maxim
integrated.

MAX3109

Dual Serial UART with 128-Word FIFOs

General Description

The MAX3109 advanced dual universal asynchronous
receiver-transmitter (UART) has 128 words of receive
and transmit first-in/first-out (FIFO) and a high-speed SPI
or 12C controller interface. The 2x and 4x rate modes
allow a maximum of 24Mbps data rates. A phase-locked
loop (PLL) and the fractional baud-rate generators allow
a high degree of flexibility in baud-rate programming and
reference clock selection.

Independent logic-level translation on the transceiver
and controller interfaces allows ease of interfacing to
microcontrollers, FPGAs, and transceivers that are pow-
ered by differing supply voltages. Automatic hardware
and software flow control with selectable FIFO interrupt
triggering offloads low-level activity from the host control-
ler. Automatic half-duplex transceiver control with pro-
grammable setup and hold times allow the MAX3109 to
be used in high-speed applications such as PROFIBUS-
DP. The 128-word FIFOs have advanced FIFO control,
reducing host processor data flow management.

The MAX3109 is available in a 32-pin TQFN (5mm x
5mm) package and is specified over the -40°C to +85°C
extended temperature range.

Applications
Handheld Devices Automotive Infotainment
Power Meters Systems

Point-of-Sales Systems
HVAC or Building Control

Programmable Logic
Controllers (PLCs)

Medical Systems

Features
4 24Mbps (max) Baud Rate
4 Integrated PLL and Divider
4 1.71V to 3.6V Supply Range
4 High-Resolution Programmable Baud Rate
4 SPI Up to 26MHz Clock Rate
¢ Fast Mode Plus 12C Up to 1MHz
4 Automatic RTS_ and CTS_ Flow Control
4 Automatic XON/XOFF Software Flow Control
4 Special Character Detection
4 9-Bit Multidrop Mode Data Filtering
4 SIR- and MIR-Compliant IrDASM Encoder/Decoder
4 Flexible Logic Levels on the Controller and
Transceiver Interfaces
4 Line Noise Indication
4 1pA Shutdown Current
4 Two Timers Routed to GPIOs
4 8 Flexible GPIOs with 20mA Drive Capability
4 Register Compatible with MAX3107, MAX3108,
MAX14830

4 Small TQFN (5mm x 5mm) Package

Ordering Information

PART TEMP RANGE PIN-PACKAGE
MAX3109ETJ+ -40°C to +85°C 32 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

Functional Diagram

VL Vee Vig Vext
L ¢ TRANSMITTER | | —— e X0
LDOEN f——------=---1 W' SYNC - RX0
LOGIC-LEVEL v ~ ich
_ TRANSLATION 2 R IR 0TS0
SPI/12C o LR T e N AN SN R, RTSO
MOSAT |—aef oo - UARTO | @ L o] -] GPi00
MIS((J;LSS/I/)\S <o > o <}:"> <:: e gg:g;
B | INTERFACE D
SCLK/SCL | > REGISTERS PP R R GPIO3
AND LOGIC-LEVEL
- CONTROL MAX3109 TRANSLATION
T S S o L S T > i
RQ j—p---------- i RXt
<‘,: B B CT81
************************ » RTST
! } umRT [[q GP?O4
FRACTIONAL | 15 «— »! GPI05
XIN |- CRYSTAL 'O DIVIDER PLL BAUD-RATE I »| Grios
XOUT | OSCILLATOR o GENERATOR o« »| crio7
| |
AGND DGND

IrDA is a service mark of Infrared Data Association Corporation.

For pricing, delivery, and ordering information, please contact Maxim Direct

at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.

19-5806; Rev 2; 10/12

MAX3109
Dual Serial UART with 128-Word FIFOs

TABLE OF CONTENTS

Absolute Maximum Ratings 7
Package Thermal CharacteristiCs. 7
DC Electrical CharaCteristiCs oo oo 7
AC Electrical CharaCteristiCs 10
TIMING DIagramiso 12
Typical Operating CharacteristiCs 13
Pin Configuration 14
Pin DeSCriPlON . . 14
Detailed DesCriptioN 16
Receive and Transmit FIFOS 16
Transmitter Operation 17
Receiver Operation 17
Line Noise INAICatioN.o 18
Clock SeleCtion . . . oo 19
Crystal OsCillator 19
External CIOCK SOUICEo 19

PLL and Predivider 19
Fractional Baud-Rate Generators 19

2x and dx Rate MOdEes 20
Low-Frequency Timer 20
UART Clock t0 GPIO. . . oo 21
MUlIdrop Modeo 21
Auto Data Filtering in Multidrop Mode 21
Auto Transceiver Direction Control 21
Transmitter Triggering and Synchronization 21
Transmitter SYNnChronization 22
Intrachip and Interchip Synchronization. 22
Delayed TrigQering. . . . o oo 22
THQQEr ACCUIACY . . o v vttt e 22
Synchronization ACCUIACY oot 23

Auto Transmitter Disable 24

EChO SUPDIeSSION . . . o 24
Auto Hardware Flow COoNtrol o o 24
AUORTS CoNtrol. . . o o 24
AULOCTS Control. . . o 25

Auto Software (XON/XOFF) Flow Controlo 25
Receiver Flow Control 25
Transmitter Flow CoNtrol.o 26

2 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

TABLE OF CONTENTS (continued)

FIFO Interrupt TrgQering. « . . o oo e 26
Low-Power Standby MOdEs 26
Forced-Sleep MOde 26
AUtO-Sleep MOde 26
Multiple UARTs in Sleep MOde 26
Shutdown MoOde 27
Power-Up and TRQ o 27
INtErrUPt SITUCTUNE . . . 27
Interrupt Enabling. . . .o 27
Interrupt Clearingo 27
Register Map 28
Detailed Register DesCriptions. o 29
Serial Controller Interface. 57
SPlINterface 57
SPI SINGle-CyCle ACCESS oo 57

SPI BUISE ACCESS . . . 58

Fast Read CyCle. 58

2O INMErfaCe oo 58
START, STOP, and Repeated START Conditions. e 58

Slave AdAress 59

Bit Transfer . . . 59
Single-Byte Write 60

BUISt Wt . . 60
Single-Byte Read 61

Burst Read 61
Acknowledge Bits 62
Applications Information. 62
Startup and Initialization 62
Low-Power Operation 63
Interrupts and PolliNgG 63
Logic-Level Translation 63
Power-Supply SEqQUENCINGo o 64
CoNNECTOr ShariNg . . . oo 64
RS-232 5x3 ApPliCation 64
Typical Application CirCUIt 65
Chip INformation 65
Package Information. 65
ReViSioN HiStory . . . 66

Maxim Integrated 3

MAX3109

Dua

I Serial UART with 128-Word FIFOs

LIST OF FIGURES

Figure 1. 12C Timing Diagram.ot 12
Figure 2. SPI TIMINg Diagram 12
Figure 3. Transmit FIFO Signals 17
Figure 4. Receive Data Format. 17
Figure 5. Receive FIFO 18
Figure 6. Midbit Samplingo 18
Figure 7. Clock Selection Diagram 19
Figure 8. 2x and 4x Baud Rates. 20
Figure 9. GPIO_ Clock Pulse Generator. 20
Figure 10. Auto Transceiver Direction Control 22
Figure 11. Setup and Hold Times in Auto Transceiver Direction Control. 22
Figure 12. Single Transmitter TrigQer ACCUIACY oottt e 23
Figure 13. Multiple Transmitter Synchronization ACCUracy. e 23
Figure 14. Half-Duplex with ECho Suppression 24
Figure 15. ECho SUppression TiIMiNgot 25
Figure 16. Simplified Interrupt Structure. 27
Figure 17. PLL Signal Path 49
Figure 18. SPIWrite CyCleo 57
Figure 19. SPI Ready CyCle 57
Figure 20. SPI Fast Read CyCle 58
Figure 21. 12C START, STOP, and Repeated START Conditionsot 59
Figure 22. Write Byte SeqQUENCE. 60
Figure 23. Burst Write SEQUENCEo 60
Figure 24. Read Byte SEQUENCE 61
Figure 25. Burst Read SEQUENCE. 61
Figure 26. ACKNOWIEAQE 62
Figure 27. Startup and Initialization Flowchart 62
Figure 28. Logic-Level Translation 63
Figure 29. Connector Sharing with a USB Transceiver e 64
Figure 30. RS-232 Application 64
Figure 31. RS-485 Half-Duplex Application 65
4 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

LIST OF TABLES

Table 1. StopBits Truth Table 40
Table 2. Lengthx Truth Table 40
Table 3. SwFlow[3:0] Truth Table 45
Table 4. PLLFactorx Selection Guide. 49
Table 5. GloblComnd Command DeSCriptionS 53
Table 6. Extended Mode Addressing (SPIONly) 53
Table 7. SPI Command Byte Configuration 57
Table 8. 12C ADAress Mapo 59

Receive Hold Register (RHR). 29
Transmit Hold Register (THR). 29
IRQ Enable Register (IRQEN) 30
Interrupt Status Register (ISR) 31
Line Status Interrupt Enable Register (LSRINtEN). 32
Line Status Register (LSR) 33
Special Character Interrupt Enable Register (SpcIChrIntEn) 34
Special Character Interrupt Register (SpclCharint) 35
STS Interrupt Enable Register (STSINtEN) 36
Status Interrupt Register (STSINY)o 37
MODET Register. . . o 38
MODE2 RegiSter . . . oo 39
Line Control Register (LCR)o 40
Receiver Timeout Register (RXTIMeOUL) 41
HDpIXDelay Register 41
DA REgiSter o 42
Flow Level Register (FIOWLVI) . .. o 42
FIFO Interrupt Trigger Level Register (FIFOTrgLvl) e 43
Transmit FIFO Level Register (TXFIFOLVI)o e e 43
Receive FIFO Level Register (RXFIFOLVI)o 43
Flow Control Register (FIOWCHr). o 44
XONT Register . o 45
XON2 Register . ..o 46
XOFFT Register . .o 46
XOFF2 Register . .. 47
GPIO Configuration Register (GPIOCONTG) 47

Maxim Integrated 5

MAX3109
Dual Serial UART with 128-Word FIFOs

LIST OF REGISTERS (continued)

GPIO Data Register (GPIODAta)t 48
PLL Configuration Register (PLLCONfIQ) 49
Baud-Rate Generator Configuration Register (BRGConfig). 50
Baud-Rate Generator LSB Divisor Register (DIVLSB) 50
Baud-Rate Generator MSB Divisor Register (DIVMSB) 51
Clock Source Register (CLKSOUICE) oo 51
Global IRQ Register (GloballRQ) 52
Global Command Register (GloblComnd) 53
Transmitter Synchronization Register (TXSynch) 54
Synchronization Delay Register 1 (SynchDelay1) 55
Synchronization Delay Register 2 (SynchDelay2) 55
Timer Register 1 (TIMERT)o 56
Timer Register 2 (TIMER2) 56
Revision Identification Register (RevID) 56

6 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to AGND.) Continuous Power Dissipation (Ta = +70°C)
VL, VeC, VEXT, XIN ... -0.3V to +4.0V TQFN (derate 34.5mW/°C above +70°C).............. 2758.6mW
XOUT oo -0.3V to (Vcc + 0.3V) Operating Temperature Rangeccccccoeene.
VA oo -0.3V to the lesser of (VCC + 0.3V) and 2.0V Maximum Junction Temperature.....
RST, TRQ, MOSI/A1, CS/A0, SCLK/SCL, Storage Temperature Range...............
MISO/SDA, LDOEN, SPI/I2C................... -0.3V to (VL + 0.3V) Lead Temperature (soldering, 10s)
TX_, RX_, CTS_, GPIO_ ..o, -0.3V to (VEXT + 0.3V) Soldering Temperature (reflow)ccccooevevericeererena.
DGND ..o -0.3V to +0.3V

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TQFN
Junction-to-Ambient Thermal Resistance (8JA)........... 47°C/W
Junction-to-Case Thermal Resistance (6JC)............... 1.7°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-lay-
er board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

DC ELECTRICAL CHARACTERISTICS

(Vcc=1.71Vto 3.6V, VL = 1.71V t0 3.6V, VEXT = 1.71V to 3.6V, Ta = -40°C to +85°C, unless otherwise noted. Typical values are at
Vce = 2.8V, VL = 1.8V, VEXT = 2.5V, Ta = +25°C.) (Notes 2, 3)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX | UNITS

Digital Interface Supply Voltage VL 1.71 3.6 \Y
Internal PLL disabled and bypassed 1.71 3.6

Analog Supply Voltage Vce \
Internal PLL enabled 2.35 3.6

UART Interface Logic Supply

Voltage VEXT 1.71 3.6 \

Logic Supply Voltage V1s 1.65 1.95)

CURRENT CONSUMPTION

1.8MHz crystal oscillator active, PLL

disabled, SPI/12C interface idle, UART 500
interfaces idle, LDOEN = high

Vce Supply Current Icc uA
Baud rate = 1Mbps, 20MHz external clock,
SPI/I2C interface idle, PLL disabled, all 500

UARTSs in loopback mode, LDOEN = low

V1g Input Power-Supply Current

in Shutdown Mode l18SHDN | RST = low, all inputs and outputs are idle 100 HA

RST = low, MISO, SCLK, MOSI, SPI_I2C,
ISHDN | CS, LDOEN = 0/VL, CTSBO/1 = O/VEXT, 0 1 PA
CTSBO/1 = O/VEXT

Vce + VL + VA Shutdown Supply
Current

Maxim Integrated 7

http://www.maximintegrated.com/thermal-tutorial

MAX3109

Dual Serial UART with 128-Word FIFOs

DC ELECTRICAL CHARACTERISTICS (continued)

(Vcc=1.71Vto 3.6V, VL =171V 10 3.6V, VExT = 1.71V to 3.6V, Ta = -40°C to +85°C, unless otherwise noted. Typical values are at
Vce = 2.8V, VL = 1.8V, VExT = 2.5V, Ta = +25°C.) (Notes 2, 3)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX | UNITS
Baud rate = 1Mbps, 20MHz external clock,
V1g Input Power-Supply Current l18 PLL disabled, UART in loopback mode, 4 mA
LDOEN = low (Note 4)
SCLK/SCL, MISO/SDA
Sink current = 3mA, Vi > 2V 0.4
MISO/SDA Output Logic-Low VOLI2G 0o v
Voltage in 12C Mode Sink current = 3mA, Vi < 2V VLX
MISO/SDA Output Low Voltage . B
in SP| Mode VOLSPI Sink current = 2mA 0.4 Vv
MISO/SDA Output High Voltage _ VL -
in SP| Mode VOHSPI | Source current = 2mA 04 Vv
. 0.3 x
Input Logic-Low Voltage ViIL SPI and 12C mode i \
o 0.7 x
Input Logic-High Voltage ViH SPI and 12C mode i \
Input Hysteresis VHYST SPI and 12C mode O\O/ﬁ X \
Input Leakage Current liL VIN = 0 to VL, SPI and 12C mode -1 +1 pA
Input Capacitance CIN SPI and 12C mode 5 pF
SPI/12C, CS/A0, MOSI/A1 INPUTS
Input Logic-Low Voltage ViL SPI and 12C mode Ofo \
— 0.7 x
Input Logic-High Voltage VIH SPl and 12C mode VL \
Input Hysteresis VHYST SPI and 12C mode 50 mV
Input Leakage Current L VIN = 0 to Vi, SPI and I12C mode -1 +1 uA
Input Capacitance CIN SPI and 12C mode 5 pF
IRQ OUTPUT (OPEN DRAIN)
Output Logic-Low Voltage VoL Sink current = 2mA 0.4 Vv
Output Leakage Current loL VIRQ = 0 to V|, IRQ is not asserted -1 +1 A
LDOEN AND RST INPUTS
Input Logic-Low Voltage ViL OVSLX Vv
Input Logic-High Voltage ViH OJLX Y
Input Hysteresis VHYST 50 mV
Input Leakage Current I VIN=0to VL -1 +1 PA

Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

DC ELECTRICAL CHARACTERISTICS (continued)

(Vcc=1.71Vto 3.6V, VL = 1.71V t0 3.6V, VEXT = 1.71V t0 3.6V, Ta = -40°C to +85°C, unless otherwise noted. Typical values are at
Vce = 2.8V, VL = 1.8V, VEXT = 2.5V, Ta = +25°C.) (Notes 2, 3)

PARAMETER | SYMBOL | CONDITIONS MIN TYP MAX | UNITS
UART INTERFACE
RTS_, TX_ OUTPUTS

Output Logic-Low Voltage VoL Sink current = 2mA 0.4 \
Output Logic-High Voltage VOH Source current = 2mA 3E7X: vV
Input Leakage Current I Output is three-stated, VRTS = 0 to VEXT -1 +1 pA
Input Capacitance CIN High-Z mode 5 pF
CTS_, RX_ INPUTS
. 0.3x
Input Logic-Low Voltage \Y \
put Logl W g IL VEXT
. . 0.7 x
Input Logic-High Voltage \Y \Y
put Logic-Hig g H VEXT
Input Hysteresis VHYST 50 mV
CTS_ Input Leakage Current L VCTS_ = 0 to VEXT -1 +1 HA
RX_ Pullup Current IPU VRx_ = 0V, VEXT = 3.6V -7.5 -5.5 -3.5 HA
Input Capacitance CIN 5 pF
GPIO_ INPUTS/OUTPUTS
Sink current = 20mA, push-pull or open- 045

) drain output type, VEXT > 2.3V
Output Logic-Low Voltage VoL - Vv
Sink current = 20mA, push-pull or open-

drain output type, VEXT < 2.3V 0.55
Output Logic-High Voltage Vo Source current = 5mA, push-pull output VEXT - y
type 0.4
Input Logic-Low Voltage VIL GPIO_ is configured as an input 0.4 Vv
Input Logic-High Voltage ViH GPIO_ is configured as an input \2//ES><: \
Pulldown Current IPD VGP'.O— = VExT = .3'6\/’ GPIO_Ts 3.5 5.5 7.5 pA
configured as an input
XIN
Input Logic-Low Voltage ViL 0.6 \
Input Logic-High Voltage ViH 1.2 Y
Input Capacitance CXIN 16 pF
XOUuT
Input Capacitance Cxout 16 pF

Maxim Integrated 9

MAX3109

Dual Serial UART with 128-Word FIFOs

AC ELECTRICAL CHARACTERISTICS

(Vcc=1.71Vto0 3.6V, VL = 1.71V 10 3.6V, VEXT = 1.71V to 3.6V Ta = -40°C to +85°C, unless otherwise noted. Typical values are at
Vce = 2.8V, VL = 1.8V, VExT = 2.5V, Ta = +25°C.) (Notes 2, 3)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX | UNITS
External Cystal Frequency fxOsc 1 4 MHz
External Clock Frequency fcLK 0.5 35 MHz
External Clock Duty Cycle (Note 5) 45 55 %
E}Zﬂ?}i Zt(;eugsgirator Clock fREF (Note 5) 96 MHz
I2C BUS: TIMING CHARACTERISTICS (Figure 1)
Standard mode 100
SCL Clock Frequency fscL Fast mode 400 kHz
Fast mode plus 1000
Standard mode 4.7
Bus Free Time Bgtween a STOP {BUF Fast mode 13 s
and START Condition
Fast mode plus 0.5
Standard mode 4.0
Hold Time for START Condit'ign tHD:STA | Fast mode 06 us
and Repeated START Condition
Fast mode plus 0.26
Standard mode 4.7
Low Period of the SCL Clock tLow Fast mode 1.3 us
Fast mode plus 0.5
Standard mode 4.0
High Period of the SCL Clock tHIGH Fast mode 0.6 us
Fast mode plus 0.26
Standard mode 0 0.9
Data Hold Time tHD:DAT | Fast mode 0 0.9 us
Fast mode plus 0
Standard mode 250
Data Setup Time tsSU:DAT | Fast mode 100 ns
Fast mode plus 50
] Standard mode 4.7
g((e)t:dpitiTc;ne for Repeated START {sUSTA | Fast mode 02 s
Fast mode plus 0.26
Standard mode (0.3 x V| t0 0.7 x VL) 20 + 1000
(Note 6) 0.1Cp
Rise T?me of Incoming SDA and R 20 + ns
SCL Signals Fast mode (0.3 x V|_to 0.7 x VL) (Note 6) 0.1Cs 300
Fast mode plus 120
Standard mode (0.3 x V|_t0 0.7 x VL) 20 + 1000
(Note 6) 0.1Cp
Fall Time of SDA and SCL
Signals 7 Fast mode (0.3 x VL t0 0.7 x VL) (Note 6) | 20+ 300 ns
0.1Cg
Fast mode plus 120

