MPPS™ Miniature Package Power Solutions 80V NPN LOW SATURATION TRANSISTOR

SUMMARY

NPN — V_{CEO} = 80V; R_{SAT} = 68m Ω ; I_{C} = 3.5A

DESCRIPTION

Packaged in the new innovative 2mm x 2mm MLP (Micro Leaded Package) outline, these new 4th generation low saturation dual PNP transistors offer extremely low on state losses making them ideal for use in DC-DC circuits and various driving and power management functions.

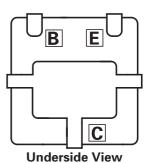
Additionally users gain several other key benefits:

Performance capability equivalent to much larger packages Improved circuit efficiency & power levels PCB area and device placement savings Lower Package Height (0.9mm nom) Reduced component count

MLP322

FEATURES

- Low Equivalent On Resistance
- Extremely Low Saturation Voltage (185mV max @1A)
- h_{FE} specified up to 5A
- I_C=-3.5A Continuous Collector Current
- 2mm x 2mm MLP


APPLICATIONS

- DC DC Converters
- DC DC Modules
- Power switches
- Motor control

B C

ORDERING INFORMATION

ONDERMINE IN COMMANDE							
DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL				
ZXTEM322TA	7"	8mm	3000				
ZXTEM322TC	13"	8mm	10000				

DEVICE MARKING

• SE

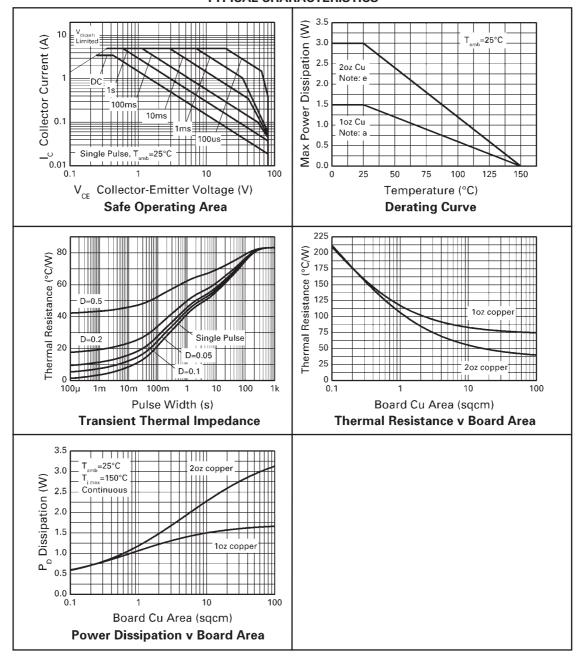
ZETEX

ISSUE 2 - JUNE 2006

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT	
Collector-Base Voltage	V _{CBO}	100	V	
Collector-Emitter Voltage	V _{CEO}	80	V	
Emitter-Base Voltage	V _{EBO}	7.5	V	
Peak Pulse Current	I _{CM}	5	Α	
Continuous Collector Current (a)	I _C	3.5	А	
Base Current	I _B	1000	mA	
Power Dissipation at TA=25°C ^(a) Linear Derating Factor	P _D	1.5 12	W mW/°C	
Power Dissipation at TA=25°C ^(b) Linear Derating Factor	P _D	2.45 19.6	W mW/°C	
Power Dissipation at TA=25°C ^(d) Linear Derating Factor	P _D	1 8	W mW/°C	
Power Dissipation at TA=25°C ^(e) Linear Derating Factor	P_{D}	3 24	W mW/°C	
Operating & Storage Temperature Range	T _j :T _{stg}	-55 to +150	°C	
Junction Temperature	Tj	150	°C	

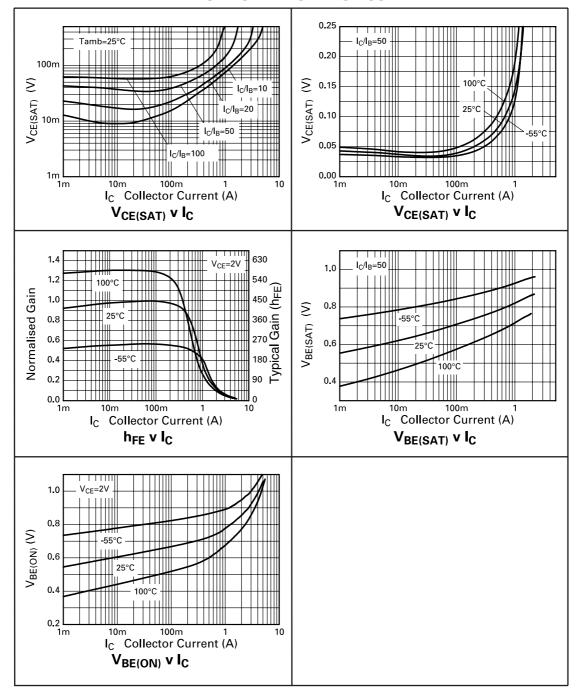
THERMAL RESISTANCE


PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient ^(a)	$R_{\Theta JA}$	83	°C/W
Junction to Ambient ^(b)	$R_{\Theta JA}$	51	°C/W
Junction to Ambient ^(d)	$R_{\Theta JA}$	125	°C/W
Junction to Ambient ^(e)	$R_{\Theta JA}$	42	°C/W

