

PSEUDO STATIC DRAM

128K x 8 PSDRAM CE/CS PSEUDO STATIC DRAM

FEATURES

- Industry standard pin-out, timing, functions and package (pin compatible with 1MEG SRAM JEDEC pin-out)
- High performance, CMOS silicon gate process
- Single +5V \pm 10% power supply
- Low power, 0.5mW standby; 175mW active, typical
- All device pins are fully TTL and CMOS compatible
- CS selectable standby mode
- 512 cycle refresh in 8ms
- Refresh modes: AUTO, SELF and ADDRESS
- Internal refresh counter for AUTO refresh mode
- Internal refresh timer for SELF refresh mode
- Low standby current 200uA (maximum)

OPTIONS

MARKING

• Timing	
80ns access	- 8
100ns access	-10
120ns access	-12
• Packages	
Plastic DIP	None
Plastic SOIC	G
Plastic SOJ	DJ

GENERAL DESCRIPTION

The MT45C8128 is a pseudo static, randomly accessed solid-state memory containing 1,048,576 bits organized in a x8 configuration. The MT45C8128 is a low cost alternative to a 1MEG SRAM and a simpler design for small and medium size DRAM memory needs.

The pseudo static DRAM (PSDRAM) takes advantage of the best features of low cost DRAMs (low cost memory) and low power SRAMs (non-multiplexed address inputs, low power consumption and x8 organization). The PDRAM incorporates a SELF refresh timer for easy refresh control.

The PDRAM is identical to the 128K x 8 SRAM pinout, except the SRAM no connect pin (Pin 1 = NC) is replaced with the refresh pin (RFSH). The RFSH control allows the PDRAM to utilize AUTO and SELF refresh modes to refresh the DRAM cells, yet not interfere with its SRAM-like operation.

PIN ASSIGNMENT (Top View)

32 Pin SOJ*

RFSH	1	32	VCC
A16	2	31	A15
A14	3	30	CS
A12	4	29	WE
A7	5	28	A13
A6	6	27	A8
A5	7	26	A9
A4	8	25	A11
A3	9	24	OE
A2	10	23	A10
A1	11	22	CE
A0	12	21	DQ8
DQ1	13	20	DQ7
DQ2	14	19	DQ6
DQ3	15	18	DQ5
VSS	16	17	DQ4

32 Pin SOIC

RFSH	1	32	VCC
A16	2	31	A15
A14	3	30	CS
A12	4	29	WE
A7	5	28	A13
A6	6	27	A8
A5	7	26	A9
A4	8	25	A11
A3	9	24	OE
A2	10	23	A10
A1	11	22	CE
A0	12	21	DQ8
DQ1	13	20	DQ7
DQ2	14	19	DQ6
DQ3	15	18	DQ5
VSS	16	17	DQ4

32 Pin DIP*

RFSH	1	32	VCC
A16	2	31	A15
A14	3	30	CS
A12	4	29	WE
A7	5	28	A13
A6	6	27	A8
A5	7	26	A9
A4	8	25	A11
A3	9	24	OE
A2	10	23	A10
A1	11	22	CE
A0	12	21	DQ8
DQ1	13	20	DQ7
DQ2	14	19	DQ6
DQ3	15	18	DQ5
VSS	16	17	DQ4