10

Maxim Integrated

AC ELECTRICAL CHARACTERISTICS (continued)

(Vcc =1.71Vt0 3.6V, VL = 1.71V 10 3.6V, VEXT = 1.71V to 3.6V TA = -40°C to +85°C, unless otherwise noted. Typical values are at
Vce = 2.8V, VL = 1.8V, VEXT = 2.5V, Ta = +25°C.) (Notes 2, 3)

MAX3109
Dual Serial UART with 128-Word FIFOs

PARAMETER SYMBOL CONDITIONS MIN TYP MAX | UNITS
Standard mode 4.7
Setup Time for STOP Condition tsu:sTO | Fast mode 0.6 us
Fast mode plus 0.26
N Standard mode (Note 5) 400
ggEaCHNe Load for SDA and Ce Fast mode (Note 5) 200 oF
Fast mode plus (Note 5) 550
SCL and SDA /O Capacitance Cijo (Note 5) 10 pF
Pulse Width of Spike Suppressed tsp 50 ns
SPI BUS: TIMING CHARACTERISTICS (Figure 2)
SCLK Clock Period tCH+tCL 38.4 ns
SCLK Pulse Width High tcH 16 ns
SCLK Pulse Width Low tcL 16 ns
CS Fall to SCLK Rise Time tcss 0 ns
MQOSI Hold Time tDH 3 ns
MQOSI Setup Time tDs 5 ns
Output Data Propagation Delay tDO 20 ns
MISO Rise and Fall Times tFT 10 ns
CS Hold Time tCSH 30 ns
Note 2: All units are production tested at Ta = +25°C. Specifications over temperature are guaranteed by design.
Note 3: Currents entering the IC are negative and currents exiting the IC are positive.
Note 4: When V18 is powered by an external voltage supply, it must have current capability above or equal to I1s.
Note 5: Guaranteed by design; not production tested.
Note 6: Cg is the total capacitance of either the clock or data line of the synchronous bus in pF.
Maxim Integrated "

MAX3109
Dual Serial UART with 128-Word FIFOs

Timing Diagrams

START CONDITION REPEATED START CONDITION STOP CONDITION
) (Sn) (P)

3 | T -y

D)
SDA
tBUF

D)
tHD:STA | tHD:STA tsu:sT0

START CONDITION
()
Figure 1. I2C Timing Diagram
7S : oo ;
- igss - -ty — T
< fcsH > : il R : : |
SCLK i E : / \ / N e.e / \ / \ i
il e | |
3 | »ipH < : :

MISO (cee ><

tFr > -

Figure 2. SPI Timing Diagram

12 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

Typical Operating Characteristics
(Vcc =25V, VL = 2.5V, VEXT = 2.5V, VLDOEN = V|, UART1 in sleep mode, Ta = +25°C unless otherwise noted.)

SINK CURRENT (OPEN DRAIN) SOURCE CURRENT (PUSH-PULL)
vs. GPI0_ OUTPUT LOW VOLTAGE vs. GPI0_OUTPUT HIGH VOLTAGE

180 70

160 60

140 ya LY
/ 50 VexT=3.3V
120 VexT = 3.6V VEXT =25V /

100 / 40 /

MAX3109 toc01
MAX3109 toc02

< =
& % /// S— 3 _§ 30 *VEXT:ISV\ \
60 // VexT=2.5V 2 J \ \
40 / \ \ \
" | % 10
. W Vi =171V 0 \ \ \
0 1 2 3 4 0 1 2 3 4
VoL (V) VoH (V)

TRANSMITTER SYNCHRONIZATION

MAX3109 toc03

v

L

| . B . . -] VsoL
| I 2V/div

™1 Vo
2V/div
] 115.2kBaud
ov

T e V11

% l.l‘l. L et . .] 2v/div

I o 460.8kBaud
i .

12C MODE

10us/div

Maxim Integrated 13

MAX3109
Dual Serial UART with 128-Word FIFOs

Pin Configuration

TOP VIEW ? % ‘E ‘5 2 2 x
e & e e x© o ~ =
PRI
izl T s fcTso
xour |27} | - 14| crios
oo 287 | MAX3109 . 13| eron
ao |29} | - 112 eroa
LDOEN |30¢ - 111 apioo
N ER S w10 | oeo
Vee |32 9 | spiizc
tiieiisiiatisiieiiriie
2 3 =
3
=
*CONNECT EP TO AGND.
Pin Description
PIN NAME FUNCTION
L Active-Low Reset Input. Drive RST low to force all oftﬁ UARTs into hardware reset mode. Driving RST
1 RST low also enables low-power shutdown mode. When RST is low, the internal V18 LDO is switched off,

even if the LDOEN input is kept high.

Serial-Data Output. When SPI/12C is high, MISO/SDA functions as the SPI master input-slave output
2 MISO/SDA | (MISO). When SPI/I2C is low, MISO/SDA functions as the SDA, 12C serial-data input/output. MISO/SDA is
high impedance when RST is driven low or when the externally supplied V18 is powered off.

Serial-Clock Input. When SPI/I2C is high, SCLK/SCL functions as the SCLK SPI serial-clock input (up to
3 SCLK/SCL | 26MHz). When SPI/I2C is low, SCLK/SCL functions as the SCL, 12C serial-clock input (up to 1IMHz in fast
mode plus).

General-Purpose Input/Output 7. GPIO7 is user-programmable as an input or output (push-pull or open
4 GPIO7 drain) or an external event-driven interrupt source. GPIO7 has a weak pulldown resistor to DGND when
configured as an input.

Active-Low Chip-Select and Address 0 Input. When SPI/I2C is high, CS/A0 functions as the CS, SPI
5 CS/A0 | active-low chip-select. When SPI/12C is low, CS/AQ functions as the A0 12C device address programming
input. Connect CS/A0 to DGND, VL, SCL, or SDA when SPI/12C is low.

Serial-Data Input and Address 1 Input. When SPI/12C is high, MOSI/A1 functions as the SPI master
6 MOSI/A1 | output-slave input (MOSI). When SPI/I2C is low, MOSI/A1 functions as the A1 12C device address
programming input. Connect MOSI/A1 to DGND, V|, SCL, or SDA when SPI/12C is low.

Active-Low Interrupt Open-Drain Output. IRQ is asserted when an interrupt is pending. TRQ is high

! IRQ impedance when RST is driven low.

14 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

Pin Description (continued)

PIN NAME FUNCTION
8 y Digital Interface Power Supply. VI powers the internal logic-level translators for RST, IRQ, MOSI/A1, CS/AQ,
L SCLK/SCL, MISO/SDA, LDOEN, and SPI/I2C. Bypass VL with a 0.1uF ceramic capacitor to DGND.

9 SPII2C | SPI Selector Input or Active-Low 12C. Drive SPI/I2C low to enable I2C. Drive SPI/I2C high to enable SPI.

10 DGND Digital Ground
General-Purpose Input/Output 0. GPIOO is user-programmable as an input or output (push-pull or open

11 GPIOO drain) or an external event-driven interrupt source. GPIOO has a weak pulldown resistor to DGND when
configured as an input. GPIOO is the reference clock output when bit 7 of the TxSynch register is set to
high (see the UART Clock to GPIO section for more information).
General-Purpose Input/Output 4. GPIO4 is user-programmable as an input or output (push-pull or open

10 GPIO4 drain) or an external event-driven interrupt source. GPIO4 has a weak pulldown resistor to DGND when
configured as an input. GPIO4 is the reference clock output when bit 7 of the TxSynch register is set to
high (see the UART Clock to GPIO section for more information).
General-Purpose Input/Output 1. GPIO1 is user-programmable as an input or output (push-pull or open

13 GPIO1 drain) or an external event-driven interrupt source. GPIO1 has a weak pulldown resistor to DGND when
configured as an input. GPIO1 is the TIMER output when bit 7 of the TIMER2 register is set high.
General-Purpose Input/Output 5. GPIO5 is user-programmable as an input or output (push-pull or open

14 GPIO5 drain) or an external event-driven interrupt source. GPIO5 has a weak pulldown resistor to DGND when
configured as an input. GPIO5 is the TIMER output when bit 7 of the TIMER2 register is set high.

15 CTSO Active-Low Clear-to-Send Input for UARTO. CTSO is a flow-control status input.

16 CTSH Active-Low Clear-to-Send Input for UART1. CTS1 is a flow-control status input.

17 1 Serial Transmitting Data Output for UART1. TX1 is logic-high when RST is low or when the externally
supplied V18 is not powered.

18 ™0 Serial Transmitting Data Output for UARTO. TXO is logic-high when RST is low or when the externally
supplied V18 is not powered.

19 RX0 Serial Receiving Data Input for UARTO. RX0 has an internal weak pullup resistor to VEXT.

20 RX1 Serial Receiving Data Input for UART1. RX1 has an internal weak pullup resistor to VEXT.
Active-Low Request-to-Send Output for UARTO. RTSO can be set high or low by programming the LCR

21 RTSO register. RTSO is the UART system clock/fractional divider output when bit 7 of the CLKSource register is
set high. RTSO0 is logic-high when RST is low or when the externally supplied V18 is not powered.
Active-Low Request-to-Send Output for UART1. RTS1 can be set high or low by programming the LCR

22 RTS1 register. RTS1 is the UART system clock/fractional divider output when bit 7 of the CLKSource register is
set high. RTS1 is logic-high when RST is low or when the externally supplied V18 is not powered.
General-Purpose Input/Output 2. GPIO2 is user-programmable as input or output (push-pull or open

23 GPIO2 drain) or an external event-driven interrupt source. GPIO2 has a weak pulldown resistor to DGND when
configured as an input.
General-Purpose Input/Output 3. GPIO3 is user-programmable as input or output (push-pull or open

24 GPIO3 drain) or an external event-driven interrupt source. GPIO3 has a weak pulldown resistor to DGND when
configured as an input.

o5 v Transceiver Interface Power Supply. VEXT powers the internal logic-level translators for RX_, TX_, RTS_,

EXT CTS_, and GPIO_. Bypass VExT with a 0.1pF ceramic capacitor to DGND.
%6 YIN Crystal/Clock Input. When using an external crystal, connect one end of the crystal to XIN and the other

end to XOUT. When using an external clock source, drive XIN with the single-ended external clock.

Maxim Integrated

15

MAX3109

Dual Serial UART with 128-Word FIFOs

Pin Description (continued)

PIN NAME FUNCTION
57 XOUT Crystal Output. When using an external crystal, connect one end of the crystal to XOUT and the other
end to XIN. When using an external clock source, leave XOUT unconnected.
General-Purpose Input/Output 6. GPIO6 is user-programmable as input or output (push-pull or open
28 GPIO6 drain) or an external event-driven interrupt source. GPIO6 has a weak pulldown resistor to DGND when
configured as an input.
29 AGND Analog Ground
30 LDOEN LDO Enable Input. Drive LDOEN high to enable the internal 1.8V LDO. Drive LDOEN low to disable the
internal LDO. Supply V1g with an external voltage source when LDOEN is low.
Internal 1.8V LDO Output and 1.8V Power-Supply Input. Bypass V1g with a 1uF ceramic capacitor to
31 V1ig
DGND.
Analog Power Supply. Vcc powers the PLL and internal LDO. Bypass Vcc with a 0.1uF ceramic
32 Vce ’
capacitor to AGND.
— EP Exposed Pad. Connect EP to AGND. Do not use EP as the main AGND connection.

Detailed Description

The MAX3109 dual universal asynchronous receiver-
transmitter (UART) bridges an SPI/MICROWIRE™ or
|2C microprocessor bus to an asynchronous serial-data
communication link, such as RS-485, RS-232, or IrDA.
The MAX3109 is configured through 8-bit registers,
which are accessed through the SPI or 12C interface.
These registers are organized by related function as
shown in the Register Map section.

The host controller loads data into the Transmit Hold reg-
ister (THR) through the SPI or 12C interface. This data is
automatically pushed into the transmit FIFOs, formatted,
and sent out at TX_. The MAX3109 adds START, STOP,
and parity bits to the data before transmitting the data
out at the selected baud rate. The clock configuration
registers determine the baud rates, clock source selec-
tion, clock frequency prescaling, and fractional baud-
rate generator settings for each UART.

The MAX3109 receivers detect a START bit as a high-
to-low transition on RX_. An internal clock samples this
data at 16 times the baud rate. The received data is
automatically placed in the receive FIFOs and can then
be read out by the host controller through the Receiver
Hold register (RHR).

The device features two identical UARTs that are com-
pletely independent except for the input clock. Text in
this data sheet references individual UART operation,
unless otherwise noted.

The MAX3109’s register setis compatible with the MAX3107.
Refer to Application Note 4938: Differences Between

16

Maxim's Advanced UART Devices for information on how
to transfer firmware from the MAX3107 to the MAX3109.

Receive and Transmit FIFOs
Each UART’s receiver and transmitter has a 128-word-
deep FIFOs, reducing the number of intervals that the
host processor needs to dedicate for high-speed, high-
volume data transfer to and from the device. As the data
rates of the asynchronous RX_/TX_ interfaces increase
and get closer to those of the host controller’s SPI/I2C
data rates, UART management and flow-control can
make up a significant portion of the host’s activity. By
increasing FIFO size, the host is interrupted less often
and can use data block transfers to and from the FIFOs.

FIFO trigger levels can generate interrupts to the host
controller, signaling that programmed FIFO fill levels
have been reached. The transmitter and receiver trigger
levels are programmed through the FIFOTrgLvl register
with a resolution of eight FIFO locations. The receive
FIFO trigger signals to the host either that the receive
FIFO has a defined number of words waiting to be read
out in a block or that a known number of vacant FIFO
locations are available and ready to be filled. The trans-
mit FIFO trigger generates an interrupt when the transmit
FIFO fill level is above the programmed trigger level. The
host then knows to throttle data writing to the transmit
FIFO through THR.

The host can read out the number of words pres-
ent in each of the FIFOs through the TxFIFOLvI and
RxFIFOLuvI registers.

MICROWIRE is a trademark of National Semiconductor Corp.

Maxim Integrated

MAX3109

Dual Serial UART with 128-Word FIFOs

The contents of the TxFIFO and RxFIFO are both cleared
when the MODE2[1]: FIFORst bit is set high

.Transmitter Operation

Figure 3 shows the structure of the transmitter with the
TxFIFO. The transmit FIFO can hold up to 128 words of
data that are added by writing to the THR register.

The current number of words in the TxFIFO can be read
out by the host controller through the TxFIFOLVI regis-
ter. The transmit FIFO fill level can be programmed to
generate an interrupt when greater than or equal to a
programmed number of words are present in the TxFIFO
through the FIFOTrgLvl register. This TxFIFO interrupt

DATA FROM SPI/I2C INTERFACE —¢

THR 128
TRIGGER
ISR[4] <———— FIFOTrgLvI[3:0]
TXFIFOLY ~e— eI CURRENT FILL LEVEL
TRANSMIT FIFO
3
EMPTY 2
ISRI5) ————— 1
| TRANSMITTER T

Figure 3. Transmit FIFO Signals

trigger level is selectable by the FIFOTrgLvI[3:0] bits.
When the transmit FIFO fill level increases to at least the
programmed trigger level, an interrupt is generated in
ISR[4]: TxTrigint.

An interrupt is generated in ISR[5]: TFifoEmptyInt when
the transmit FIFO is empty. ISR[5] goes high when
the transmitter starts transmitting the last word in the
TxFIFO. An additional interrupt is generated in STSInt[7]:
TxEmptyInt when the transmitter completes transmitting
the last word.

To halt transmission, set the MODE1[1]: TxDisabl bit
high. After TxDisabl is set, the transmitter completes the
transmission of the current character and then ceases
transmission. Turn the transmitter off prior to enabling
auto software flow control and AutoRTS flow control.

The TX_ output logic can be inverted through the
IrDA[5]: TxInv bit. Unless otherwise noted, all transmitter
logic described in this data sheet assumes that TxInv is
set low.

Receiver Operation
The receiver expects the format of the data at RX_ to
be as shown in Figure 4. The quiescent logic state is
logic-high and the first bit (the START bit) is logic-low
(RxInv = 0). The 8-bit data word expected to be received
LSB first. The receiver samples the data near the midbit
instant (Figure 4). The received words and their associ-
ated errors are deposited into the receive FIFO. Errors
and status information are stored for every received word
(Figure 5). The host reads the data out of the receive
FIFO by reading RHR, which comes out oldest data first.
After a word is read out of RHR, LSR contains the status
information for that word.

LSB

MSB

RECEIVED DATA *START/ DO >< D1 >< D2 >< D3 >< D4 >< D5 >< D6 >< D7 XPARITY/ STop STopP

NOTE: Rxnv = 0.

oo A S B B

(A S N R N

Figure 4. Receive Data Format

Maxim Integrated

17

MAX3109

Dual Serial UART with 128-Word FIFOs

The following three error conditions are checked for each
received word: parity error, frame error, and noise on the
line. Parity errors are detected by calculating either even
or odd parity of the received word as programmed by
register settings. Framing errors are detected when the
received data frame does not match the expected frame
format in length. Line noise is detected by checking the
logical congruency of the three samples taken of each
bit (Figure 6).

The receiver can be turned off by setting the MODE1[O]:
RxDisabl bit high. After this bit is set high, the MAX3109
turns the receiver off immediately following the current
word and does not receive any further data.

The RX_ input logic can be inverted by setting the
IrDA[4]: RxInv bit high. Unless otherwise noted, all
receiver logic described in this data sheet assumes that
RxInv is set low.

Line Noise Indication
When operating in standard or 2x (i.e., not 4x) rate mode,
the MAX3109 checks that the binary logic level of the
three samples per received bit are identical. If any of
the three samples per received bit have differing logic
levels, then noise on the transmission line has affected
the received data and it is considered to be noisy. This
noise indication is reflected in the LSR[5]: RxNoise bit for
each received byte. Parity errors are another indication
of noise, but are not as sensitive.