NOTES

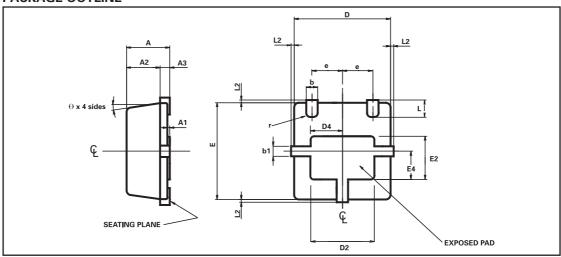
- (a) For a single device surface mounted on 10 sq cm 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached.
- (b) For a single device surface mounted on 10 sq cm 1oz copper on FR4 PCB, in still air conditions measured at t≤5 secs with all exposed pads attached.
- (c) Repetitive rating pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.
- (d) For a single device surface mounted on 10 sq cm 1oz copper FR4 PCB, in still air conditions with minimal lead connections only.
- (e) For a single device surface mounted on 65 sq cm 2oz copper FR4 PCB, in still air conditions with all exposed pads attached.
- (f) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device, as shown in the package dimensions data. The thermal resistance for a device mounted on 1.5mm thick FR4 board using minimum copper of 1oz weight and 1mm wide tracks is Rth= 300°C/W giving a power rating of Ptot=420mW

TYPICAL CHARACTERISTICS


ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25^{\circ}C$ unless otherwise stated)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
Collector-Base Breakdown Voltage	V _{(BR)CBO}	100	180		V	I _C =100μA	
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	80	110		V	I _C =10mA*	
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	7.5	8.2		V	I _E =100μA	
Collector Cut-Off Current	I _{CBO}			25	nA	V _{CB} =80V	
Emitter Cut-Off Current	I _{EBO}			25	nA	V _{EB} =6V	
Collector Emitter Cut-Off Current	I _{CES}			25	nA	V _{CE} =65V	
Collector-Emitter Saturation Voltage	V _{CE(sat)}		15 45 145 160 240	20 60 185 200 325	mV mV mV mV	I _C =0.1A, I _B =10mA* I _C =0.5A, I _B =50mA* I _C =1A, I _B =20mA* I _C =1.5A, I _B =50mA* I _C =3.5A, I _B =300mA*	
Base-Emitter Saturation Voltage	V _{BE(sat)}		1.09	1.175	V	I _C =3.5A, I _B =300mA*	
Base-Emitter Turn-On Voltage	V _{BE(on)}		0.96	1.05	V	I _C =3.5A, V _{CE} =2V*	
Static Forward Current Transfer Ratio	h _{FE}	200 300 110 60 20	450 450 170 90 30 10	900		I _C =10mA, V _{CE} =2V* I _C =200mA, V _{CE} =2V* I _C =1A, V _{CE} =2V* I _C =1.5A, V _{CE} =2V* I _C =3A, V _{CE} =2V* I _C =5A, V _{CE} =2V*	
Transition Frequency	f _T	100	160		MHz	I _C =50mA, V _{CE} =10V f=100MHz	
Output Capacitance	C _{obo}		11.5	18	pF	V _{CB} =10A, f=1MHz	
Turn-On Time	t _(on)		86		ns	V _{CC} =10V, I _C =1A	
Turn-Off Time	t _(off)		1128		ns	I _{B1} =I _{B2} =25mA	

^{*}Measured under pulsed conditions. Pulse width=300 $\mu s.$ Duty cycle $\leq 2\%$



TYPICAL CHARACTERISTICS

ZETEX

PACKAGE OUTLINE

Controlling dimensions are in millimetres. Approximate conversions are given in inches

PACKAGE DIMENSIONS

DIM	Millin	netres	Inc	hes	DIM	DIM Millimetres		Inches		
DIIVI	Min	Max	Min	Max	DIIVI	Min	Max	Min	Max	
Α	0.80	1.00	0.0315	0.0393	е	0.65	REF	0.0255 REF		
A1	0.00	0.05	0.00	0.002	Е	2.00	2.00 BSC		0.0787 BSC	
A2	0.65	0.75	0.0255	0.0295	E2	0.79	0.99	0.031	0.039	
А3	0.15	0.25	0.0059	0.0098	E4	0.48	0.68	0.0188	0.0267	
b	0.18	0.28	0.0070	0.0110	L	0.20	0.45	0.0078	0.0177	
b1	0.17	0.30	0.0066	0.0118	L2	0.125 MAX.		0.005 REF		
D	2.00	BSC	0.078	7 BSC	r	0.075 BSC		0.0029 BSC		
D2	1.22	1.42	0.0480	0.0559	θ	0°	12°	0°	12°	
D4	0.56	0.76	0.0220	0.0299						

© Zetex Semiconductors plc 2006

Europe	rope Americas		Corporate Headquarters		
Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd	Zetex Semiconductors plc		
Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1	Zetex Technology Park		
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Chadderton, Oldham, OL9 9LL		
Germany	USA	Hong Kong	United Kingdom		
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone (44) 161 622 4444		
Fax: (49) 89 45 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446		
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com		

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to $\underline{www.zetex.com}$

ISSUE 2 - JUNE 2006