, internal flash memory and internal RAM.
BCLK	Peripheral clock: Defined as f(BCLK) when it indicates the operating clock frequency for the internal peripheral I/O and external data bus.
Clock output	 BCLK pin output: A clock with the same frequency as f(BCLK) is output from this pin. CLKOUT pin output: A clock with the same or half frequency as f(BCLK) is output from this pin.

1.1.6 Powerful Peripheral Functions Built-in

- (1) 8-level interrupt controller (ICU)
- (2) 10-channel DMAC
- (3) 55-channel Multijunction timers (MJT)
- (4) 16-channel A/D converter (ADC)
- (5) 6-channel serial interface (SIO)
- (6) 2-channel Full-CAN
- (7) Direct RAM interface (DRI)
- (8) Real-time debugger (RTD)
- (9) Non-break debug (NBD)
- (10) Wait controller
- (11) M32R family's common debug function (Scalable Debug Interface or SDI)

32192 Group 1.2 Block Diagram

1.2 Block Diagram

Figure 1.2.1 shows a block diagram of the 32192. The features of each block are described in Table 1.2.1.

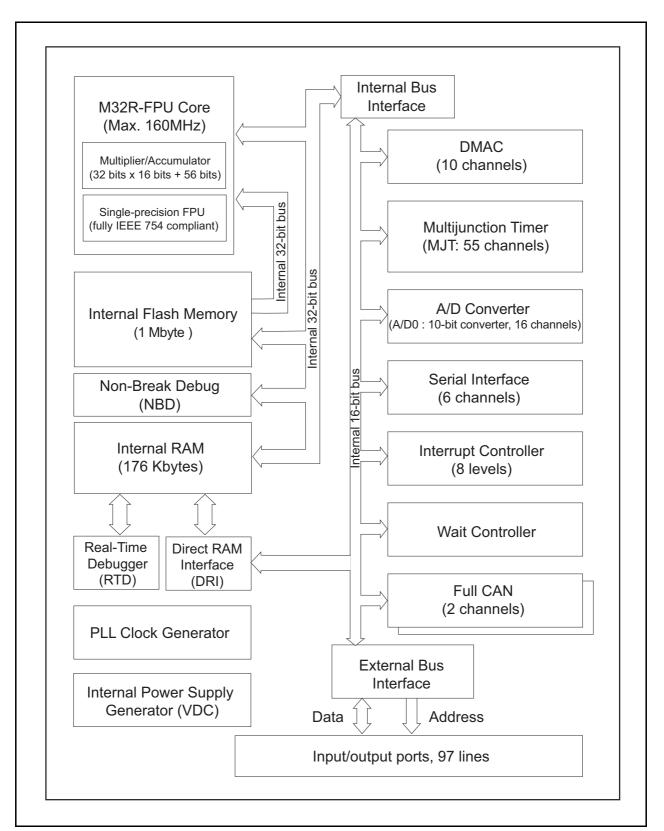


Figure 1.2.1 Block Diagram of the 32192

32192 Group 1.2 Block Diagram

Features of the 32102 /1 / 2\ Table 1 2 1

	es of the 32192 (1 / 2)
Functional Block	Features
M32R-FPU CPU core	Implementation: six-stage pipelined instruction processing
	Internal 32-bit structure of the core
	Register configuration
	General-purpose registers: 32 bits × 16 registers
	Control registers: 32 bits × 6 registers
	• Instruction set
	16 and 32-bit instruction formats
	100 discrete instructions and six addressing modes • Internal multiplier/accumulator (32 bits × 16 bits + 56 bits)
	Internal single-precision floating-point arithmetic unit (FPU)
Flash memory	Capacity: 1 Mbyte (1,024 Kbytes), accessible with one wait state Dynability: Payritchia 100 times.
	Durability: Rewritable 100 times
RAM	 Capacity: 176 Kbytes, accessible with zero wait state
	The internal RAM can be accessed for reading or rewriting data from the outside
	independently of the M32R-FPU by using the Real-Time Debugger, without ever
	causing the CPU performance to decrease.
Bus specification	 Fundamental bus cycle: 6.25 ns (when f(CPUCLK) = 160 MHz)
	Logical address space: 4 Gbytes linear
	 Internal bus specification: Internal 32-bit data bus (for CPU <-> internal flash memory
	and RAM access)(or accessed in 64 bits when accessing
	the internal flash memory for instructions)
	: Internal 16-bit data bus (for internal peripheral I/O access)
	External extension area: During processor mode: maximum 32 Mbytes
	During external extension mode: maximum 31 Mbytes
	(7 Mbytes + 8 Mbytes × 3 blocks)
	External data address: 22-bit address
	External data bus: 16-bit data bus
	Shortest external bus access: 1 CLKOUT during read, 1 CLKOUT during write
Multijunction timer	55-channel multi-functional timer
(MJT)	16-bit output related timer × 11 channels, 16-bit input/output related timer × 10
	channels, 16-bit input related timer x 8 channels, 32-bit input related timer x 8
	channels, 16-bit input related up/down timer x 2 channels, and 24-bit output related
	timer x 16 channels
	• Flexible timer configuration is possible by interconnecting these timer channels.
	• Interrupt request: Counter underflow or overflow and rising or falling or both edges or
	high or low level from the TIN pin (TIN pin can be used as external
	interrupt inputs irrespective of timer operation.)
	DMA transfer request: Counter underflow or overflow and rising or falling or both edges
	or high or low level from the TIN pin (TIN pin can be used as
	DMA transfer request inputs irrespective of timer operation.)
DMAC	Number of channels: 10
	Transfers between internal peripheral I/O's or internal RAM's or between internal
	peripheral I/O and internal RAM are supported.
	Capable of advanced DMA transfers when used in combination with internal peripheral
	I/O
	Transfer request: Software or internal peripheral I/O (A/D converter, MJT, serial Transfer request: Software or internal peripheral I/O (A/D converter, MJT, serial
	interface or CAN) • DMA channels can be especiated (DMA transfer on a channel can be started by
	 DMA channels can be cascaded. (DMA transfer on a channel can be started by completion of a transfer on another channel.)
	Interrupt request: DMA transfer counter register underflow
A/D 1	-
A/D converter	• 16 channels: 10-bit resolution A/D converter × 1 blocks
(ADC)	Conversion modes: In addition to ordinary A/D conversion modes, the ADC
	incorporates comparator mode and 2-channel simultaneous
	sampling mode.
	• Operation modes: Single conversion mode and n-channel scan mode (n = 1–16)
	• Sample-and-hold function: Performs A/D conversion with the analog input voltages
	sampled at start of A/D conversion.

32192 Group 1.2 Block Diagram

Table 1.2.1 Features of the 32192 (2 / 2)

Functional Block	Features
A/D converter (ADC)	A/D disconnection detection assist function: Suppresses effects of the analog input voltage leakage from the preceding channel during A/D conversion.
	 An inflow current bypass circuit is built-in. Can generate an interrupt or start DMA transfer upon completion of A/D conversion. Either 8 or 10-bit conversion results can be read out. Interrupt request: Completion of A/D conversion DMA transfer request: Completion of A/D conversion
Serial interface (SIO)	 6-channel serial interface Can be chosen to be clock-synchronized serial interface or UART. Data can be transferred at high speed (5 Mbits per second during clock-synchronized mode or 2.5 Mbits per second during UART mode when f(BCLK) = 40 MHz). Interrupt request: Reception completed, receive error, transmit buffer empty or transmission completed DMA transfer request: Reception completed or transmit buffer empty
CAN	 32 message slots × 2 blocks Compliant with CAN specification 2.0B active. Interrupt request: Transmission completed, reception completed, bus error, error-passive, bus-off or single shot DMA transfer request: Failed to send, transmission completed or reception completed
Real-Time Debugger (RTD)	 Internal RAM can be rewritten or monitored independently of the CPU by entering a command input from the outside. Comes with exclusive clock-synchronized serial ports. Interrupt request: RTD interrupt command input
Non-Break Debug (NBD)	 Can access to all resources on the address map from the outside Clock-synchronized parallel I/O (4-bit) Event output function RAM monitor function
Direct RAM Interface (DRI)	 Controls capture of clock-synchronized parallel data to the internal RAM Clock-synchronized parallel input (8, 16 or 32-bit) Maximum transfer rate: 40 Mbytes/sec (when f(CPUCLK)=160 MHz) .
Interrupt Controller (ICU)	 Controls interrupt requests from the internal peripheral I/O. Supports 8-level interrupt priority including an interrupt disabled state. External interrupt: 27 sources (SBI#, TIN0, TIN3–TIN11, TIN16–TIN27, TIN30–TIN33) TIN pin input sensing: Rising, falling or both edges or high or low level
Wait Controller	 Controls wait states for access to the external extension area. Insertion of 0–15 wait states by setting up in software + wait state extension by entering WAIT# signal
PLL	A multiply-by-8 clock generating circuit
Clock	 Maximum external input clock frequency (XIN) is 20.0 MHz. (Note 1) CPUCLK: Operating clock for the M32R-FPU core, internal flash memory and internal RAM
	 The maximum CPU clock is 160 MHz (when f(XIN) = 20 MHz). BCLK: Operating clock for the internal peripheral I/O and external data bus The maximum peripheral clock is 40 MHz (peripheral module access when f(XIN) = 20 MHz). BCLK pin output: A clock with the same frequency as f(BCLK) is output from this pin. CLKOUT pin output: A clock with the same or half frequency as f(BCLK) is output from
JTAG	this pin. • Boundary scan function
VDC	Internal power supply generating circuit: Generates the internal power supply from an external power supply (5 or 3.3 V).
Ports	 Input/output pins: 97 pins The port input threshold can be set in a program to one of three levels individually for each port group (with or without Schmitt circuit, selectable).

Note 1: The maximum external input clock frequency (XIN) for the M32192F8VFP is 16.0 MHz.

32192 Group 1.3 Pin Functions

1.3 Pin Functions

Figure 1.3.1 shows the 32192's pin function diagram. Pin functions are described in Table 1.3.1.

