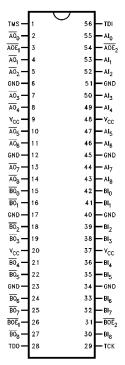


SCAN18540T Inverting Line Driver with TRI-STATE® Outputs


General Description

The SCAN18540T is a high speed, low-power line driver featuring separate data inputs organized into dual 9-bit bytes with byte-oriented paired output enable control signals. This device is compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture with the incorporation of the defined boundary-scan test logic and test access port consisting of Test Data Input (TDI), Test Data Out (TDO), Test Mode Select (TMS), and Test Clock (TCK).

Features

- IEEE 1149.1 (JTAG) compliant
- Dual output enable signals per byte
- TRI-STATE outputs for bus-oriented applications
- 9-bit data busses for parity applications
- Reduced-swing outputs source 32 mA/sink 64 mA (Comm), source 24 mA/sink 48 mA (Mil)
- \blacksquare Guaranteed to drive 50Ω transmission line to TTL input levels of 0.8V and 2.0V
- TTL compatible inputs
- 25 mil pitch SSOP (Shrink Small Outline Package)
- Includes CLAMP and HIGHZ instructions
- Member of National's SCAN products

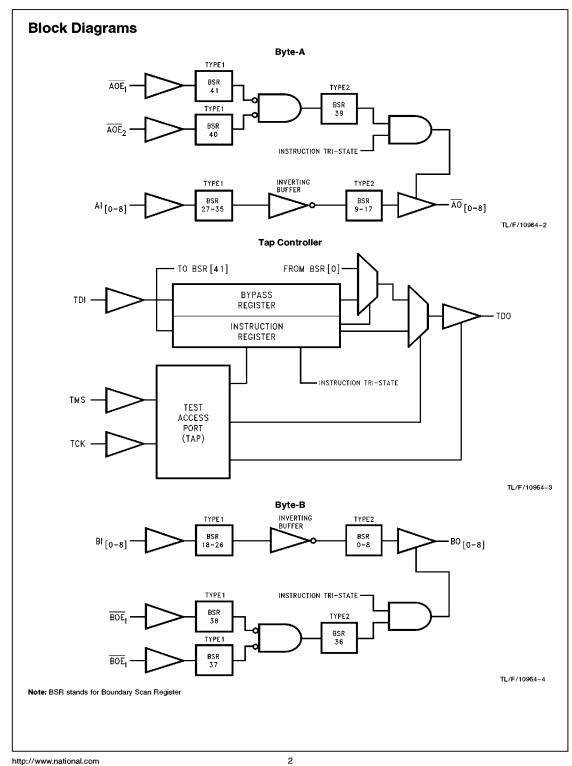
Connection Diagram

Pin Names	Description
Al ₍₀₋₈₎	Input pins, A side
BI ₍₀₋₈₎	Input pins, B side
AOE ₁ , AOE ₂	TRI-STATE Output Enable Input pins, A side TRI-STATE Output Enable Input pins, B side
BOE ₁ , BOE ₂	TRI-STATE Output Enable Input pins, B side
$\overline{AO}_{(0-8)}$	Output pins, A side
BO ₍₀₋₈₎	Output pins, B side

Truth Tables

	Inputs		AO (0-8)
AOE ₁	AOE ₂	AI (0-8)	AG (6 6)
L	L	Н	L
Н	X	X	Z
X	Н	Х	Z
L	L	L	Н

	Inputs		BO (0-8)
BOE ₁	BOE ₂	BI (0-8)	20 (0 0)
L	L	Н	L
Н	Х	X	Z
X	Н	X	Z
L	L	L	Н


H = HIGH Voltage Level L = LOW Voltage Level
X = Immaterial 7 = High Impedance

Order Number	Description
SCAN18540TSSC	SSOP in Tubes
SCAN18540TSSCX	SSOP in Tape and Reel
SCAN18540TFMQB	Flatpak Military
5962-9312701MXA	Military SMD #

TRI-STATE® is a registered trademark of National Semiconductor Corporation

TL/F/10964-1

RRD-B30M36/Printed in U.S.A.

