M5L 5101LP-1

1024-BIT (256-WORD BY 4-BIT) CMOS STATIC RAM

DESCRIPTION

This is a 256-word by 4-bit static RAM fabricated with the silicon-gate CMOS process and designed for low power dissipation and easy application of battery back-up.

The device has two chip-select inputs \overline{CS}_1 and CS_2 . While maintained in the chip non-select state, the device consumes power at the low value of only 1µA (max) standby current and accordingly is especially suitable as a memory system for battery-operated applications and for battery back-up.

The device operates on a single 5V supply, as does TTL, and inputs and outputs are directly TTL-compatible and are provided with common I/O terminals.

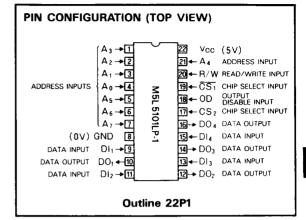
FEATURES

Access time:

450ns (max)

Low power dissipation in the standby mode:

5nW/bit (max)

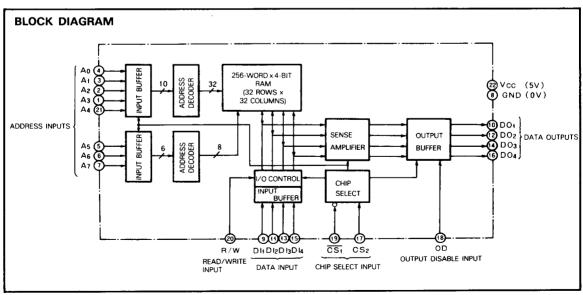

- Single 5V power supply
- Data holding at 2V supply voltage
- No external clock or refreshing operation required
- Both inputs and outputs are directly TTL-compatible
- Outputs are three-state, with OR-tie capability
- Simple memory expansion by chip-select signals
- Input and output data terminals are separate
- Interchangeable with Intel's 5101L-1 in pin configuration and electrical characteristics

APPLICATION

 Battery-driven or battery back-up small-capacity memory units

FUNCTION

The device provides separate data input and output terminals.


During a write cycle, when a location is designated by address signals A₀~A₇ and signal R/W goes low, the data of the DI inputs at that time is written.

During a read cycle, when a location is designated by address signals A₀~A₇, and signal R/W goes high, the data of the designated address is available at the DO terminals.

When signal \overline{CS}_1 is high or CS_2 is low, the chip is in the non-selectable state, disabling both reading and writing. In this case, the output is in the floating (high-impedance state) useful for OR-ties with the output terminals of other

When the signal OD is high, the output is in the floating state, so that OD is used as an input/output select control signal for common input/output operation.

The memory data can be held at a supply voltage of 2V, enabling battery back-up operation during power failure and power-down operation in the standby mode.

M5L 5101LP-1

1024-BIT (256-WORD BY 4-BIT) CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit	
Vcc	Supply voltage		-0.3~7	V	
Vı	Input voltage	With respect to GND	-0.3~V _{CC} +0.3	T v	
٧o	Output voltage		0~Vcc	- '	
Pd	Maximum power dissipation	Ta = 25°C	700	mW	
Topr	Operating free-air ambient temperature range		0~70	***	
Tstg	Storage temperature range		-40~125		

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70 ^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Limits		
		Min	Nom	Max	Ųnit
Vcc	Supply voltage	4.5	5	5.5	
Vss	Supply voltage	0	0	0	
VIL	Low-level input voltage	-0.3		0.65	·
ViH	High-level input voltage	2.2		Vcc	

ELECTRICAL CHARACTERISTICS ($Ta = 0 \sim 70\, ^{\circ}\text{C}$. $V_{CC} = 5 \text{V} \pm 10\, ^{\circ}\text{M}$, unless otherwise noted)

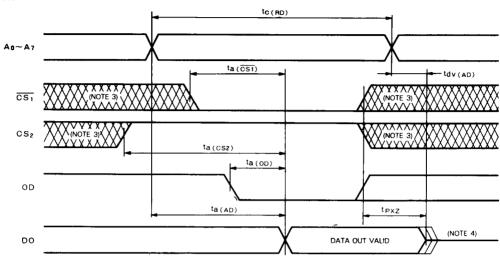
Symbol	Parameter	Tost senditions	Limits			
	Test conditions	Min	Тур	Max	Unit	
VIH	High-level input voltage		2.2		Vcc	
VIL	Low-level input voltage		-0.3		0.65	
Vон	High-level output voltage	$I_{OH} = -1mA$			0.4	<u>·</u>
VoL	Low-level output voltage	I _{OL} = 2 mA	2.4	_	0.4	Ť
lı .	Input current	V ₁ = 0 ~ 5.5V			±1	μА
lozн	Off-state high-level output current	$V_{1(\overline{CS1})} = 2.2V, V_0 = 2.4V \sim V_{CC}$	+			μΑ
lozL	Off-state low-level output current	$V_{1}(\overline{CS1}) = 2.2V, V_{0} = 0.4V$			-1	μΑ
1001	Supply current from V _{CC}	\overline{CS} 1 \leq 0.01V, other inputs = V _{CC} , Output open		9	22	mA
1002	Supply current from VCC	$\overline{CS}_1 \leq 0.01V$, other inputs = 2.2V, Output open		13	27	mA
I CC3	Supply current from VCC	CS ₂ ≤0.2V			1	μΑ
Cı	Input capacitance, all inputs	V ₁ = GND, V ₁ = 25mVrms, f = 1MHz	1 -	4	- 8	pF
Co	Output capacitance	V ₀ =GND, V ₀ = 25mVrms, f = 1MHz	+	8	12	pF

Note 1: Current flowing into an IC is positive; out is negative.