*NOTE : These packages not released, consult factory

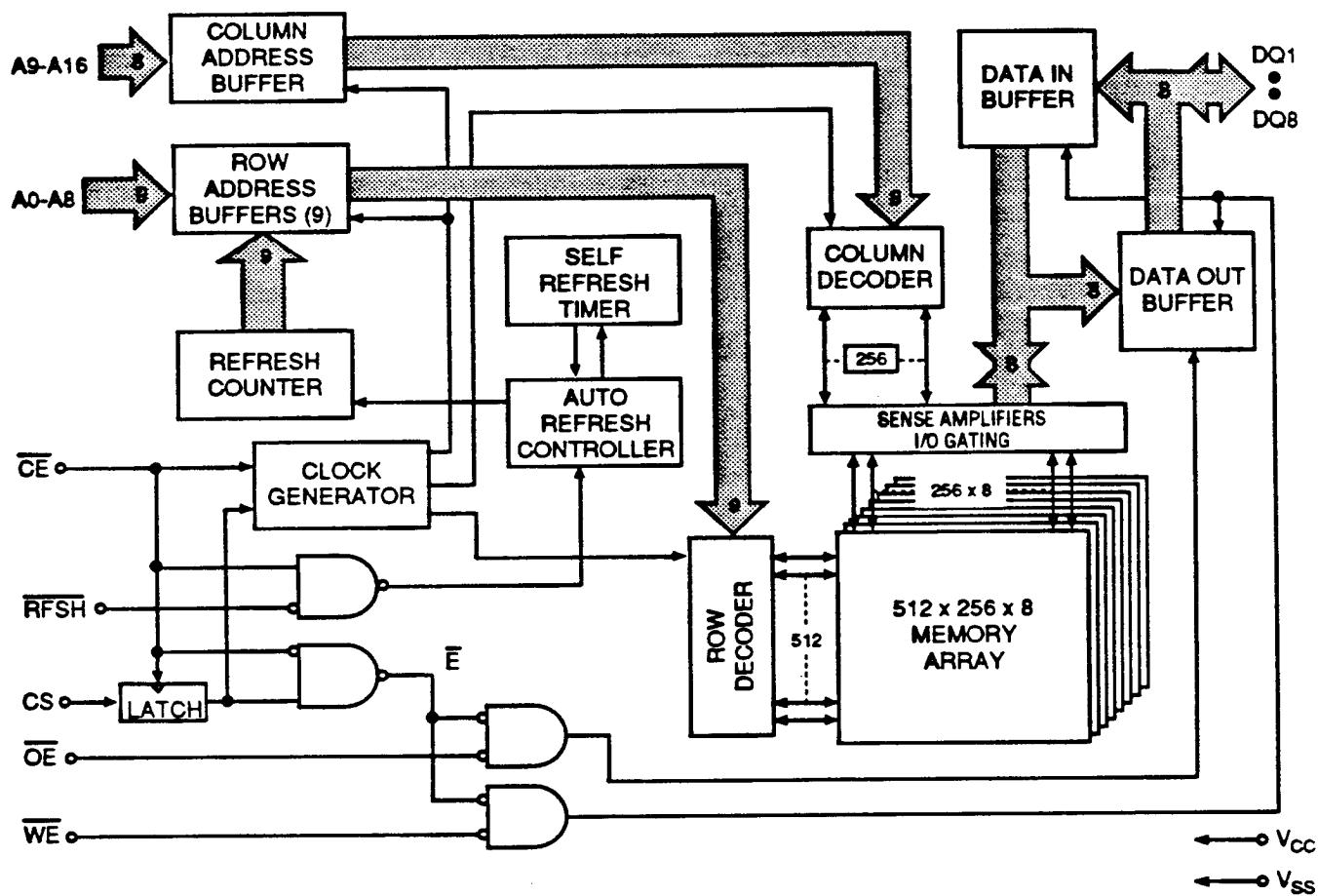


Figure 1
FUNCTIONAL BLOCK DIAGRAM
MT45C8128

PIN DESCRIPTIONS

PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
1	RFSH	Input	Refresh Input: RFSH pin activates one of two refresh cycles - AUTO or SELF refresh. RFSH going LOW while CE is HIGH will invoke the AUTO refresh mode (similar to DRAM CBR refresh). The SELF refresh mode will activate, via the internal refresh timer once the RFSH pin has been held LOW for at least 200us (AUTO refresh maximum is for 8us). The SELF refresh mode will typically refresh each row at a 100us cycle rate (512 cycles over 51.2ms).
12-5,27,26,23,25,4,28,3,31,2	A0-A16	Input	Address Inputs: These inputs are clocked by the LOW going edge of CE when CS is active. A0 through A8 inputs address the Row Decoder and A9 through A16 inputs address the Column Decoder.
22	CE	Input	Chip Enable: CE is the "master switch" allowing the device to perform either a READ or WRITE cycle, as long as it is held LOW. CE disabled (held HIGH) allows the device to enter the various refresh modes.
24	OE	Input	Output Enable: OE taken LOW activates the DQ output buffers, depending on the states of CE (must be LOW) and WE. OE taken LOW during a READ cycle will activate the DQ outputs. OE taken LOW during a WRITE cycle will activate the DQ outputs while WE is held HIGH.
29	WE	Input	Write Enable: WE determines whether the device will be in a READ or WRITE cycle. WE held HIGH dictates a READ cycle and dictates a WRITE cycle when held LOW. WE will also tri-state (High-Z) the DQs while LOW for a WRITE cycle.
30	CS	Input	Chip Select: CS activates the device when a HIGH is latched in by the LOW going edge of CE. CS will put the device in STANDBY mode when a LOW is latched in by the LOW going edge of CE.
13-15,17-21	DQ1-DQ8	Input/Output	Data Input/Output (DQ): These DQ pins are in one of three states, depending on the condition of the chip. WRITE cycles configure the DQs to be inputs (D) and READ cycles configure the I/Os to be Outputs (Q). The DQs will also be in the tri-state mode during certain portions of both READ and WRITE cycles, depending on the conditions of CE, WE and OE. The DQs will be in the tri-state mode during a READ cycle until OE is taken LOW. The DQs will be in the tri-state mode during a WRITE cycle when WE is taken LOW, regardless of OE. CE held HIGH will cause the DQs to be in the tri-state mode. WE going LOW simultaneously or prior to CE going LOW will cause the DQs to remain in tri-state.
32	Vcc	Supply	Power Supply: +5 Volts \pm 10%
16	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT45C8128 PSDRAM operates in a similar manner to a 128K x 8 SRAM with the exception of the refresh and precharge ('P) requirements. The MT45C8128 may be interchanged with the 128K x 8 SRAM in a system, provided that external circuitry has been added to the **RFSH** pin (NC on true SRAMs) to handle the refresh requirements.

Chip enable (**CE**) taken LOW while chip select (**CS**) is HIGH will enable the device. This allows the device to perform either a READ, WRITE or READ-MODIFY-WRITE cycle depending on the state of write enable (**WE**) and output enable (**OE**).

A READ cycle is accomplished by holding **WE** and **CS**HIGH when **CE** and **OE** are taken LOW. A WRITE cycle is accomplished by holding **CS**HIGH when **WE** and **CE** are taken LOW (**OE** is don't care). A READ-MODIFY-WRITE cycle is a READ cycle except the **WE** pin is taken LOW after valid data has been read allowing the memory location being read to be rewritten with new data. **CS** held LOW when **CE** is brought LOW will put the device into a CS standby mode.

The PSDRAM must be fully refreshed every 8ms while in the operating mode. The refresh cycles may be executed in either burst mode (all at once) or distributive (spread throughout the 8ms period). Any READ, WRITE or READ-MODIFY-WRITE cycle will refresh the row being addressed. Additionally, the PSDRAM has three specific refresh modes available: ADDRESS, AUTO and SELF. The ADDRESS refresh is a READ cycle with **OE** held HIGH; the row being addressed is the row being refreshed (similar to the **RAS-ONLY** refresh).

TRUTH TABLE

Function	CE	CS	WE	OE	RFSH	ADDRESS	DQs	NOTES
Standby	H	X	X	X	H	X	High-Z	
CS Standby	L	L	X	X	X	X	High-Z	
ADDR. Refresh	L	H	H	H	H	VALID	High-Z	1
AUTO Refresh	H	X	X	X	H→L→H	X	High-Z	2
SELF Refresh	H	X	X	X	H→L	X	High-Z	3
READ	L	H	H	L	H	VALID	Valid Data Out	
WRITE (#1)	L	H	L	H	H	VALID	Valid Data In	4
WRITE (#2)	L	H	L	X	H	VALID	Valid Data In	5
WRITE (#3)	L	H	L	L	H	VALID	Valid Data In	6
READ-WRITE	L	H→X	H→L	L→H	H	VALID	Valid Data Out, Valid Data In	

NOTES: 0. "X" means don't care.