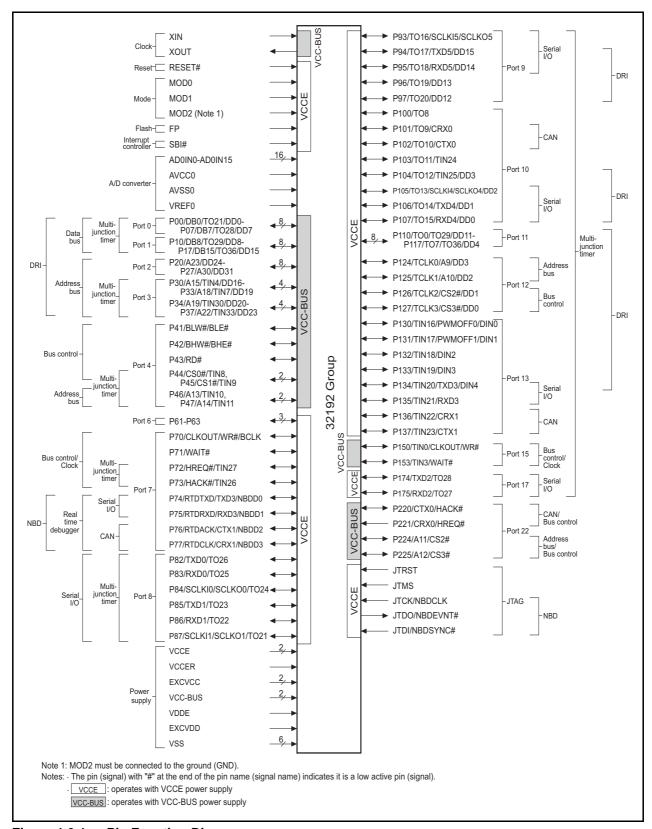


Figure 1.3.1 Pin Function Diagram

32192 Group 1.3 Pin Functions

Table 1.3.1 Description of Pin Functions (1/3)

Type	Pin Name	Signal Name	Input/Output	Descrip	tion		
Power supply	VCCER	Internal power supply input	_	Power s	upply inp		internal voltage 0.5 V or 3.3 V ± 0.3 V)
Зарріу	VCCE	Port/internal peripheral I/O pin power supply input	-	Power s	supply inp ral I/O pin	ut for the s (5.0 V :	port and internal ± 0.5 V or 3.3 V ± 0.3 V) all VCCE pins.
	VCC-BUS	Port/bus interface pin power supply input	-	Power s	upply inp	ut for the V or 3.3 \	port and bus interface V± 0.3 V). all VCC-BUS pins.
	VDDE	RAM power supply	-		power su 0.5 V or		t for the internal RAM .3 V).
	VSS	Ground	_	Connec	t all VSS	pins to gi	round (GND).
	EXCVCC	VCCER control	-		connects voltage g		nal capacitor for the circuit.
	EXCVDD	VDDE control	_				rnal capacitor for the ne internal RAM.
Clock	XIN, XOUT	Clock input Clock output	Input Output	frequen input a c CPU clo	cy multipli clock who	ier is incl se freque ncy. (XIN	out pins. A PLL-based x8 uded, which accepts as ency is 1/8 of the interna I input is 20 MHz when
	CLKOUT, BCLK	System clock	Output	the exter CLKOU MHz), o 40 MHz The BC external output is This clo	rnal input T output is r two time when f(C LK pin ou input clos s 40 MHz	clock frees 20 MHz es of XIN PUCLK) tputs a clock freque when f(CI when o	a clock that is equal to equency, XIN (i.e., z when f(CPUCLK) = 160 (i.e.,CLKOUT output is = 160 MHz). lock that is two times the ency, XIN (i.e., BCLK CPUCLK) = 160 MHz). perations are the chip
Reset	RESET#	Reset	Input				ernal circuit.
Mode	MOD0 –	Mode	Input	Set the microcomputer's operation mod			
	MOD2		·	MOD0	MOD1	MOD2	Mode
				L	L	L	Single-chip mode
				L	Н	L	External extension mode
				Н	L	L	Processor mode (boot mode) (Note 1)
				Н	Н	L	(Settings inhibited)
				Х	Х	Н	(Settings inhibited)
				X: Don't	care		
Flash	FP	Flash protect	Input		ecial pin p in hardwa		ne flash memory against
Address bus	A9–A30	Address bus	Output	allowing	four bloc be conn	ks each	(A9–A30) are included, up to 8 MB memory ternal to the chip. A31 is

Note 1: Boot mode requires that the FP pin should be at the high level.

32192 Group 1.3 Pin Functions

Table 1.3.1 Description of Pin Functions (2/3)

Туре	Pin Name	Signal Name	Input/Output	Description
Data bus	DB0-DB15	Data bus	Input/output	This 16-bit data bus is used to connect external devices. When writing in byte units during a write cycle, the output data at the invalid byte position is undefined. During a read cycle, data on the entire 16-bit bus is always read in. However, only the data at the valid byte position is transferred into the internal circuit.
Bus control	CS0#-CS3#	Chip select	Output	These are chip select signals for external devices.
	RD#	Read	Output	This signal is output when reading an external device.
	WR#	Write	Output	This signal is output when writing to an external device.
	BHW#/BLW#	Byte high/low write	Output	When writing to an external device, this signal indicates the valid byte position to which data is transferred. BHW# and BLW# correspond to the upper address side (bits 0–7 are valid) and the lower address side (bits 8–15 are valid), respectively.
	BHE#	Byte high enable	Output	During an external device access, this signal indicates that the high-order data (bits 0–7) is valid
	BLE#	Byte low enable	Output	During an external device access, this signal indicates that the low-order data (bits 8–15) is valid
	WAIT#	Wait	Input	When accessing an external device, a low-level input on WAIT# pin extends the wait cycle.
	HREQ#	Hold request	Input	This input pin is used by an external device to request control of the external bus. A low-level input on HREQ# pin places the CPU in a hold state
	HACK#	Hold acknowledge	Output	This signal notifies that the CPU has entered a hold state and relinquished control of the external bus.
Multijunction timer	TIN0, TIN3-TIN11, TIN16-TIN27, TIN30-TIN33	Timer input	Input	Input pins for the multijunction timer.
	TO0-TO36	Timer output	Output	Output pins for the multijunction timer.
	TCLK0 -TCLK3	Timer clock	Input	Clock input pins for the multijunction timer.
A/D converter	AVCC0	Analog power supply input	-	AVCC0 is the power supply input for the A/D0 converter. Connect AVCC0 to the power supply rail
	AVSS0	Analog ground	-	AVSS0 is the analog ground for the A/D0 converter. Connect AVSS0 to ground.
	AD0IN0 –AD0IN15	Analog input	Input	16-channel analog input pins for the A/D0 converter.
	VREF0	Reference voltage input	Input	VREF0 is the reference voltage input pin for the A/D0 converter.
Interrupt controller	SBI#	System break interrupt	Input	This is the system break interrupt (SBI) input pin for the interrupt controller.
Serial interface	SCLKI0/SCLKO0, SCLKI1/SCLKO1, SCLKI4/SCLKO4, SCLKI5/SCLKO5	UART transmit/ receive clock output or CSIO transmit/ receive clock input/ output	Input/output	When in UART mode: This pin outputs a clock derived from BRG output by dividing it by 2. When in CSIO mode: This pin accepts as input a transmit/receive clock when external clock is selected or outputs a transmit/receive clock when internal clock is selected.
	TXD0-TXD5	Transmit data	Output	Transmit data output pin for serial interface.
	RXD0-RXD5	Received data	Input	Received data input pin for serial interface.

32192 Group 1.3 Pin Functions

Table 1.3.1 Description of Pin Functions (3/3)

Type	Pin Name	Signal Name	Input/Output	Description
Real-time	RTDTXD	RTD transmit data	Output	Serial data output pin for the real-time debugger.
debugger	RTDRXD	RTD received data	Input	Serial data input pin for the real-time debugger.
(RTD)	RTDCLK	RTD clock input	Input	Serial data transmit/receive clock input pin for the real-time debugger.
	RTDACK	RTD acknowledge	Output	A low-level pulse is output from this pin synchronously with the start clock for the real-time debugger's serial data output word. The low-level pulse width indicates the type of command/data received by the real-time debugger.
CAN	CTX0, CTX1	Transmit data	Output	This pin outputs data from the CAN module.
	CRX0, CRX1	Received data	Input	This pin accepts as input the data for the CAN module.
JTAG	JTMS	Test mode select	Input	Test mode select input to control the state transition of the test circuit.
	JTCK	Test clock	Input	Clock input for the debug module and test circuit.
	JTRST	Test reset	Input	Test reset input to initialize the test circuit asynchronously with device operation.
	JTDI	Test data input	Input	This pin accepts as input the test instruction code or test data that is serially received.
	JTDO	Test data output	Output	This pin outputs the test instruction code or test data serially.
NBD	NBDD0 –NBDD3	Command/Address/ Data	Input/output	NBD command, address, and data input/output pins.
	NBDCLK	Synchronizing clock input	Input	NBD synchronizing clock input pin.
	NBDSYNC#	Top of data input	Input	This pin controls the start position of NBD data.
	NBDEVNT#	Event output	Output	This pin is used for event output when an NBD event occurs.
DRI	DD0-DD31	DD input	Input	DRI data input pin.
	DIN0-DIN4	DIN input	Input	DRI event input pin.
Input/output	P00-P07	Input/output port 0	Input/output	Programmable input/output port.
ports	P10-P17	Input/output port 1	Input/output	•
(Note 1)	P20-P27	Input/output port 2	Input/output	-
	P30-P37	Input/output port 3	Input/output	-
	P41-P47	Input/output port 4	Input/output	-
	P61-P63	Input/output port 6	Input/output	•
	P70-P77	Input/output port 7	Input/output	-
	P82-P87	Input/output port 8	Input/output	-
	P93-P97	Input/output port 9	Input/output	•
	P100-P107	Input/output port 10	Input/output	•
	P110-P117	Input/output port 11	Input/output	•
	P124-P127	Input/output port 12	Input/output	•
	P130-P137	Input/output port 13	Input/output	-
	P150, P153	Input/output port 15	Input/output	-
	P174, P175	Input/output port 17	Input/output	-
	P220, P221 (Note 2), P224, P225	Input/output port 22		•

Note 1: Input/output ports 5, 14, 16 and 18–21 are nonexistent.

Note 2: P221 is input-only port.

32192 Group 1.4 Pin Assignments

1.4 Pin Assignments

Figure 1.4.1 shows the 32192's pin assignment diagram.