Description of BOUNDARY-SCAN Circuitry

The scan cells used in the BOUNDARY-SCAN register are one of the following two types depending upon their location. Scan cell TYPE1 is intended to solely observe system data, while TYPE2 has the additional ability to control system data. (See IEEE Standard 1149.1 Figure 10-11 for a further description of scan cell TYPE1 and Figure 10-12 for a further description of scan cell TYPE2.)

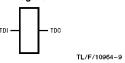
Scan cell TYPE1 is located on each system input pin while scan cell TYPE2 is located at each system output pin as well as at each of the two internal active-high output enable signals. AOE controls the activity of the A-outputs while BOE controls the activity of the B-outputs. Each will activate their respective outputs by loading a logic high.

The BYPASS register is a single bit shift register stage identical to scan cell TYPE1. It captures a fixed logic low.

placed in the appropriate location in the boundary scan chain. Instruction Register Scan Chain Definition

The INSTRUCTION register is an 8-bit register which cap-

tures the default value of 01001101. The two least signifi-

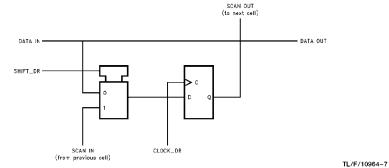

cant bits of this captured value (01) are required by IEEE Std 1149.1. The upper six bits are unique to the

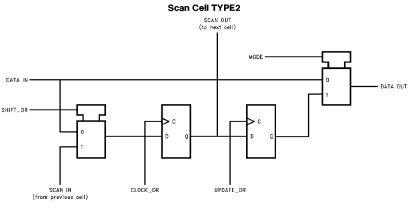
SCAN18540T device. SCAN CMOS Test Access Logic de-

vices do not include the IEEE 1149.1 optional identification

register. Therefore, this unique captured value can be used as a "pseudo ID" code to confirm that the correct device is

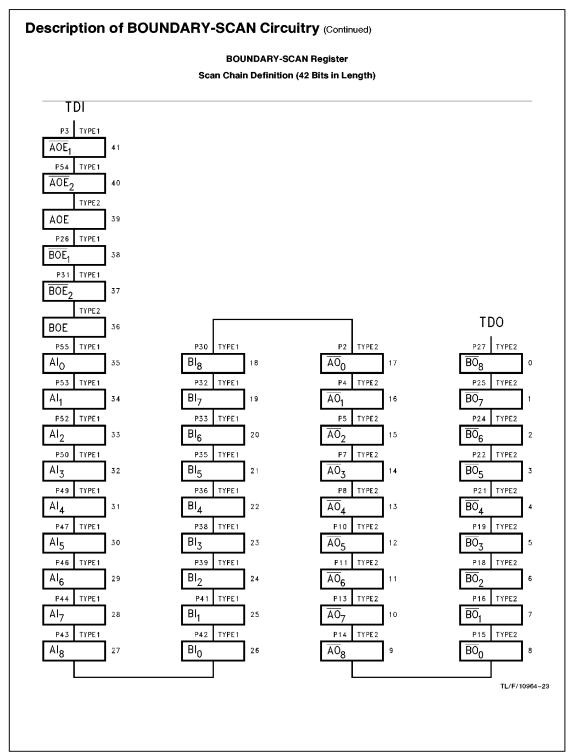
Bypass Register Scan Chain Definition Logic 0




MSB → LSB

TL/F/10964-10

Instruction Code	Instruction
00000000	EXTEST
10000001	SAMPLE/PRELOAD
10000010	CLAMP
00000011	HIGH-Z
All Others	BYPASS