1. A0 through A8 only (ROW), A9 through A16 are don't care. Also referred to as "CE-only-refresh".
2. Each **RFSH** pulse (HIGH to LOW) results in the next AUTO Refresh Controlled ROW to be refreshed.
3. **RFSH** must be kept LOW for 200μs in order for the device to switch from AUTO to SELF refresh.
4. **OE** is fixed HIGH.
5. **OE** is clocked.
6. **OE** is fixed LOW.

on a DRAM). The ADDRESS refresh cycle recognizes A0 through A9 to address the 512 rows requiring refresh (A10 through A16 are don't care).

The AUTO and SELF refresh modes utilize the **RFSH** pin. The **RFSH** pin is the main functional difference between the PSDRAM and the SRAM. The **RFSH** pin is a don't care once **CE** is LOW (provided 'RHC is met). The **RFSH** pin held HIGH once **CE** is taken HIGH (device inactive) will put the device into low power standby. **RFSH** taken back LOW will put the device into either AUTO or SELF refresh mode.

The PSDRAM enters AUTO refresh (similar to **CAS-BEFORE-RAS** refresh of a DRAM) when **RFSH** is toggled from HIGH to LOW then back to HIGH. Each subsequent toggle of the **RFSH** pin will result in one ROW being refreshed (controlled by an internal refresh address counter). The LOW period of the **RFSH** toggle during AUTO refresh must not exceed 8μs.

The PSDRAM enters the SELF refresh mode once the **RFSH** pin has been held LOW continuously (somewhere between 8μs and 200μs) and will typically refresh all 512 rows in 51.2ms via an internal counter and timer. Once the SELF refresh cycle is terminated, an AUTO or ADDRESS refresh sequence of all 512 rows must be completed within 8ms, regardless of the length of time the PSDRAM was in SELF refresh. Until another SELF refresh cycle is initiated, AUTO or ADDRESS refresh cycles must be used thereafter to refresh all 512 rows within every 8ms period.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss **-1.0V to +7.0V**
 Operating Temperature, TA(Ambient) **0°C to +70°C**
 Storage Temperature (Ceramic) **-65°C to +150°C**
 Storage Temperature (Plastic) **-55°C to +150°C**
 Power Dissipation **1 Watt**
 Short Circuit Output Current **50mA**

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes : 1) (0°C ≤ TA ≤ 70°C)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs	VIH	2.4	Vcc+1	V	1,9
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	V	1,9
INPUT LEAKAGE CURRENT any input (0V ≤ VIN ≤ Vcc, all other pins not under test = 0 volts)	II	-2	2	μA	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vout ≤ 5.5V)	Ioz	-10	10	μA	
OUTPUT LEVELS Output High voltage (Iout = -5mA) Output Low voltage (Iout = 4.2mA)	VOH	2.4		V	
	VOL		0.4	V	1

(Notes : 1, 3, 4, 6, 7) (0°C ≤ TA ≤ 70°C; Vcc = 5.0V ±10%)

PARAMETER/CONDITION	SYMBOL	MAX			UNITS	NOTES
		-8	-10	-12		
OPERATING CURRENT Average power supply operating current (CE with Address Cycling: tRC = tRC(MIN))	Icc	70	60	50	mA	3,4
STANDBY CURRENT (TTL) Power supply standby current (CE = RFSH = VIH)	Isb1	1	1	1	mA	3,4
STANDBY CURRENT (CMOS) Power supply standby current (CE = RFSH = Vcc -0.2V)	Isb2	200	200	200	μA	3,4
SELF REFRESH CURRENT (TTL) Power supply standby current (CE = VIH, RFSH = VIL)	Icc2	1	1	1	mA	3,4
SELF REFRESH CURRENT (CMOS) Power supply standby current (CE = Vcc -0.2V, RFSH = 0.2V)	Icc3	200	200	200	μA	3,4

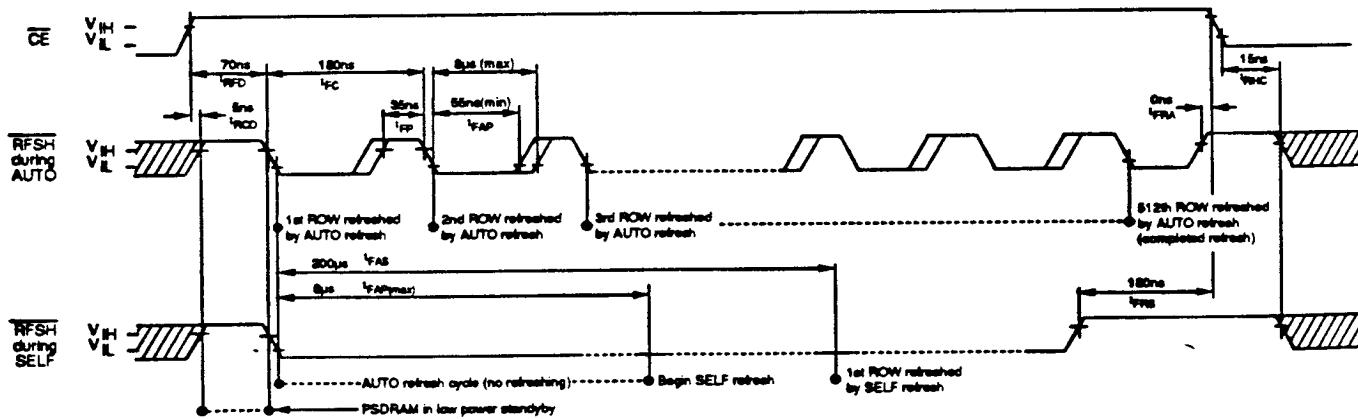
CAPACITANCE

(Note: 2)