ONE BIT PERIOD >

RECEIVED
DATA
| RECEIVER [a—RX_
OVERRUN @ .
LSR[1] <a——— WORD " ERROR | 128
TRIGGER ;
ISRI3] e———— FIFOTrgLvI(7:4] !
RECENVEFIFO !
CURRENT FILL LEVEL ~a——— RXFIFOLVI 5
1 4
: 3
; 2
12G/SP! INTERFACE ~————— RHR | 1
LSR[0] ~<eTMEOUT
ISR(6] <a—2PTY
LSRI5:2] <a—cOnS
Figure 5. Receive FIFO
RX_ | A
BAUD 1 2 3 4 51 |s 7

BLOCK

L MAJORITY
CENTER [—»

SAMPLER

Figure 6. Midbit Sampling

18

Maxim Integrated

MAX3109

Dual Serial UART with 128-Word FIFOs

CrystalEn

PLLBypass

FRACTIONAL
BAUD-RATE

XIN OSCILLATOR !

xour CRYSTAL 3

DIVIDER

GENERATOR 0

FRACTIONAL
BAUD-RATE
! GENERATOR 1

Figure 7. Clock Selection Diagram

Clock Selection
The MAX3109 can be clocked by either an external
crystal or an external clock source. Figure 7 shows a
simplified diagram of the clock selection circuitry. When
the MAX3109 is clocked by a crystal, the STSInt[5]:
ClkReady bit indicates when the crystal oscillator has
reached steady state and the baud-rate generator is
ready for stable operation.

Each UART baud rate can be individually programmed
and both share the same reference clock input.

The baud-rate clock can be routed to the RTS_ output by
setting the CLKSource[7]: CLKtoRTS bit high. The clock
rate is 16x the baud rate in standard operating mode, 8x
the baud rate in 2x rate mode, and 4x the baud rate in 4x
rate mode. If the fractional portion of the baud-rate gen-
erator is used, the clock is not regular and exhibits jitter.

Crystal Oscillator
The MAX3109 is equipped with a crystal oscillator to pro-
vide high baud-rate accuracy and low power consump-
tion. Set the CLKSource[1]: CrystalEn bit high to enable
and select the crystal oscillator. The on-chip crystal
oscillator has integrated load capacitances of 16pF in
both the XIN and XOUT pins. Connect only an external
crystal or ceramic oscillator between XIN and XOUT.

External Clock Source
Connect an external single-ended clock source to XIN
when not using the crystal oscillator. Leave XOUT uncon-
nected. Set the CLKSource[1]: CrystalEn bit low to
select external clocking.

PLL and Predivider
The internal predivider and PLL allow for compatibility with
a wide range of external clock frequencies and baud rates.
The PLL can be configured to multiply the input clock
rate by a factor of 6, 48, 96, or 144 by the PLLConfig[7:6]
bits. The predivider is located between the input clock
and the PLL and allows division of the input clock by an

Maxim Integrated

integer factor between 1 and 63. This value is defined
by the PLLConfig[5:0] bits. See the PLLConfig register
description for more information. Use of the PLL requires
Vcc to be higher than 2.35V.

Fractional Baud-Rate Generators
Each UART has an internal fractional baud-rate gen-
erator that provides a high degree of flexibility and high
resolution in baud-rate programming. The baud-rate
generator has a 16-bit integer divisor and a 4-bit word for
the fractional divisor. The fractional baud-rate generator
can be used either with the crystal oscillator or external
clock source.

The integer and fractional divisors are calculated by the
divisor, D:

_ frer xRateMode

16 xBaudRate

where fREF is the reference frequency input to the baud-
rate generator, RateMode is the rate mode multiplier (1x
default), BaudRate is the desired baud rate, and D is the
ideal divisor. fREF must be less than 96MHz. RateMode
is 1in 1x rate mode, 2 in 2x rate mode, and 4 in 4x rate
mode.

The integer divisor portion, DIV, of the divisor, D, is
obtained by truncating D:

DIV = TRUNC(D)

DIV can be a maximum of 16 bits (65,535) wide and
is programmed into the two single-byte-wide registers
DIVMSB and DIVLSB. The minimum allowed value for
DIVLSB is 1.

The fractional portion of the divisor, FRACT, is a 4-bit
nibble that is programmed into BRGConfig[3:0]. The
maximum value is 15, allowing the divisor to be pro-
grammed with a resolution of 0.0625. FRACT is calcu-
lated as: FRACT = ROUND(16 x (D - DIV)).

19

MAX3109

Dual Serial UART with 128-Word FIFOs

The following is an example of how to calculate the divi-
sor. It is based on a required baud rate of 190kbaud
and a reference input frequency of 28.23MHz and 1x
(default) rate mode.

The ideal divisor is calculated as:
D = 28,230,000/(16 x 190,000) = 9.286
hence DIV = 9.
FRACT = ROUND(16 x 0.286) = 5

so DIVMSB = 0x00, DIVLSB = 0x09, and BRGConfig[3:0]
= 0x05.

The resulting actual baud rate can be calculated as:
frRep xRateMode
16xDacTUAL

BRacTUAL =

For this example:
DACTUAL = 9 + 5/16 = 9.3125, RateMode = 1, and
BRACTUAL = 28,230,000/(16 x 9.3125) = 189463 baud.

Thus, the actual baud rate is within 0.28% of the ideal
rate.

2x and 4x Rate Modes
To support higher baud rates than possible with stan-
dard operation using 16x sampling, the MAX3109 offers
2x and 4x rate modes. In these modes, the reference
clock rate only needs to be either 8x or 4x higher than the
baud rate, respectively. In 4x rate mode, each received
bit is only sampled once at the midbit instant instead of

the usual three samples to determine the logic value of
the received bit. This reduces the ability to detect line
noise on the received data in 4x rate mode. The 2x and
4x rate modes are selectable through BRGConfig[5:4].
Note that IrDA encoding and decoding does not operate
in 2x and 4x rate modes.

When 2x rate mode is selected, the actual baud rate is
twice the rate programmed into the baud-rate genera-
tor. If 4x rate mode is enabled, the actual baud rate on
the line is quadruple that of the programmed baud rate
(Figure 8).

Low-Frequency Timer
Each UART has a general-purpose timer that can be
used to generate a low-frequency clock at a GPIO
output and can, for example, be used to drive external
LEDs. The low-frequency clock is a divided replica of the
given UART baud-rate clock. The timer for each UART
is internally routed to the respective GPIO_ output when
enabled by the TIMER2 register as follows:

e UARTO: GPIO1
e UART1: GPIO5

The clock pulses at the GPIOs are generated at a rate
defined by the baud-rate generator and the timer divider
(Figure 9). The baud-rate generator clock frequency is
divided by (1024 x Timer[14:0]) to produce the GPIO_
clock, where Timer[14:0] is the 15-bit value programmed
into the TIMER1 and TIMERZ registers. The timer output
is 50% duty cycle clock.

BRGConfig[5:4]

| 1% 2x, 4x RATE

DIVLSB - -----=----------
DIVMSB -~ - - ---------- o
FRACT ------------ Do
FRACTIONAL

frer —B> RATE
GENERATOR

o MODES

—» BAUD RATE

NOTE: IrDA DOES NOT WORK IN 2x AND 4x MODES.

Figure 8. 2x and 4x Baud Rates

TmrToGPIO

DIVLSB - --=-===----------
DIVMSB - === ====-----~-~ o
FRACT ------------ Do
FRACTIONAL
fREF —— RATE
GENERATOR

{1024 | <TIMER_|—o0y, |
[o0 }—o ° GPIO

Figure 9. GPIO_ Clock Pulse Generator

20

Maxim Integrated

MAX3109

Dual Serial UART with 128-Word FIFOs

UART Clock to GPIO
The MAX3109 reference clock can be routed to the
GPIO0 and/or GPIO4 outputs if a synchronous high-
frequency clock is needed by another device. Enable
routing a UART clock to GPIOO and/or GPIO4 in the
TxSynch register. This output clock could, for example,
be used to clock another UART device.

Multidrop Mode
In multidrop mode, also known as 9-bit mode, the data
word length is 8 bits and a 9th bit is used for distin-
guishing between an address word and a data word.
Multidrop mode is enabled by the MODEZ2[6]: MultiDrop
bit. The MultiDrop bit takes the place of the parity bit in
the data word structure. Parity checking is disabled and
an interrupt is generated in SpclCharInt[5]: MultiDroplnt
when an address (9th bit is 1) is received while in multi-
drop mode.

It is up to the host processor to filter out the data intended
for its address. Alternatively, the auto data-filtering fea-
ture can be used to automatically filter out the data not
intended for the station’s specific 9-bit mode address.

Auto Data Filtering in Multidrop Mode
In multidrop mode, the MAX3109 can be configured
to automatically filter out data that is not meant for its
address. The address is user-definable either by pro-
gramming a register value or a combination of a register
value and GPIO hardware inputs. Use either the entire
XOFF2 register or the XOFF2[7:4] bits in combination
with GPIO_ inputs to define the address.

Enable multidrop mode by setting the MODEZ2[6]:
MultiDrop bit high and enable auto data filtering by set-
ting the MODEZ2[4]: SpecialChr bit high.

When using register bits in combination with GPIO_ inputs
to define the address, the MSB of the address is written
to the XOFF2[7:4] bits, while the LSBs of the address are
defined by the GPIOs. To enable this address-definition
method along with auto data filtering, set the FlowCtrl[2]:
GPIAddr bit high in addition to the MODE2[4]: SpecialChr
and MODE2[6]: MultiDrop bits. The GPIO_ inputs are
automatically read when the FlowCtrl[2]: GPIAddr bit is
set high, and the address is automatically updated on
logic changes to any GPIO pin.

When using auto data filtering, the MAX3109 checks
each received address against the programmed station
address. When an address is received that matches
the station’s address, received data is stored in the
RxFIFO. When an address is received that does not
match the station’s address, received data is discarded.

Maxim Integrated

Addresses are not stored into the FIFO but an inter-
rupt is still generated in SpclCharInt[5]: MultiDropint
upon receiving an address. An additional interrupt is
generated in SpclCharlnt[3]: XOFF2Int when the station
address is received.

Auto Transceiver Direction Control
In some half-duplex communication systems, the trans-
ceiver's transmitter must be turned off when data is
being received in order to not load the bus. This is the
case in half-duplex RS-485 communication. Similarly, in
full-duplex multidrop communication such as RS-485 or
RS-422 V.11, only one transmitter can be enabled at any
one time while the others must be disabled. The MAX3109
can automatically enable/disable a transceiver’s transmit-
ter and/or receiver at the hardware level by controlling its
DE and RE pins. This feature relieves the host processor
of this time-critical task.

The RTS_ output is used to control the transceivers’
transmit-enable input and is automatically set high
when the MAX3109’s transmitter starts transmission.
This occurs as soon as data is present in the transmit
FIFO. Auto transceiver direction control is enabled by
the MODE1[4]: TrnscvCtrl bit. Figure 10 shows a typical
MAX3109 connection in an RS-485 application using the
auto transceiver direction control feature.

The RTS output can be set high in advance of TX_
transmission by a programmable time period called the
setup time (Figure 11). The setup time is programmed
by the HDplxDelay[7:4]: Setupx bits. Similarly, the RTS_
output can be held high for a programmable period
after the transmitter has completed transmission called
the hold time. The hold time is programmed by the
HDplxDelay[3:0] bits.

Transmitter Triggering and Synchronization
The MAX3109 allows synchronization of transmitters so
that selected UARTS start transmitting data when a trigger
command is received. Optional delays can also be pro-
grammed that delay the start of transmission after a trig-
ger command is received. A UART’s transmitter can be
assigned one of 16 possible SPI/I2C trigger commands.
A trigger command is defined as any of the 16 special
values written into the GloblComnd register (see the
GloblComnd register description for more information).
When a byte is written into the GloblComnd register, the
UART select bit (U) is ignored by the MAX3109 and the
GloblComnd applies to both UARTs. Transmission is
initiated when the MAX3109 receives an assigned SPI/
[2C trigger command, the selected transmitter is initially
disabled, and data has been loaded into its TxFIFO.

21

MAX3109

Dual Serial UART with 128-Word FIFOs

™@_ DI
| TRANSMITTER D
TXFIFO
A
v DE
AUTO BTG B
RTS
TRANSCEIVER =
MAX3109 CONTROL 7E | MAX14840F A
A
\
RxFIFO RX RO
- RECEIVER — R
Figure 10. Auto Transceiver Direction Control
w L
<4— SETUP —» | |
: | <& HOLD

| R

FIRST CHARACTER

LAST CHARACTER

Figure 11. Setup and Hold Times in Auto Transceiver Direction Control

Enable and configure transmitter synchronization with
the TxSynch register. Triggering and synchronization
requires that the transmitters are disabled before the
trigger is received. This can be done by setting the
MODE1[1]: TxDisabl bit high or by using the auto trans-
mitter disable function (TxSynch[4] is logic 1).

Transmitter Synchronization
Synchronize multiple UARTs so that their transmitters
start transmission simultaneously by assigning a com-
mon trigger command to the UARTs that should be
synchronized.

Intrachip and Interchip Synchronization
Intrachip transmitter triggering occurs when the two UARTs
in a MAX3109 device are triggered by one command. This
type of synchronization is supported in both SPI and 12C
modes, as the trigger commands are global commands
that are received by both UARTs simultaneously.

22

Interchip transmitter triggering synchronizes UARTS in
different MAX3109 devices. This type of synchroniza-
tion is achievable in SPI mode only. Pull the CS input of
all the MAX3109 devices on the bus low during the SPI
master’s write trigger command so that the commands
are received by all UARTs on the shared SPI bus.

I2C protocol does not allow simultaneous addressing of
multiple devices.

Delayed Triggering
A delay can be programmed to postpone the start of
transmission after receiving an assigned trigger com-
mand. Set the delay by programming the SynchDelay1
and SynchDelay2 registers.

Trigger Accuracy
The delay between the time when the MAX3109 receives
a trigger command and the time when the associ-
ated transmitter starts transmission is made up of a fixed,
deterministic portion, and a variable, random component.

Maxim Integrated

MAX3109

Dual Serial UART with 128-Word FIFOs

Both portions of the delay are dependent on the UART’s
clock. When the fractional divider is not used, the intrinsic
trigger delay, tTRIG, is bounded by the following limits:
5 e 8
UARTCLK ~ MG = JARTCLK
where UARTCLK is the baud-rate divider output. The
reference point is the time when the trigger command is
received by the MAX3109. This occurs on the final (i.e.,
the 16th) SPI clock’s low-to-high transition (Figure 12).

In 12C mode, this occurs on the final (i.e., the 8th) SCL
low-to-high transition.

When the fractional baud-rate generator is used, the
random portion is larger than one UART clock period.

Synchronization Accuracy
When synchronizing multiple UART transmitters, the out-
put skew of the TX_ transmitter outputs is based on the
triggering delays of each UART (Figure 13). This skew
has a baud rate dependent component, similar to the

S

SCLK UNCERTAINTY
| INTERVAL
-
> | {TRIG_MIN

HTRIG_MAX

Figure 12. Single Transmitter Trigger Accuracy

SCLK

1
1
1
1
1
E: -

X0 ! {Txo_MIN
1
1
<
e tTxo_max "
1
1
1
1
1
1
1
1
1
:
1

X1 - >
! HTX1_MIN
1
1
E‘ -
e ITX1_MAX
| B /;7

ITRIGSKEW

Yy
X

Figure 13. Multiple Transmitter Synchronization Accuracy

Maxim Integrated

23

MAX3109

Dual Serial UART with 128-Word FIFOs

trigger accuracy equation for a single transmitter output.
Calculate the TX_ transmitter output skew using the fol-
lowing equation:

LTRIGSKEW = ° - >
(UARTCLK)g (UARTCLK)g

where (UARTCLK)s is the fractional divider output clock
of the lower/slower baud rate UART, and (UARTCLK)F
is the fractional divider output clock of the higher/faster
baud rate UART.

Auto Transmitter Disable
The MAX3109 allows automatic disabling of the trans-
mitter. Enable auto transmitter disabling functionality by
setting the TxSynch[6]: TxAutoDis bit high. In this mode,
the MAX3109 disables the specified transmitter by set-
ting the MODE1[1]: TxDisabl bit high after it completes
sending all the data in its TXFIFO. New data can then be
loaded into the TxFIFO. A disabled transmitter does not
send out data on the TX_ output when data is present in
its TxFIFO.

To enable transmission after a transmitter has been dis-
abled automatically, either clear the TxAutoDis or toggle
the TxDisabl bit.

Echo Suppression
The MAX3109 can suppress echoed data that is some-
times found in half-duplex communication networks,
such as RS-485 and IrDA. If the transceiver’s receiver is
not turned off while the transceiver is transmitting, cop-
ies (echoes) of the transmitted data are received by the
UART. The MAX3109’s receiver can block the recep-
tion of this echoed data by enabling echo suppression.
Figure 14 shows a typical RS-485 application using the

echo suppression feature. Set the MODEZ2[7]: EchoSuprs
bit high to enable echo suppression.

The MAX3109 can also block echoes with a long round
trip delay by disabling the transceiver’'s receiver with
the RTS_ output while the MAX3109 is transmitting. The
transmitter can be configured to remain enabled after
the end of the transmission for a programmable period
of time called the hold time delay (Figure 15). The hold
time delay is set by the HDplxDelay[3:0]: Holdx bits.
See the HDplxDelay description in the Detailed Register
Descriptions section for more information.

Echo suppression can operate simultaneously with auto
transceiver direction control.

Auto Hardware Flow Control
The MAX3109 is capable of auto hardware (RTS_ and
CTS.) flow control without the need for host proces-
sor intervention. When AutoRTS control is enabled,
the MAX3109 automatically controls the RTS_ hand-
shake without the need for host processor intervention.
AutoCTS flow control separately turns the MAX3109’s
transmitter on and off based on the CTS_ input. AutoRTS
and AutoCTS flow control modes are independently
enabled by the FlowCtrl[1:0] bits.

AutoRTS Control
AutoRTS flow control ensures that the receive FIFO does
not overflow by signaling to the far-end UART to stop
data transmission. The MAX3109 does this automatically
by controlling the RTS_ output. AutoRTS flow control is
enabled by setting the FlowCtrl[0]: AutoRTS bit high.
The HALT and RESUME programmable values deter-
mine the threshold RxFIFO fill levels at which RTS_ is
asserted and deasserted. Set the HALT and RESUME

| TRANSMITTER LS
TXFIFO
A
\
ECHO RTS_
MAX3109 SUPPRESSION
A
\
RxFIF
XFIFO R
< RECEIVER

MAX14840E A

DE B
-

RO

Figure 14. Half-Duplex with Echo Suppression

24

Maxim Integrated

MAX3109

Dual Serial UART with 128-Word FIFOs

DI'TO RO PROPAGATION DELAY :

STOP

| HOLD DELAY
BT

RX_ ‘

RTS_

Figure 15. Echo Suppression Timing

levels in the FlowLuvl register. With differing HALT and
RESUME levels, hysteresis of the RxFIFO level can be
defined for RTS_ transitions.

When the RxFIFO is filled to a level higher than the HALT
level, the MAX3109 deasserts RTS_ and stops the far-
end UART from transmitting any additional data. RTS_
remains deasserted until the RxFIFO is emptied enough
so that the number of words falls to below the RESUME
level.

Interrupts are not generated when the HALT and
RESUME levels are reached. This allows the host con-
troller to be completely disengaged from RTS_ flow
control management.

AutoCTS Control
When AutoCTS flow control is enabled, the UART auto-
matically starts transmitting data when the CTS_ input
is logic-low and stops transmitting data when CTS_ is
logic-high. This frees the host processor from managing
this time-critical flow-control task. AutoCTS flow con-
trol is enabled by setting the FlowCtrl[1]: AutoCTS bit
high. The ISR[7]: CTSInt interrupt works normally during
AutoCTS flow control. Set the IRQEN([7]: CTSIntEn bit low
to disable routing of CTS_ interrupts to IRQ and ensure
that the host does not receive interrupts from CTS_
transitions. If CTS_ transitions from low to high during
transmission of a data word, the MAX3109 completes the
transmission of the current word and halts transmission
afterwards.