Scan Cell TYPE1

http://www.national.com

TL/F/10964-8

	В	DUNDARY-SCAN Re	gister Definition Index		
Bit No.	Pin Name	Pin No.	Pin Type	Scan C	ell Type
41	AOE ₁	3	Input	TYPE1	
40	AOE ₂	54	Input	TYPE1	
39	AOE		Internal	TYPE2	Contro
38	BOE ₁	26	Input	TYPE1	Signals
37	BOE ₂	31	Input	TYPE1	
36	BOE		Internal	TYPE2	
35	Al ₀	55	Input	TYPE1	
34	Al ₁	53	Input	TYPE1	
33	Al ₂	52	Input	TYPE1	
32	Al ₃	50	Input	TYPE1	
31	Al ₄	49	Input	TYPE1	A-in
30	Al ₅	47	Input	TYPE1	
29	Al ₆	46	Input	TYPE1	
28	Al ₇	44	Input	TYPE1	
27	Al ₈	43	Input	TYPE1	
26	BI ₀	42	Input	TYPE1	
25	BI ₁	41	Input	TYPE1	
24	Bl ₂	39	Input	TYPE1	
23	Bl ₃	38	Input	TYPE1	
22	Bl₄	36	Input	TYPE1	B-in
21	BI ₅	35	Input	TYPE1	
20	BI ₆	33	Input	TYPE1	
19	BI ₇	32	Input	TYPE1	
18	Bl ₈	30	Input	TYPE1	
17	AO ₀	2	Output	TYPE2	
16	AO ₁	4	Output	TYPE2	
15	AO ₂	5	Output	TYPE2	
14	AO ₃	7	Output	TYPE2	
13	AO ₄	8	Output	TYPE2	A-out
12	AO ₅	10	Output	TYPE2	
11	AO ₆	11	Output	TYPE2	
10	AO ₇	13	Output	TYPE2	
9	AO ₈	14	Output	TYPE2	
8	BO ₀	15	Output	TYPE2	
7	BO ₁	16	Output	TYPE2	
6	BO ₂	18	Output	TYPE2	
5	BO ₃	19	Output	TYPE2	
4	BO ₄	21	Output	TYPE2	B-in
3	BO ₅	22	Output	TYPE2	
2	BO ₆	24	Output	TYPE2	
1	BO ₇	25	Output	TYPE2	
0	BO ₈	27	Output	TYPE2	1

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{aligned} & \text{Supply Voltage (V}_{CC}) & -0.5 \text{V to } +7.0 \text{V} \\ & \text{DC Input Diode Current (I}_{IK}) \\ & V_I = -0.5 \text{V} & -20 \text{ mA} \\ & V_I = V_{CC} +0.5 \text{V} & +20 \text{ mA} \\ & \text{DC Output Diode Current (I}_{OK}) \\ & V_O = -0.5 \text{V} & -20 \text{ mA} \\ & V_O = V_{CC} +0.5 \text{V} & +20 \text{ mA} \\ & \text{DC Output Voltage (V}_O) & -0.5 \text{V to V}_{CC} +0.5 \text{V} \\ & \text{DC Output Source/Sink Current (I}_O) & \pm 70 \text{ mA} \end{aligned}$

DC V_{CC} or Ground Current Per Output Pin \pm 70 mA Junction Temperature

SSOP + 140°C

Storage Temperature $-65^{\circ}\text{C to} + 150^{\circ}\text{C}$ ESD (Min) 2000V

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of SCAN circuits outside databook specifications.

Recommended Operating Conditions

Commercial -40°C to +85°C
Military -55°C to +125°C
Minimum Input Edge Rate dV/dt 125 mV/ns