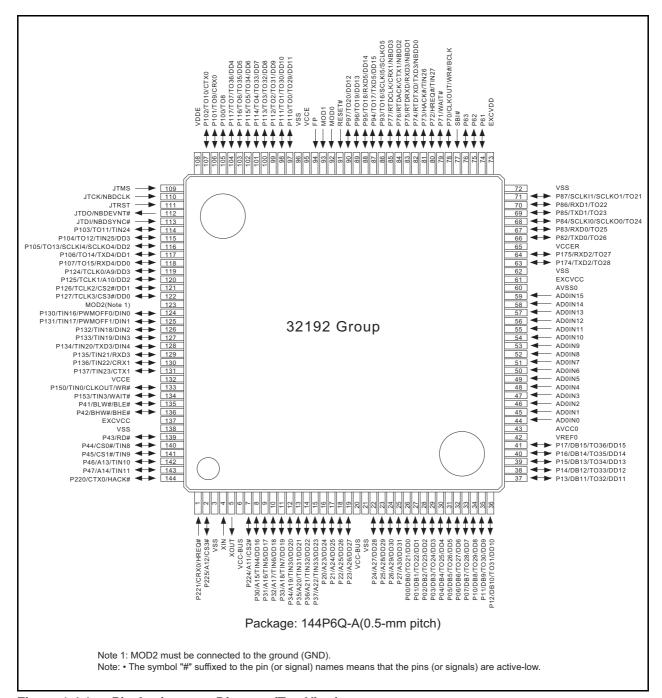


Figure 1.4.1 Pin Assignment Diagram (Top View)

2.1 **Outline of the Address Space**

The logical addresses of the M32R are always handled in 32 bits, providing a linear address space of up to 4 Gbytes. The address space of the M32R/ECU consists of the following:

- (1) User space
 - Internal ROM area
 - External extension area
 - Internal RAM area
 - SFR (Special Function Register) area
- (2) System space (not open to the user)

(1) User space

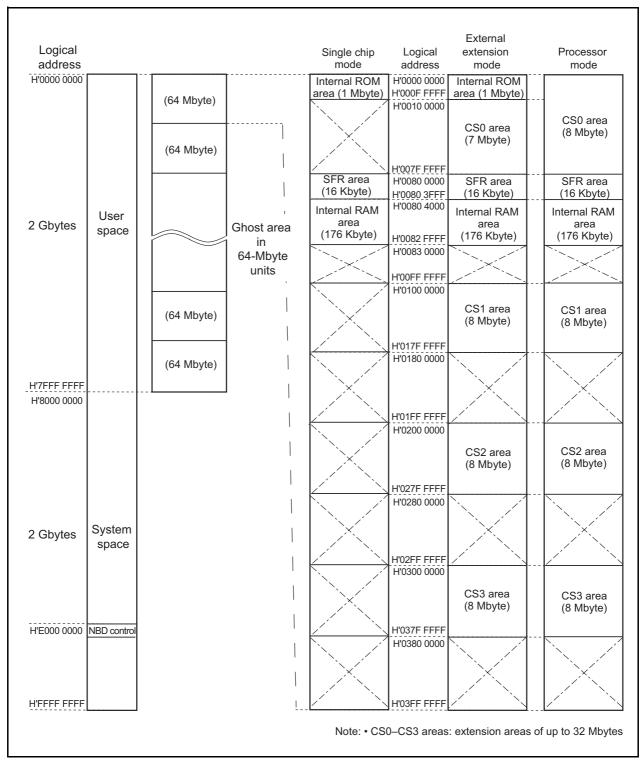
The 2 Gbytes from the address H'0000 0000 to the address H'7FFF FFFF comprise the user space. Located in this space are the internal ROM area, an external extension area, the internal RAM area and the SFR (Special Function Register) area (in which a set of internal peripheral I/O registers exist). Of these, the internal ROM and external extension areas are located differently depending on mode settings as will be described later.

(2) System space

The 2 Gbytes from the address H'8000 0000 to the address H'FFFF FFFF comprise the system space. This space (except for SFR area for NBD control) is reserved for use by development tools such as an in-circuit emulator and debug monitor.

2.2 **Operation Modes**

The microcomputer is placed in one of the following modes depending on how CPU operation mode is set by MOD0 and MOD1 pins.


Table 2.2.1 Operation Mode Settings

MOD0	MOD1	MOD2 (Note 1)	Operation mode
VSS	VSS	VSS	Single-chip mode
VSS	VCCE	VSS	External extension mode
VCCE	VSS	VSS	Processor mode (FP = VSS)
VCCE	VCCE	VSS	(Settings inhibited)
_	_	VCCE	(Settings inhibited)

Note 1: Connect VCCE and VSS to the VCCE input power supply and ground, respectively.

The internal ROM and external extension areas are located differently depending on how operation mode is set. (All other areas in the address space are located the same way.) The following diagram shows how the internal ROM and external extension areas are mapped into the address space in each operation mode.

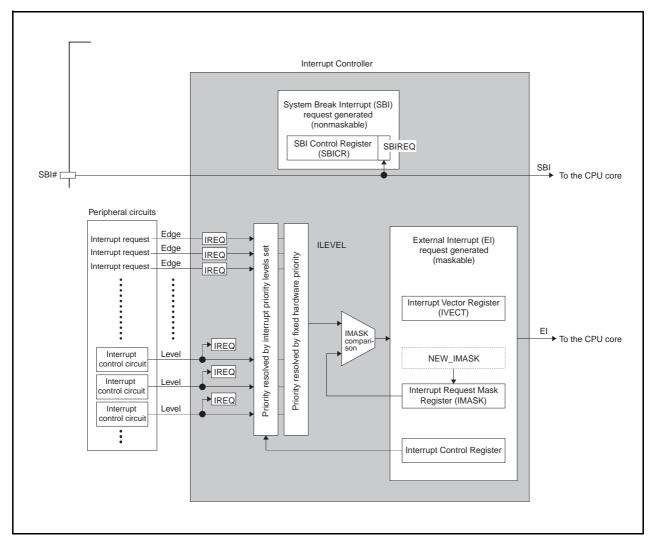
32192 Group 2.2 Operation Modes

Figure 2.2.1 Address Space

3.1 **Outline of the Interrupt Controller**

The Interrupt Controller (ICU) manages maskable interrupts from internal peripheral I/Os and a system break interrupt (SBI). The maskable interrupts from internal peripheral I/Os are sent to the M32R CPU as external interrupts (EI).

The maskable interrupts from internal peripheral I/Os are managed by assigning them one of eight priority levels including an interrupt-disabled state. If two or more interrupt requests with the same priority level occur at the same time, their priorities are resolved by predetermined hardware priority. The source of an interrupt request generated in internal peripheral I/Os is identified by reading the relevant interrupt status register provided for internal peripheral I/Os.


On the other hand, the system break interrupt (SBI) is recognized when a low-going transition occurs on the SBI# signal input pin. This interrupt is used for emergency purposes such as when power outage is detected or a fault condition is notified by an external watchdog timer, so that it is always accepted irrespective of the PSW register IE bit status. When the CPU has finished servicing an SBI, shut down or reset the system without returning to the program that was being executed when the interrupt occurred.

Specifications of the Interrupt Controller are outlined below.

Table 3.1.1 Outline of the Interrupt Controller (ICU)

Item	Specification
Interrupt request source	Maskable interrupt requests from internal peripheral I/Os : 40 sources (Note 1) System break interrupt request : 1 source (entered from SBI# pin)
Priority management	8 priority levels including an interrupt-disabled state (However, interrupts with the same priority level have their priorities resolved by fixed hardware priority.)

Note 1: There are actually 256 interrupt request resources in total when counted individually, which are grouped into 40 interrupt request resources.

Figure 3.1.1 Block Diagram of the Interrupt Controller

4.1 **Outline of Input/Output Ports**

The 32192 has a total of 97 input/output ports from P0-P13, P15, P17 and P22 (except P5, which is reserved for future use). These input/output ports can be used as input or output ports by setting the respective direction registers.

Each input/output port has double or triple functions shared with other internal peripheral I/O or external bus interface related signal lines, or multiple functions shared with multi-function peripheral I/Os. Pin functions are selected depending on the operation mode of the CPU or by setting the operation mode register and peripheral function select register for the input/output port. (If any internal peripheral I/O has still another function, it is also necessary to set the register provided for that internal peripheral I/O.)

Abundant port functions are incorporated, including a port input level switching function, port output drive capability setting function, and noise canceller control function.

Note that before any ports can be used in input mode, this port input function enable bit must be set accordingly. The input/output ports are outlined below.

Table 4.1.1 Outline of Input/Output Ports

Item	Specification		
Number of ports	Total 97 ports		
	P0: P00–P07 (8 ports)		
	P1: P10–P17 (8 ports)		
	P2: P20–P27 (8 ports)		
	P3: P30–P37 (8 ports)		
	P4: P41–P47 (7 ports)		
	P6: P61–P63 (3 ports)		
	P7: P70–P77 (8 ports)		
	P8: P82–P87 (6 ports)		
	P9: P93–P97 (5 ports)		
	P10: P100–P107 (8 ports)		
	P11: P110–P117 (8 ports)		
	P12: P124–P127 (4 ports)		
	P13: P130–P137 (8 ports)		
	P15: P150, P153 (2 ports)		
	P17: P174, P175 (2 ports)		
	P22 : P220, P221, P224, P225 (4 ports)		
Port function	The input/output ports can individually be set for input or output mode using the direction control register provided for each input/output port. (However, P221 is an input-only port.)		
Die franties			
Pin function	Shared with peripheral I/O or external bus interface signals to serve dual-functions (or shared with two or more peripheral I/O functions to serve multiple functions)		

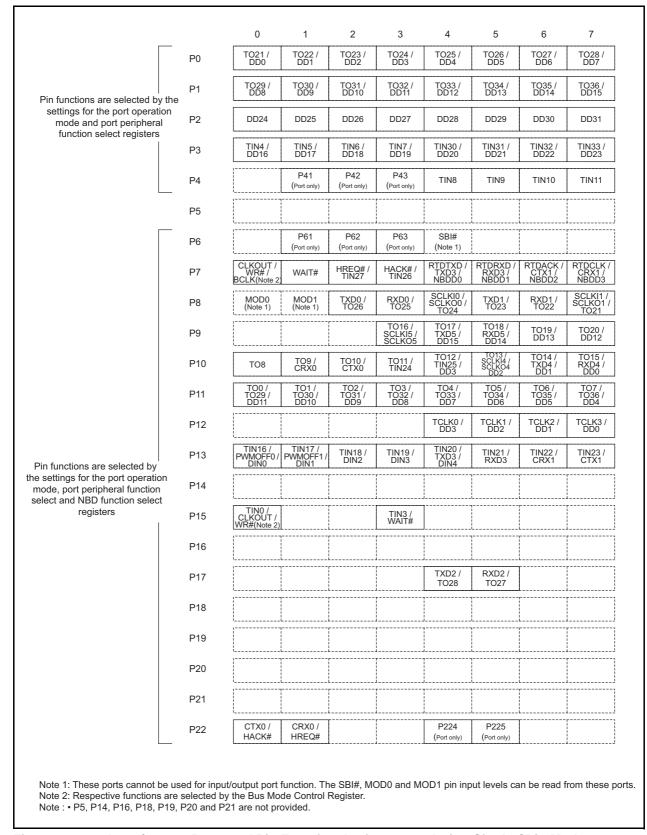
Note: • P5, P14, P16, P18-P21 are nonexist.