Turn the transmitter off by setting the MODE1[1]: TxDisabl
bit high before enabling AutoCTS control.

Maxim Integrated

Auto Software (XON/XOFF) Flow Control
When auto software flow control is enabled, the MAX3109
recognizes and/or sends predefined XON/XOFF charac-
ters to control the flow of data across the asynchronous
serial link. The XON character signifies that there is
enough room in the receive FIFO and transmission of
data should continue. The XOFF character signifies that
the receive FIFO is nearing overflow and that the trans-
mission of data should stop. Auto software flow control
works autonomously and does not require host interven-
tion, similar to auto hardware flow control. To reduce the
chance of receiving corrupted data that equals a single-
byte XON or XOFF character, the MAX3109 allows for
double-wide (16-bit) XON/XOFF characters. The XON
and XOFF characters are programmed into the XONT1,
XON2 and XOFF1, XOFF2 registers.

The FlowCtrl[7:3] bits are used for enabling and config-
uring auto software flow control. An interrupt is generated
in ISR[1]: SpCharlnt whenever an XON or XOFF charac-
ter is received and details are stored in the SpclCharint
register. Set the IRQERN[1]: SpcIChrlEn bit low to disable
routing of the interrupt to IRQ.

Software flow control consists of transmit flow control
and receive flow control, which operate independently
of each other.

Receiver Flow Control
When auto receive flow control is enabled by the
FlowCtrl[7:6] bits, the MAX3109 automatically controls
the transmission of data by the far-end UART by send-
ing XOFF and XON control characters. The HALT and
RESUME levels determine the threshold RxFIFO fill levels

25

MAX3109

Dual Serial UART with 128-Word FIFOs

at which the XOFF and XON characters are sent. HALT
and RESUME are programmed in the FlowLvl register.
With differing HALT and RESUME levels, hysteresis can
be defined in the RxFIFO fill level for the receiver flow
control activity.

When the RxFIFQ is filled to a level higher than the HALT
level, the MAX3109 sends an XOFF character to stop
data transmission. An XON character is sent when the
RxFIFO is emptied enough so that the number of words
falls to below the RESUME level.

If double-wide (16-bit) XON/XOFF characters are select-
ed by setting the FlowCtrl[7:6] bits to 11, then XON1/
XOFF1 are transmitted before XON2/XOFF2 whenever a
control character is transmitted.

Transmitter Flow Control
If auto transmit control is enabled by the FlowCtrl[5:4]
bits, the receiver compares all received words with the
XOFF and XON characters. When an XOFF character
is received, the MAX3109 halts the transmitter from
sending further data following any currently transmitting
word. The receiver is not affected and continues receiv-
ing. Upon receiving an XON character, the transmitter
restarts sending data. The received XON and XOFF
characters are filtered out and are not stored into the
receive FIFO. An interrupt is not generated.

If double-wide (16-bit) XON/XOFF characters are select-
ed by setting the FlowCtrl[5:4] bits to 11, then a char-
acter matching XON1/XOFF1 must be received before
a character matching XON2/XOFF2 in order to be inter-
preted as a control character.

Turn the transmitter off by setting the MODE1[1]: TxDisabl
bit high before enabling software transmitter flow control.

FIFO Interrupt Triggering
Receive and transmit FIFO fill-dependent interrupts are
generated if FIFO trigger levels are defined. When the
number of words in the FIFOs reach or exceed a trig-
ger level programmed in the FIFOTrgLvl register, an
interrupt is generated in ISR[3] or ISR[4]. The interrupt
trigger levels operate independently from the HALT and
RESUME flow control levels in AutoRTS or auto software
flow control modes.

The FIFO interrupt triggering can be used, for example,
for a block data transfer. The trigger level interrupt gives
the host an indication that a given block size of data is
available for reading in the receive FIFO or available for
transfer to the transmit FIFO. If the HALT and RESUME
levels are outside of this range, then the UART continues

26

to transmit or receive data during the block read/write
operations for uninterrupted data transmission on the
bus.

Low-Power Standby Modes
The MAX3109 has sleep and shutdown modes that
reduce power consumption during periods of inactivity.
In both sleep and shutdown modes, the UART disables
specific functional blocks to reduce power consumption.

After sleep or shutdown mode is exited, the internal clock
starts up and a period of time is needed for clock stabi-
lization. The STSInt[5]: ClkReady bit indicates when the
clocks are stable. When an external clock source is used,
the ClkReady bit does not indicate clock stability.

Forced-Sleep Mode
In forced-sleep mode, all UART-related on-chip clock-
ing is stopped. The following blocks are inactive: the
crystal oscillator, the PLL, the predivider, the receiver,
and the transmitter. The 12C/SPI interface and the reg-
isters remain active and the host controller can access
them. To force the MAX3109 to enter sleep mode, set the
MODE1[5]: ForcedSleep bit high. To exit forced-sleep
mode, set the ForcedSleep bit low.

Auto-Sleep Mode
The MAX3109 can be configured to operate in auto-sleep
mode by setting the MODE1[6]: AutoSleep bit high. In
auto-sleep mode, the MAX3109 automatically enters
sleep mode when all the following conditions are met:

e Both FIFOs are empty.
e There are no pending IRQ interrupts.

e There is no activity on any input pins for a period
equal to 65,536 UART character lengths.

The same blocks are inactive when the UART is in auto-
sleep mode as in forced-sleep mode.

The MAX3109 exits auto-sleep mode as soon as activity
is detected on any of the GPIO_, RX_, or CTS_ inputs.

To manually exit auto-sleep mode, set the MODE1[6]:
AutoSleep bit low.

Multiple UARTSs in Sleep Mode
The MAX3109's two UARTs enter and exit sleep mode
separately. When only one UART is in sleep mode, the
device stops routing the clock to this UART, reducing
power consumption. All other clocking circuitry remains
active if the other UART is still active. If both UARTs are
in sleep mode, the clocking circuitry is switched off, fur-
ther reducing power consumption.

Maxim Integrated

MAX3109

Dual Serial UART with 128-Word FIFOs

Shutdown Mode
Drive the RST input to logic-low to enter shutdown mode.
Shutdown mode consumes less than 1pA. In shutdown
mode, all the MAX3109 circuitry is completely off. This
includes the 12C/SPI interface, the registers, the FIFOs,
and the clocking circuitry.

When the RST input transitions from low to high, the
MAX3109 exits shutdown mode and a hardware reset
is initiated. The chip initialization is complete when the
I2C/SPI controller is able to read out known register con-
tents from the MAX3109. This could, for example, be the
DIVLSB register.

The MAX3109 needs to be reprogrammed following a
shutdown.

Power-Up and IRQ
The TRQ output only operates when all supplies are
active. IRQ operates as a hardware active-low interrupt
output; IRQ is asserted when an interrupt is pending. An
1RQ interrupt is only possible during normal operation
if at least one of the interrupt enable bits in the IRQEN
register is set.

In polled mode, any register with a known reset value
can be polled to check whether the MAX3109 is ready for
operation. If the controller gets a valid response from the
polled register, then the MAX3109 is ready for operation.

Interrupt Structure
Figure 16 shows the structure of the interrupt. There are
four interrupt source registers: ISR, LSR, STSInt, and
SpclCharlnt. The interrupt sources are divided into top-
level and low-level interrupts. The top-level interrupts
typically occur more often and can be read out by the
host controller directly through ISR. The low-level inter-
rupts typically occur less often and their specific source
can be read out by the host controller through LSR,
STSInt, or SpclCharint. The three LSBs of ISR point to
the low-level interrupt registers that contain the details of
the interrupt source.

Interrupt Enabling
Every interrupt bit of the four interrupt registers can be
enabled or masked through an associated interrupt
enable register bit. These are the IRQEn, LSRIntEn,
SpcIChrintEn, and STSIntEn registers. By default, all
interrupts are masked.

Interrupt Clearing
When an interrupt is pending (i.e., IRQ is asserted) and
ISR is read, both the ISR bits are cleared and the IRQ
output is deasserted. Low-level interrupt information
does not reassert IRQ for the same interrupt, but remains
stored in the low-level interrupt registers until each is
separately cleared. SpclCharint and STSInt are clear-
on-read (COR). The LSR bits are only cleared when the
source of the interrupt is removed, not when LSR is read.

[0]

GloballRQ
0o [ofofo]o] o [rai]ikRao

i 3 l::o

8

8

ISR

ISR

7le]s[als]a]1]o

7le]s[afs]2]1]o
[

TOP-LEVEL INTERRUPTS

8

LOW-LEVEL INTERRUPTS

8

8

STSInt

SpclCharlnt

LSR

7le]s[afs]2]1]o

7le]s[afs]2]1]o

7le]s[afs]2]1]o

Figure 16. Simplified Interrupt Structure

Maxim Integrated

27

MAX3109
Dual Serial UART with 128-Word FIFOs

Register Map
(Note: All default reset values are 0x00, unless otherwise noted. All registers are R/W, unless otherwise noted.)

REGISTER | ADDR | BIT7 [BITEe | BIT 5 [BT4 | BIT 3 [BT2 | BT1 | BITO
FIFO DATA
RHR' 0x00 RData7 RData6 RDatab RData4 RData3 RData2 RData1 RData0
THR! 0x00 TData7 TData6 TDatab TData4 TData3 TData? TDatal TData0
INTERRUPTS
IRQEN 0x01 CTSIEn RxEmtylEn TFifoEmtylEn TxTrglEn RxTrglEn STSIEn SpChrlEn LSRErrIEn
ISR'"2 0x02 CTSInt RxEmptyInt | TFifoEmptyint TxTrglnt RxTriglnt STSInt SpCharlint LSRErrint
LSRIntEn 0x03 — — NoiselntEn RBreakIEn FrameErrlEn ParitylEn ROverrlEn RTimoutlEn
LSR"? 0x04 CTSbit — RxNoise RxBreak FrameErr RxParityErr RxQOverrun RTimeout
SpclChrintEn 0x05 — — MItDrpIntEn BREAKINtEn XOFF2IntEn XOFF1IntEn XON2IntEn XON1IntEn
SpclCharint’ 0x06 — — MultiDroplnt BREAKInt XOFF2Int XOFF1Int XON2Int XON1Int
STSIntEn® 0x07 TxEmptylntEn SleeplIntEn CIkRdyIntEn — GPI3IntEn GPI2IntEn GPI1IntEn GPIOIntEn
STSInt" 23 0x08 TxEmptylInt Sleeplnt ClkReady — GPI3Int GPI2Int GPI1int GPI0Int
UART MODES
MODEH1 0x09 — AutoSleep ForcedSleep TrnscvCitrl RTSHiZ TxHiZ TxDisabl RxDisabl
MODE2 O0x0A EchoSuprs MultiDrop Loopback SpecialChr RFifoEmptylnv RxTrginv FIFORst RST
LCR? 0x0B RTSbit TxBreak ForceParity EvenParity ParityEn StopBits Length1 LengthO
RxTimeOut 0x0C TimOut7 TimOut6 TimOuts TimOut4 TimOut3 TimOut2 TimOut1 TimOutO
HDplxDelay 0x0D Setup3 Setup2 Setup1 Setup0 Hold3 Hold2 Hold1 Hold0
IrDA OxOE — — TxInv RxInv MIR — SIR IrDAEN
FIFOs CONTROL
FlowLvl OxOF Resume3 Resume?2 Resume Resume0 Halt3 Halt2 Halt1 Halt0
FIFOTrglLvl? 0x10 RxTrig3 RxTrig2 RxTrig1 RxTrig0 TxTrig3 TxTrig2 TxTrig1 TxTrig0
TXFIFOLVI' Ox11 TxFL7 TxFL6 TxFL5 TxFL4 TxFL3 TxFL2 TxFLA1 TxFLO
RxFIFOLvI! 0x12 RxFL7 RxFL6 RxFL5 RxFL4 RxFL3 RxFL2 RxFL1 RxFLO
FLOW CONTROL
FlowCtrl 0x13 SwFlow3 SwFlow?2 SwFlow1 SwFlow0 SwFlowEn GPIAddr AutoCTS AutoRTS
XON1 0x14 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
XON2 0x15 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
XOFF1 0x16 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
XOFF2 0x17 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
GPIOs
GPIOConfg® 0x18 GP30D GP20D GP10D GPOOD GP30ut GP20ut GP10ut GPOOut
GPIOData® 0x19 GPI3Dat GPI2Dat GPI1Dat GPIODat GPO3Dat GPO2Dat GPO1Dat GPOODat
CLOCK CONFIGURATION
PLLConfig®# Ox1A PLLFactor1 PLLFactorO PreDiv5 PreDiv4 PreDiv3 PreDiv2 PreDiv1 PreDiv0
BRGConfig 0x1B — — 4xMode 2xMode FRACT3 FRACT2 FRACT1 FRACTO
DIVLSB? 0x1C Div7 Dive Div5 Div4 Div3 Div2 Div1 Div0
DIVMSB 0x1D Div15 Div14 Div13 Div12 Div11 Div10 Div9 Div8
CLKSource?* Ox1E CLKtoRTS — — — PLLBypass PLLENn CystalEn —
GLOBAL REGISTERS
GloballRQ"2 Ox1F 0 0 0 0 0 0 TRQT TRQO
GloblComnd' Ox1F GlbCom7 GlbCom6 GIbComb GlbCom4 GlbCom3 GlbCom2 GlbCom1 GlbComO
SYNCHRONIZATION
TxSynch® 0x20 CLKtoGPIO TxAutoDis TrigDelay SynchEn TrigSel3 TrigSel2 TrigSell TrigSel0
SynchDelay1® 0x21 SDelay7 SDelay6 SDelay5 SDelay4 SDelay3 SDelay2 SDelay1 SDelay0
SynchDelay2° 0x22 SDelay15 SDelay14 SDelay13 SDelay12 SDelay 11 SDelay10 SDelay9 SDelay8
TIMER REGISTERS
TIMER1® 0x23 Timer7 Timer6 Timer5 Timer4 Timer3 Timer2 Timer1 TimerO
TIMER2® 0x24 TmrToGPIO Timer14 Timer13 Timer12 Timer11 Timer10 Timer9 Timer8
REVISION
RevID':25 [oxes | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0

1 Denotes nonread/write mode: RHR = R, THR = W, ISR = COR, LSR = R, SpciCharint = COR, STSInt = R/COR, TxFIFOLvI = R,
RxFIFOLvI = R, GloballRQ = R, GlobIComnd = W, RevID = R.

2 Denotes nonzero default reset value: ISR = 0x60, LCR = 0x05, FIFOTrgLvl = OxFF, PLLConfig = 0x01, DIVLSB = 0x01,
CLKSource = 0x18, GloballRQ = 0x03, RevID = 0xC1.

3 Each UART has four individually assigned GPIO outputs as follows: UARTO: GPIOO-GPIO3, UART1: GPIO4-GPIO?7.

4 Denotes a register that can only be programmed by accessing UARTO.

5 Denotes a register that can only be directly addressed in I2C mode. Use extended addressing when operating in SPI mode.

28 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

Detailed Register Descriptions

The MAX3109 has 8-bit-wide registers. When using SPI control, the extended register location (0x20 through 0x25) can
only be accessed by first enabling extended read/writing through GloblComnd. Each UART has an exclusive set of
registers. Select a UART to write to by setting the U bit of the command byte in SPI mode or the unique 12C address
in 12C mode (see the Serial Controller Interface section for more information).

Receive Hold Register (RHR)

ADDRESS: 0x00
MODE: R
BIT 7 6 5 4 3 2 1 0
NAME RData7 RData6 RData5 RData4 RData3 RData?2 RData1 RData0
RESET 0 0 0 0 0 0 0 0

Bits 7-0: RDatax

The RHR is the bottom of the receive FIFO and is the register used for reading data out of the receive FIFO. It contains
the oldest (first received) character in the receive FIFO. RHR[0] is the LSB of the character received at the RX_ input.
It is the first data bit of the serial-data word received by the receiver. Reading RHR removes the read word from the
receive FIFO, clearing space for more data to be received.

Transmit Hold Register (THR)

ADDRESS: 0x00
MODE: w
BIT 7 6 5 4 3 2 1 0
NAME TData7 TData6 TDatab TData4 TData3 TData2 TDatat TDataO
RESET 0 0 0 0 0 0 0 0

Bits 7-0: TDatax

The THR is the register that the host controller writes data to for subsequent UART transmission. This data is depos-
ited in the transmit FIFO. THR[O] is the LSB. It is the first data bit of the serial-data word that the transmitter sends out,
immediately after the START bit.

Maxim Integrated 29

MAX3109
Dual Serial UART with 128-Word FIFOs

IRQ Enable Register (IRQEn)

ADDRESS: 0x01
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME CTSIEn RXEmtylEn | TFifoEmtylEn TXTrglEn RxTrglEn STSIEn SpChrlEn LSRErriENn
RESET 0 0 0 0 0 0 0 0

The IRQEN register is used to enable the IRQ physical interrupt. Any of the eight ISR interrupt sources can be enabled
to generate an interrupt on IRQ. The IRQEN bits only influence the IRQ output and do not have any effect on the ISR
contents or behavior. Every one of the IRQER bits operates on a corresponding ISR bit.

Bit 7: CTSIEn

The CTSIEn bit enables IRQ interrupt generation when the CTSInt interrupt is set in ISR[7]. Set CTSIEn low to disable
IRQ generation from CTSInt.

Bit 6: RxEmtylEn

The RxEmtylEn bit enables IRQ interrupt generation when the RXxEmptyInt interrupt is set in ISR[6]. Set RxEmtylEn low
to disable IRQ generation from RxEmptyInt.

Bit 5: TFifoEmtylEn

The TFifoEmtylEn bit enables IRQ interrupt generation when the TFifoEmptyInt interrupt is set in ISR[5]. Set TFifoEmtylEn
low to disable IRQ generation from TFifoEmptyInt.

Bit 4: TxTrglEn

The TxTrglEn bit enables IRQ interrupt generation when the TxTrigInt interrupt is set in ISR[4]. Set TxTrglEn low to
disable IRQ generation from TxTrigint.

Bit 3: RxTrglEn

The RxTrglEn bit enables IRQ interrupt generation when the RxTrigInt interrupt is set in ISR[3]. Set RxTrglEn low to
disable IRQ generation from RxTrigint.

Bit 2: STSIEn

The STSIEn bit enables IRQ interrupt generation when the STSInt interrupt is set in ISR[2]. Set STSIEn low to disable
IRQ generation from STSInt.

Bit 1: SpChrlEn

The SpChrlEn bit enables IRQ interrupt generation when the SpCharlInt interrupt is set in ISR[1]. Set SpChrlEn low to
disable IRQ generation from SpCharint.

Bit 0: LSRErriEn

The LSRErrlEn bit enables IRQ interrupt generation when the LSRErrint interrupt is set in ISR[0]. Set LSRErrIEn low to
disable IRQ generation from LSRErrint.

30 Maxim Integrated

Interrupt Status Register (ISR)

MAX3109
Dual Serial UART with 128-Word FIFOs

ADDRESS: 0x02
MODE: COR

BIT 7 6 5 4 3 2 1 0
NAME CTSInt RxEmptyInt | TFifoEmptylnt | TxTrigint RxTriglnt STSInt SpCharint LSRErrint
RESET 0 1 1 0 0 0 0 0

The Interrupt Status register provides an overview of all interrupts generated by the MAX3109. Both the interrupt bits
and any pending interrupts on IRQ are cleared after reading ISR. When the MAX3109 is operated in polled mode, ISR
can be polled to establish the UART’s status. In interrupt-driven mode, TRQ interrupts are enabled by the appropriate
IRQEnN bits. The ISR contents either give direct information on the cause for the interrupt or point to other registers that
contain more detailed information.