V_{IN} from 0.8V to 2.0V V_{CC} @ 4.5V, 5.5V

DC Electrical Characteristics

			Comn	nercial	Military	Commercial		
Symbol	Parameter	V _{CC}	T _A =	+ 25°C	$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
		(•)	Тур		Guaranteed L			
V _{IH}	Minimum High Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	2.0 2.0	٧	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$
V _{IL}	Maximum Low Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	0.8 0.8	٧	$V_{OUT} = 0.1V$ or $V_{CC} = 0.1V$
V _{OH}	Minimum High Output Voltage	4.5 5.5		3.15 4.15	3.15 4.15	3.15 4.15	٧	$I_{OUT} = -50 \mu\text{A}$
		4.5 5.5		2.4 2.4		2.4 2.4	٧	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -32 \text{ mA}$
		4.5 5.5		2.4 2.4	2.4 2.4		٧	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -24 \text{ mA}$
V _{OL}	Maximum Low Output Voltage	4.5 5.5		0.1 0.1	0.1 0.1	0.1 0.1	٧	I _{OUT} = 50 μA
		4.5 5.5		0.55 0.55		0.55 0.55	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OL} = 64 \text{ mA}$
		4.5 5.5		0.55 0.55	0.55 0.55			$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OL} = 48 \text{ mA}$
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	± 1.0	±1.0	μΑ	$V_{I} = V_{CC}$, GND
I _{IN}	Maximum Input	5.5		2.8	3.7	3.6	μΑ	$V_I = V_{CC}$
TDI, TMS	Leakage			-385	-385	-385	μΑ	V _I = GND
	Minimum Input Leakage	5.5		-160	-160	-160	μΑ	V _I = GND
IOLD	†Minimum Dynamic	5.5		94	63	94	mA	V _{OLD} = 0.8V Max
IOHD	Output Current	0.5		-40	-27	-40	mA	V _{OHD} = 2.0V Min

 $\dagger \mbox{Maximum test duration 2.0 ms, one output loaded at a time.}$

http://www.national.com

6

		l.,	Commercial		Military	Commercial		
Symbol	Parameter	V _{CC} (V)	T _A =	+ 25°C	$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
		(,	Тур		Guaranteed L	imits		
loz	Maximum Output Leakage Current	5.5		±0.5	± 10.0	± 5.0	μΑ	V_{I} (OE) = V_{IL} , V_{IH}
los	Output Short Circuit Current	5.5		-100	-100	-100	mA Min	$V_O = 0V$
I _{CC}	Maximum Quiescent Supply Current	5.5		16.0	168	88	μΑ	$V_O = Open$ TDI, TMS = V_{CC}
		5.5		750	930	820	μΑ	V _O = Open TDI, TMS = GND
Icct	Maximum I _{CC} Per Input	5.5		2.0	2.0	2.0	mA	$V_I = V_{CC}-2.1V$
		5.5		2.15	2.15	2.15	mA	V _I = V _{CC} -2.1V TDI/TMS Pin, Test One with the other Floating

 $^{^{\}ast}\text{All}$ outputs loaded; thresholds associated with output under test.

Noise Specifications

			Comn	nercial	Military	Commercial	
Symbol	Parameter	V _{CC} (V)	T _A =	+ 25°C	$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units
		(•)	Тур		Guaranteed Lim	its	
V _{OLP}	Maximum High Output Noise (Notes 2, 3)	5.0	1.0	1.5			V
V _{OLV}	Minimum Low Output Noise (Notes 2, 3)	5.0	-0.6	-1.2			V
V _{OHP}	Maximum Overshoot (Notes 1, 3)	5.0	V _{OH} + 1.0	V _{OH} +1.5			V
V _{OHV}	Minimum V _{CC} Droop (Notes 1, 3)	5.0	V _{OH} -1.0	V _{OH} -1.8			V
V _{IHD}	Minimum High Dynamic Input Voltage Level (Notes 1, 4)	5.5	1.6	2.0	2.0	2.0	٧
V _{ILD}	Maximum Low Dynamic Input Voltage Level (Notes 1, 4)	5.5	1.4	0.8	0.8	0.8	٧

Note 1: Worst case package.

Note 2: Maximum number of outputs that can switch simultaneously is n. (n-1) outputs are switched LOW and one output held LOW.

Note 3: Maximum number of outputs that can switch simultaneously is n. (n-1) outputs are switched HIGH and one output held HIGH.

