

M5M2168P-55, -70

16384-BIT (4096-WORD BY 4-BIT) STATIC RAM

DESCRIPTION

This is a family of 4096 word by 4-bit static RAMs, fabricated with the high-performance N-channel silicon-gate MOS process and designed for high-speed application. These devices operate on a single 5V supply, and are directly TTL compatible. They include a power-down feature as well.

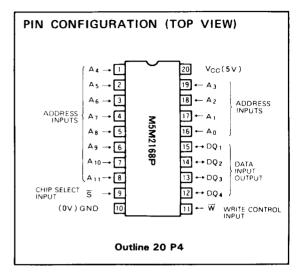
FEATURES

Fast access time
 M5M2168P-55 55 ns (max)
 M5M2168P-70 70 ns (max)

- Power down by S
- Single 5V power supply
- Fully static operation

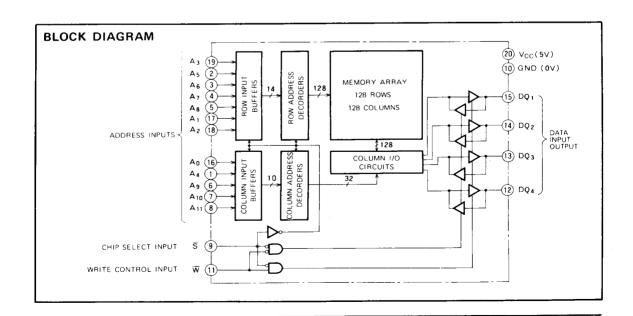
Requires neither external clock nor refreshing

- All inputs and output are directly TTL compatible
- Easy memory expansion by chip-select (S) input
- Interchangeable with Intel's 2168


APPLICATION

· High-speed memory systems

FUNCTION


A write operation is executed during the \overline{S} low and \overline{W} low overlap time. In this period, address signals must be stable. When \overline{W} is low, the DQ terminal is maintained in the high impedance state.

In a read operation, after setting \overline{W} to high, and \overline{S} to low if the address signals are stable, the data is available at the DO terminal

When \overline{S} is high, the chip is in the non-selectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for OR-ties with other devices.

Signal \overline{S} controls the power-down feature. When \overline{S} goes high, power dissipation is reduced to 1/10 of active power. The access time from \overline{S} is equivalent to the address access time

16384-BIT (4096-WORD BY 4-BIT) STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Canditions	Limits	Unit
Vcc	Supply voltage		−3.5~7	V
Vi	Input voltage	With respect to GND	-3.5 - 7	V
Vo	Output voltage		-3.5 ~ 7	V
Pd	Maximum power dissipation		1	w
Topr	Temperature under bias		−10 ~85	°C
Tstg	Storage temperature		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70^{\circ}\text{C}$, unless otherwise noted)

Symbol	Parameter		Unit		
Зүшбөг	r arameter	Min	Тур	Max	0,111
Vcc	Supply voltage	4.5	5	5.5	V
VIL	Low-level input voltage	-3		0.8	V
VIH	High-level input voltage	2		6	V

Necessary airflow cooling >2m/s

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted)

Symbol	Parameter	T	Limits				
		rest condit	Test conditions			Max	Unit
VIH	High-level input voltage					6	V
VIL	Low-level input voltage			- 3		0.8	V
Vон	High-level output voltage	I _{OH} = - 4 mA	•	2.4			V
V _{OL}	Low-level output voltage	I _{OL} = 8 mA			0.4	V	
F ₁	Input current	V _I =0~5.5V			10	μА	
lozi	Off-state output current	$V_{1}(\bar{s}) = 2V, V_{0} = 0 - V$			50	μА	
1001	Supply current from V _{CC}	V _I (Š)=0.8V	Ta = 25°C		100	150	_ ^
		Output open	Ta = 0 °C			155	mA
I _{CC2}	Stand by current	V _I (\$)=2V output open	V _I (S)=2V output open			30	mA
I _{PO}	Peak power-on current	$V_{CC}=0-4.5V$ $V_{I}(\bar{s})=$ Lower of V_{CC}			30	mΑ	
C,	Input capacitance	$V_1 = GND$, $V_1 = 25mVr$			5	pF	
Со	Output capacitance	$V_O = GND$, $V_O = 25 \text{ mV}$			6	ρF	

Note 1. Current flow into an IC is positive, out is negative.