4.2 **Selecting Pin Functions**

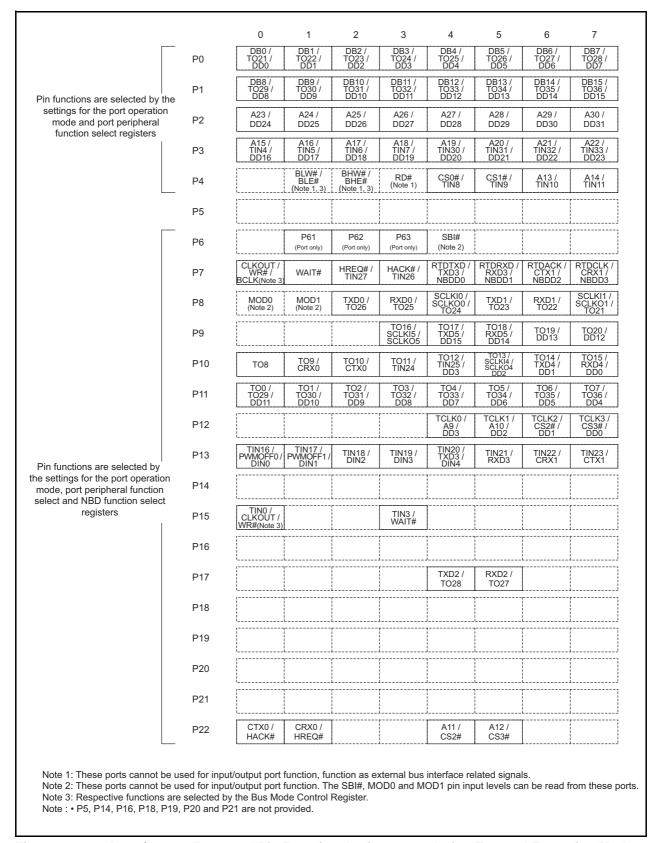
Each input/output port serves dual functions sharing the pin with other internal peripheral I/O or external bus interface signal lines (or multiple functions sharing the pin with two or more peripheral I/O functions). Pin functions are selected depending on the operation mode of the CPU or by setting the operation mode register and peripheral function select register for the input/output port.

P0-P4, P124, P125, P224 and P225, when the CPU is set to operate in processor mode, all are switched to serve as signal pins for external access. The CPU operation mode is determined depending on how the MOD0 and MOD1 pins are set (see the table below).

Table 4.2.1 CPU Operation Modes and P0-P4, P124, P125, P224 and P225 Pin Functions


MOD0	MOD1	Operation Mode	P0-P4, P124, P125, P224 and P225 Pin Function
VSS	VSS	Single-chip mode	Input/output port pin
VSS	VCCE	External extension mode	Input/output port or external bus interface signal pin (Note 1)
VCCE	VSS	Processor mode	External bus interface signal pin
VCCE	VCCE	(Settings inhibited)	-

Note 1: P41-P43 only function as external bus interface signal pins.


Note: • VCCE and VSS are connected to main power supply and GND, respectively.

Each input/output port has their functions switched between input/output port pins and internal peripheral I/O pins by setting the respective port operation mode and peripheral function select registers. If any internal peripheral I/O has two or more pin functions, use the register provided for that internal peripheral I/O to select the desired pin function.

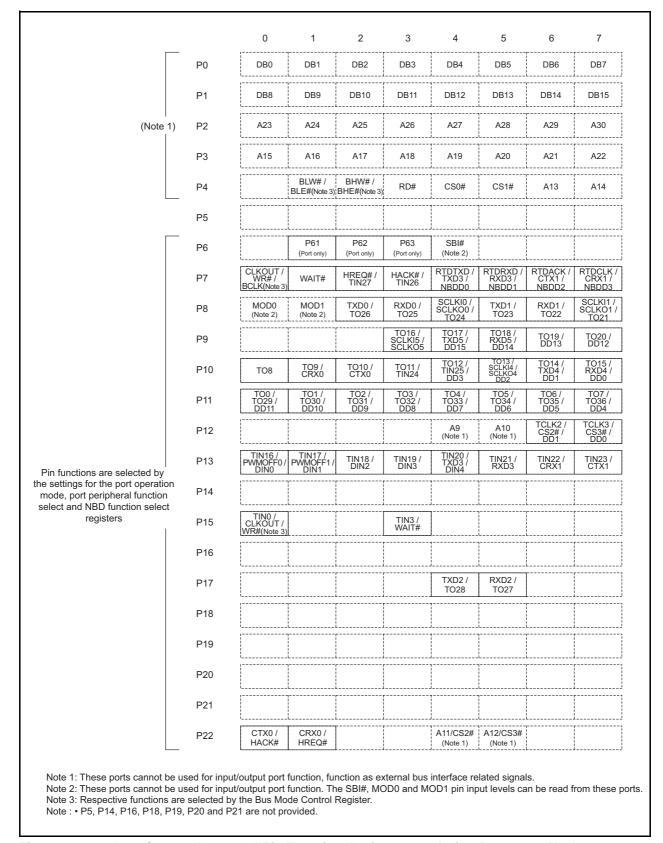

Note that FP and MOD1 pin operations during internal flash memory programming do not affect the pin functions.

Figure 4.2.1 Input/Output Ports and Pin Function Assignments during Single Chip Mode

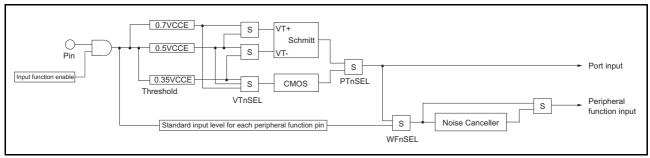
Figure 4.2.2 Input/Output Ports and Pin Function Assignments during External Extension Mode

Figure 4.2.3 Input/Output Ports and Pin Function Assignments during Processor Mode

Port Input Level Switching Function 4.3

The port input level switching function allows the port threshold to be switched to one of three voltage levels (with or without Schmitt as selected) in units of the following port group. This can be set to the following registers in units of group.

Note that port inputs are used for the DD input of DRI.


Port Group 0: P00-P07, P10-P17, P20-P27, P30-P37, P41-P47, P70-P73, P224, P225

Port Group 1: P82-P87, P174, P175 Port Group 3: P93-P97, P110-P117

Port Group 4: P124-P127 Port Group 5: P61-P63, SBI# Port Group 6: P74-P77, P100-P107

Port Group 7: P220, P221

Port Group 8: P130-P137, P150, P153

Figure 4.3.1 Port Level Switching Function

5.1 Outline of the DMAC 32192 Group

5.1 **Outline of the DMAC**

The microcomputer internally contains a 10-channel DMAC (Direction Memory Access Controller). It allows data to be transferred at high speed between internal peripheral I/Os, between internal RAM and internal peripheral I/O, or between internal RAMs, as initiated by a software trigger or requested from an internal peripheral I/O.

Table 5.1.1 **Outline of the DMAC**

Item	Description
Number of channels	10 channels
Transfer request sources	Software trigger
	 Request from internal peripheral I/Os: A/D converter, multijunction timer, serial
	interface (reception completed, transmit buffer empty), CAN or DRI
	DMA channels can be cascaded (Note 1)
Maximum number of times transferred	65,536 times
Transferable address space	• 64 Kbytes x 3 banks (address space from H'0080 0000 to H'0082 FFFF)
(Note 2)	• Transfers between internal peripheral I/Os, between internal RAM and internal
	peripheral I/O, and between internal RAMs are supported.
Transfer data size	16 or 8 bits
Transfer method	Single transfer DMA (control of the internal bus is relinquished for each transfer
	performed), dual address transfer
Transfer mode	Single transfer mode
Direction of transfer	One of three modes can be selected for the source and destination:
	Address fixed
	Address incremental
	• Ring buffered (can be selected from 32, 16, 8, 4 or 2 times)
Channel priority	DMA0 > DMA1 > DMA2 > DMA3 > DMA4 > DMA5 > DMA6 > DMA7 > DMA8 > DMA9
	(Priority is fixed)
Maximum transfer rate	26.6 Mbytes per second (when internal peripheral clock BCLK = 40 MHz)
Interrupt request	Group interrupt request can be generated when each transfer count register underflows.
Transfer area (Note 2)	64 Kbytes x 3 banks from H'0080 0000 to H'0082 FFFF (Transferable in the entire RAM/SFR area)

Note 1: The DMA channels can be cascaded in the manner described below.

- Start DMA transfer on DMA1 upon completion of one DMA transfer on DMA0
- Start DMA transfer on DMA5 upon completion of all DMA transfers on DMA0 (upon underflow of the transfer
- Start DMA transfer on DMA2 upon completion of one DMA transfer on DMA1
- Start DMA transfer on DMA0 upon completion of one DMA transfer on DMA2
- Start DMA transfer on DMA3 upon completion of one DMA transfer on DMA2
- Start DMA transfer on DMA4 upon completion of one DMA transfer on DMA3
- Start DMA transfer on DMA6 upon completion of one DMA transfer on DMA5
- Start DMA transfer on DMA7 upon completion of one DMA transfer on DMA6
- Start DMA transfer on DMA5 upon completion of one DMA transfer on DMA7
- Start DMA transfer on DMA8 upon completion of one DMA transfer on DMA7 • Start DMA transfer on DMA9 upon completion of one DMA transfer on DMA8
- Note 2: The source address and destination address cannot go over the bank, which can be only transferred to the same bank or another one from a certain bank.

Outline of Multijunction Timers 6.1

The multijunction timers (abbreviated MJT) have input event and output event buses. Therefore, in addition to being used as a single unit, the timers can be internally connected to each other. This capability allows for highly flexible timer configuration, making it possible to meet various application needs. It is because the timers are connected to the internal event buses at multiple points that they are called the "multijunction" timers.

The 32192 has six types of MJT as listed in the table below, providing a total of 55-channel timers.

Table 6.1.1 Outline of MJT

Name	Туре	No. of Channels	Description
TOP (Timer OutPut)	Output-related 16-bit timer (down-counter)	11	One of three output modes can be selected by software. <with correction="" function=""> • Single-shot output mode • Delayed single-shot output mode <without correction="" function=""> • Continuous output mode</without></with>
TIO (Timer Input OutPut)	Input/output-related 16-bit timer (down-counter)	10	One of three input modes or four output modes can be selected by software. <input modes=""/>
TMS (Timer Measure Small)	Input-related 16-bit timer (up-counter)	8	16-bit input measure timer
TML (Timer Measure Large)	Input-related 32-bit timer (up-counter)	8	32-bit input measure timer
TID (Timer Input Derivation)	Input-related 16-bit timer (up/down-counter)	2	One of four input modes can be selected by software. • Fixed period mode • Event count mode • Multiply-by-4 event count mode • Up/down event count mode
TOU (Timer Output Unification)	Output-related 24-bit timer (down-counter) (16-bit timer during PWM output and single-shot PWM output modes)	16	One of five output modes can be selected by software. <without correction="" function=""> • PWM output mode • Single-shot PWM output mode • Delayed single-shot output mode • Single-shot output mode • Continuous output mode</without>

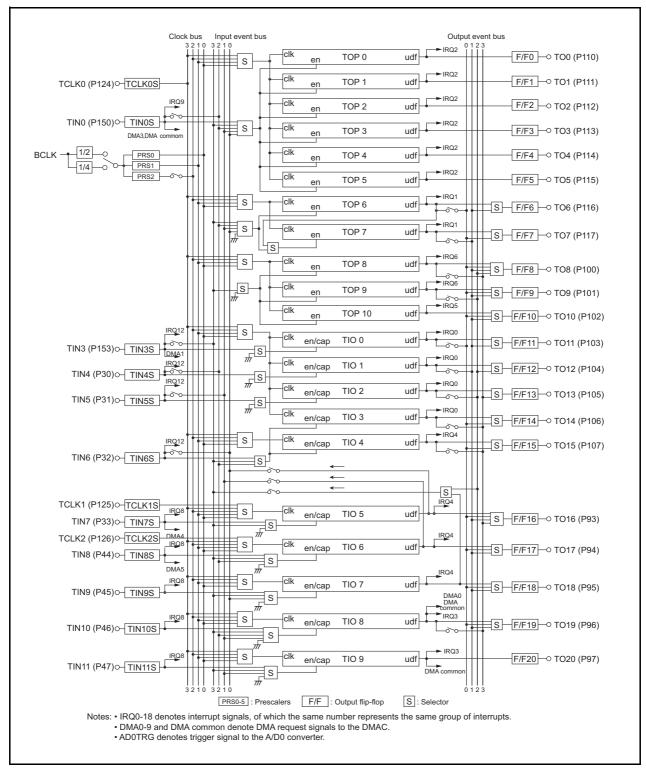


Figure 6.1.1 Block Diagram of MJT (1/4)