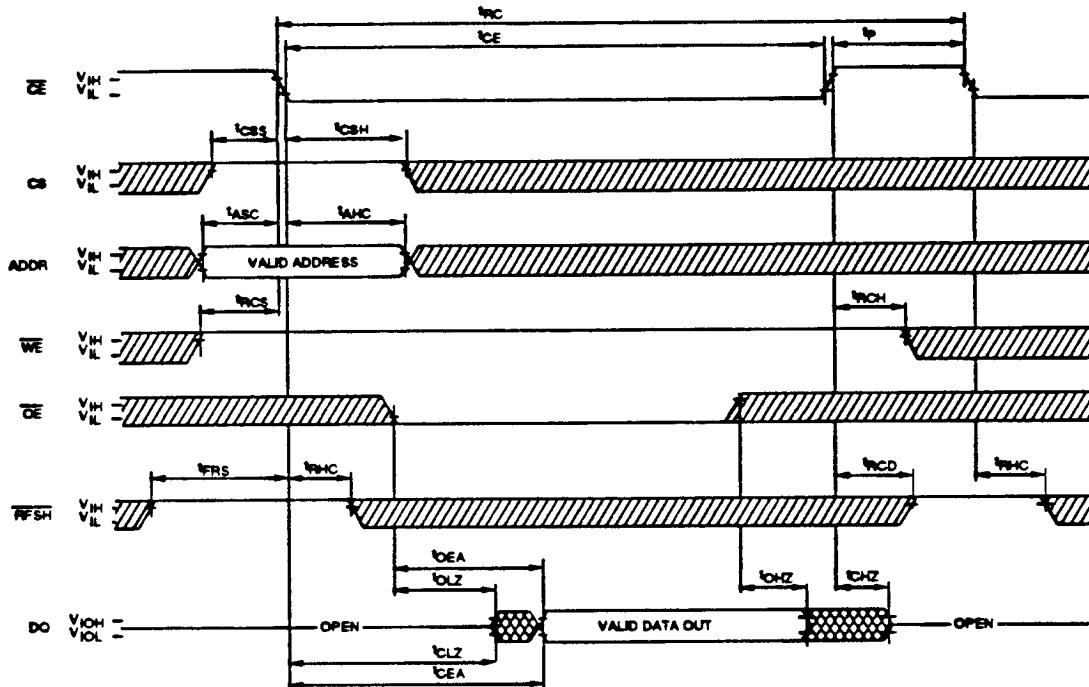
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A16	C ₁₁		5	pF	2
Input Capacitance: CE, CS, RFSH, WE, OE	C ₁₂		7	pF	2
Input/Output Capacitance: DQ	C ₁₀		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

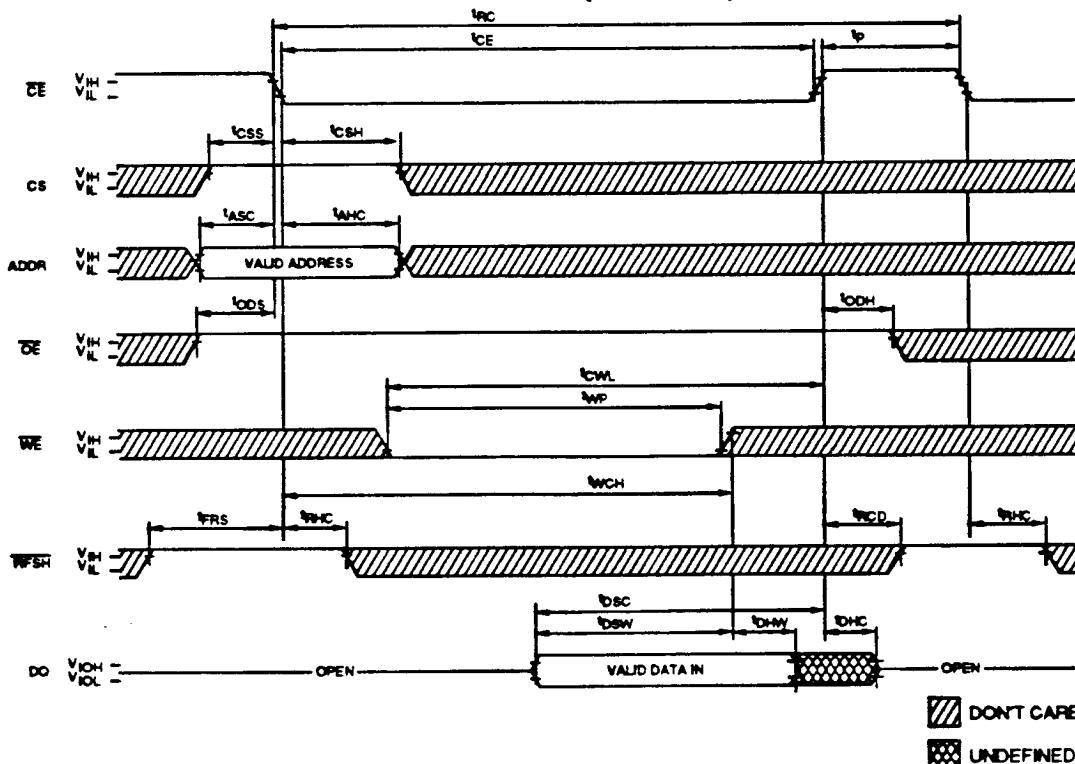
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C ≤ T_A ≤ +70°C; V_{CC} = 5.0V ± 10%)