Bit 7: CTSInt

The CTSInt interrupt is generated when a logic state transition occurs at the CTS_ input. CTSInt is cleared after ISR is
read. The current logic state of the CTS_ input can be read out through the LSR[7]: CTSbit bit.

Bit 6: RxEmptyint

The RxEmptylInt interrupt is generated when the receive FIFO is empty. RxEmptyInt is cleared after ISR is read. Its
meaning can be inverted by the MODE2[3]: RFifoEmptylnv bit.

Bit 5: TFifoEmptyint

The TFifoEmptyInt interrupt is generated when the transmit FIFO is empty and the transmitter is transmitting the last

character. Use STSInt[7]: TXEmptyInt to determine when the last character has completed transmission. TFifoEmptyInt
is cleared after ISR is read.

Bit 4: TxTrigint

The TxTrigInt interrupt is generated when the number of characters in the transmit FIFO is equal to or greater than the
transmit FIFO trigger level defined in FIFOTrgLvI[3:0]. TxTrigInt is cleared when the transmit FIFO level falls below the
trigger level or after ISR is read. TxTrigInt can be used as a warning that the transmit FIFO is nearing overflow.

Bit 3: RxTrigint

The RxTrigint interrupt is generated when the receive FIFO fill level reaches the receive FIFO trigger level defined in
FIFOTrgLvl[7:4]. RxTrigInt can be used as an indication that the receive FIFO is nearing overrun. It can also be used
to report that a known number of words are available that can be read out in one block. The meaning of RxTrigint can
be inverted by the MODE2[2]: RxTriginv bit. RxTriglnt is cleared after ISR is read.

Bit 2: STSInt

The STSInt interrupt is generated when any interrupt in the STSInt register that is enabled by a STSIntEn bit is high.
STSInt is cleared after ISR is read, but the interrupt in STSInt that caused this interrupt remains set. See the STSInt
register description for details about this interrupt.

Bit 1: SpCharint

The SpCharlnt interrupt is generated when a special character is received, a line break is detected, or an address

character is received in multidrop mode. SpCharlint is cleared after ISR is read, but the interrupt in SpelCharint that
caused this interrupt remains set. See the SpclCharlint register description for details about this interrupt.

Bit 0: LSRErrint

The LSRErriInt interrupt is generated when any interrupts in LSR that are enabled by corresponding bits in LSRINtEn
are set. This bit is cleared after ISR is read. See the LSR register description for details about this interrupt.

Maxim Integrated 31

MAX3109
Dual Serial UART with 128-Word FIFOs

Line Status Interrupt Enable Register (LSRIntEn)

ADDRESS: 0x03
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME — — NoiselntEn RBreaklEn FrameErrlEn ParitylEn ROverrlEn RTimoutlEn
RESET 0 0 0 0 0 0 0 0

LSRIntEn allows routing of LSR interrupts to ISR[0]. The LSRINntEn bits only influence the ISR[0]: LSRErrint bit and do
not have any effect on the LSR contents or behavior. Bits 5 to 0 of the LSRIntEn register operate on a corresponding
LSR bit, while bits 7 and 6 are not used.

Bits 7 and 6: No Function
Bit 5: NoiseIlntEn

Set the NoiselntEn bit high to enable routing the LSR[5]: RxNoise interrupt to ISR[0]. If NoiselntEn is set low, RxNoise
is not routed to ISR[0].

Bit 4: RBreaklEn

Set the RBreakIEn bit high to enable routing the LSR[4]: RxBreak interrupt to ISR[0]. If RBreaklEn is set low, RxBreak
is not routed to ISR[0].

Bit 3: FrameErrlEn

Set the FrameErrlEn bit high to enable routing the LSR[3]: FrameErr interrupt to ISR[0]. If FrameErrlEn is set low,
FrameErr is not routed to ISR[O].

Bit 2: ParitylEn

Set the ParitylEn bit high to enable routing the LSR[2]: RxParityErr interrupt to ISR[Q]. If ParitylEn is set low, RxParityErr
is not routed to ISR[0].

Bit 1: ROverrlEn

Set the ROverrlEn bit high to enable routing the LSR[1]: RxOverrun interrupt to ISR[0]. If ROverrlEn is set low,
RxOverrun is not routed to ISR[0].

Bit 0: RTimoutlEn

Set the RTimoutlEn bit high to enable routing the LSR[0]: RTimeout interrupt to ISR[0]. If RTimoutlEn is set low,
RTimeout is not routed to ISR[O].

32 Maxim Integrated

Line Status Register (LSR)

MAX3109

Dual Serial UART with 128-Word FIFOs

ADDRESS: 0x04
MODE: R
BIT 7 6 5 4 3 2 1 0
NAME CTSbit — RxNoise RxBreak FrameErr RxParityErr RxOverrun RTimeout
RESET X 0 0 0 0 0 0 0

LSR contains all error information related to the word most recently read out from the RxFIFO through RHR. The LSR
bits are not cleared after LSR is read; these bits stay set until the next character is read out of RHR, with the exception
of LSR[1], which is cleared by reading either RHR or LSR. LSR also contains the current logic state of the CTS input.

Bit 7: CTShit

The CTSbit bit reflects the current logic state of the CTS_ input. This bit is cleared when the CTS_ input is low and set
when it is high. Following a power-up or reset, the logic state of CTSbit depends on the state of the CTS_ input.

Bit 6: No Function

Bit 5: RxNoise

If noise is detected on the RX_ input during reception of a character, the RxNoise interrupt is generated for that char-
acter. LSR[5] corresponds to the character most recently read from RHR. RxNoise is cleared after the character fol-
lowing the “noisy character” is read out from RHR. RxNoise generates an interrupt in ISR[0Q] if enabled by LSRIntEn[5].

Bit 4: RxBreak

If a line break (RX input low for a period longer than the programmed character duration) is detected, a break character
is put in the RXFIFO and the RxBreak interrupt is generated for this character. A break character is represented by an
all-zeros data character. The RxBreak interrupt distinguishes a regular character with all zeros from a break character.
LSR[4] corresponds to the current character most recently read from RHR. RxBreak is cleared after the character fol-
lowing the break character is read out from RHR. RxBreak generates an interrupt in ISR[0] if enabled by LSRIntEn[4].

Bit 3: FrameErr

The FramekErr interrupt is generated when the received data frame does not match the expected frame format in length.
A frame error is related to errors in expected STOP bits. LSR[3] corresponds to the frame error of the character most
recently read from RHR. FramekErr is cleared after the character following the affected character is read out from RHR.
FrameErr generates an interrupt in ISR[0] if enabled by LSRIntENn[3].

Bit 2: RxParityErr

The RxParityErr interrupt is generated when the parity computed on the character being received does not match
the received character’s parity bit. LSR[2] indicates a parity error for the character most recently read from RHR.
RxParityErr is cleared when the character following the affected character is read out from RHR.

In 9-bit multidrop mode (MODEZ2[6] is logic 1) the receiver does not check parity and the 9th bit (address/data) is
stored in LSR[2].

RxParityErr generates an interrupt in ISR[0] if enabled by LSRIntEn[2].
Bit 1: RxOverrun

The RxOverrun interrupt is generated when the receive FIFO is full and additional data is received that does not fit into
the receive FIFO. The receive FIFO retains the data that it already contains and discards all new data. RxOverrun is
cleared after LSR is read or the RxFIFO level falls below its maximum. RxOverrun generates an interrupt in ISR[O] if
enabled by LSRIntEn[1].

Bit 0: RTimeout

The RTimeout interrupt indicates that stale data is present in the receive FIFO. RTimeout is set when all of the char-
acters in the RxFIFO have been present for at least as long as the period programmed into the RxTimeOut register.

Maxim Integrated 33

MAX3109
Dual Serial UART with 128-Word FIFOs

The timeout counter restarts whenever RHR is read or a new character is received by the RxFIFO. If the value in

RxTimeOut is zero, RTimeout is disabled. RTimeout is cleared after a word is read out of the RxFIFO or a new word is

received. RTimeout generates an interrupt in ISR[0] if enabled by LSRINtEn[0].

Special Character Interrupt Enable Register (SpcIChrintEn)

ADDRESS: 0x05
MODE: R/W

BIT 5 4 3 2 1 0
NAME MitDrpIntEn | BREAKINntEn | XOFF2IntEn | XOFF1IntEn | XON2IntEn XON1IntEn
RESET 0 0 0 0 0 0

SpclChrIntEn allows routing of SpclCharlnt interrupts to ISR[1]. The SpclChrIintEn bits only influence the ISR[1]:
SpCharlint bit and do not have any effect on the SpclCharint contents or behavior.

Bits 7 and 6: No Function
Bit 5: MItDrpIntEn

Set the MItDrpIntEn bit high to enable routing the SpelCharlnt[5]: MultiDroplint interrupt to ISR[1]. If MItDrpIntEn is set
low, MultiDroplnt is not routed to ISR[1].

Bit 4: BREAKIntEn

Set the BREAKINtEN bit high to enable routing the SpelCharint[4]: BREAKInt interrupt to ISR[1]. If BREAKINtEN is set
low, BREAKInt is not routed to ISR[1].

Bit 3: XOFF2IntEn

Set the XOFF2IntEn bit high to enable routing the SpclCharint[3]: XOFF2Int interrupt to ISR[1]. If XOFF2IntEn is set
low, XOFF2Int is not routed to ISR[1].

Bit 2: XOFF1IntEn

Set the XOFF1IntEn bit high to enable routing the SpclCharint[2]: XOFF1Int interrupt to ISR[1]. If XOFF1IntEn is set
low, XOFF1Int is not routed to ISR[1].

Bit 1: XON2IntEn

Set the XON2IntEn bit high to enable routing the SpclCharlnt[1]: XON2Int interrupt to ISR[1]. If XON2IntEn is set low,
XON2Int is not routed to ISR[1].

Bit 0: XON1IntEn

Set the XON1IntEn bit high to enable routing the SpelCharlnt[0]: XON1Int interrupt to ISR[1]. If XON1IntEn is set low,
XONT1Int is not routed to ISR[1].

34 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

Special Character Interrupt Register (SpciCharint)

ADDRESS: 0x06
MODE: COR
BIT 7 6 5 4 3 2 1 0
NAME — — MultiDropInt BREAKInt XOFF2Int XOFF1Int XON2Int XON1Int
RESET 0 0 0 0 0 0 0 0

SpclCharlInt contains interrupts that are generated when a special character is received, an address is received in
multidrop mode, or a line break occurs.

Bits 7 and 6: No Function
Bit 5: MultiDropint

The MultiDropint interrupt is generated when the MAX3109 receives an address character in 9-bit multidrop mode,
enabled in MODEZ2[6]. MultiDroplint is cleared after SpelCharlnt is read. MultiDropint generates an interrupt in ISR[1]
if enabled by SpclChrintEn[5].

Bit 4: BREAKInt

The BREAKInNt interrupt is generated when a line break (RX_ low for longer than one character length) is detected by
the receiver. BREAKInt is cleared after SpclCharlnt is read. BREAKINnt generates an interrupt in ISR[1] if enabled by
SpclChrintEn[4].

Bit 3: XOFF2Int

The XOFF2Int interrupt is generated when both an XOFF2 special character is received and special character detection
is enabled by MODE2[4]. XOFF2Int is cleared after SpclCharlnt is read. XOFF2Int generates an interrupt in ISR[1] if
enabled by SpclChrintEn[3].

Bit 2: XOFF1Int

The XOFF1Int interrupt is generated when both an XOFF1 special character is received and special character detection
is enabled by MODE2[4]. XOFF1Int is cleared after SpelCharlnt is read. XOFF1Int generates an interrupt in ISR[1] if
enabled by SpclChrIntEn[2].

Bit 1: XON2Int

The XON2Int interrupt is generated when both an XON2 special character is received and special character detection
is enabled by MODE2[4]. XON2Int is cleared after SpclCharlint is read. XON2Int generates an interrupt in ISR[1] if
enabled by SpclChrIntEn[1].

Bit 0: XON1Int

The XONT1Int interrupt is generated when both an XON1 special character is received and special character detection
is enabled by MODE2[4]. XON1Int is cleared after SpclCharlint is read. XON1Int generates an interrupt in ISR[1] if
enabled by SpclChrintEn[0].

Maxim Integrated 35

MAX3109
Dual Serial UART with 128-Word FIFOs

STS Interrupt Enable Register (STSIntEn)

ADDRESS: 0x07
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME TxEmptyIntEn | SleepintEn | CIkRdyIntEn — GPI3IntEn GPI2IntEn GPIIntEn | GPIOIntEn
RESET 0 0 0 0 0 0 0 0

STSIntEn allows routing of STSInt interrupts to ISR[2]. The STSIntEn bits only influence the ISR[2]: STSInt bit and do
not have any effect on the STSInt contents or behavior, with the exception of the GPIxIntEn interrupt enable bits, which
control the generation of the STSInt.

Bit 7: TXEmptyIntEn

Set the TxEmptyIntEn bit high to enable routing the STSInt[7]: TxEmptyInt interrupt to ISR[2]. If TXEmptyIntEn is set
low, TXEmptyInt is not routed to ISR[2].

Bit 6: SleepIntEn

Set the SleepIntEn bit high to enable routing the STSInt[6]: Sleeplnt interrupt to ISR[2]. If SleepIntEn is set low, Sleepint
is not routed to ISR[2].

Bit 5: CIkRdyIntEn

Set the CIkRdyIntEn bit high to enable routing the STSInt[6]: ClkReady interrupt to ISR[2]. If CIkRdyIntEn is set low,
ClkReady is not routed to ISR[2].

Bit 4: No Function
Bits 3—0: GPIXIntEn

Each UART has four individually assigned GPIO outputs as follows: UARTO: GPIO0-GPIO3, UART1: GPIO4-GPIO7.
For example, for UART1: GPOOD configures GPIO4, GP10D configures GPIO5, GP20D configures GPIO6 and
GP30D configures GPIO7.

Set the GPIxIntEn bits high to enable generating the STSInt[3:0]: GPIxInt interrupts. If any of the GPIxIntEn bits are set
low, the associated GPIxInt interrupts are not generated.

36 Maxim Integrated

Status Interrupt Register (STSInt)

MAX3109
Dual Serial UART with 128-Word FIFOs

ADDRESS: 0x08
MODE: R/COR
BIT 7 6 5 3 2 1 0
NAME TxEmptylInt Sleepint ClkReady GPI3Int GPI2Int GPI1Int GPI0Int
RESET 0 0 0 0 0 0 0

Bit 7: TXEmptyInt

The TxEmptylInt interrupt is generated when both the TxFIFO is empty and the last character has completed transmis-
sion. TXEmptyint is cleared after STSInt is read. TXEmptyInt generates an interrupt in ISR[2] if enabled by STSIntEn[7].
Bit 6: Sleepint

The Sleeplint status bit is generated when the MAX3109 enters sleep mode. Sleeplnt is cleared when the UART exits
sleep mode. This status bit is also cleared when the UART clock is disabled and is not cleared by reading STSInt.
SleeplInt generates an interrupt in ISR[2] if enabled by STSIntEn[6].

Bit 5: ClkReady

The ClkReady status bit is generated when the clock, the predivider, and the PLL have settled, signifying that the
MAX3109 is ready for data communication. The ClkReady bit only works with the crystal oscillator. It does not work
with external clocking through XIN.

ClkReady is cleared when the clock is disabled and is not cleared after STSInt is read. ClkReady generates an inter-
rupt in ISR[2] if enabled by STSINtEn[5].

Bit 4: No Function
Bits 3—-0: GPIxInt

Each UART has four individually assigned GPIO outputs as follows: UARTO: GPIO0-GPIO3, UART1: GPIO4-GPIO7.
For example, for UART1: GPOOD configures GPI0O4, GP10D configures GPIO5, GP20D configures GPIO6 and GP30D
configures GPIO7.

The GPIxInt interrupts are generated when a change of logic state occurs on the associated GPIO input. The GPIxInt
interrupts are cleared after STSInt is read. The GPIxInt interrupts generate an interrupt in ISR[2] if enabled by the cor-
responding bits in STSINtEN[3:0].

Maxim Integrated 37

MAX3109

Dual Serial UART with 128-Word FIFOs

MODE1 Register

ADDRESS: 0x09
MODE: R/W
BIT 6 5 4 3 2 1 0
NAME AutoSleep ForcedSleep | TrnscvCtrl RTSHiZ TxHiZ TxDisabl RxDisabl
RESET 0 0 0 0 0 0 0

Bit 6: AutoSleep

Set the AutoSleep bit high to set the MAX3109 to automatically enter low-power sleep mode after a period of no activity
(see the Auto-Sleep Mode section). An interrupt is generated in STSInt[6]: Sleepint when the MAX3109 enters sleep
mode.

Bit 5: ForcedSleep

Set the ForcedSleep bit high to force the MAX3109 into low-power sleep mode (see the Forced-Sleep Mode section).
The current sleep state can be read out through the ForcedSleep bit, even when the UART is in sleep mode.

Bit 4: TrnscvCtrl

Set the TrnscvCtrl bit high to enable auto transceiver direction control mode. RTS_ automatically controls the trans-
ceiver’s transmit/receive enable/disable inputs in this mode. RTS_ is logic-low so that the transceiver is in receive
mode with the transmitter disabled until the TxFIFO contains data available for transmission, at which point RTS_ is
automatically set logic-high before the transmitter sends out the data. Once the transmitter is empty, RTS_ is automati-
cally forced low again.

Setup and hold times for RTS_ with respect to the TX_ output can be defined through the HDplxDelay register. A
transmitter empty interrupt is generated in ISR[5] when the TxFIFO is empty.

Bit 3: RTSHiz

Set the RTSHiZ bit high to three-state RTS_.

Bit 2: TxHiz

Set the TxHiZ bit high to three-state the TX_ output.
Bit 1: TxDisabl

Set the TxDisabl bit high to disable transmission. If the TxDisabl bit is set high during transmission, the transmitter com-
pletes sending out the current character and then ceases transmission. Data still present in the transmit FIFO remains
in the TxFIFO. The TX_ output is set to logic-high after transmission.

In auto transceiver direction control mode, TxDisabl is high when the transmitter is completely empty.
Bit 0: RxDisabl

Set the RxDisabl bit high to disable the receiver of the selected UART so that the receiver stops receiving data. All data
present in the receive FIFO remains in the RxFIFO.

38 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

MODE?2 Register

ADDRESS: 0x0A
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME EchoSuprs MultiDrop Loopback SpecialChr | RFifoEmptylnv RxTriglnv FIFORst RST
RESET 0 0 0 0 0 0 0 0

Bit 7: EchoSuprs

Set the EchoSuprs bit high to discard any data that the MAX3109 receives when its transmitter is busy transmit-
ting. In half-duplex communication such as RS-485 and IrDA, this allows blocking of the locally echoed data. The
receiver can block data for an extended time after the transmitter ceases transmission by programming a hold time in
HDplxDelay[3:0].

Bit 6: MultiDrop

Set the MultiDrop bit high to enable the 9-bit multidrop mode. If this bit is set, parity checking is not performed by the
receiver and parity generation is not done by the transmitter. The address/data indication takes the place of the parity
bit in received and transmitted data words. The parity error interrupt in LSR[2] has a different meaning in multidrop
mode: it represents the 9th bit (address/data indication) that is received with each 9-bit data character.