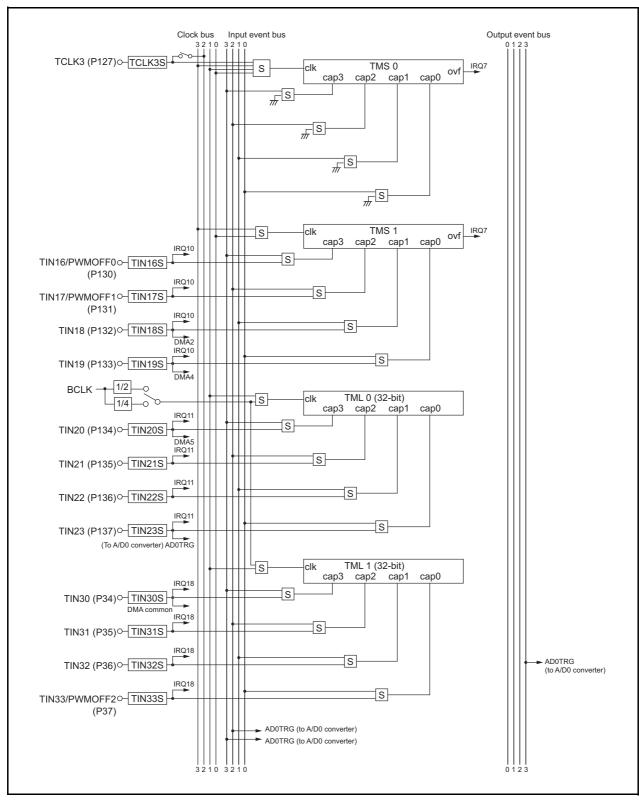


Figure 6.1.2 Block Diagram of MJT (2/4)

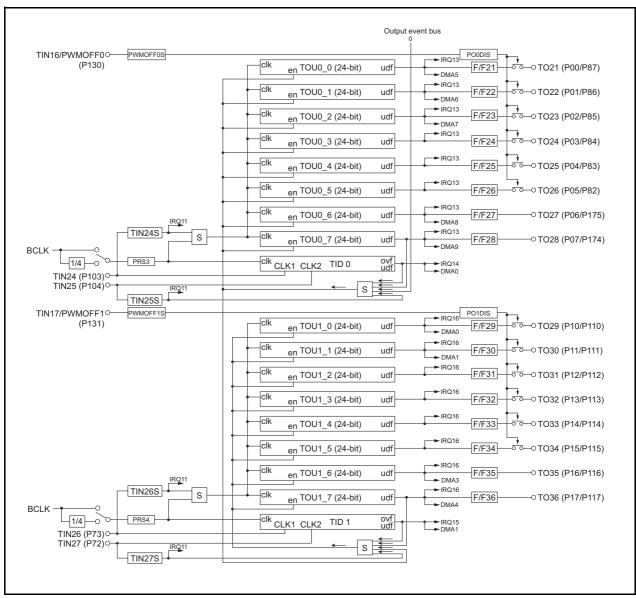


Figure 6.1.3 Block Diagram of MJT (3/4)

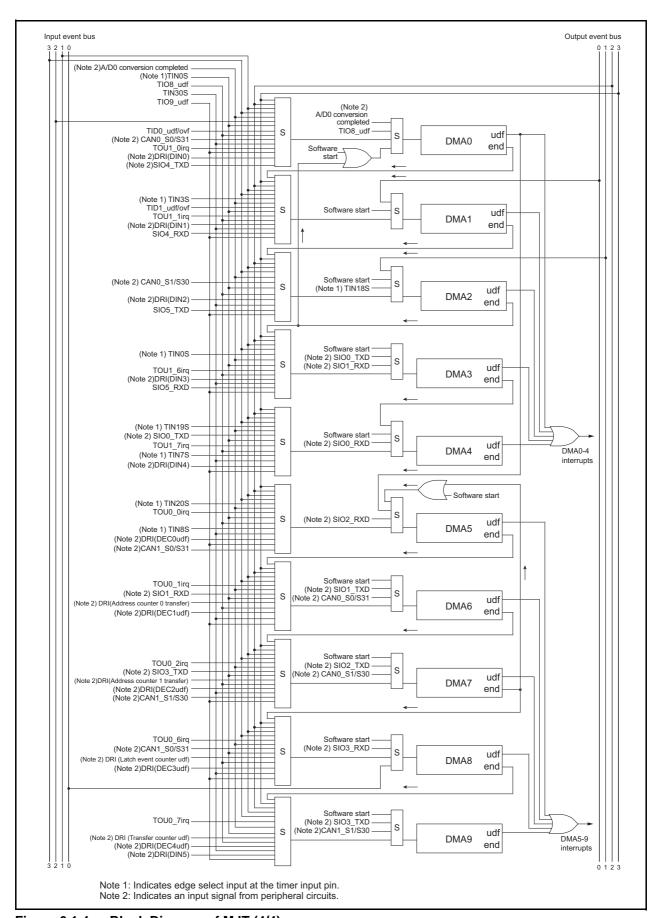


Figure 6.1.4 Block Diagram of MJT (4/4)

7.1 Outline of A/D Converter 32192 Group

7.1 **Outline of A/D Converter**

The 32192 contains 10-bit resolution A/D Converter of the successive approximation type. The A/D converter has 16 analog input pins (channels) AD0IN0-AD0IN15. In addition to performing conversion individually on each channel, the A/D Converter can perform conversion successively on all of N channels (N = 1-16) as a single group. The conversion result can be read out in either 10 or 8 bits.

There are following conversion and operation modes for the A/D conversion:

(1) **Conversion Modes**

• A/D conversion mode: Ordinary mode in which analog input voltages are converted into digital

quantities.

• Comparator mode (Note 1): A mode in which analog input voltage is compared with a preset comparison

voltage to find only the relative magnitude of two quantities. (Useful in only

single operation mode)

(2) **Operation Modes**

• Single mode: Analog input voltage on one channel is A/D converted once or comparated (Note 1) with a given quantity.

• Scan mode: Analog input voltages on two or more selected channels (in N channel units, N = 1-16) are

sequentially A/D converted.

Single-shot scan mode: Scan operation is performed for one cycle. Continuous scan mode: Scan operation is repeated until stopped.

(3) **Special Operation Modes**

• Forcible single mode execution during scan mode: Conversion is forcibly executed in single mode

(comparator mode) during scan operation.

Scan operation is started subsequently after executing • Scan mode start after single mode execution:

conversion in single mode.

A/D conversion being executed in single or scan mode • Conversion restart:

is restarted.

(4) Sample-and-Hold Function

The analog input voltage is sampled when starting A/D conversion, and A/D conversion is performed on the sampled voltage. This function can be enabled or disabled as necessary.

(5) Simultaneous Sampling Function

Optional two channels are sampled at the same time, and 2-channel continuous A/D conversion is carried out for the sampled voltage.

(6) A/D Disconnection Detection Assist Function

To suppress influences of the analog input voltage leakage from any preceding channel during scan mode operation, a function is incorporated that helps to fix the electric charge on the chopper amp capacitor to the given state (AVCC or GND) before starting A/D conversion. This function provides a sure and reliable means of detecting a disconnection in the wiring patterns connecting to the analog input pins.

(7) Inflow Current Bypass Circuit

If an overvoltage or negative voltage is applied to any analog input channel which is currently inactive, a current flows into or out of the analog input channel currently being A/D converted via the internal circuit, causing the conversion accuracy to degrade. To solve this problem, the A/D Converter incorporates a circuit that bypasses such inflow current. This circuit is always enabled.

32192 Group 7.1 Outline of A/D Converter

(8) **Conversion Speed**

The A/D conversion and comparate speed can be selected from among 8 types: BCLK mode & 2BCLK mode/each slow mode & each fast mode/each normal mode & each double speed mode.

(9) **Interrupt Request and DMA Transfer Request Generation Functions**

An A/D conversion interrupt or DMA transfer request can be generated each time A/D conversion or comparate operation in single mode is completed, as well as when a single-shot scan operation or one cycle of continuous scan operation is completed.

Note 1: To discriminate between the comparison performed internally by the successive approximation type A/D Converter and that performed in comparator mode using the same A/D Converter as a comparator, the comparison in comparator mode is referred to in this data sheet as "comparate."

Table 7.1.1 outlines the A/D Converter and Figure 7.1.1 shows block diagram of A/D Converter.

32192 Group 7.1 Outline of A/D Converter

Table 7.1.1 Outline of the A/D Converter

-	Description					
Analog input	Description 40 sharpeds 114					
Analog input	16 channels x 1					
A/D conversion method	Successive approximation method 10 bits (Conversion result can be read out in either 8 or 10 bits)					
Resolution	•					
Absolute accuracy (Note 1)	2BCLK mo (Note 4)	ode	Slow mode	Normal speed	±2LSB (±3LSB) (Note 2)	
Conditions:	(14010-1)		Fast mode	Double speed	±2LSB (±3LSB) (Note 2)	
$Ta = 25^{\circ}C$,				Normal speed	±3LSB (±3LSB) (Note 2)	
AVCC0 = 5.12 V, VREF0 = 5.12 V				Double speed	±3LSB (T.B.D) (Note 2)	
	_		Slow mode	Normal speed	T.B.D	
				Double speed	T.B.D	
			Fast mode	Normal speed	T.B.D	
				Double speed	T.B.D	
Conversion mode		rsion mode and comp				
Operation mode	Single mod	de, single-shot scan n			9	
Conversion start trigger	Software start	, ,				
	Hardware start	A/D0 Converter	MJT (input e (output eve	event bus 2), MJT (ent bus 3) and M	(input event bus 3), MJT JT (TIN23)	
Conversion speed	2BCLK	During single mode	Slow mode	Normal speed	598 x BCLK 14.95 μs	
(Note 3) BCLK peripheral clock	(Note 4)	(When sample-and- hold disabled/ When		Double speed	346 x BCLK 8.65 μs	
BOLK peripricial clock		normal sample-and-	Fast mode	Normal speed	262 x BCLK 6.55 μs	
		hold enabled)		Double speed	178 x BCLK 4.45 μs	
		During single mode	Slow mode	Normal speed	382 x BCLK 9.55 μs	
		(When fast sample- and-hold enabled)		Double speed	202 x BCLK 5.05 μs	
		and-noid enabled)	Fast mode	Normal speed	190 x BCLK 4.75 μs	
				Double speed	106 x BCLK 2.65 μs	
		During comparator	Slow mode	Normal speed	94 x BCLK 2.35 μs	
		mode		Double speed	58 x BCLK 1.45 μs	
			Fast mode	Normal speed	46 x BCLK 1.15 μs	
				Double speed	34 x BCLK 0.85 μs	
	BCLK	During single mode		Normal speed	299 x BCLK 7.475 μs	
		(When sample-and- hold disabled/ When normal sample-and- hold enabled)		Double speed	173 x BCLK 4.325 μs	
			Fast mode	Normal speed	131 x BCLK 3.275 μs	
				Double speed	89 x BCLK 2.225 μs	
		During single mode	Slow mode	Normal speed	191 x BCLK 4.775 μs	
		(When fast sample- and-hold enabled)		Double speed	101 x BCLK 2.525 μs	
			Fast mode	Normal speed	95 x BCLK 2.375 μs	
				Double speed	53 x BCLK 1.325 μs	
		During comparator mode	Slow mode	Normal speed	47 x BCLK 1.175 μs	
				Double speed	29 x BCLK 0.725 μs	
			Fast mode	Normal speed	23 x BCLK 0.575 μs	
				Double speed	17 x BCLK 0.425 μs	
Sample-and-hold function	Sample-ar	nd-hold function can b	e enabled or			
A/D disconnection detection assist function	Sample-and-hold function can be enabled or disabled as necessary. Influences of the analog input voltage leakage from any preceding channel during scan mode operation are suppressed.					
Interrupt request generation function	Generated when A/D conversion or comparate operation is completed					
		Generated when a single-shot scan operation or one cycle of continuous scan operation is				
DMA transfer request	Generated when A/D conversion or comparate operation is completed					
generation function	Generated when a single-shot scan operation or one cycle of continuous scan operation is completed					
Note 1: The conversion as	•				20.20	