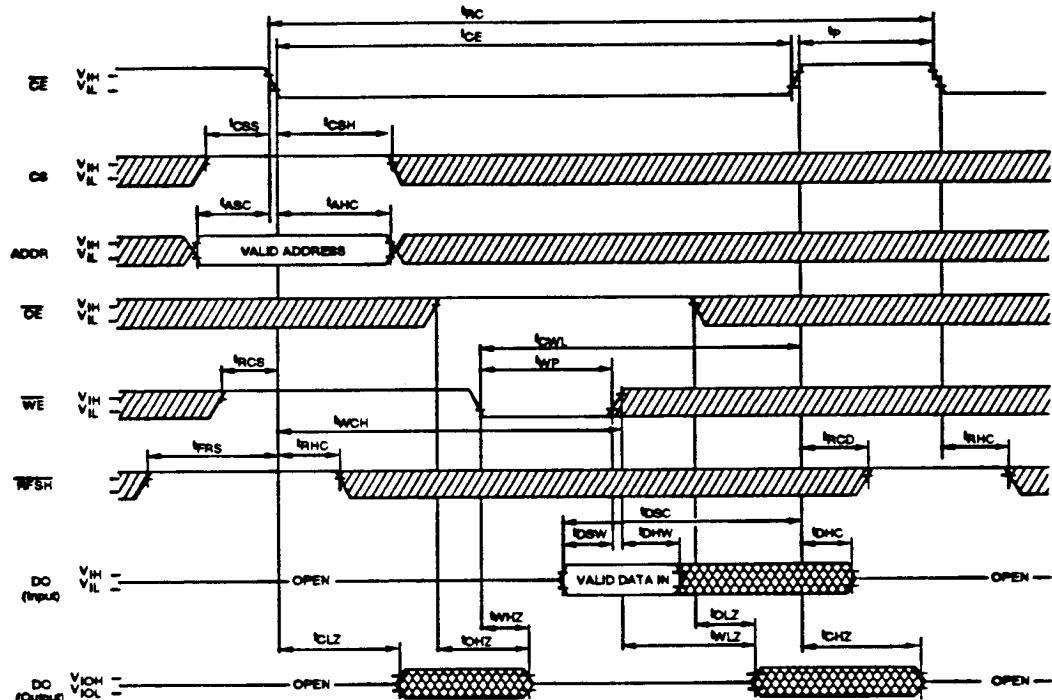

A.C. CHARACTERISTICS	SYM	-8		-10		-12		UNITS	NOTES
		MIN	MAX	MIN	MAX	MIN	MAX		
Random READ or WRITE cycle time	t _{RC}	150		180		210		ns	
READ-WRITE cycle time	t _{RWC}	195		235		280		ns	
CE pulse width	t _{CE}	80	10,000	100	10,000	120	10,000	ns	
CE precharge time	t _P	60		70		80		ns	
CE access time	t _{CEA}		80		100		120	ns	
OE access time	t _{DEA}		30		35		45	ns	
CE to LOW-Z output	t _{CLZ}	10		10		10		ns	
OE to LOW-Z output	t _{OLZ}	0		0		0		ns	
Output active from end of WRITE	t _{WLZ}	0		0		0		ns	
Chip disable to HIGH-Z output	t _{CHZ}	0	25	0	30	0	35	ns	12
OE disable to HIGH-Z output	t _{OHZ}	0	25	0	30	0	35	ns	12
WE to HIGH-Z output	t _{WHZ}	0	25	0	30	0	35	ns	12
OE to disable output set-up time	t _{ODS}	0		0		0		ns	
OE to disable output hold time	t _{ODH}	10		10		10		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold time	t _{RCH}	0		0		0		ns	
Chip select set-up time	t _{CSS}	0		0		0		ns	
Chip select hold time	t _{CSH}	20		25		30		ns	
Write pulse width	t _{WP}	25		30		35		ns	
Write command hold time	t _{WCH}	80	10,000	100	10,000	120	10,000	ns	
Write command to CE lead time	t _{CWL}	25	10,000	30	10,000	35	10,000	ns	
Data set-up time from WE	t _{DSW}	30		35		45		ns	13
Data set-up time from CE	t _{DSC}	30		35		45		ns	13
Data hold time from WE	t _{DHW}	0		0		0		ns	
Data hold time from CE	t _{DHC}	0		0		0		ns	
Address set-up time	t _{ASC}	0		0		0		ns	14
Address hold time	t _{AHC}	20		25		30		ns	14
RFSH command hold time	t _{RHC}	15		15		15		ns	15
RFSH command delay time	t _{RCD}		5		5		5	ns	
AUTO refresh cycle time	t _{FC}	150		180		210		ns	16
RFSH delay time from CE	t _{RFD}	60		70		80		ns	
RFSH pulse width (AUTO refresh)	t _{FAP}	55	8,000	55	8,000	55	8,000	ns	5,16
RFSH precharge time	t _{FP}	35		35		35		ns	15
RFSH pulse width (SELF refresh)	t _{FAS}	200		200		200		ns	5,16
CE delay from RFSH (SELF refresh)	t _{FRS}	150		180		210		ns	15
CE delay from RFSH (AUTO refresh)	t _{FRA}	0		0		0		ns	15
Refresh period (512 cycles, A0-A8)	t _{REF}		8		8		8	ms	
Transition times (rise and fall)	t _T	3	50	3	50	3	50	ns	