Bit 5: Loopback

Set the Loopback bit high to enable internal local loopback mode. This internally connects TX_ to RX_ and also RTS_
to CTS_. In local loopback mode, the TX_ output and the RX_ input are disconnected from the internal transmitter and
receiver. The TX_ output is in three-state. The RTS_ output remains connected to the internal logic and reflects the logic
state programmed in LCR[7]. The CTS_ input is disconnected from RTS_ and the internal logic. CTS_ thus remains in
a high-impedance state.

Bit 4: SpecialChr

Set the SpecialChr bit high to enable special character detection. The receiver can detect up to four special characters,
as selected in FlowCtrl[5:4] and defined in the XON1, XON2, XOFF1, and/or XOFF2 registers, optionally in combina-
tion with GPIO_ inputs if enabled through FlowCtrl[2]: GPIAddr. When a special character is received, it is put into the
RxFIFO and a special character detect interrupt is generated in ISR[1].

Special character detection can be used in addition to auto XON/XOFF flow control if enabled by FlowCtrl[3]:
SwFlowEn. In this case, XON/XOFF flow control is limited to single byte XON and XOFF characters (XON1 and XOFF1),
and only two special characters can be defined (XON2 and XOFF2).

Bit 3: RFifoEmtylnv

Set the RFifoEmtylnv bit high to invert the meaning of the receiver empty interrupt in ISR[6]: RxEmptyInt. If RFifoEmtylnv
is set low, RxEmptyint is generated when the receive FIFO is empty. If RFifoEmtylnv is set high, RxEmptyint is gener-
ated when data is put into the empty receive FIFO.

Bit 2: RxTriginv

Set the RxTriglnv bit high to invert the meaning of the RxFIFO triggering. If the RxTrglnv bit is set low, an interrupt
is generated in ISR[3]: RxTrigint when the RxFIFO fill level is filled up to above the trigger level programmed into
FIFOTrgLvl[7:4]. If RxTrigInv is set high, an interrupt is generated in ISR[3] when the RxFIFO is emptied to below the
trigger level programmed into FIFOTrgLvl[7:4].

Bit 1: FIFORst

Set the FIFORst bit high to clear all data contents from both the receive and transmit FIFOs. After a FIFO reset, set
FIFORst low to continue normal operation.

Bit 0: RST

Set the RST bit high to initiate software reset for the selected UART in the MAX3109. The I12C/SPI bus stays active dur-
ing this reset; communication with the MAX3109 is possible while RST is set. All register bits in the selected UART are
reset to their reset state and all FIFOs are cleared during a reset.

Set RST low to continue normal operation after a software reset. The MAX3109 requires reprogramming following a
software reset.

Maxim Integrated 39

MAX3109
Dual Serial UART with 128-Word FIFOs

Line Control Register (LCR)

ADDRESS: 0x0B
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME RTSbit TxBreak ForceParity EvenParity ParityEn StopBits Length1 LengthO
RESET 0 0 0 0 0 1 0 1
Bit 7: RTSbit

The RTSbit bit provides direct control of the RTS_ output logic state. If RTSbit is logic 1, then RTS_ is logic 1; if it is
logic 0, then RTS_ is logic 0. RTSbit only works when CLKSource[7]: CLKtoRTS is set low.

Bit 6: TxBreak

Set the TxBreak bit high to generate a line break whereby the TX_ output is held low. TX_ remains low until TxBreak is
set low.

Bit 5: ForceParity

The ForceParity bit enables forced parity that overrides normal parity generation. Set both the LCR[3]: ParityEn and
ForceParity bits high to use forced parity. In forced-parity mode, the parity bit is forced high by the transmitter if the

LCR[4]: EvenParity bit is low. The parity bit is forced low if EvenParity is high. Forced parity mode enables the transmit-
ter to control the address/data bit in 9-bit multidrop communication.

Bit 4: EvenParity

Set the EvenParity bit high to enable even parity for both the transmitter and receiver. If EvenParity is set low, odd
parity is used.

Bit 3: ParityEn

Set the ParityEn bit high to enable the use of a parity bit on the TX_ and RX_ interfaces. Set the ParityEn bit low to dis-
able parity usage.

If ParityEn is set low, then no parity bit is generated by the transmitter or expected by the receiver. If ParityEn is set
high, the transmitter generates the parity bit whose polarity is defined in LCR[4]: EvenParity, and the receiver checks
the parity bit according to the same polarity.

Bit 2: StopBits

The StopBits bit defines the number of stop bits and depends on the length of the word programmed in LCR[1:0]
(Table 1). For example, when StopBits is set high and the word length is 5, the transmitter generates a word with a
stop bit length equal to 1.5 baud periods. Under these conditions, the receiver recognizes a stop bit length greater
than a one-bit duration.

Bits 1 and 0: Lengthx

The Lengthx bits configure the length of the words that the transmitter generates and the receiver checks for at the
asynchronous TX_ and RX_ interfaces (Table 2).

Table 1. StopBits Truth Table Table 2. Lengthx Truth Table
StopBits | WORD LENGTH STOP BIT LENGTH Length1 Lengtho WORD LENGTH
0 5,6, 7,8 1 0 0 5
1 5 1-15 0 1 6
1 6,7,8 2 1 0 7
1 1 8

40 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

Receiver Timeout Register (RxTimeOut)

ADDRESS: 0x0C
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME TimOut7 TimOut6 TimOut5 TimOut4 TimOut3 TimOut2 TimOut1 TimOut0
RESET 0 0 0 0 0 0 0 0

Bits 7-0: TimOutx

The RxTimeOut register allows programming a time delay from after the last (newest) character in the receive FIFO
was received until a receive data timeout interrupt is generated in LSR[0]. The units of TimOutx are measured in com-
plete character frames, which are dependent on the character length, parity, and STOP bit settings, and baud rate. If
the value in RxTimeOut equals zero, a timeout interrupt is not generated.

HDplxDelay Register

ADDRESS: 0x0D
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME Setup3 Setup2 Setup1 Setup0 Hold3 Hold2 Hold1 HoldO
RESET 0 0 0 0 0 0 0 0

The HDplxDelay register allows programming setup and hold times between RTS_ transitions and TX_ output activity in
auto transceiver direction control mode, enabled by setting the MODE1[4]: TrnscvCtrl bit high. The hold time can also
be used to ensure echo suppression in half-duplex communication. HDplIxDelay functions in 2x and 4x rate modes.

Bits 7-4: Setupx
The Setupx bits define a setup time for RTS_ to transition high before the transmitter starts transmission of its first char-
acter in auto transceiver direction control mode, enabled by setting the MODE1[4]: TrnscvCtrl bit high. This allows the

MAX3109 to account for skew times between the external transmitter’'s enable delay and propagation delays. Setupx
can also be used to fix a stable state on the transmission line prior to the start of transmission.

The resolution of the HDplIxDelay setup time delay is one bit interval, or one over the baud rate; this delay is baud-rate
dependent. The maximum delay is 15 bit intervals.

Bits 3—-0: Holdx

The Holdx bits define a hold time for RTS_ to be held high after the transmitter ends transmission of its last character
in auto transceiver direction control mode, enabled by setting the MODE1[4]: TrnscvCtrl bit high. RTS_ transitions low
after the hold time delay, which starts after the last STOP bit was sent. This keeps the external transmitter enabled
during the hold time duration.

The Holdx bits also define a delay in echo suppression mode, enabled by setting the MODEZ2[7]: EchoSuprs bit high.
See the Echo Suppression section for more information.

The resolution of the HDplxDelay hold time delay is one bit interval, or one over the baud rate. Thus, this delay is baud-
rate dependent. The maximum delay is 15 bit intervals.

Maxim Integrated 41

MAX3109
Dual Serial UART with 128-Word FIFOs

IrDA Register

ADDRESS: 0x0E
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME — — TxInv RxInv MIR — SIR [rDAEN
RESET 0 0 0 0 0 0 0 0

The IrDA register allows selection of IrDA SIR- and MIR-compliant pulse shaping at the TX_ and RX_ interfaces. It also
allows inversion of the TX_ and RX_ logic, separate from whether IrDA pulse shaping is enabled or not.

Bits 7, 6, and 2: No Function

Bit 5: TxInv

Set the TxInv bit high to invert the logic at the TX_ output. This functionality is separate from IrDA operation.
Bit 4: Rxinv

Set the RxInv bit high to invert the logic at the RX_ input. This functionality is separate from IrDA operation.
Bit 3: MIR

Set the MIR and IrDAEn bits high to select IrDA 1.1 (MIR) with 1/4th period pulse widths.

Bit 1: SIR

Set the SIR and IrDAEnN bits high to select IrDA 1.0 pulses (SIR) with 3/16th period pulse widths.

Bit 0: IrDAEN

Set the IrDAEN bit high to program the MAX3109 to produce IrDA-compliant pulses at the TX_ output and expect IrDA-
compliant pulses at the RX_ input. If rDAEN is set low, normal (non-IrDA) pulses are generated by the transmitter and
expected by the receiver. Use IrDAEN in conjunction with the SIR or MIR bits to select the pulse width.

Flow Level Register (FlowLvl)

ADDRESS: 0xO0F
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME Resume3 Resume?2 Resume1 Resume0 Halt3 Halt2 Halt1 HaltO
RESET 0 0 0 0 0 0 0 0

FlowLuvl is used for selecting the RxFIFO threshold levels used for auto software (XON/XOFF) and hardware (RTS_/
CTS_) flow control.

Bits 7-4: Resumex

The Resumex bits set the receive FIFO threshold at which an XON character is automatically sent in auto software flow
control mode or RTS_ is automatically asserted in AutoRTS mode. These flow control actions occur once the RxFIFO
is emptied to below the value in Resumex. This signals the far-end station to resume transmission. The threshold level
is calculated as 8 x Resumex. The resulting possible threshold-level range is 0 to 120 (decimal).

Bits 3-0: Haltx

The Haltx bits set the receive FIFO threshold level at which an XOFF character is automatically sent in auto software
flow control mode or RTS_ is automatically deasserted in AutoRTS mode. These flow control actions occur once the
RxFIFO is filled to above the value in Haltx. This signals the far-end station to halt transmission. The threshold level is
calculated as 8 x Haltx. The resulting possible threshold-level range is 0 to 120 (decimal).

42 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

FIFO Interrupt Trigger Level Register (FIFOTrgLvl)

ADDRESS: 0x10
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME RxTrig3 RxTrig2 RxTrig1 RxTrig0 TxTrig3 TxTrig2 TxTrig1 TxTrig0
RESET 1 1 1 1 1 1 1 1

Bits 7—4: RxTrigx
The RxTrigx bits allow definition of the receive FIFO threshold level at which the UART generates an interrupt in ISR[3].

This interrupt can be used to signal that either the receive FIFO is nearing overflow or a predefined number of FIFO
locations are available for being read out in one block, depending on the state of the MODE2[2]: RxTriglnv bit.

The selectable threshold resolution is eight FIFO locations, so the actual FIFO trigger level is calculated as 8 x RxTrigx.
The resulting possible trigger-level range is 0 to 120 (decimal).

Bits 3-0: TxTrigx

The TxTrigx bits allow definition of the transmit FIFO threshold level at which the MAX3109 generates an interrupt in
ISR[4]. This interrupt can be used to manage data flow to the transmit FIFO. For example, if the trigger level is defined
near the bottom of the TxFIFO, the host knows that a predefined number of FIFO locations are available for being writ-
ten to in one block. Alternatively, if the trigger level is set near the top of the FIFO, the host is warned when the transmit
FIFO is nearing overflow.

The selectable threshold resolution is eight FIFO locations, so the actual FIFO trigger level is calculated as 8 x TxTrigx.
The resulting possible trigger-level range is 0 to 120 (decimal).

Transmit FIFO Level Register (TxFIFOLvI)

ADDRESS: 0x11
MODE: R
BIT 7 6 5 4 3 2 1 0
NAME TxFL7 TxFL6 TxFL5 TxFL4 TxFL3 TxFL2 TxFLA TxFLO
RESET 0 0 0 0 0 0 0 0

Bits 7-0: TxFLXx
The TxFIFOLVI register represents the current number of words in the transmit FIFO.

Receive FIFO Level Register (RxFIFOLVI)

ADDRESS: 0x12
MODE: R
BIT 7 6 5 4 3 2 1 0
NAME RxFL7 RxFL6 RxFL5 RxFL4 RxFL3 RxFL2 RxFL1 RxFLO
RESET 0 0 0 0 0 0 0 0

Bits 7-0: RxFLx
The RXFIFOLUVI register represents the current number of words in the receive FIFO.

Maxim Integrated 43

MAX3109
Dual Serial UART with 128-Word FIFOs

Flow Control Register (FlowCtrl)

ADDRESS: 0x13
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME SwFlow3 SwFlow?2 SwFlow1 SwFlow0 SwFlowEn GPIAddr AutoCTS AutoRTS
RESET 0 0 0 0 0 0 0 0

The FlowCtrl register configures hardware (RTS/CTS) and software (XON/XOFF) flow control as well as special char-
acters detection.

Bits 7-4: SwFlowx

The SwFlowx bits select the XON and XOFF characters used for auto software flow control and/or special character
detection in combination with the characters programmed in the XON1, XON2, XOFF2, and/or XOFF2 registers. See
table 3.

If auto software flow control is enabled (through FlowCtrl[3]:SwFlowEn) and special character detection is not enabled,
SwFlowx allows selecting either single or dual XON/XOFF character flow control. When double character flow control
is enabled, the transmitter sends out XON1/XOFF1 first followed by XON2/XOFF2 during receive flow control. For
transmit flow control, the receiver only recognizes the received character sequence XON1/XOFF1 followed by XON2/
XOFF2 as a valid control sequence to resume/halt transmission.

If only special character detection is enabled (through MODEZ2[4]: SpecialChr) while auto software flow control is dis-
abled, the SwFlowx allows selecting either single or double character detection. Single character detection allows the
detection of two characters: XON1 or XON2 and XOFF1 or XOFF2. Double character detection does not distinguish
between the sequence of the two received XON1/XON2 or XOFF1/XOFF2 characters. The two characters have to be
received in succession, but it is insignificant which of the two is received first. The special characters are deposited in
the receive FIFO. An ISR[1]: SpCharlint interrupt is generated when special characters are received.

Auto software flow control and special character detection can be enabled to operate simultaneously. If both are
enabled, XON1 and XOFF1 define the auto flow control characters, while XON2 and XOFF2 constitute the special
character detection characters.

Bit 3: SwFlowEn

Set the SwFlowEn bit high to enable auto software flow control. The characters used for automatic software flow control
are selected by SwFlowx. If special character detection is enabled by setting the MODE2[4]: SpecialChr bit high in
addition to automatic software flow control, XON1 and XOFF1 are used for flow control while XON2 and XOFF2 define
the special characters.

Bit 2: GPIAddr

Set the GPIAddr bit high to enable the four GPIO_ inputs to be used in conjunction with XOFF2 for the definition of a
special character. This can be used, for example, for defining the address of an RS-485 slave device through hard-
ware. The GPIO_ input logic levels define the four LSBs of the special character, while the four MSBs are defined by
the XOFF2[7:4] bits. The contents of the XOFF2[3:0] bits are neglected while the GPIO_ inputs are used in special
character definition. Reading the XOFF2 register does not reflect the logic on GPIO_ in this mode.

Bit 1: AutoCTS

Set the AutoCTS bit high to enable AutoCTS flow control mode. In this mode, the transmitter stops and starts sending
data at the TX_ interface depending on the logic state of the CTS_ input. See the Auto Hardware Flow Control sec-
tion for more information about AutoCTS flow control mode. Logic changes at the CTS_ input result in an interrupt in
ISR[7]: CTSInt. The transmitter must be turned off by setting the MODE1[1]: TxDisabl bit high before AutoCTS mode
is enabled.

Bit 0: AutoRTS

Set the AutoRTS bit high to enable AutoRTS flow control mode. In this mode, the logic state of the RTS_ output is
dependent on the receive FIFO fill level. The FIFO thresholds at which RTS_ changes state are set in FlowLvl. See the
Auto Hardware Flow Control section for more information about AutoRTS flow control mode.

44 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

Table 3. SwFlow[3:0] Truth Table

RECEIVE FLOW TRANSMIT FLOW

NTR PECIAL
CONTROL CHngCTg;/ gETgCTION DESCRIPTION
SwFlow3 | SwFlow2 SwFlow1 SwFlow0
0 0 0 0 No flow control/no special character detection.
0 0 X X No receive flow control.
1 0 X X Transmitter generates XON1, XOFF1.
0 1 X X Transmitter generates XON2, XOFF2.
1 1 X X Transmitter generates XON1, XON2, XOFF1, and XOFF2.
X X 0 0 No transmit flow control.

Receiver compares XON1 and XOFF1 and controls the transmitter
X X 1 0 accordingly.
XON1 and XOFF1 special character detection.

Receiver compares XON2 and XOFF2 and controls the transmitter
X X 0 1 accordingly.
XON2 and XOFF2 special character detection.

Receiver compares XON1, XON2, XOFF1, and XOFF2 and controls
X X 1 1 the transmitter accordingly. XON1, XON2, XOFF1, and XOFF2 special
character detection.

X =Don't care

XON1 Register

ADDRESS: 0x14
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 0 0 0 0 0 0 0 0

The XON1 and XON2 register contents define the XON character used for automatic XON/XOFF flow control and/or
the special characters used for special-character detection. See the FlowCtrl register description for more information.
Bits 7-0: Bitx

These bits define the XON1 character if single character XON auto software flow control is enabled in FlowCtrl[7:4]. If
double-character flow control is selected in FlowCtrl[7:4], these bits constitute the least significant byte of the 2-byte
XON character. If special character detection is enabled in MODE2[4] and auto flow control is not enabled, these bits
define a special character.

If both special character detection and auto software flow control are enabled, XON1 defines the XON flow control
character.

Maxim Integrated 45

MAX3109
Dual Serial UART with 128-Word FIFOs

XON2 Register

ADDRESS: 0x15
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 BitO
RESET 0 0 0 0 0 0 0 0

The XON1 and XON2 register contents define the XON character for automatic XON/XOFF flow control and/or the
special characters used in special-character detection. See the FlowCtrl register description for more information.

Bits 7-0: Bitx
These bits define the XON2 character if single character auto software flow control is enabled in FlowCtrl[7:4]. If
double-character flow control is selected in FlowCtrl[7:4], these bits constitute the most significant byte of the 2-byte

XON character. If special character detection is enabled in MODE2[4] and auto software flow control is not enabled,
these bits define a special character.

If both special character detection and auto software flow control are enabled, XON2 defines a special character.

XOFF1 Register

ADDRESS: 0x16
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 BitO
RESET 0 0 0 0 0 0 0 0

The XOFF1 and XOFF2 register contents define the XOFF character for automatic XON/XOFF flow control and/or the
special characters used in special character detection. See the FlowCtrl register description for more information.
Bits 7-0: Bitx

These bits define the XOFF1 character if single character XOFF auto software flow control is enabled in FlowCtrl[7:4].
If double character flow control is selected in FlowCtrl[7:4], these bits constitute the least significant byte of the 2-byte
XOFF character. If special character detection is enabled in MODE2[4] and auto software flow control is not enabled,
these bits define a special character.

If both special character detection and auto software flow control are both enabled, XOFF1 defines the XOFF flow
control character.