Note 1: The conversion accuracy stipulated here refers to that of the microcomputer alone, with influences of the power supply wiring and noise on the board not taken into account.

Note 2: The parenthesis () indicates the value when the fast sample-and-hold function is effective.

Note 4: The 2BCLK mode is the 32180 Group compatible mode.

Note 3: Conversion time when f(XIN) = 20 MHz (1BCLK = 25 ns).

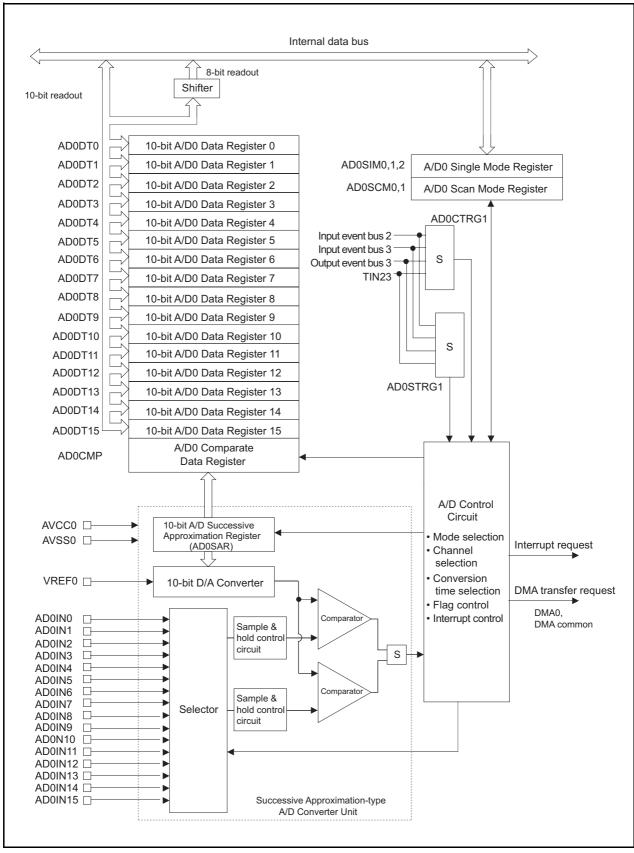


Figure 7.1.1 Block Diagram of the A/D Converter

Outline of Serial Interface 8.1

The 32192 contains a total of six serial interface channels, SIO0-SIO5. Channels SIO0, SIO1, SIO4 and SIO5 can be selected between CSIO mode (clock-synchronous serial interface) and UART mode (clock-asynchronous serial interface). Channels SIO2 and SIO3 are UART mode only.

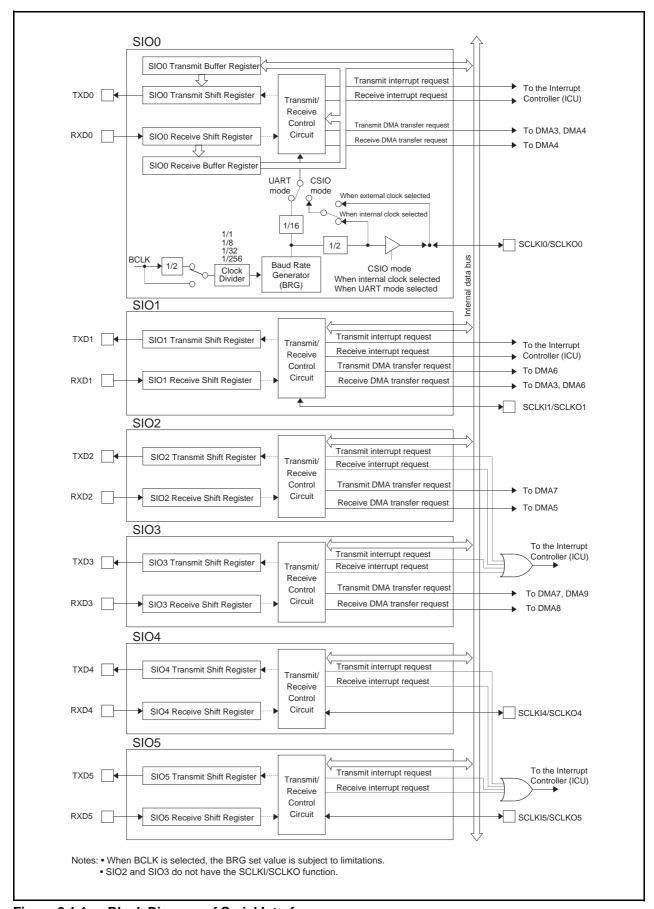
CSIO mode (clock-synchronous serial interface)

Communication is performed synchronously with a transfer clock, using the same clock on both transmit and receive sides. The transfer data length can be selected within the range from 8 to 16 bits long.

UART mode (clock-asynchronous serial interface)

Communication is performed at any transfer rate in any transfer data format. The transfer data length can be selected from 7, 8 and 9 bits.

Channels SIO0-SIO3 each have a transmit DMA transfer and a receive DMA transfer request. These serial interfaces, when combined with the internal DMA Controller (DMAC), allow serial communication to be performed at high speed, as well as reduce the data communication load of the CPU.


Serial interface is outlined below.

Outline of Serial Interface Table 8.1.1

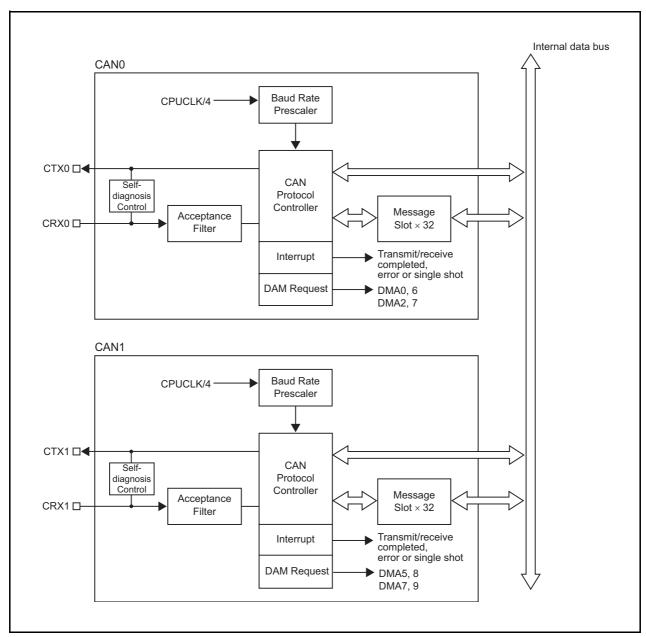
	ochai interi			
Item	Description			
Number of channels	CSIO mode/UART mode:		4 channels (SIO0, SIO1, SIO4, SIO5)	
	UART only:		2 channels (SIO2, SIO3)	
Clock	During CSIO mode:		Internal clock or external clock as selected (Note 1), clock	
			polarity can be selected	
	During UART mode:		Internal clock only	
Transfer mode	Transmit half-	Transmit half-duplex, receive half-duplex, transmit/receive full-duplex		
BRG count source	f(BCLK), f(BC	LK)/8, f(BCLK))/32, f(BLCK)/256 (Note 2)	
(when internal clock	f(BCLK)/2, f(BCLK)/16, f(BCLI		LK)/64, f(BCLK)/512	
selected)	f(BCLK): Peri	oheral clock op	perating frequency	
Data format	CSIO mode:	Data length = selectable in the range of 8–16 bits		
		Order of trans	sfer = selectable from LSB first or MSB first	
	UART mode:	Start bit = 1 b	it	
		Character length = 7, 8 or 9 bits		
		Parity bit = A	dded (odd, even) or not added	
		Stop bit = 1 o	r 2 bits	
		Order of trans	sfer = selectable from LSB first or MSB first	
Baud rate	CSIO mode:	76 bits/sec to selected)	5 Mbits/sec (when f(BCLK) = 40 MHz/internal clock	
		Max 2.5 Mbit	s/sec (when f(BCLK) = 40 MHz/external clock selected)	
	UART mode:	19 bits/sec to	2.5 Mbits/sec (when f(BCLK) = 40 MHz)	
Error detection	CSIO mode:	Overrun erro	ronly	
	UART mode:	Overrun, pari	ty and framing errors	
		(Occurrence	of any of these errors is indicated by an error sum bit)	
Fixed period clock output	When using SIO0, SIO1, SIO4 and SIO5 as UART, this function outputs a divided-by-2			
function	BRG clock from the SCLK pin.			

Note 1: The maximum input frequency of an external clock during CSIO mode is f(BCLK)/16.

Note 2: If f(BCLK) is selected as the count source, the BRG set value is subject to limitations.

Figure 8.1.1 Block Diagram of Serial Interfaces

Outline of the CAN Module 9.1


The 32192 contains two-channel Full CAN modules compliant with CAN (Controller Area Network) Specification V2.0B Active. These CAN modules each have 32 message slots and four mask registers, effective use of which helps to reduce the data processing load of the CPU.

The CAN modules are outlined below.