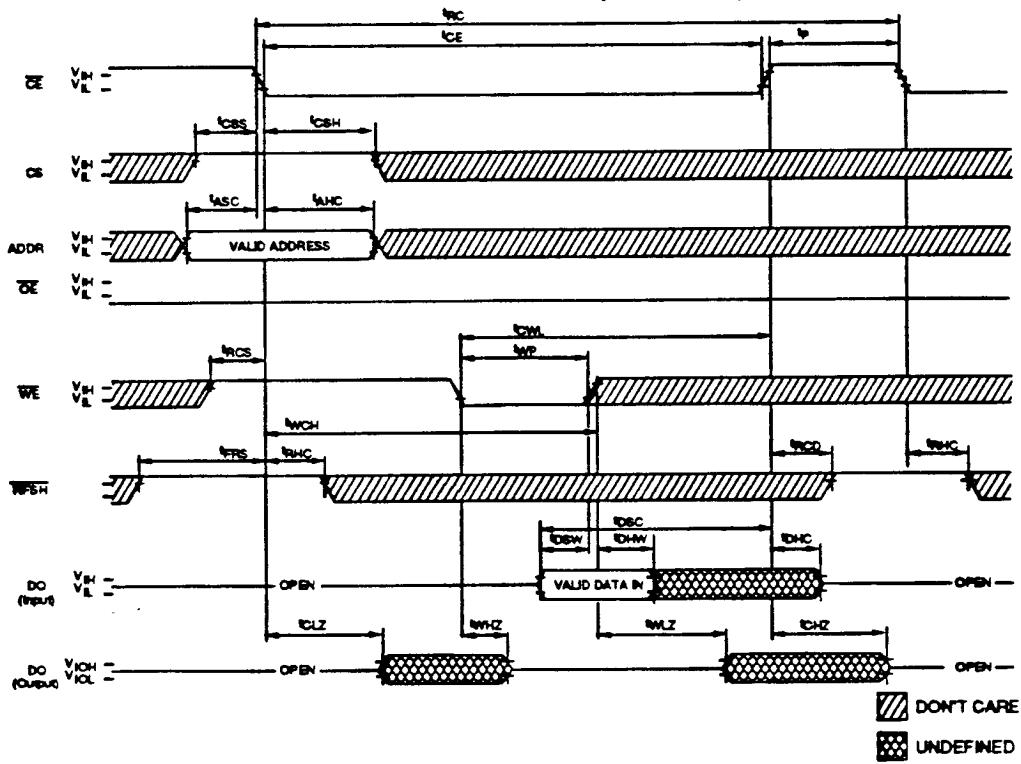
NOTES

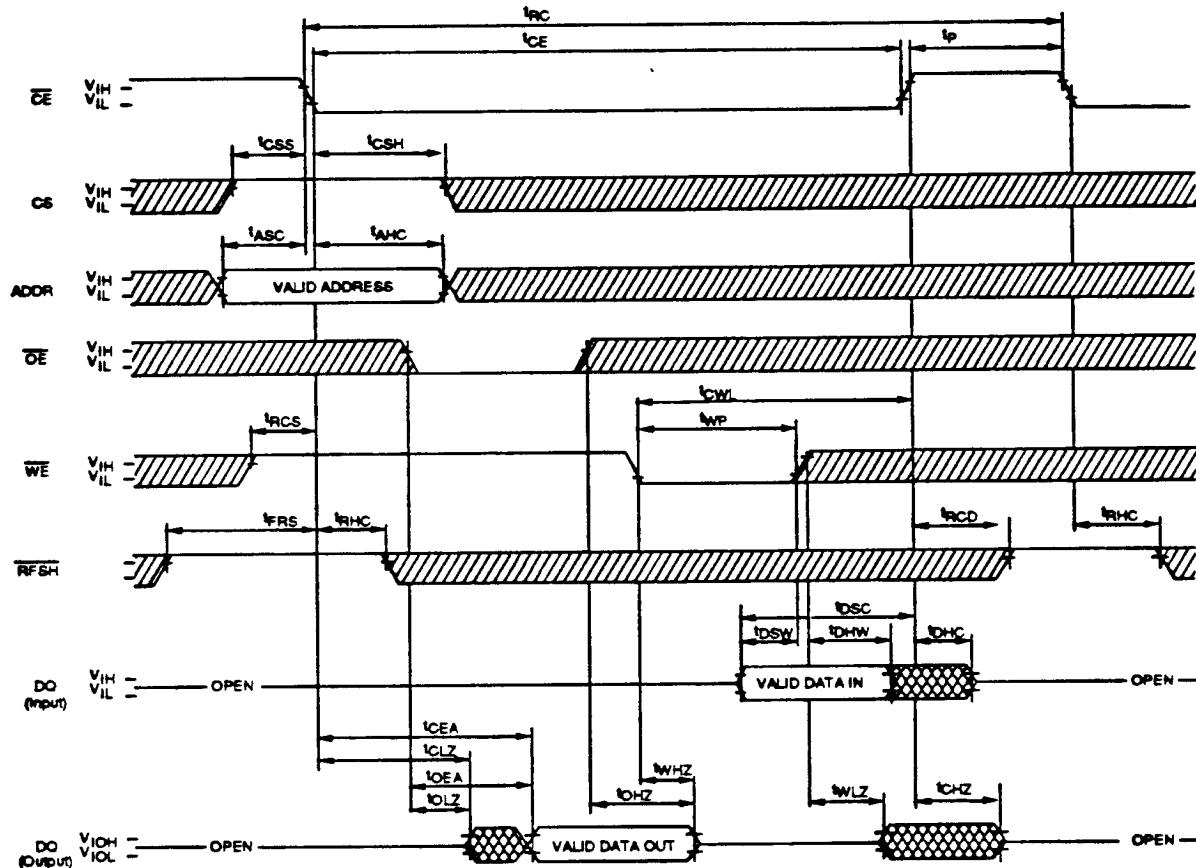

1. All voltages referenced to V_{SS}.
2. This parameter is sampled. Capacitance is calculated from the equation $C = I^A / \Delta t$ with $dV = 3V$ and $V_{CC} = 5V$.
3. I_{CC} is dependent on cycle rates.
4. I_{CC} is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ($0^\circ C \leq T_A \leq 70^\circ C$) is assured.
7. An initial pause of $100\mu s$ with CE HIGH followed by 8 pulses on RFSH, or an initial pause of 1ms with CE HIGH while RFSH held LOW, are required after power-up before proper device operation is assured.
8. AC characteristics assume $T = 5ns$.
9. V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}).
10. In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.