46 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

XOFF2 Register

ADDRESS: 0x17
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 0 0 0 0 0 0 0 0

The XOFF1 and XOFF2 register contents define the XOFF character for automatic XON/XOFF flow control and/or the
special characters used in special character detection. See the FlowCtrl register description for more information.

Bits 7-0: Bitx
These bits define the XOFF1 character if single character XOFF auto software flow control is enabled in FlowCtrl[7:4].
If double character flow control is selected in FlowCtrl[7:4], these bits constitute the least significant byte of the 2-byte

XOFF character. If special character detection is enabled in MODE2[4] and auto software flow control is not enabled,
these bits define a special character.

If both special character detection and auto software flow control are both enabled, XOFF2 defines a special character.

GPIO Configuration Register (GPIOConfg)

ADDRESS: 0x18
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME GP30D GP20D GP10D GPOOD GP30ut GP20ut GP10ut GPOOut
RESET 0 0 0 0 0 0 0 0

Each UART has four GPIOs that can be configured as inputs or outputs and can be operated in push-pull or open-drain
mode. The reference clock needs to be active for the GPIOs to work.

Each UART has four individually assigned GPIO outputs as follows: UARTO: GPIO0-GPIO3, UART1: GPIO4-GPIO7.
Bits 7-4: GPxOD

Set the GPxOD bits high to configure the associated GPIOs as open-drain outputs. Set the GPxOD bits low to configure
the associated GPIOs as push-pull outputs. For example, for UART1: GPOOD configures GP1I04, GP10D configures
GPI05, GP20D configures GPIO6 and GP30OD configures GPIO7.

The GPIxDat bits reflect the input logic on the associated GPIO_s. For example, for UART1: GPODat configures GPIO4,
GP1Dat configures GPIO5, GP2Dat configures GPIO6 and GP3Dat configures GPIO7.
Bits 3—0: GPxOut

The GPxQOut bits configure the associated GPIO_s to be either inputs or outputs. Set the GPxOut bits high to configure
the associated GPIO_s as outputs. Set the GPxOut bits low to configure the associated GPIO_s as inputs. For example,
for UART1: GPOOut configures GP104, GP10ut configures GPIO5, GP20ut configures GPIO6 and GP30ut configures
GPIO7.

Maxim Integrated 47

MAX3109
Dual Serial UART with 128-Word FIFOs

GPIO Data Register (GPIOData)

ADDRESS: 0x19
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME GPI3Dat GPI2Dat GPl1Dat GPI0Dat GPO3Dat GPO2Dat GPO1Dat GPOODat
RESET 0 0 0 0 0 0 0 0

Each UART has four individually assigned GPIO outputs as follows: UARTO: GPIO0-GPIO3, UART1: GPIO4-GPIO7.
Bits 7—4: GPIxDat
The GPIxDat bits reflect the input logic on the associated GPIO_s. For example, for UART1: GPODat configures GPIO4,

GP1Dat configures GPIO5, GP2Dat configures GPIO6 and GP3Dat configures GPIO7. When configured as inputs in
GPxOut, the GPIO_s are high-impedance inputs with weak pulldown resistors, regardless of the state of GPxOD.

Bits 3—-0: GPOxDat

The GPOxDat bits allow programming of the logic state of the GPIO_s when configured as outputs in GPIOConfg[3:0].
For open-drain operation, pullup resistors are needed on the GPIOs. For example, for UART1: GPODat configures
GPIO4, GP1Dat configures GPIO5, GP2Dat configures GPIO6 and GP3Dat configures GPIO7.

48 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

PLL Configuration Register (PLLConfig)

ADDRESS: Ox1A
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME PLLFactor1 PLLFactorO PreDiv5 PreDiv4 PreDiv3 PreDiv2 PreDiv1 PreDiv0
RESET 0 0 0 0 0 0 0 1

Bits 7-6: PLLFactorx

The PLLFactorx bits allow programming the PLL multiplication factor. The input and output frequencies of the PLL must
be limited to the ranges shown in Table 4. Enable the PLL in CLKSource[2].

Bits 5-0: PreDivx
The PreDivx bits allow programming of the divisor in the PLL’s predivider. The divisor must be chosen such that the
output frequency of the predivider, which is the PLL’s input frequency, is limited to the ranges shown in Table 4. The
PLL input frequency is calculated as:

fPLLIN = fCLK/PreDiv

where fCLK is the input frequency of the crystal oscillator or external clock source (Figure 17), and PreDiv is an integer
in the range of 1 to 63.

’ i ; FRACTIONAL
ol PREDIVIDER Mgl PLL [gl BAUD-RATE
GENERATOR
Figure 17. PLL Signal Path
Table 4. PLLFactorx Selection Guide
MULTIPLICATION fPLLIN fREF
PLLFactori PLLFactor0
FACTOR MIN MAX MIN MAX
0 0 6 500kHz 800kHz 3MHz 4.8MHz
0 1 48 850kHz 1.2MHz 40.8MHz 56MHz
1 0 96 425kHz 1MHz 40.8MHz 96MHz
1 1 144 390kHz 667kHz 56MHz 96MHz

Maxim Integrated 49

MAX3109
Dual Serial UART with 128-Word FIFOs

Baud-Rate Generator Configuration Register (BRGConfig)

ADDRESS: 0x1B
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME — — 4xMode 2xMode FRACT3 FRACT2 FRACT1 FRACTO
RESET 0 0 0 0 0 0 0 0

Bits 7 and 6: No Function
Bit 5: 4xMode

Set the 4xMode bit high to quadruple the regular (16x sampling) baud rate. Set the 2xMode bit low when 4xMode is
enabled. See the 2x and 4x Rate Modes section for more information.

Bit 4: 2xMode

Set the 2xMode bit high to double the regular (16x sampling) baud rate. Set the 4xMode bit low when 2xMode is
enabled. See the 2x and 4x Rate Modes section for more information.

Bits 3-0: FRACTXx

The FRACTX bits are the fractional portion of the baud-rate generator divisor. Set FRACTx to 0000b if not used. See the
Fractional Baud-Rate Generator section for calculations of how to set this value to select the baud rate.

Baud-Rate Generator LSB Divisor Register (DIVLSB)

ADDRESS: 0x1C
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME Div7 Dive Divb Div4 Div3 Div2 Div1 Div0
RESET 0 0 0 0 0 0 0 1

DIVLSB and DIVMSB define the baud-rate generator integer divisor. The minimum value for DIVLSB is 1. See the
Fractional Baud-Rate Generator section for more information.

Bits 7-0: Divx
The Divx bits are the eight LSBs of the integer divisor portion (DIV) of the baud-rate generator.

50 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

Baud-Rate Generator MSB Divisor Register (DIVMSB)

ADDRESS: 0x1D
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME Div1s Div14 Div13 Div12 Div11 Div10 Divo Div8
RESET 0 0 0 0 0 0 0 0

DIVLSB and DIVMSB define the baud-rate generator integer divisor. The minimum value for DIVLSB is 1. See the
Fractional Baud-Rate Generator section for more information.

Bits 7—-0: Divx
The Divx bits are the eight MSBs of the integer divisor portion (DIV) of the baud-rate generator.

Clock Source Register (CLKSource)

ADDRESS: Ox1E
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME CLKtoRTS — — — PLLBypass PLLEN CrystalEn —
RESET 0 0 0 1 1 0 0 0

Bit 7: CLKtoRTS

Set the CLKtoRTS bit high to route the baud-rate generator (16x baud rate) output clock to RTS_. The RTS_ clock fre-
quency is a factor of 16x, 8x, or 4x of the baud rate in 1x, 2x, and 4x rate modes, respectively.

Bits 6, 5, 4, and 0: No Function

Bit 3: PLLBypass

Set the PLLBypass bit high to bypass the internal PLL and predivider.

Bit 2: PLLEn

Set the PLLEN bit high to enable the internal PLL. Set PLLENn low to disable the internal PLL.

Bit 1: CrystalEn

Set the CrystalEn bit high to enable the crystal oscillator. When using an external clock source at XIN, set CrystalEn low.

Maxim Integrated 51

MAX3109
Dual Serial UART with 128-Word FIFOs

Global IRQ Register (GloballRQ)

ADDRESS: Ox1F
MODE: R
BIT 7 6 5 4 3 2 1 0
NAME — — — — — — TRQT TRQO
RESET 0 0 0 0 0 0 1 1

Bit 7-2: No Function
Bits 1-0: IRQx

The MAX3109 has a single IRQ output. The GloballRQ register bits report which of the UARTs have an interrupt pend-
ing, as enabled in the ISRINtEN registers.

The GloballRQ register can be read in two ways: either by reading register Ox1F of any of the two UARTs or by sam-
pling the two bits sent to the master on MISO during the command byte of a read cycle (full-duplex SPI) (see the Fast
Read Cycle section for more information).

The IRQx bits are set low when the associated UARTs have an IRQ interrupt pending. The IRQx bits are cleared high
when the associated UART interrupt is cleared. UART interrupts are cleared by reading the UART ISR register.

52 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

Global Command Register (GlobIComnd)

ADDRESS: Ox1F
MODE: w
BIT 7 6 5 4 3 2 1 0
NAME GlbCom?7 GlbCom6 GlbComb GlbCom4 GlbCom3 GlbCom?2 GlbCom1 GIbComO

Bits 7-0: GIbComx

The GloblComnd register is the only global write register in the MAX3109. Every byte written to GloblIComnd is sent
simultaneously to both UARTs. Every byte sent by the SPI/I2C master to register Ox1F is interpreted as a global com-
mand by both internal UARTS, regardless of which UART it was written to.

The MAX3109 logic supports the following commands (Table 5):

e Global Tx Synchronization

e Extended Addressing Space Enable (to enable access to registers beyond address 0x1F)
e Extended Addressing Space Disable (to disable access to registers beyond address 0x1F)

The last two commands (OxCE/OxCD) enable or disable access to registers in the extended space of the register map
when the MAX3109 operates in SPI mode. The SPI command byte has only 5 bits to address a given register so that
the registers beyond 0x1F could not be addressed using the standard access method. In 12C mode, there is no need
to explicitly enable and disable the extended register map access as 12C allows up to 7 bits for register addressing. To
extend the addressing capability of the SPI command byte, send a OxCE to location Ox1F. The internal SPI address in
extended access mode is generated as 0010 ASA2A1A0, where ASA2A1AQ is the least significant nibble of the com-
mand byte. Bit A4 of the command byte is disregarded when the extended space of the register map is enabled and
only the least significant nibble is used for addressing purposes (Table 6).

The U bit of the command byte maintains its meaning in the extended mode. See the SP/ Interface section for more
information. To return to standard addressing mode, the SPI master sends the OxCD command to register Ox1F. In this
case, the internal SPI address will be generated as follows (default): 000A4 A3A2A1AO.

Table 5. GlobIComnd Command Table 6. Extended Mode Addressing
Descriptions (SPI Only)

GloblComndx COMMAND DESCRIPTION SPI MODE 12C MODE
OxEO Tx Command 0 REGISTER ADDRESS ADDRESS
OxE1 Tx Command 1 TxSynch 0x00 0x20
OxE2 Tx Command 2 SynchDelay1 0x01 ox21
OxE3 Tx Command 3 SynchDelay?2 0x02 0x22
OxE4 Tx Command 4 TIMER1 0x03 0x23
OXES Tx Command 5 TIMER?2 0x04 0x24
OxE6 Tx Command 6 ReviD 0x05 0x25
OxE7 Tx Command 7
OxE8 Tx Command 8
OxE9 Tx Command 9
OxEA Tx Command 10
OxEB Tx Command 11
OxEC Tx Command 12
OxED Tx Command 13
OxEE Tx Command 14
OxEF Tx Command 15
OxCE Enable extended register map access
0xCD Disable extended register map access

Maxim Integrated 53

MAX3109
Dual Serial UART with 128-Word FIFOs

Transmitter Synchronization Register (TxSynch)

ADDRESS: 0x20
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME CLKtoGPIO TxAutoDis TrigDelay SynchEn TrigSel3 TrigSel2 TrigSell TrigSelO
RESET 0 0 0 0 0 0 0 0

The TxSynch register is used to configure transmitter synchronization with a global SPI or 12C command. One of 16
trigger commands (Table 5) can be selected to be the synchronization trigger source individually for each UART. This
allows simultaneous start of transmission of multiple UARTSs that are associated with the same global trigger command.
The synchronized UARTs can be on either a single MAX3109 or multiple devices if they are controlled by a common
SPI interface.

The UARTSs start transmission when a global trigger command is received. Start of transmission is considered to be
the falling edge of the START bit at the TX_ output. A delay can optionally be programmed through the SynchDelay1
and SynchDelay2 registers.

TX synchronization is managed through software by transmitting the broadcast trigger Tx command (Table 5) to the
MAX3109 through the SPI or 12C interface. To selectively synchronize ports that are on the same MAX3109 (intrachip
synchronization) or on different MAX3109 (interchip synchronization) devices, up to 16 trigger Tx commands have
been defined (see the Global Command Register (GloblIComnd) section for more information).

Bit 7: CLKtoGPIO

The CLKtoGPIO bit is used to provide a buffered replica of the UARTs system clock (i.e., the fractional baud-rate gen-
erator input) to a GPIO. UARTO’s clock is routed to GPIO0O and UART1’s clock is routed to GPIO4.

Bit 6: TxAutoDis

Set the TxAutoDis bit high to enable automatic transmitter disabling. When TxAutoDis is set high, the transmitter is
automatically disabled when all data in the TxFIFO has been transmitted. After the transmitter is disabled, the TxFIFO
can then be filled with data that will be transmitted when its assigned trigger command is received, as defined by the
TrigSelx bits.

Bit 5: TrigDelay

Set the TrigDelay bit high to enable delayed start of transmission when a trigger command is received. The UART
starts transmitting data following a delay programmed in SynchDelay1 and SynchDelay2 after receiving the assigned
trigger command.

Bit 4: SynchEn

Set the SynchEn bit high to enable software TX synchronization mode. If SynchEn is set high, the UART starts transmit-
ting data when the assigned trigger command is received and the TxFIFO contains data. Setting SynchEn high forces
the MODE1[1]: TxDisabl bit high and thereby disables the UART's transmitter. This prevents the transmitter from send-

ing data as soon as the TxFIFO is loaded. Once the TxFIFO has been loaded, the UART starts transmitting data only
upon receiving the assigned trigger command.

Set the SynchEn bit low to disable transmitter synchronization for that UART. If SynchEn is set low, that UART's trans-
mitter does not start transmission through any trigger command.

Bits 3-0: TrigSelx

The TrigSelx bits assign the trigger command for that UART’s transmitter synchronization when SynchEn is set high.
For example, set TxSynch[3:0] to 0x08 for the UART to be triggered by TX command 8 (OxE8, Table 5).

54 Maxim Integrated

MAX3109
Dual Serial UART with 128-Word FIFOs

Synchronization Delay Register 1 (SynchDelay1)

ADDRESS: 0x21
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME SDelay7 SDelay6 SDelay5 SDelay4 SDelay3 SDelay?2 SDelay1 SDelay0
RESET 0 0 0 0 0 0 0 0

The SynchDelay1 and SynchDelay2 register contents define the time delay between when the UART receives an
assigned transmitter trigger command and when the UART begins transmission.

Bits 7-0: SDelayx

The SDelayx bits are the 8 LSBs of the delay between when the UART receives an assigned transmitter trigger com-
mand and when the UART begins transmission. The delay is expressed in number of UART bit intervals (1/BaudRate).
The maximum delay is 65,535 bit intervals.

For example, given a baud rate of 230.4kbps, the bit time is 4.34us, so the maximum delay is 284ms.

Synchronization Delay Register 2 (SynchDelay2)

ADDRESS: 0x22
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME SDelay15 SDelay14 SDelay13 SDelay12 SDelay11 SDelay10 SDelay9 SDelay8
RESET 0 0 0 0 0 0 0 0

The SynchDelay1 and SynchDelay2 register contents define the time delay between when the UART receives an
assigned transmitter trigger command and when the UART begins transmission.

Bits 7—0: SDelayx

The SDelayx bits are the 8 MSBs of the delay between when the UART receives an assigned transmitter trigger com-
mand and when the UART begins transmission. The delay is expressed in number of UART bit intervals (1/BaudRate).
The maximum delay is 65,535 bit intervals.

For example, given a baud rate of 230.4kbps, the bit time is 4.34us, so the maximum delay is 284ms.

Maxim Integrated 55

MAX3109
Dual Serial UART with 128-Word FIFOs

Timer Register 1 (TIMER1)

ADDRESS: 0x23
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME Timer7 Timer6 Timer5 Timer4 Timer3 Timer2 Timer1 TimerO
RESET 0 0 0 0 0 0 0 0

The TIMER1 and TIMER2 register contents can be used to generate a low-frequency clock signal on a GPIO_ output.
The low-frequency clock is a divided replica of the fractional baud-rate generator output. If TIMER1 and TIMER2 are
both 0x00, the low-frequency clock is off.

Bits 7-0: Timerx
The TIMER1[7:0] bits are the 8 LSBs of the 15-bit timer divisor. See the TIMER2 register description.

Timer Register 2 (TIMER2)

ADDRESS: 0x24
MODE: R/W
BIT 7 6 5 4 3 2 1 0
NAME TmrToGPIO Timer14 Timer13 Timer12 Timer11 Timer10 Timer9 Timer8
RESET 0 0 0 0 0 0 0 0

The TIMER1 and TIMER2 register contents can be used to generate a low-frequency clock signal on a GPIO_ output.
The low-frequency clock is a divided replica of the fractional baud-rate generator output. If TIMER1 and TIMER2 are
both 0x00, the low-frequency clock is off.

Bit 7: TmrToGPIO

Set the TmrToGPIO bit high to enable clock generation at a GPIO output. The clock signal is routed to GPIO1 for UARTO
and GPIO5 for UART1. The output clock has a 50% duty cycle.

Bits 6—0: Timerx

The TIMERZ2[6:0] bits are the 7 MSBs of the 15-bit timer divisor. The clock frequency is calculated using the following
formula:

fTIMER_CLK = UARTCIk/(1024 x Timerx)
where UARTCIk is the fractional baud-rate generator output (i.e., 16 x Baud Rate).

Revision Identification Register (ReviD)

ADDRESS: 0x25
MODE: R
BIT 7 6 5 4 3 2 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 BitO
RESET 1 1 0 0 0 0] 0
Bits 7-0: Bitx

The RevlD register indicates the revision number of the MAX3109 silicon starting with 0xCO. This can be used during
software development as a known reference.

56 Maxim Integrated

MAX3109

Dual Serial UART with 128-Word FIFOs

Serial Controller Interface

The MAX3109 can be controlled through 12C or SPI as
defined by the logic on SPI/I12C. See the Pin Description
for further details.

SPI Interface
The SPI supports both single-cycle and burst read/write
access. The SPI master must generate clock and data
signals in SPI MODERQO (i.e., with clock polarity CPOL = 0
and clock phase CPHA = 0).

Each of the two UARTSs is addressed using 1 bit (U) in the
command byte (Table 7).

To access the registers with addresses 0x20 or higher in
SPI mode, enable extended register map access. See the
GloblComnd register description for more information.

SPI Single-Cycle Access
Before a specific UART has been addressed, both
UARTs could attempt to drive MISO. To avoid this con-
tention, the MISO line is held in high impedance during a
write cycle (Figure 18).

During a read cycle, MISO is high impedance for the first
four clock cycles of the command byte. Once the SPI
address has been properly decoded, the addressed SPI
drives the MISO line (Figure 19).