Outline of the CAN Module Table 9.1.1

Item	Description			
Protocol	CAN Specification V2.0B Active			
Number of message slots	Total 32 slots (30 global slots, two local slots)			
Polarity	0: Dominant			
	1: Recessive			
Acceptance filter	Global mask: 2			
(Function to receive only a range of IDs specified by receive ID filter)	Local mask: 2			
Baud rate	1 time quantum (Tq) = (BRP + 1) / (CPUCLK/4)			
	(BRP: Baud Rate Prescaler set value)			
	Baud rate = 1 Max 1 Mbps (Note 1)			
	Tq period x number of Tq's for one bit			
	BRP: 1–255 (0: inhibited)			
	Number of Tq's for one bit = Synchronization Segment + Propagation Segment			
	+ Phase Segment 1 + Phase Segment 2			
	Propagation Segment: 1–8Tq			
	Phase Segment 1: 1–8Tq			
	Phase Segment 2: 1–8Tq (IPT = 1)			
Remote frame automatic response function	The slot that received a remote frame responds by automatically sending a data frame.			
Timestamp function	This function is implemented using a 16-bit counter. The count period is derived from the CAN bus bit period by dividing it by 1, 2, 3 or 4.			
BasicCAN mode	Double buffer function is materialized using two local slots.			
Transmit abort function	Transmit requests can be canceled.			
Loopback function	The CAN module receives the data transmitted by the module itself.			
Return bus off function	Error active mode is forcibly entered into after clearing the error counter.			
Single shot function	Transmission is not retried even when it failed due to arbitration-lost or a transmit error.			
DMA transfer function	DMA transfer request is generated when transmission failed or transmit/receive operation finished.			
Self-diagnostic function	Communication module is diagnosed by communicating internally in the CAN module.			

Note 1: The maximum allowable error of oscillation depends on the system configuration (e.g., bus length, clock error, CAN bus transceiver, sampling position and bit configuration).

Figure 9.1.1 Block Diagram of the CAN Modules

Outline of the Direct RAM Interface (DRI)

The Direct RAM Interface (DRI) is a parallel interface used to take in parallel data into the internal RAM as it is input to the microcomputer synchronously with the clock. Since a dedicated bus provided separately from the M32R-FPU is used to write data from the DRI to the internal RAM, data can be taken in without having to stop operation of the M32R-FPU. Furthermore, a selective data capture function is supported that makes use of the internal event counter of the DRI.

Table 10.1.1 Outline of the Direct RAM Interface (DRI)

Item	Function				
Transfer method	Clock synchronous parallel input				
RAM access area	Entire 176 Kbytes area of the internal RAM				
Received data width	Selectable from 8, 16 and 32 bits				
Maximum transfer rate	40 Mbytes/sec (when operating at 160 MHz)				
Minimum data capture cycle	100ns (when 32 bits wide selected), 50ns (16 or 8 bits wide selected) (Note 1)				
Event counter	16 bits x 5 counters (DEC0–DEC4)				
Bank switch function	Two banks in RAM specifiable as data storage destination				
Data capture edge	Selectable from rising or falling edge or both edges				
Capture timing adjust function	Timing from data capture edge detection to data sampling can be set				
Selective data capture function	Data can be captured selectively using an internal event counter				

Note 1: The actual capture cycle depends on AC characteristics.

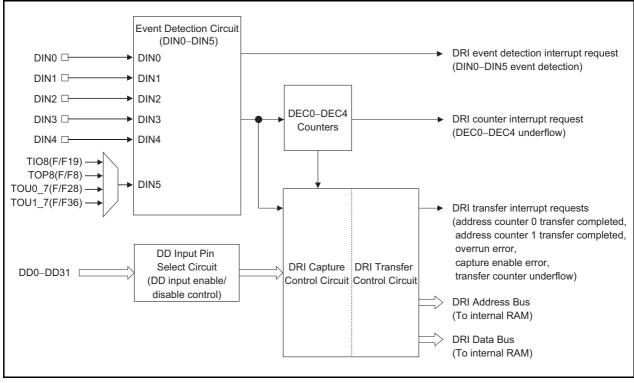


Figure 10.1.1 Block Diagram of the Direct RAM Interface (DRI)

Outline of the Real-Time Debugger (RTD) 11.1

The Real-Time Debugger (RTD) is a serial interface through which to read or write to any location in the entire area of the internal RAM by using commands from outside the microcomputer. Because data transfers between the RTD and internal RAM are performed via a dedicated internal bus independently of the M32R-FPU, RTD operation can be controlled without the need to stop the M32R-FPU.

Table 11.1.1 Outline of the Real-Time Debugger (RTD)

Item	Description				
Transfer method	Clock-synchronous serial interface				
Generation of transfer clock	Generated by external host				
RAM access area	Entire area of the internal RAM (controlled by A14–A29)				
Transmit/receive data length	32 bits (fixed)				
Bit transfer sequence	LSB first				
Maximum transfer rate	2 Mbits/second				
Input/output pins	4 pins (RTDTXD, RTDRXD, RTDACK, RTDCLK)				
Number of commands	Following five functions				
	Monitor continuously				
	Output real-time RAM content				
	 Forcibly rewrite RAM content (with verify) 				
	Recover from runaway condition				
	Request RTD interrupt				

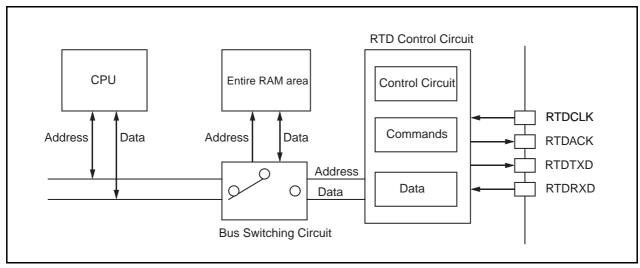


Figure 11.1.1 Block Diagram of the Real-Time Debugger (RTD)

Outline of the Non-Break Debug (NBD) 12.1

Non-Break Debug (NBD) has the RAM monitor and event output functions. A dedicated DMA is incorporated in NBD, so that accesses to the internal RAM, etc. are accomplished using this DMA.

RAM monitor function

This function is provided for reading and writing to and from all resources connected to the internal/external buses mapped in the address space. It allows the RAM data, etc. to be referenced and altered. Furthermore, accesses to the address space used exclusively for NBD (i.e., NBD space) are accomplished using this function.

(2) **Event output function**

Upon detecting access to a preset address, this function outputs a low-level signal from the NBDEVNT# pin. A specific address and read/write access can be specified as the event occurrence condition.

Table 12.1.1 Outline of the Non-Break Debug (NBD)

Item	Content
Transfer method	Clock-synchronized parallel interface (4 bits)
Transfer clock generation	Generated by external host
Access area	All areas in the address map and NBD space
Access size	8, 16 or 32 bits (for NBD space, fixed to 8 bits)
Maximum transfer rate	12.5MHz
Input/output pins	7 pins (NBDD3-NBDD0, NBDCLK, NBDSYNC#, NBDEVNT#)
Functions	RAM monitor function
	Event output function
Number of events set	1 event

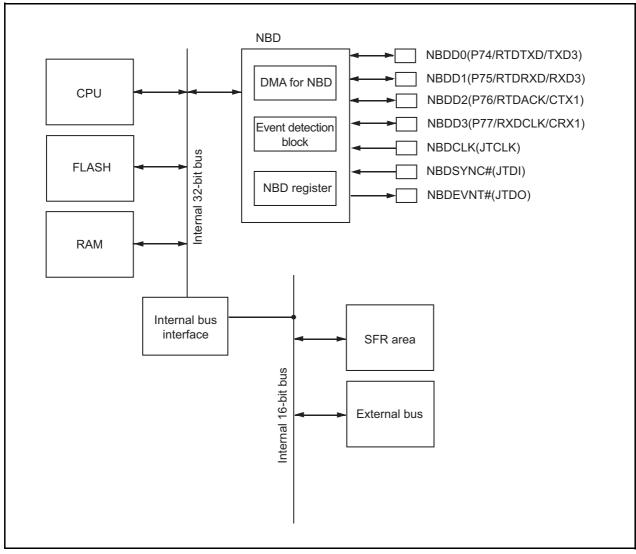


Figure 12.1.1 Block Diagram of the Non-Break Debug (NBD)

13.1 Virtual Flash Emulation Function

The microcomputer has the function to map 8-Kbyte memory blocks of the internal RAM (max. 16 blocks) into areas (L banks) of the internal flash memory that are divided in 8-Kbyte units. This functions is referred to as the Virtual Flash Emulation Function.

This function allows the data located in 8-Kbyte blocks of the internal RAM to be changed with the contents of internal flash memory at the addresses specified by the Virtual Flash L Bank Register. That way, the relevant RAM data can read out by reading the content of internal flash memory.

For applications that require modifying the contents of internal flash memory (e.g., data table) during operation, this function enables dynamic data modification by modifying the relevant RAM data.

The RAM blocks allocated for virtual flash emulation can be accessed for read and write the same way as in usual RAM

This function, when used in combination with the microcomputer's internal Real-Time Debugger (RTD), allows the data table, etc. created in the internal flash memory to be referenced or rewritten from the outside, thereby facilitating data table tuning from an external device.

Note: • Before programming/erasing the internal flash memory, always be sure to exit this virtual flash emulation mode.

H'0080 4000	
	Unusable for
	virtual flash emulation
	function
	48 Kbytes
H'0080 FFFF	
H'0081 0000	RAM bank L block 0
110004 4555	(FELBANK0) 8 Kbytes
H'0081 1FFF H'0081 2000	
1100012000	RAM bank L block 1 (FELBANK1)
H'0081 3FFF	8 Kbytes
H'0081 4000	RAM bank L block 2
	(FELBANK2)
H'0081 5FFF	8 Kbytes
H'0081 6000	RAM bank L block 3
	(FELBANK3)
H'0081 7FFF	8 Kbytes
H'0081 8000	RAM bank L block 4
1,0004,000	(FELBANK4) 8 Kbytes
H'0081 9FFF H'0081 A000	_ _ ·
110001 A000	RAM bank L block 5 (FELBANK5)
H'0081 BFFF	8 Kbytes
H'0081 C000	RAM bank L block 6
	(FELBANK6)
H'0081 DFFF	8 Kbytes
H'0081 E000	RAM bank L block 7
	(FELBANK7)
H'0081 FFFF H'0082 0000	8 Kbytes
H 0082 0000	RAM bank L block 8 (FELBANK8)
H'0082 1FFF	8 Kbytes
H'0082 2000	RAM bank L block 9
	(FELBANK9)
H'0082 3FFF	8 Kbytes
H'0082 4000	RAM bank L block 10
	(FELBANK10)
H'0082 5FFF	8 Kbytes
H'0082 6000	RAM bank L block 11
H'0082 7FFF	(FELBANK11) 8 Kbytes
H'0082 8000	 _
110002 0000	RAM bank L block 12 (FELBANK12)
H'0082 9FFF	8 Kbytes
H'0082 A000	RAM bank L block 13
	(FELBANK13)
H'0082 BFFF	8 Kbytes
H'0082 C000	RAM bank L block 14
	(FELBANK14)
H'0082 DFFF	8 Kbytes
H'0082 E000	RAM bank L block 15
H'0082 FFFF	(FELBANK15) 8 Kbytes
H 0002 FFFF	5.10y100

Figure 13.1.1 Internal RAM Bank Configuration of the 32192

Outline of the Wait Controller 14.1

The Wait Controller controls the number of wait states inserted in bus cycles when accessing an external extension area. The Wait Controller is outlined in the table below.