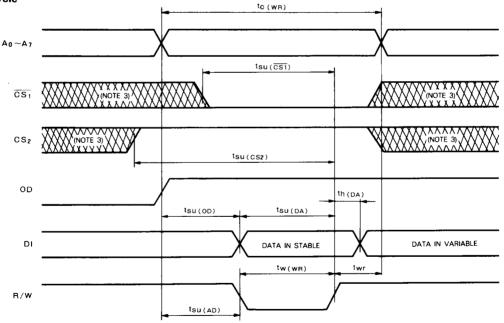
TIMING REQUIREMENTS (For Write Cycle) ($T_a = 0 \sim 70 \, \text{C}$, $V_{CC} = 5 \text{V} \pm 10 \%$, unless otherwise noted)

Symbol	Parameter	Alt.	Test conditions	Limits	Unit		
		symbol		Min	Тур	Max	Orin
tc (WR)	Write cycle time	twc		450			ns
tw(WR)	Write pulse width	twp	Input pulse	250			ns
tsu (AD)	Address setup time with respect to write pulse	taw	V _{IH} =2.2V	130			ns
twr	Write recovery time	twn	V _{IL} =0.65V	50		+	ns
tsu (OD)	OD setup time with respect to data-in	tos	$t_f = t_f = 20$ ns	130			ns
tsu (DA)	Data setup time	t _{DW}	Reference level = 1.5V	250			ns
th (DA)	Data hold time	t _{DH}	Load = $1TTL$, $C_L = 100pF$	50			ns
tsu (CS1)	Chip select setup time	tcwı	= . 4 C 100p.	350			ns
tsu (CS2)	Chip select setup time	tcwz		350			ns

SWITCHING CHARACTERISTICS (For Read Cycle) (Ta = 0 \sim 70°C. V_{CC}=5V \pm 10%, unless without noted)


Symbol	Parameter	Alt. Test conditions	Limits			11-4	
		symbol	- Took delikations	Min	Тур	Max	Unit
to(RD)	Read cycle time	t _{RC}	Input pulse V _{IH} =2.2V V _{IL} =0.65V tr=tf=20ns Reference level = 1.5V Load = 1TTL . C _L =100pF	450		-	ns
ta(AD)	Address access time	tA				450	ns
ta (CSI)	Chip select access time	t _{CO1}				400	ns
ta (CS2)	Chip select access time	t _{CO2}				500	ns
ta (OD)	OD access time	top				250	ns
tpxz	Output disable time (note 2)	t _{DF}		_		130	ns
tdv (AD)	Data valid time with respect to address	t _{OH1}		0			ns

Note 2 : t_{PXZ} is from $\overline{CS_1}$. CS_2 or OD, whichever occurs first.



1024-BIT (256-WORD BY 4-BIT) CMOS STATIC RAM

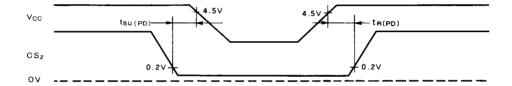
TIMING DIAGRAMS Read Cycle

Write Cycle

- Note 3: Hatching indicates the state is unknown.
 - 4 : Indicates that during this period the data-out is invalid for this definition of tdv(AD) and is in the floating state for this definition of tpxz.

1024-BIT (256-WORD BY 4-BIT) CMOS STATIC RAM

POWER-DOWN OPERATION


Electrical Characteristics (Ta=0~70°C, unless otherwise noted)

C	D	Test conditions		Limits		
Symbol	Parameter		Min	Тур	Max	Unit
V _{CC} (PD)	Power-down supply voltage		2			V
		2.2V≤Vcc(PD)≤Vcc	2.2			٧
Vi(CS)	Power down chip select input voltage	2 V ≨ V _{CC} (PD) ≨ 2.2 V	VCC(PD)			٧
I CC(PD)	Power-down supply current from VCC	V _{CC} =2 V, all inputs = 2 V			1	μА

Timing Requirements (Ta = 0 \sim 70°C, VCC = 5 V \pm 10 %. unless otherwise noted)

Symbol	Parameter		Unit		
		Min	Тур	Max	Onit
tsu(PD)	Power-down setup time	0			ns
t R(PD)	Power-down recovery time	tc(RD)			ns

Timing Diagram

