

CYPRESS

CY7C371

UltraLogic™ 32-Macrocell Flash CPLD

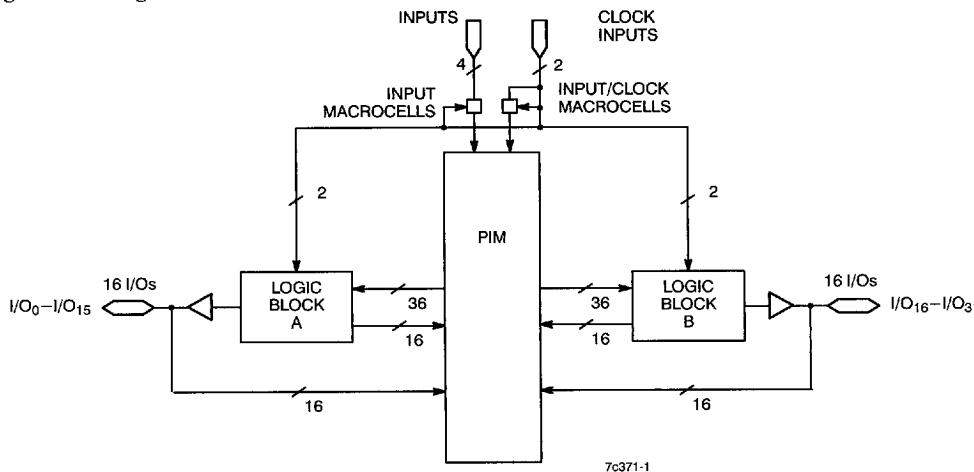
Features

- 32 macrocells in two logic blocks
- 32 I/O pins
- 6 dedicated inputs including 2 clock pins
- No hidden delays
- High speed
 - $f_{MAX} = 143$ MHz
 - $t_{PD} = 8.5$ ns
 - $t_S = 5$ ns
 - $t_{CO} = 6$ ns
- Electrically alterable FLASH technology
- Available in 44-pin PLCC, CLCC, and TQFP packages
- Pin compatible with the CY7C372

Functional Description

The CY7C371 is a Flash erasable Complex Programmable Logic Device (CPLD) and is part of the FLASH370 family of high-density, high-speed CPLDs. Like all members of the FLASH370 family, the CY7C371 is designed to bring the ease of use and high performance of the 22V10 to high-density CPLDs.

The 32 macrocells in the CY7C371 are divided between two logic blocks. Each logic block includes 16 macrocells, a 72×86 product term array, and an intelligent product term allocator.


The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource—the Programmable Interconnect Matrix (PIM).

(PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.

Like all members of the FLASH370 family, the CY7C371 is rich in I/O resources. Each macrocell in the device features an associated I/O pin, resulting in 32 I/O pins on the CY7C371. In addition, there are four dedicated inputs and two input/clock pins.

Finally, the CY7C371 features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C371 remain the same.

Logic Block Diagram

Selection Guide

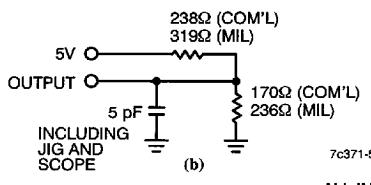
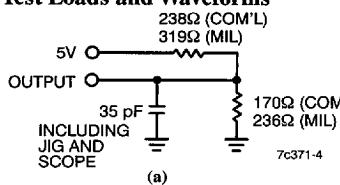
	7C371-143	7C371-110	7C371-83	7C371L-83	7C371-66	7C371L-66
Maximum Propagation Delay, t_{PD} (ns)	8.5	10	12	12	15	15
Minimum Set-Up, t_S (ns)	5	6	10	10	12	12
Maximum Clock to Output, t_{CO} (ns)	6	6.5	10	10	12	12
Maximum Supply Current, I_{CC} (mA)	Commercial	220	175	175	90	175
	Military/Ind.			220	110	220
Shaded area contains preliminary information.						