Note 4: Maximum number of data inputs (n) switching. (n-1) input switching 0V to 3V. Input under test switching 3V to threshold (V_{ILD}).

[†]Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics Normal Operation											
			С	ommerci	al	Milit	tary	Comm	ercial		
Symbol	Parameter	V _{CC} * (V)				$T_A = -55^{\circ}\text{C to } + 125^{\circ}\text{C}$ $C_L = 50 \text{ pF}$		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$		Units	
			Min	Тур	Max	Min	Max	Min	Max		
t _{PLH} , t _{PHL}	Propagation Delay Data to Q	5.0	2.5 2.5		9.0 9.0	2.5 2.5	10.5 10.5	2.5 2.5	9.8 9.8	ns	
t _{PLZ} , t _{PHZ}	Disable Time	5.0	1.5 1.5		10.2 10.2	1.5 1.5	11.2 11.2	1.5 1.5	10.7 10.7	ns	
t _{PZL} , t _{PZH}	Enable Time	5.0	2.0 2.0		11.8 9.5	2.0 2.0	13.5 11.5	2.0 2.0	12.8 10.5	ns	

^{*}Voltage Range 5.0 is 5.0V ± 0.5 V.

			c	ommerci	al	Mili	tary	Comm	ercial	
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			$T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C}$ $C_L = 50 \text{ pF}$		$T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$		Units
			Min	Тур	Max	Min	Max	Min	Max	
t _{PLH} , t _{PHL}	Propagation Delay TCK to TDO	5.0	3.5 3.5		13.2 13.2	3.5 3.5	15.8 15.8	3.5 3.5	14.5 14.5	ns
t _{PLZ} , t _{PHZ}	Disable Time TCK to TDO	5.0	2.5 2.5		11.5 11.5	2.5 2.5	12.8 12.8	2.5 2.5	11.9 11.9	ns
t _{PZL} , t _{PZH}	Enable Time TCK to TDO	5.0	3.0 3.0		14.5 14.5	3.0 3.0	16.7 16.7	3.0 3.0	15.8 15.8	ns
t _{PLH} , t _{PHL}	Propagation Delay TCK to Data Out During Update- -DR State	5.0	5.0 5.0		18.0 18.0	5.0 5.0	21.7 21.7	5.0 5.0	19.8 19.8	ns
t _{PLH} , t _{PHL}	Propagation Delay TCK to Data Out During Update- IR State	5.0	5.0 5.0		18.6 18.6	5.0 5.0	21.2 21.2	5.0 5.0	20.2 20.2	ns
t _{PLH} , t _{PHL}	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	5.5 5.5		19.9 19.9	5.5 5.5	23.0 23.0	5.5 5.5	21.5 21.5	ns
t _{PLZ} , t _{PHZ}	Propagation Delay TCK to Data Out During Update- DR State	5.0	4.0 4.0		16.4 16.4	4.0 4.0	19.6 19.6	4.0 4.0	18.2 18.2	ns
t _{PLZ} , t _{PHZ}	Propagation Delay TCK to Data Out During Update- IR State	5.0	5.0 5.0		19.5 19.5	5.0 5.0	22.4 22.4	5.0 5.0	20.8 20.8	ns
t _{PLZ} , t _{PHZ}	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	5.0 5.0		19.9 19.9	5.0 5.0	23.3 23.3	5.0 5.0	21.5 21.5	ns
t _{PZL} , t _{PZH}	Propagation Delay TCK to Data Out During Update- DR State	5.0	5.0 5.0		18.9 18.9	5.0 5.0	22.6 22.6	5.0 5.0	20.9 20.9	ns
t _{PZL} , t _{PZH}	Propagation Delay TCK to Data Out During Update- IR State	5.0	6.5 6.5		22.4 22.4	6.5 6.5	26.2 26.2	6.5 6.5	24.2 24.2	ns
t _{PZL} , t _{PZH}	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	7.0 7.0		23.8 23.8	7.0 7.0	27.4 27.4	7.0 7.0	25.7 25.7	ns

^{*}Voltage Range 5.0 is 5.0V \pm 0.5V.