Table 14.1.1 Outline of the Wait Controller

Item	Description				
Target space	Control is applied to the fo	llowing address spaces depending on operation mode:			
	Single-chip mode:	No target space (Settings of the Wait Controller have no effect)			
	External extension mode:	CS0 area (7 Mbytes), CS1 area (8 Mbytes),			
		CS2 area (8 Mbytes), CS3 area (8 Mbytes)			
	Processor mode:	CS0 area (8 Mbytes), CS1 area (8 Mbytes),			
		CS2 area (8 Mbytes), CS3 area (8 Mbytes)			
Number of wait states	0–15 wait states set by soft can be inserted	ftware + any number of wait states set from the WAIT# pin that			

During external extension and processor modes, four chip select signals (CS0# to CS3#) are output, each corresponding to one of the four external extension areas referred to as CS0 through CS3.

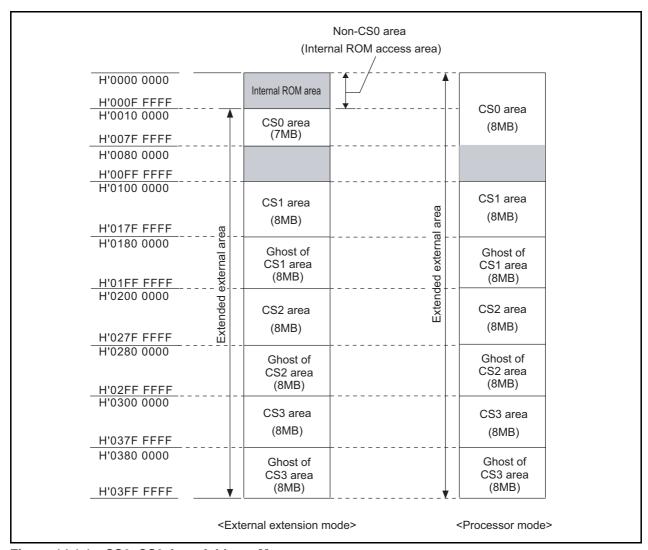


Figure 14.1.1 CS0-CS3 Area Address Map

When accessing the external extension area, the Wait Controller controls the number of wait states inserted in bus cycles based on the number of wait states set by software and the input signal entered from the WAIT# pin. The number of wait states that can be controlled in software is 0 to 15.

When the input signal on the WAIT# pin is sampled low in the last cycle of internal wait state, the wait state is extended as long as the WAIT# input signal is held low. Then when the WAIT# input signal is released back high, the wait state is terminated and the next new bus cycle is entered into.

Table 14.1.2 Number of Wait States that Can Be Set by the Wait Controller

External extension Area	Address	Number of Wait States Inserted			
CS0 area	H_'0010 0000 to H_'007F FFFF	Zero to 15 wait states set by software			
	(external extension mode)	+ any number of wait states entered from the WAIT# pir			
	H_'0000 0000 to H_'007F FFFF	(However, software settings have priority.)			
	(processor mode)				
CS1 area	H_'0100 0000 to H_'017F FFFF	Zero to 15 wait states set by software			
(Note 1)	(external extension and processor	+ any number of wait states entered from the WAIT# pin			
	modes)	(However, software settings have priority.)			
CS2 area	H_'0200 0000 to H_'027F FFFF	Zero to 15 wait states set by software			
(Note 2)	(external extension and processor	+ any number of wait states entered from the WAIT# pin			
	modes)	(However, software settings have priority.)			
CS3 area	H_'0300 0000 to H_'037F FFFF	Zero to 15 wait states set by software			
(Note 3)	(external extension and processor	+ any number of wait states entered from the WAIT# pin			
	modes)	(However, software settings have priority.)			

Note 1: A ghost (8 Mbytes) of the CS1 area will appear in the H'0180 0000 to H'01FF FFFF area.

Note 2: A ghost (8 Mbytes) of the CS2 area will appear in the H'0280 0000 to H'02FF FFFF area.

Note 3: A ghost (8 Mbytes) of the CS3 area will appear in the H'0380 0000 to H'03FF FFFF area.

15.1 Instruction Set 32192 Group

Instruction Set 15.1

CPU Instruction Set

The M32R employs a RISC architecture, supporting a total of 100 discrete instructions.

(1) Load/store instructions

Perform data transfer between memory and registers

ΙD Load LDB Load byte

LDUB Load unsigned byte LDH Load halfword

LDUH Load unsigned halfword

LOCK Load locked ST Store STB Store byte Store halfword STH UNLOCK Store unlocked

(2) Transfer instructions

Perform register to register transfer or register to immediate transfer

LD24 Load 24-bit immediate LDI Load immediate MV Move register

MVFC Move from control register **MVTC** Move to control register Set high-order 16-bit SETH

(3) Branch instructions

Used to change the program flow

BC Branch on C-bit BEQ Branch on equal BEQZ Branch on equal zero

Branch on greater than or equal zero BGF7

Branch on greater than zero **BGTZ**

BL Branch and link

BLEZ Branch on less than or equal zero

BLTZ Branch on less than zero BNC Branch on not C-bit **BNE** Branch on not equal BNF7 Branch on not equal zero

BRA Branch Jl Jump and link JMP Jump NOP No operation

(4) Arithmetic/logic instructions

Perform comparison, arithmetic/logic operation, multiplication/division, or shift between registers

Comparison

CMP

CMPI Compare immediate **CMPU** Compare unsigned

CMPUI Compare unsigned immediate

Logical operation

AND AND

XOR

AND3 AND 3-operand NOT Logical NOT OR OR OR3 OR 3-operand

Exclusive OR Exclusive OR 3-operand XOR3

Arithmetic operation

ADD Add

ADD3 Add 3-operand ADDI Add immediate

ADDV Add(with overflow checking)

ADDV3 Add 3-operand ADDX Add with carry NEG Negate SUB Subtract

Subtract (with overflow checking) SUBV

SUBX Subtract with borrow

Multiplication/division

DIV Divide DIVU Divide unsigned MUL Multiply REM Remainder

REMU Remainder unsigned

Shift

SLL Shift left logical

SLL3 Shift left logical 3-operand Shift left logical immediate SLLI SRA Shift right arithmetic

Shift right arithmetic 3-operand SRA3 SRAI Shift right arithmetic immediate

SRL Shift right logical

SRL3 Shift right logical 3-operand SRLI Shift right logical immediate

(5) Instructions for the DSP function

Perform 32-bit x 16-bit or 16-bit x 16-bit multiplication or sum-of-products calculation

These instructions also perform rounding of the accumulator data or transfer between accumulator and generalpurpose register.

MACHI Multiply-accumulate high-order halfwords MACLO Multiply-accumulate low-order halfwords

MACWHI Multiply-accumulate word and high-order halfword MACWLO Multiply-accumulate word and low-order halfword

MULHI Multiply high-order halfwords MULLO Multiply low-order halfwords

MULWHI Multiply word and high-order halfword MULWLO Multiply word and low-order halfword MVFACHI Move from accumulator high-order word MVFACLO Move from accumulator low-order word MVFACMI Move from accumulator middle-order word MVTACHI Move to accumulator high-order word MVTACLO Move to accumulator low-order word

RAC Round accumulator

RACH Round accumulator halfword

(6) EIT related instructions

Start trap or return from EIT processing

RTF Return from EIT

TRAP Trap 32192 Group 15.1 Instruction Set

(7) Instructions for the FPU function

The microcomputer supports fully IEEE754 compliant, single-precision floating-point arithmetic.

FADD Floating-point add FSUB Floating-point subtract FMUL Floating-point multiply FDIV Floating-point divide

FMADD Floating-point multiply and add FMSUB Floating-point multiply and subtract

ITOF Integer to float
UTOF Unsigned to float
FTOI Float to integer
FTOS Float to short

FCMP Floating-point compare

FCMPE Floating-point compare with exception if unordered

(8) Extended instructions

STH Store halfword (@R+ addressing added)

BSET Bit set
BCLR Bit clear
BTST Bit test
SETPSW Set PSW
CLRPSW Clear PSW

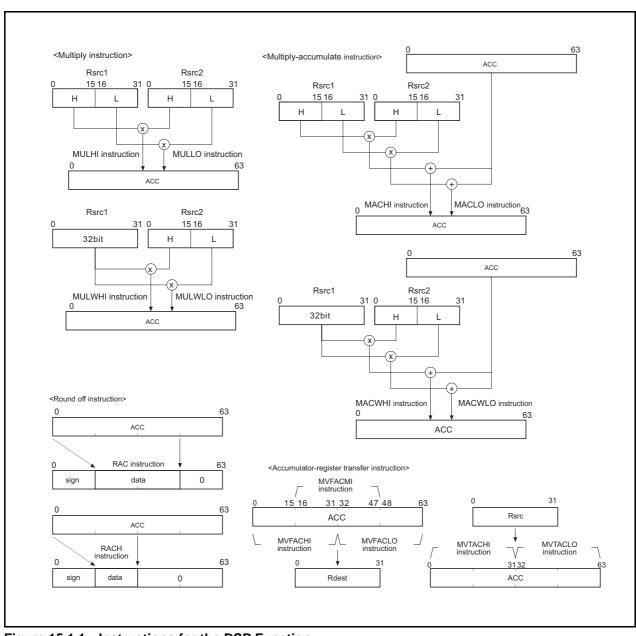
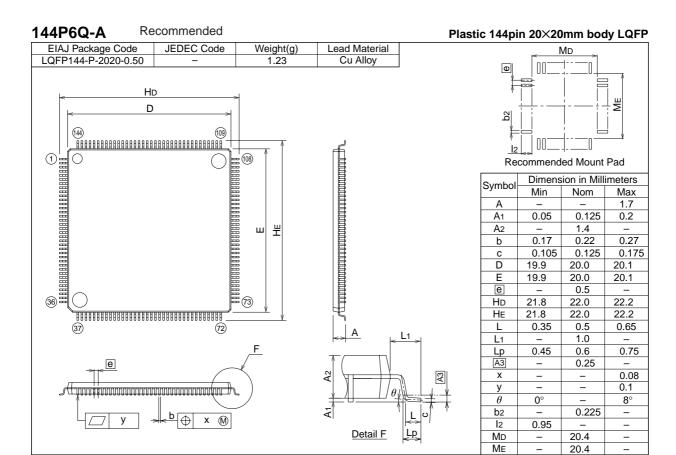



Figure 15.1.1 Instructions for the DSP Function

16.1 Package Dimensions

REVISION HISTORY	32192 Group Data Sheet
------------------	------------------------

Rev.	Date	Description			
		Page	Summary		
1.00	Jul 08, 2004	_	First edition issued		

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, and are subject to change by Renesas Technology Corp. grams and algorithms represents information on orther reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001