Electrical Characteristics Over the Operating Range^[2]

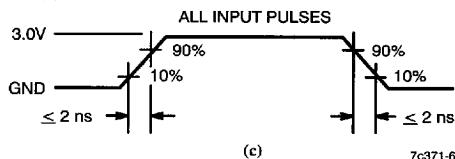
Parameter	Description	Test Conditions		Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	V _{CC} = Min.	I _{OH} = -3.2 mA (Com'l/Ind)	2.4		V	
			I _{OH} = -2.0 mA (Mil)			V	
V _{OL}	Output LOW Voltage	V _{CC} = Min.	I _{OL} = 16 mA (Com'l/Ind)		0.5	V	
			I _{OL} = 12 mA (Mil)			V	
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all inputs ^[3]			2.0	V	
V _{IL}	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all inputs ^[3]			-0.5	V	
I _{IX}	Input Load Current	GND ≤ V _I ≤ V _{CC}			-10	μA	
I _{OZ}	Output Leakage Current	GND ≤ V _O ≤ V _{CC} , Output Disabled			-50	μA	
I _{OS}	Output Short Circuit Current ^[4, 5]	V _{CC} = Max., V _{OUT} = 0.5V			-30	mA	
I _{CC}	Power Supply Current	V _{CC} = Max., I _{OUT} = 0 mA, f = 1 mHz, V _{IN} = GND, V _{CC} ^[6]	Com'l		175	mA	
			Com'l "L" -66, -83		90		
			Com'l-143, Mil/Ind		220		
			Ind "L" -66, -83		110		

Shaded area contains preliminary information.

Capacitance^[5]



Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 5.0V at f = 1 MHz	10	pF
C _{OUT}	Output Capacitance	V _{OUT} = 5.0V at f = 1 MHz	12	pF

Endurance Characteristics^[5]


Parameter	Description	Test Conditions	Min.	Max.	Unit
N	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Notes:

2. See the last page of this specification for Group A subgroup testing information.
3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
4. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT} = 0.5V has been chosen to avoid test problems caused by tester ground degradation.
5. Tested initially and after any design or process changes that may affect these parameters.
6. Measured with 16-bit counter programmed into each logic block.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT
 99Ω (COM'L)
 136Ω (MIL)
 2.08V (COM'L)
 2.13V (MIL)
 OUTPUT

7c371-6

Parameter	V_X	Output Waveform—Measurement Level									
$t_{ER} (-)$	1.5V	V_{OH}	0.5V	V_X							7c371-7
$t_{ER} (+)$	2.6V	V_{OL}	0.5V	V_X							7c371-8
$t_{EA} (+)$	1.5V	V_X	0.5V	V_{OH}							7c371-9
$t_{EA} (-)$	V_{the}	V_X	0.5V	V_{OL}							7c371-10

(d) Test Waveforms

Switching Characteristics Over the Operating Range^[7]

Parameter	Description	7C371-143		7C371-110		7C371-83 7C371L-83		7C371-66 7C371L-66		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Combinatorial Mode Parameters										
t_{PD}	Input to Combinatorial Output			8.5		10		12		15 ns
t_{PDL}	Input to Output Through Transparent Input or Output Latch			11.5		13		18		22 ns
t_{PDLL}	Input to Output Through Transparent Input and Output Latches			13.5		15		20		24 ns
t_{EA}	Input to Output Enable			13		14		19		24 ns
t_{ER}	Input to Output Disable			13		14		19		24 ns
Input Registered/Latched Mode Parameters										
t_{WL}	Clock or Latch Enable Input LOW Time ^[5]	2.5		3		4		5		ns
t_{WH}	Clock or Latch Enable Input HIGH Time ^[5]	2.5		3		4		5		ns
t_{IS}	Input Register or Latch Set-Up Time	2		2		3		4		ns
t_{IH}	Input Register or Latch Hold Time	2		2		3		4		ns
t_{ICO}	Input Register Clock or Latch Enable to Combinatorial Output			12		14		19		24 ns
t_{ICOL}	Input Register Clock or Latch Enable to Output Through Transparent Output Latch			14		16		21		26 ns

Shaded area contains preliminary information.

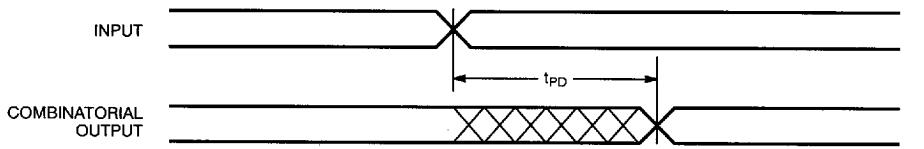
Note:

7. All AC parameters are measured with 16 outputs switching.

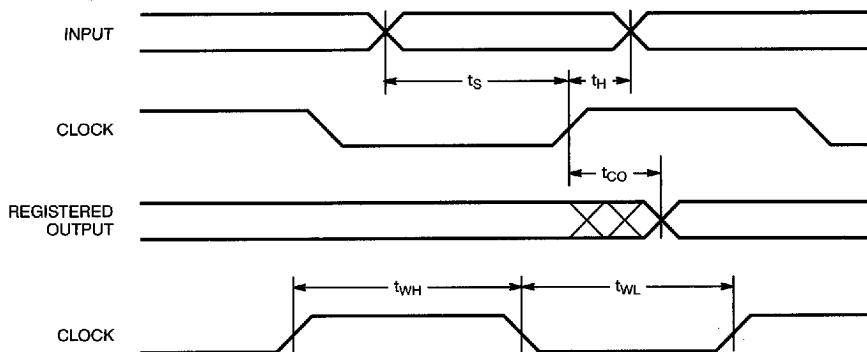
8. This specification is intended to guarantee interface compatibility of the other members of the CY7C370 family with the CY7C371. This specification is met for the devices operating at the same ambient temperature and at the same power supply voltage.