All Propagation Delays involving TCK are measured from the falling edge of TCK.

			Commercial	Military	Commercial	
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF	$T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C}$ $C_L = 50 \text{ pF}$	$T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$	Units
				Guaranteed Minimum		
t _S	Setup Time, H or L Data to TCK (Note 1)	5.0	3.0	3.0	3.0	ns
t _H	Hold Time, H or L TCK to Data (Note 1)	5.0	4.5	5.5	4.5	ns
t _S	Setup Time, H or L AOE _n , BOE _n to TCK (Note 3)	5.0	3.0	3.0	3.0	ns
^t H	Hold Time, H or L TCK to AOE _n , BOE _n (Note 3)	5.0	4.5	4.5	4.5	ns
t _S	Setup Time, H or L Internal AOE, BOE, to TCK (Note 2)	5.0	3.0	3.0	3.0	ns
^t н	Hold Time, H or L TCK to Internal AOE, BOE (Note 2)	5.0	3.0	3.0	3.0	ns
t _S	Setup Time, H or L TMS to TCK	5.0	8.0	8.0	8.0	ns
t _H	Hold Time, H or L TCK to TMS	5.0	2.0	2.0	2.0	ns
t _S	Setup Time, H or L TDI to TCK	5.0	4.0	4.0	4.0	ns
t _H	Hold Time, H or L TCK to TDI	5.0	4.5	4.5	4.5	ns
t _W	Pulse Width TCK H L	5.0	15.0 5.0	15.0 5.0	15.0 5.0	ns
f _{max}	Maximum TCK Clock Frequency	5.0	25	25	25	MHz
T _{PU}	Wait Time, Power Up to TCK	5.0	100	100	100	ns
T _{DN}	Power Down Delay	0.0	100	100	100	ms

^{*}Voltage Range 5.0 is 5.0V ± 0.5 V.

All Input Timing Delays involving TCK are measured from the rising edge of TCK.

Note 1: This delay represents the timing relationship between the data input and TCK at the associated scan cells numbered 0-8, 9-17, 18-26, and 27-35.

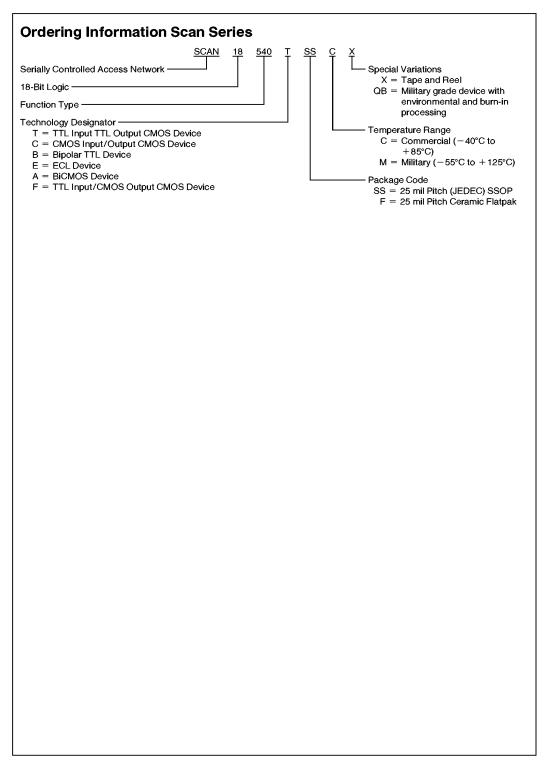
Note 2: This delay represents the timing relationship between AOE/BOE and TCK for scan cells 36 and 39 only.