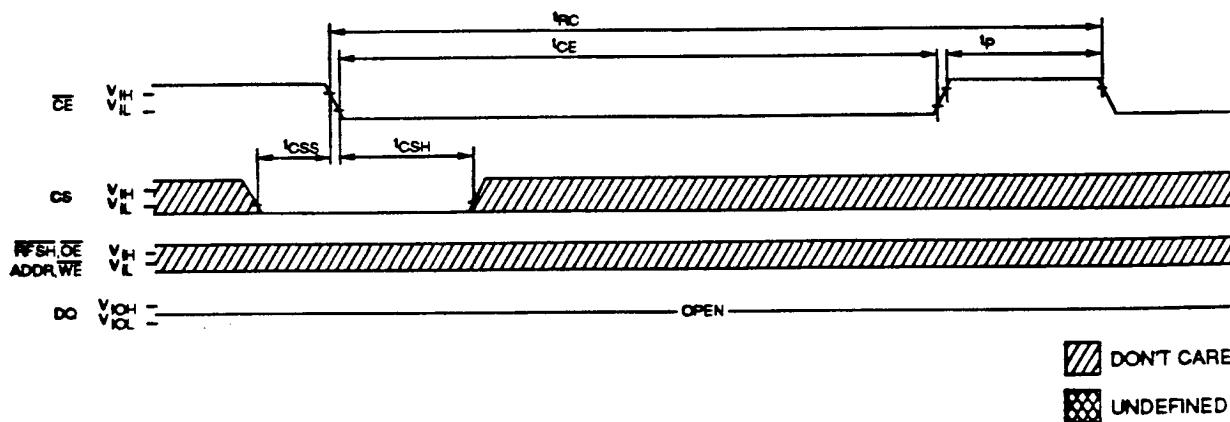
11. Measured with a load equivalent to 2 TTL gates and 100pF.
12. The timing parameters 'CHZ, 'OHZ, 'WHZ are referenced to the point at which the outputs tristate and are not referenced to valid output voltage levels. The rate of change and final output level will depend on the output loads connected to the outputs.
13. Valid data-in for a WRITE cycle is latched by the first rising edge of either WE or CE.
14. Valid addresses are latched by the falling edge of CE.
15. The timing parameter 'FRS (RFSH HIGH setup to CE active) is required for the first operating cycle (READ, WRITE or READ-MODIFY-WRITE) once coming out of either a SELF refresh cycle or a power-up. Subsequent operating cycles do not require tFRS to be met and the setup/delay is determined by 'FRA (AUTO refresh) or 'P-'RCD (operating cycles).
16. There are two refresh modes utilizing the internal AUTO REFRESH CONTROLLER and are controlled by the RFSH pin. Clocking of the RFSH pin will provide CBR-like refresh (AUTO), provided 'FAP max. (RFSH LOW period) is not violated. Once 'FAP max. is exceeded, the device will enter SELF refresh and will have started SELF refresh by 'FAS min.