SWITCHING CHARACTERISTICS (FOR READ CYCLE) (Ta = 0 ~ 70°C. Vcc=5V ± 10%. unless otherwise noted)

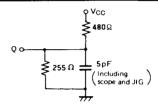
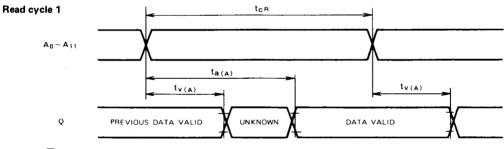
Symbol	Parameter	M5M2168P-55						
		Min	Тур	Max	Min	Тур	Max	Unit
t _C R	Read cycle time	55			70			ns
ta(A)	Address access time			55			70	ns
ta(S)	Chip select access time			55			70	ns
t _{V(A)}	Data valid time after address	5			5			ns
ten(S)	Output enable time after chip selection	20			20			ns
t _{dis(s)}	Output disable time after chip deselection	0		20	0		25	ns
t _{PU}	Power-up time after chip selection	0			0			ns
t PD	Power down time after chip deselection			25			30	ns

16384-BIT (4096-WORD BY 4-BIT) STATIC RAM

TIMING REQUIREMENTS (FOR WRITE CYCLE) ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted)

Symbol	Parameter	M5M2168P-55			M5M2168P-70			
		Min	Тур	Max	Min	Тур	Max	Unit
t _c w	Write cycle time	50			60			ns
t _{su(S)}	Chip select setup time	45	-		55			ns
tsu(A),	Address setup time 1 (W CONTROL)	0		-	0			ns
t su (A),	Address setup time 2 (\$ CONTROL)	0			0			ns
t _{w(w)}	Write pulse width	40			50			ns
trec(w)	Write recovery time	0			0			ns
t _{su(D)}	Data setup time	20			30			ns
t _{h (D)}	Data hold time	0			0			ns
t _{dis(w)}	Output disable time after W low	0		25	0		30	ns
ten(w)	Output enable time after W high	5			5			ns
tsu (A-WH)	Address to W high	45			55			ns

ρ Vcc CONDITIONS **₹480**Ω Input pulse levels 0 to 3V input rise and falltime , Input timing reference level 1.5V 00 Output timing reference level . .0.8~2V ₹255Ω 30pF Fig. 1, Fig. 2 (Including)

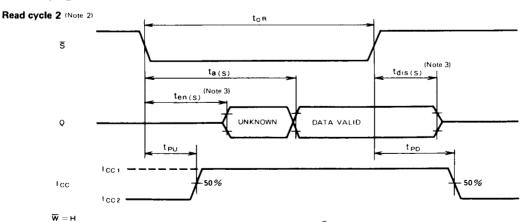
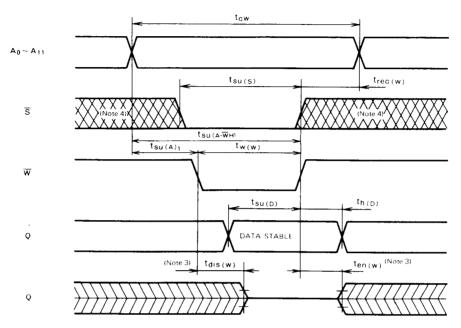

Fig. 1 Output load

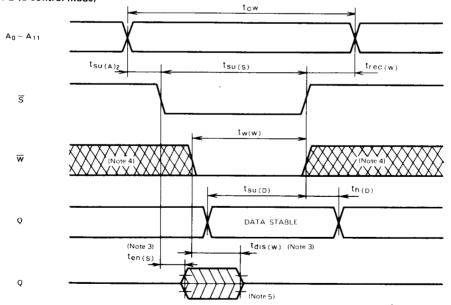
Fig. 2 Output load for ten, tdis

TIMING DIAGRAMS

 $\overline{W} = H$ $\overline{S} = L$

Note 2. Addresses valid prior to or coincident with \overline{S} transition low.


3. Transition is measured ±500mV from steady state voltage with specified loading in Figure 2.


16384-BIT (4096-WORD BY 4-BIT) STATIC RAM

TIMING DIAGRAMS

Write cycle 1 (W control mode)

Write cycle 2 (S control mode)

Note 4. Hatching indicates the state is don't care.

 When the falling edge of W is simultaneous or prior to the falling edge of S, the output is maintained in the high impedance.