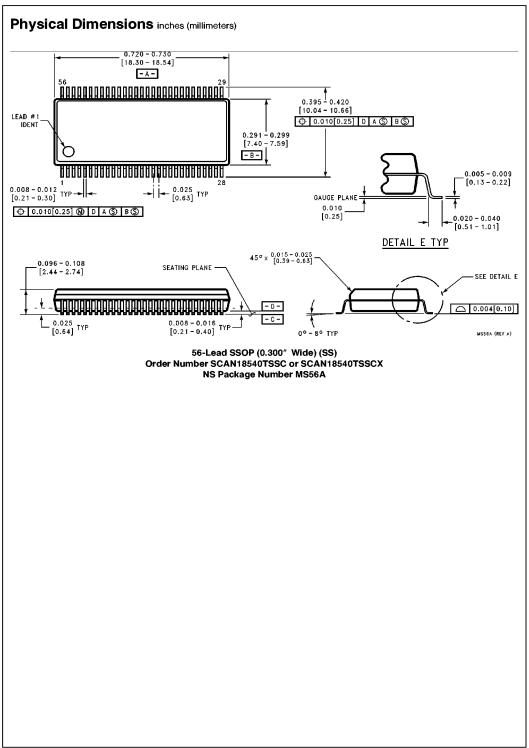
Note 3: Timing pertains to BSR 37, 38, 40 and 41.

Extended AC Electrical Characteristics											
Symbol	Parameter	T _A = Com V _{CC} = Com C _L = 50 pF 18 Outputs Switching (Note 2)			T _A = Mil V _{CC} = Mil C _L = 50 pF 18 Outputs Switching (Note 2)		T _A = Com V _{CC} = Com C _L = 250 pF (Note 3)		T _A = MiI V _{CC} = MiI C _L = 250 pF (Note 3)		Units
		Min	Тур	Max	Min	Max	Min	Max	Min	Max	
t _{PLH} , t _{PHL}	Propagation Delay Data to Output	3.0 3.0		11.0 11.0	3.0 3.0	11.5 11.5	4.0 4.0	13.0 15.0	4.0 4.0	14.0 16.0	ns
t _{PZH} ,	Output Enable Time	2.5 2.5		11.5 14.0	2.5 2.5	12.5 14.5	(Note 4)		(Note 4)		ns
t _{PHZ} ,	Ouput Disable Time	2.0 2.0		11.5 11.5	2.0 2.0	12.0 12.0	(Note 5)		(Note 5)		ns
t _{OSHL} (Note 1)	Pin to Pin Skew HL Data to Output		0.5	1.0			1.0				ns
t _{OSLH} (Note 1)	Pin to Pin Skew LH Data to Output		0.5	1.0				1.0			ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW (toSHL), LOW to HIGH (toSLH), or any combination LOW to HIGH and/or HIGH to LOW.

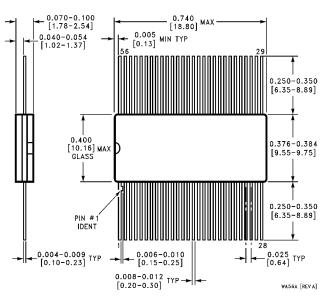
Note 2: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all low-to-high, high-to-low etc.).


Note 3: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.


Note 4: TRI-STATE delays are load dominated and have been excluded from the datasheet.

Note 5: The Output Disable Time is dominated by the RC network (500 Ω , 250 pF) on the output and has been excluded from the datasheet.

Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Pin Capacitance	4.0	pF	$V_{CC} = 5.0V$
C _{OUT}	Output Pin Capacitance	13.0	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	34.0	pF	V _{CC} = 5.0V

13

Physical Dimensions inches (millimeters) (Continued)

56-Lead Ceramic Flatpak (F) Order Number SCAN18540TFMQB NS Package Number WA56A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

http://www.national.com

National Semiconductor Europe

Europe Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 180-530 85 85 English Tel: +49 (0) 180-532 83 25 Français Tel: +49 (0) 180-532 93 58 Italiano Tel: +49 (0) 180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tei: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd. Tel: 81-043-299-2308 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.