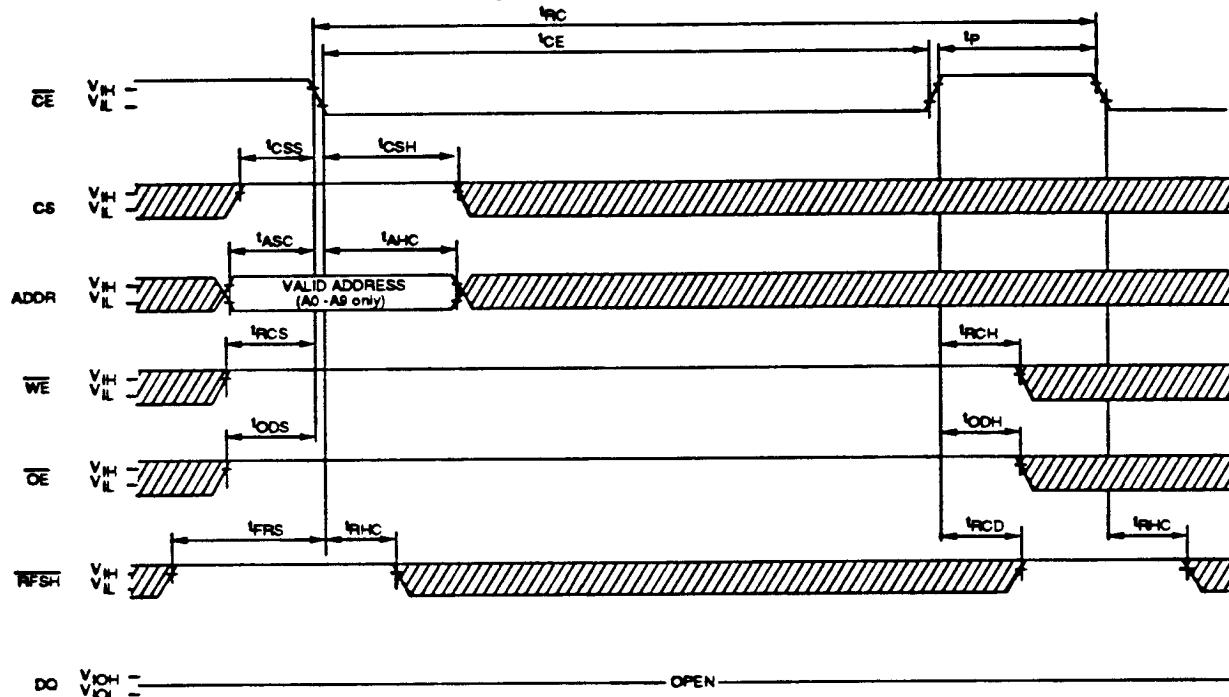

EXAMPLE OF AUTO vs SELF REFRESH CYCLES ON 100ns DEVICES

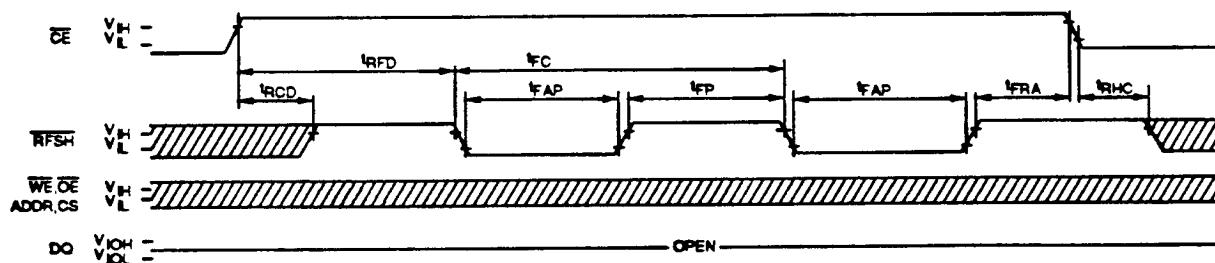

READ CYCLE

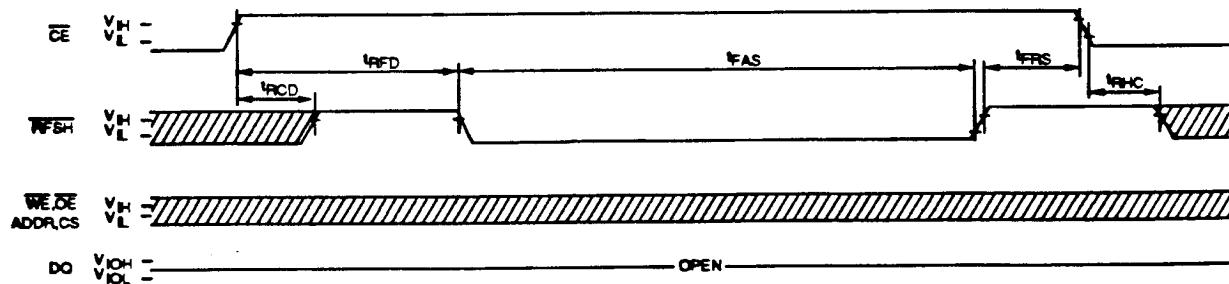

WRITE CYCLE #1 (OE HIGH)

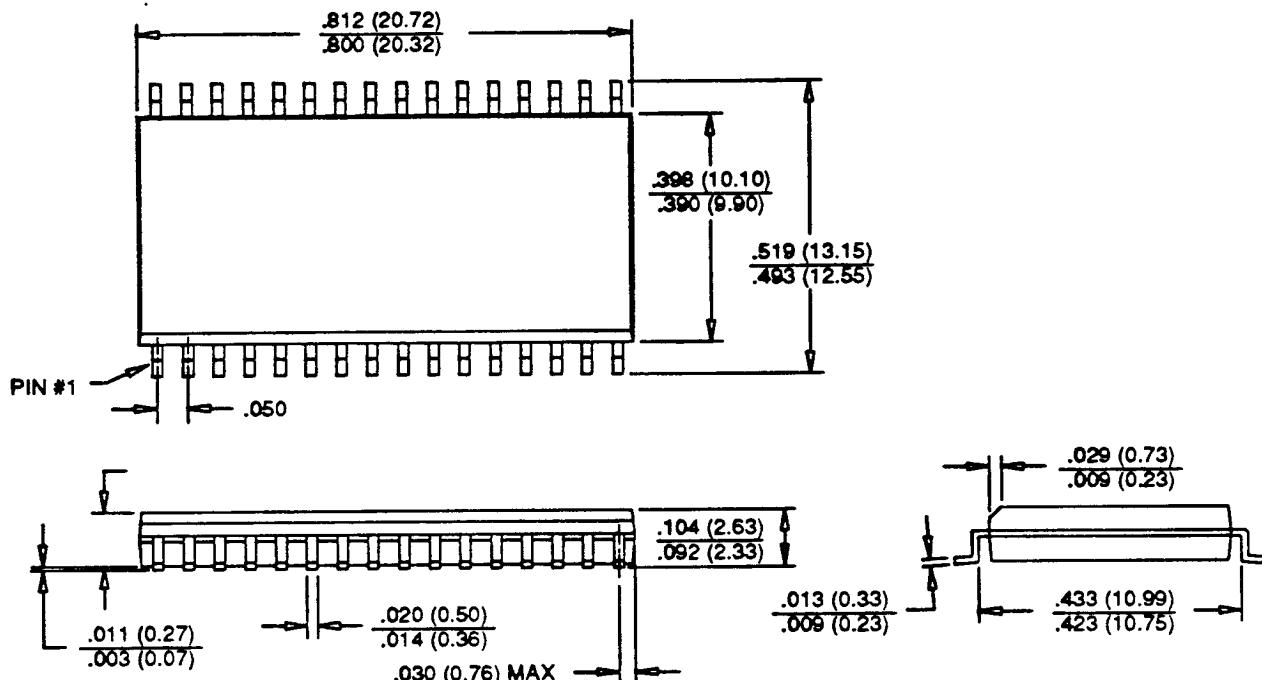

WRITE CYCLE #2 (OE CLOCKED)


WRITE CYCLE #3 (OE LOW)


READ-MODIFY-WRITE CYCLE


CS STANDBY CYCLE


ADDRESS (CE ONLY) REFRESH CYCLE


AUTO REFRESH CYCLE

SELF REFRESH CYCLE

DONT CARE
 UNDEFINED

32-PIN PLASTIC SOIC
(450 mil)

Note: Consult factory for dimensions of 525 mil SOIC package

ORDER INFORMATION

Pseudo Static, 80 ns in Plastic SOIC

PRODUCT #	PACKAGE	SPEED
		MT45C8128G -8

The Micron 1 MEG DRAM family is manufactured and quality controlled in Micron's modern Boise, Idaho USA facility using its low power, high performance CMOS silicon gate process. Micron DRAMs are functionally

equivalent to other manufacturers' products meeting JEDEC standards. Several parameters are sampled; however, functionality is consistently assured over a wider power supply, temperature and refresh range than specified. Each unit receives continuous AMBYX™ system level testing during many hours of accelerated burn-in prior to final test and shipment.

Please contact the factory for technical, test and application assistance. Micron can also furnish the sales representative and distributors nearest you. Micron's quality assured policy is to offer prompt, accurate and courteous service while assuring reliability and quality.