CYPRESS

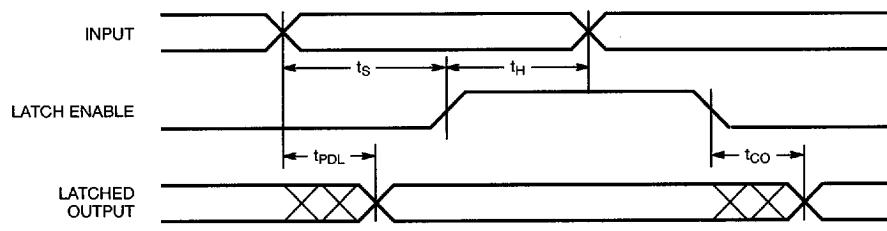
CY7C371

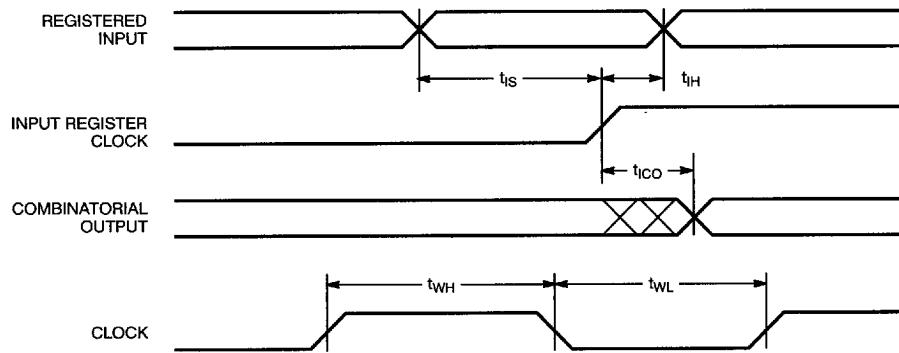

Switching Characteristics Over the Operating Range^[7] (continued)

Parameter	Description	7C371-143		7C371-110		7C371-83		7C371-66		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Output Registered/Latched Mode Parameters										
t_{CO}	Clock or Latch Enable to Output		6		6.5		10		12	ns
t_S	Set-Up Time from Input to Clock or Latch Enable	5		6		10		12		ns
t_H	Register or Latch Data Hold Time	0		0		0		0		ns
t_{CO2}	Output Clock or Latch Enable to Output Delay (Through Memory Array)		12		14		19		24	ns
t_{SCS}	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	7		9		12		15		ns
t_{SCS2}	Output Clock Through Array to Output Clock (2-Pass Delay) ^[5]	13		16.5		21		27		ns
t_{SL}	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	9		10		12		15		ns
t_{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		0		ns
f_{MAX1}	Maximum Frequency with Internal Feedback (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO}$) ^[5]	143		111		83.3		66.6		MHz
f_{MAX2}	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1/(twL + twH)$, $1/(t_S + t_H)$, or $1/t_{CO}$) ^[5]	166.7		153.8		100		83.3		MHz
f_{MAX3}	Maximum Frequency with external feedback (Lesser of $1/(t_{CO} + t_S)$ and $1/(twL + twH)$) ^[5]	91		80		50		41.6		MHz
$t_{OH}-t_{IH}$ 37X	Output Data Stable from Output clock Minus Input Register Hold Time for 7C37X ^[5]	0		0		0		0		ns
Pipelined Mode Parameters										
t_{ICS}	Input Register Clock to Output Register Clock	7		9		12		15		ns
f_{MAX4}	Maximum Frequency in Pipelined Mode (Least of $1/(t_{CO} + t_S)$, $1/t_{ICS}$, $1/(twL + twH)$, $1/(t_S + t_H)$, or $1/t_{SCS}$)	125		111		76.9		62.5		MHz
Reset/Preset Parameters										
t_{RW}	Asynchronous Reset Width ^[5]	8		10		15		20		ns
t_{RR}	Asynchronous Reset Recovery Time ^[5]	10		12		17		22		ns
t_{RO}	Asynchronous Reset to Output		14		16		21		26	ns
t_{PW}	Asynchronous Preset Width ^[5]	8		10		15		20		ns
t_{PR}	Asynchronous Preset Recovery Time ^[5]	10		12		17		22		ns
t_{PO}	Asynchronous Preset to Output		14		16		21		26	ns
t_{POR}	Power-On Reset ^[5]		1		1		1		1	μs