Table 7. SPI Command Byte Configuration

SPI COMMAND BYTE
BIT7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BITO
W/R 0 U A4 A3 A2 Al A0

Ax = Register address.

Ax=REGISTER ADDRESS
Dx = 8-BIT REGISTER CONTENTS

Figure 18. SPI Write Cycle

HIGH-Z : — ‘ : : : : : ‘
MISO 0 ! 0 (MQijRA: D7 ! D6 ! D5 : D4 | D3 | D2 i DI | DO

Ax = REGISTER ADDRESS
Dx = 8-BIT REGISTER CONTENTS

Figure 19. SPI Ready Cycle

Maxim Integrated 57

MAX3109

Dual Serial UART with 128-Word FIFOs

« gy yyyyt

MOS! R L 0 ¢ U | M i A

AR A A

HIGH-Z
MISO 0

Ax =REGISTER ADDRESS

Figure 20. SPI Fast Read Cycle

SPI Burst Access
Burst access allows writing and reading multiple data
bytes in one block by defining only the initial register
address in the SPI command byte. Multiple characters
can be loaded into the TxFIFO by using the THR (0x00)
as the initial burst write address. Similarly, multiple
characters can be read out of the RxFIFO by using the
RHR (0x00) as the SPI's burst read address. If the SPI
burst address is different from 0x00, the MAX3109 auto-
matically increments the register address after each SPI
data byte. Efficient programming of multiple consecutive
registers is thus possible. The chip-select input, CS/AQ,
must be held low during the whole cycle. The SCLK/SCL
clock continues clocking throughout the burst access
cycle. The burst cycle ends when the SPI master pulls
CS/AO high.

For example, writing 128 bytes into the TxFIFO can be
achieved by a burst write access using the following
sequence:

1) Pull CS/AO low.

2) Send SPI write command to address 0x00.
3) Send 128 bytes.

4) Release CS/AO.

This takes a total of (1 + 128) x 8 clock cycles.

58

Fast Read Cycle
The two UART interrupts on the MAX3109 share the
single IRQ output. When operating in interrupt-based
mode, the microcontroller needs to locate the source
of the interrupt (i.e., which of the UARTs generated the
interrupt) and clear the interrupt.

In order to locate the source of an interrupt more quickly,
the MAX3109 implements the SPI fast read cycle. This
means that the microcontroller can determine which
UART is the source of the interrupt (UARTO or UART1)
using only 8 clock cycles (Figure 20). The U bit is
ignored during the fast read cycle.

I2C Interface
The MAX3109 contains an |2C-compatible interface for
data communication with a host processor (SCL and
SDA). The interface supports a clock frequency of up
to 1TMHz. SCL and SDA require pullup resistors that are
connected to a positive supply.

START, STOP, and Repeated START Conditions
When writing to the MAX3109 using 12C, the master
sends a START condition (S) followed by the MAX3109
I2C address. After the address, the master sends
the register address of the register that is to be pro-
grammed. The master then ends communication by
issuing a STOP condition (P) to relinquish control of the

Maxim Integrated

MAX3109

Dual Serial UART with 128-Word FIFOs

bus, or a repeated START condition (Sr) to communi-
cate to another 12C slave. See Figure 21.

Slave Address
The MAX3109 includes a configurable 7-bit 12C slave
address, allowing up to 16 MAX3109 devices to share
the same 12C bus. The address is defined by connect-
ing the MOSI/A1 and CS/AQ inputs to DGND, VL, SCL,
or SDA (Table 5). Set the R/W bit high to configure the
MAX3109 to read mode. Set the R/W bit low to config-
ure the MAX3109 to write mode. The address is the

Table 8. I12C Address Map

first byte of information sent to the MAX3109 after the
START condition.

Bit Transfer
One data bit is transferred on the rising edge of each
SCL clock cycle. The data on SDA must remain stable
during the high period of the SCL clock pulse. Changes
in SDA while SCL is high and stable are considered
control signals (see the START, STOP, and Repeated
START Conditions section). Both SDA and SCL remain
high when the bus is not active.

— UARTO UART1

MOSVA1 CS/Ao WRITE READ WRITE READ
DGND DGND 0xD8 0xD9 0xB8 0xB9
DGND VL 0xC2 0xC3 O0xA2 O0xA3
DGND SCL 0xC4 0xC5 OxA4 O0xA5
DGND SDA 0xC6 0xC7 OxAB OxA7
VL DGND 0xC8 0xC9 O0xA8 O0xA9
VL VL OxCA 0xCB OxAA OxAB
VL SCL 0xCC 0xCD OxAC OxAD
VL SDA OxCE OxCF OxAE OxAF
SCL DGND 0xDO0 0xD1 0xB0 0xB1
SCL Vi 0xD2 0xD3 0xB2 0xB3
SCL SCL 0xD4 0xD5 0xB4 0xB5
SCL SDA 0xD6 0xD7 0xB6 0xB7
SDA DGND 0xCO 0xCH1 0xAQ OxA1
SDA Vi OxDA 0xDB OxBA 0xBB
SDA SCL 0xDC 0xDD 0xBC 0xBD
SDA SDA OxDE OxDF OxBE OxBF

SCL

((

))
SDA

))

Figure 21. 12C START, STOP, and Repeated START Conditions

Maxim Integrated

59

MAX3109

Dual Serial UART with 128-Word FIFOs

WRITE SINGLE BYTE

DEVICE SLAVE ADDRESS - W | A |—>| REGISTER ADDRESS | A }—‘

.

8 DATABITS

[{7]

[] FROM MASTER TO STAVE

[FROM SLAVE TO MASTER

Figure 22. Write Byte Sequence

BURST WRITE

DEVICE SLAVE ADDRESS - W | A |—>| REGISTER ADDRESS | A }—‘

8 DATABITS -1

7]+

8 DATABITS - 2 | A

-
L,

[] FROM MASTER TO STAVE

8 DATABITS - N | A |—>|E|

[] FROM SLAVE TO MASTER

Figure 23. Burst Write Sequence

Single-Byte Write
In this operation, the master sends an address and two
data bytes to the slave device (Figure 22). The following
procedure describes the single-byte write operation:

1) The master sends a START condition.

2) The master sends the 7-bit slave address plus a write
bit (low).

3) The addressed slave asserts an ACK on the data line.
4) The master sends the 8-bit register address.

5) The slave asserts an ACK on the data line only if the
address is valid (NACK if not).

6) The master sends 8 data bits.
7) The slave asserts an ACK on the data line.
8) The master generates a STOP condition.

60

Burst Write
In this operation, the master sends an address and mul-
tiple data bytes to the slave device (Figure 23). The slave
device automatically increments the register address
after each data byte is sent, unless the register being
accessed is 0x00, in which case the register address
remains the same. The following procedure describes
the burst write operation:

1) The master sends a START condition.

2) The master sends the 7-bit slave address plus a write
bit (low).

3) The addressed slave asserts an ACK on the data line.
4) The master sends the 8-bit register address.

5) The slave asserts an ACK on the data line only if the
address is valid (NACK if not).

6)

7) The slave asserts an ACK on the data line.
8) Repeat 6 and 7 N-1 times.

9) The master generates a STOP condition.

The master sends 8 data bits.

Maxim Integrated

MAX3109

Dual Serial UART with 128-Word FIFOs

Single-Byte Read
In this operation, the master sends an address plus two
data bytes and receives one data byte from the slave
device (Figure 24). The following procedure describes
the single-byte read operation:

1) The master sends a START condition.

2) The master sends the 7-bit slave address plus a write
bit (low).

3) The addressed slave asserts an ACK on the data line.
4) The master sends the 8-bit register address.

5) The active slave asserts an ACK on the data line only
if the address is valid (NACK if not).

6) The master sends a repeated START condition.

7) The master sends the 7-bit slave address plus a read
bit (high).

8) The addressed slave asserts an ACK on the data line.
9) The slave sends 8 data bits.

10) The master asserts a NACK on the data line.
11) The master generates a STOP condition.

Burst Read
In this operation, the master sends an address plus
two data bytes and receives multiple data bytes from
the slave device (Figure 25). The following procedure
describes the burst byte read operation:

1) The master sends a START condition.

2) The master sends the 7-bit slave address plus a write
bit (low).

3) The addressed slave asserts an ACK on the data line.
4) The master sends the 8-bit register address.

5) The slave asserts an ACK on the data line only if the
address is valid (NACK if not).

6) The master sends a repeated START condition.

7) The master sends the 7-bit slave address plus a read
bit (high).

[] FROM MASTER TO STAVE

READ SINGLE BYTE

DEVICE SLAVE ADDRESS - W | A |—>| REGISTER ADDRESS | A }—‘

DEVICE SLAVE ADDRESS - R | A |—>| 8 DATABITS |NA |—>|E|

(] FROM MASTERTOSTAVE] FROM SLAVE TO MASTER

Figure 24. Read Byte Sequence

BURST READ

DEVICE SLAVE ADDRESS - W | A |—>| REGISTER ADDRESS | A }—‘

DEVICE SLAVE ADDRESS - R | A |—>| 8 DATABITS -1 | A }—‘
L»{ 8 DATABITS - 2 | A |—>| 8 DATABITS - 3 | A }—‘
I—» —>| 8 DATABITS -N |NA|—>E|

[FROM SLAVE TO MASTER

Figure 25. Burst Read Sequence

Maxim Integrated

61

MAX3109

Dual Serial UART with 128-Word FIFOs

8) The slave asserts an ACK on the data line.
9) The slave sends 8 data bits.

10) The master asserts an ACK on the data line.
11) Repeat 9 and 10 N-2 times.

12) The slave sends the last 8 data bits.

13) The master asserts a NACK on the data line.
14)

The master generates a STOP condition.

S

1 NOT- ACKNOWLEDGE

s T\

SDA _\\ / X X X x)
ACKNOWLEDGE

Figure 26. Acknowledge

Acknowledge Bits
Data transfers are acknowledged with an acknowledge
bit (ACK) or a not-acknowledge bit (NACK). Both the
master and the MAX3109 generate ACK bits. To generate
an ACK, pull SDA low before the rising edge of the ninth
clock pulse and hold it low during the high period of the
ninth clock pulse (Figure 26). To generate a NACK, leave
SDA high before the rising edge of the ninth clock pulse
and leave it high for the duration of the ninth clock pulse.
Monitoring for NACK bits allows for detection of unsuc-
cessful data transfers.

Applications Information

Startup and Initialization
The MAX3109 can be initialized following power-up,
a hardware reset, or a software reset as shown in
Figure 27. To verify that the MAX3109 is ready for opera-
tion after a power-up or reset.

Repeatedly read a known register until the expected
contents are returned. The MAX3109 is ready for opera-
tion after approximately 200us.

_ POWER-UP/
RST INPUT PULLED HIGH

IS
DIVLSB READ
SUCCESSFULLY?

Y
Y

CONFIGURE
CLOCKING

\J

CONFIGURE
MODES

ENABLE
INTERRUPTS

4

CONFIGURE
FIFO CONTROL

»
'

\J

CONFIGURE
FLOW CONTROL

<
-

\J

CONFIGURE
GPIOs

A

/

START
COMMUNICATION

Figure 27. Startup and Initialization Flowchart

62

Maxim Integrated

MAX3109

Dual Serial UART with 128-Word FIFOs

1.8V

3.3V

T 25V T
I gul
Vop Vi Vee Vexr Voo

»| RST TX_ > DI
MAX14840F
MICROCONTROLLER MAX3109 RX_ | TRANSCEIVER

- IRQ RTS_ »{ DE

AGND DGND

\vl

Figure 28. Logic-Level Translation

Low-Power Operation
To reduce the power consumption during normal opera-
tion, the following techniques can be adopted:

e Do not use the internal PLL. This saves the most
power of the options listed here. Disable and bypass
the PLL. With the PLL enabled, the current to the
Vce supply is in the range of a few mA (depending
on clock frequency and multiplication factor), while it
drops to below 1mA if disabled.

e Use an external clock source. The lowest power
clocking mode is when an external clock signal is
used. This drops the power consumption to about half
that of an external crystal.

¢ Keep the internal clock rates as low as possible.
e Use a low voltage on the VcC supply.

e Use an external 1.8V supply. This saves the power
dissipated by the internal 1.8V linear regulator for the
1.8V core supply. Connect an external 1.8V supply to
V18 and disable the internal regulator by connecting
LDOEN to DGND.

Maxim Integrated

Interrupts and Polling
Monitor the MAX3109 by polling the ISR register or by
monitoring the TRQ output. In polled mode, the TRQ
physical interrupt output is not used and the host control-
ler polls the ISR register at frequent intervals to establish
the state of the MAX3109.

Alternatively, the physical IRQ interrupt can be used to
interrupt the host controller after specified events, mak-
ing polling unnecessary. The IRQ output is an open-drain
output that requires a pullup resistor to VL.

Logic-Level Translation
The MAX3109 can be directly connected to transceivers
and controllers that have different supply voltages. The VL
input defines the logic voltage levels of the controller inter-
face, while the VEXT voltage defines the logic of the trans-
ceiver interface. This ensures flexibility when selecting a
controller and transceiver. Figure 28 shows an example
of a configuration where the controller, transceiver, and
the MAX3109 are powered by three different supplies.

63

MAX3109

Dual Serial UART with 128-Word FIFOs

Power-Supply Sequencing
The device’s power supplies can be turned on in any
order. Each supply can be present over the entire speci-
fied range regardless of the presence or level of the
others. Ensure the presence of the interface supplies VL
and VEXT before sending input signals to the controller
and transceiver interfaces.

™
SHARED
MAX3109 CONNECTOR
RX_
O | TX/D+
o | R¥D-
D+
OE—" axsssie
D_

Figure 29. Connector Sharing with a USB Transceiver

Connector Sharing
The TX_ and RTS_ outputs can be programmed to be
high impedance. This feature is used in cases where the
MAX3109 shares a common connector with other com-
munications devices. Set the output of the MAX3109 to
high impedance when the other communication devices
are active. Set the MODE1[2]: TxHiZ bit high to set TX_
to a high-impedance state. Set the MODE1[3]: RTSHiZ
bit high to set RTS_ to a high-impedance state. Figure 29
shows an example of connector sharing with a USB
transceiver.

RS-232 5x3 Application
The four GPIOs can be used to implement the other flow
control signals defined in ITU V.24. Figure 30 shows how
the GPIOs create the DSR, DTR, DCD, and RI signals
found on some RS-232/V.28 interfaces.

Set the FlowCtrl[1:0] bits high to enable automatic hard-
ware RTS_/CTS_ flow control.

RST

Y

MICROCONTROLLER
IRQ

A

LDOEN

A

MAX3109

MAX3245
X0 T1IN .
RX0 R10UT R
RTSO T2IN ATS
CTS0 R20UT CTS
GPI00 T3IN DTR
GPIO1 R30UT DSR
GPI02 R40UT 0co
GPI03 R50UT]

Figure 30. RS-232 Application

64

Maxim Integrated

MAX3109

Dual Serial UART with 128-Word FIFOs

33V
_I_O.1pF
L
Vee Vexr Vi I
LDOEN X0
2c _— DE Al
SPI/i2C TS
Bi
10kQ |
o MAX3109 RXO RO
3 IRQ %
=
MICROCONTROLLER ' ' - MAX14840E
XIN
i DI
RST ™
- DE A2
RTS1
B2
1
RX1 RO
AGND V18 DGND RE
1
1uF —
T MAX14840F

Figure 31. RS-485 Half-Duplex Application

Typical Application Circuit

Figure 31 shows the MAX3109 being used in a half-
duplex RS-485 application. The microcontroller, the
RS-485 transceiver, and the MAX3109 are powered by a
single 3.3V supply. SPI is used as the controller’s com-
munication interface. The microcontroller provides an
external clock source to clock the UART.

The MAX14840 receiver is always enabled, so echoing
occurs. Enable auto echo suppression in the MAX3109
by setting the MODE2[7]: EchoSuprs bit high.

Set the MODE1[4]: TranscvCtrl bit high to enable auto
transceiver direction control in order to automatically
control the DE input of the transceiver.

Maxim Integrated

Chip Information

PROCESS: BiICMOS

Package Information

For the latest package outline information and land patterns
(footprints), go to www.maximintegrated.com/packages. Note
thata “+”, “#”, or “-” in the package code indicates RoHS status
only. Package drawings may show a different suffix character,
but the drawing pertains to the package regardless of RoHS
[SIAlUS,

PACKAGE PACKAGE OUTLINE LAND
TYPE CODE NO. PATTERN NO.
32 TQFN-EP T3255+1 21-0180 90-0012

65

http://www.maximintegrated.com/packages
http://pdfserv.maximintegrated.com/package_dwgs/21-0180.PDF
http://pdfserv.maximintegrated.com/land_patterns/90-0012.PDF

MAX3109
Dual Serial UART with 128-Word FIFOs

Revision History

REVISION | REVISION PAGES
NUMBER DATE DESCRIPTION CHANGED
0 3/11 Initial release —

’ 5/12 Corrected for improved shutdown current mode and specifications, including low- 1,7,14,15,
power shutdown mode configurations 27, 38, 62
5 1012 Updated DC Electrical Characteristics, updated Pin Description, updated Register 9, 16, 28, 52,
Map, updated recommended capacitor value, updated IRQ text, updated Figure 31 56, 65
maxim

integrated.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

66 Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2012 Maxim Integrated Products, Inc. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

	Absolute Maximum Ratings
	Package Thermal Characteristics
	DC Electrical Characteristics
	AC Electrical Characteristics
	Timing Diagrams
	Typical Operating Characteristics
	Pin Configuration
	Pin Description
	Detailed Description
	Receive and Transmit FIFOs
	Transmitter Operation
	Receiver Operation
	Line Noise Indication
	Clock Selection
	Crystal Oscillator
	External Clock Source

	PLL and Predivider
	Fractional Baud-Rate Generators
	2x and 4x Rate Modes
	Low-Frequency Timer
	UART Clock to GPIO
	Multidrop Mode
	Auto Data Filtering in Multidrop Mode
	Auto Transceiver Direction Control
	Transmitter Triggering and Synchronization
	Transmitter Synchronization
	Intrachip and Interchip Synchronization
	Delayed Triggering
	Trigger Accuracy
	Synchronization Accuracy
	Auto Transmitter Disable

	Echo Suppression
	Auto Hardware Flow Control
	AutoRTS Control
	AutoCTS Control

	Auto Software (XON/XOFF) Flow Control
	Receiver Flow Control
	Transmitter Flow Control

	FIFO Interrupt Triggering
	Low-Power Standby Modes
	Forced-Sleep Mode
	Auto-Sleep Mode
	Multiple UARTs in Sleep Mode
	Shutdown Mode

	Power-Up and IRQ
	Interrupt Structure
	Interrupt Enabling
	Interrupt Clearing

	Register Map
	Detailed Register Descriptions
	Serial Controller Interface
	SPI Interface
	SPI Single-Cycle Access
	SPI Burst Access
	Fast Read Cycle

	I2C Interface
	START, STOP, and Repeated START Conditions
	Slave Address
	Bit Transfer
	Single-Byte Write
	Burst Write
	Single-Byte Read
	Burst Read
	Acknowledge Bits

	Applications Information
	Startup and Initialization
	Low-Power Operation
	Interrupts and Polling
	Logic-Level Translation
	Power-Supply Sequencing
	Connector Sharing
	RS-232 5x3 Application

	Typical Application Circuit
	Chip Information
	Package Information
	Revision History