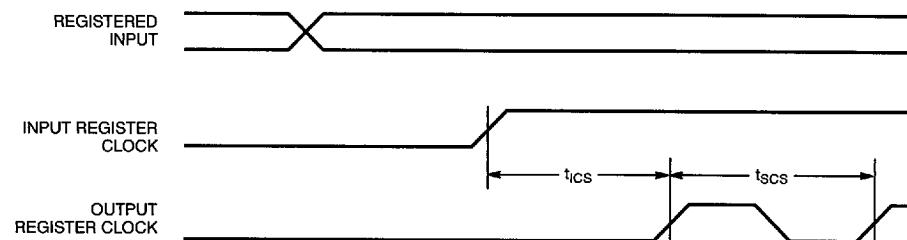
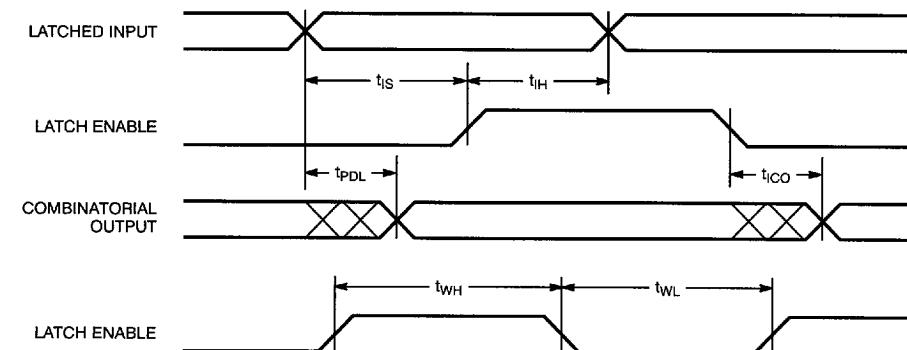

Shaded area contains preliminary information.

Switching Waveforms

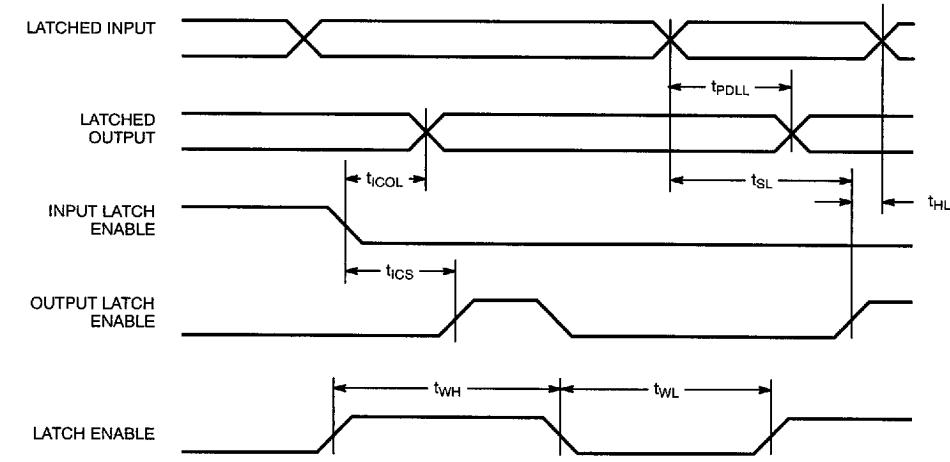

Combinatorial Output


7C371-11

Switching Waveforms (continued)
Registered Output



7c371-12

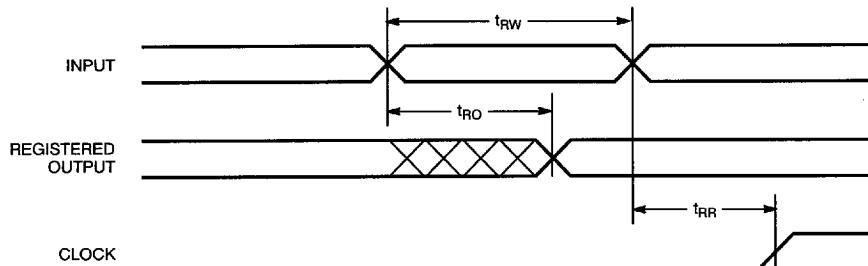
Latched Output


7c371-13

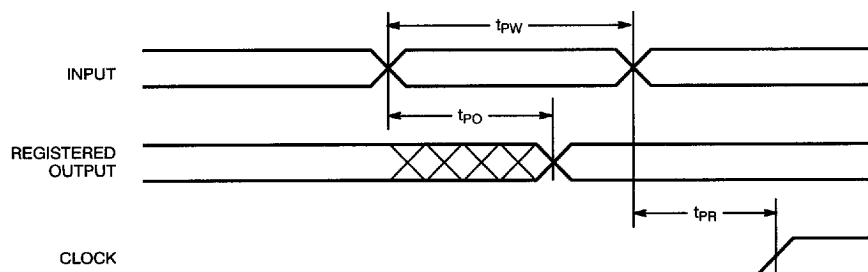
Registered Input

7c371-14

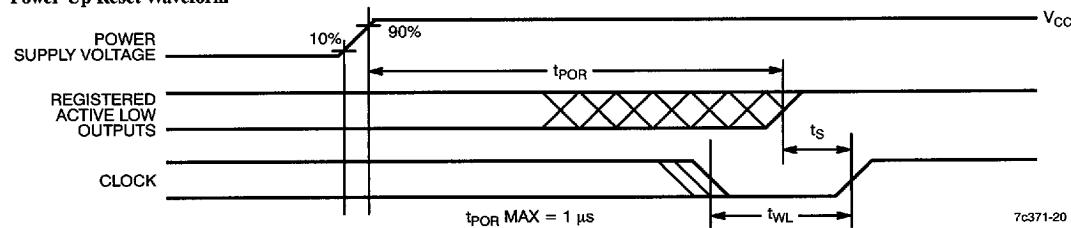
Switching Waveforms (continued)**Clock to Clock****Latched Input**

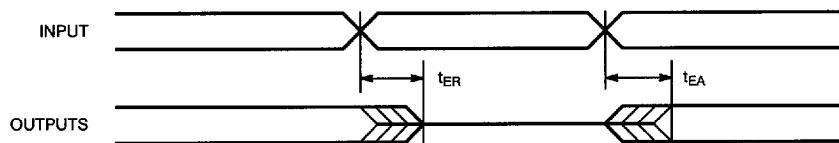

3

Latched Input and Output



Switching Waveforms (continued)


Asynchronous Reset


Asynchronous Preset

Power-Up Reset Waveform

Output Enable/Disable

Ordering Information

Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
143	CY7C371-143AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371-143JC	J67	44-Lead Plastic Leaded Chip Carrier	
110	CY7C371-110AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371-110JC	J67	44-Lead Plastic Leaded Chip Carrier	
83	CY7C371-83AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371L-83AC	A44	44-Lead Thin Plastic Quad Flat Pack	
	CY7C371-83JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371L-83JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371-83AI	A44	44-Lead Thin Plastic Quad Flat Pack	Industrial
	CY7C371L-83AI	A44	44-Lead Thin Plastic Quad Flat Pack	
	CY7C371-83JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371L-83JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371-83YMB	Y67	44-Lead Ceramic Leaded Chip Carrier	Military
66	CY7C371-66AC	A44	44-Lead Thin Plastic Quad Flat Pack	Commercial
	CY7C371L-66AC	A44	44-Lead Thin Plastic Quad Flat Pack	
	CY7C371-66JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371L-66JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371-66AI	A44	44-Lead Thin Plastic Quad Flat Pack	Industrial
	CY7C371L-66AI	A44	44-Lead Thin Plastic Quad Flat Pack	
	CY7C371-66JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371L-66JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C371-66YMB	Y67	44-Lead Ceramic Leaded Chip Carrier	Military

Shaded areas contain preliminary information.

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	1, 2, 3
V_{OL}	1, 2, 3
V_{IH}	1, 2, 3
V_{IL}	1, 2, 3
I_{IX}	1, 2, 3
I_{OZ}	1, 2, 3
I_{CCI}	1, 2, 3

Document #: 38-00212-E

ABEL is a trademark of Data I/O Corporation.

LOG/iC is a trademark of Isdata Corporation.

CUPL is a trademark of Logical Devices Incorporated.

Switching Characteristics

Parameter	Subgroups
t_{PD}	9, 10, 11
t_{CO}	9, 10, 11
t_{ICO}	9, 10, 11
t_S	9, 10, 11
t_H	9, 10, 11
t_{IS}	9, 10, 11
t_{IH}	9, 10, 11
t_{ICS}	9, 10, 11