
Quad PLL Clock Generator with Serial Interface (I²C)

Features

- · Three output frequencies plus reference out
- Programmable output frequencies via I²C serial interface
- Output frequencies from 4.9152 to 148.5 MHz
- Uses an external 27 MHz crystal or 27 MHz input clock
- · Optional analog VCXO
- Programmable output drive strength to minimize EMI
- The non-I²C equivalent is the CY22388 / 89 / 91
- 16-pin TSSOP package
- 3.3V operation with 2.5V output buffer option

Benefits

- Meets most Digital Set Top Box, DVD Recorder, and DTV application requirements
- Multiple high-performance PLLs allow synthesis of unrelated frequencies
- Integration eliminates the need for external loop filter components
- Complete VCXO solution with ±120 ppm (typical pull range)

Table 1. Applications and Frequencies

Output Clock	Application	Frequencies (MHz)
CLKC	Audio	6.144, 8.192, 11.2896, 12.288, 16.384, 16.9344, 18.432, 22.5792, 24.576, 33.8688, 36.864
	iLink	24.576
	HDMI	25.175, 28.322
CLKD	Video	27, 27.027, 54, 54.054, 81
	USB	12, 24, 48
	Video-Pixel Freq.	74.25/1.001, 74.25, 148.5/1.001, 148.5
	Modem	4.9152, 11.0592
	iLink	24.576
CLKE	Video	13.5, 27, 54, 81, 108
	Ethernet	25
	PCI	33.3333, 66.6666
	Processor	20, 30, 40, 50, 60, 80, 100
CLKF	see CLKC/D/E	REFOUT or Copy of CLKC, CLKD or CLKE
CLKG	see CLKC/D/E	REFOUT or Copy of CLKC, CLKD or CLKE

Pin Description

Pin Name	Pin Number	Pin Description
XIN/CLKIN	1	Crystal Input (27 MHz) or External Input Clock (27 MHz)
XOUT	16	Crystal Output
CLKC	7	Clock Output
CLKD	8	Clock Output
CLKE	9	Clock Output
CLKF	10	Clock Output
CLKG	11	Clock Output
SCLK	2	Serial Interface (I2C) Clock Input
SDAT	3	Serial Interface (I2C) Data
VIN	4	Analog Control Input for VCXO
DNC	14	Do Not Connect. This pin should be left floating.
AVDD	15	Core and input Voltage Supply
VDD1	5	Voltage Supply for Outputs CLKC
VDD2	13	Voltage Supply for Outputs CLKD, CLKE, CLKF, CLKG
VSS	6,12	Ground

General Description

The CY24488 generates up to three independent clock frequencies, plus a buffered copy of the reference crystal frequency, from a single crystal or reference input. Five clock output pins are available, which allows some frequencies to be driven on two or more output pins. Outputs can also be individually enabled or disabled. When a CLK output is individually disabled, it drives low.

The analog voltage controlled crystal oscillator (VCXO) allows the user to "pull" the reference crystal to a frequency that is slightly higher or lower than nominal. Doing so will cause all output clocks to shift by an equivalent parts-per-million (PPM). The VCXO is controlled by the analog control voltage applied to the VIN pin. For applications that do not require the VCXO functionality, it can be disabled.

A serial programming interface (SPI) permits in-system configuration of the device by writing to internal registers. It is used to set the output frequencies, enable and disable outputs, enable and disable the VCXO feature, etc. The SPI provides volatile programming. When powered down, the device reverts to its pre-SPI state. When the system is powered back up, the SPI registers will need to be configured again. Specific configuration details are given later in this data sheet.

Customers may contact their Cypress FAE or salesperson for any frequency that is not listed in this data sheet. The data sheet can be updated with a new hex code for the requested frequency.

Default Start-up Configuration

The default state of the device refers to its state at power on. All output clocks are off except CLKG, which outputs a copy of the 27 MHz reference clock. The serial programming interface must be used to configure the device for the desired output

frequencies. Because the serial programming memory is volatile, the device will revert to its default configuration when power is cycled.

Reference Input

There are three programmable reference operating modes for the CY24488 family of devices. *Table 2* shows the data values that must be programmed into the device for each of the reference operating modes. The correct values are required to ensure frequency accuracy and VCXO pullability.

The first mode utilizes an external 27 MHz pullable crystal and incorporates the internal analog VCXO. The crystal is connected between the XIN/CLKIN and XOUT pins. See "Crystal Requirements" for further details.

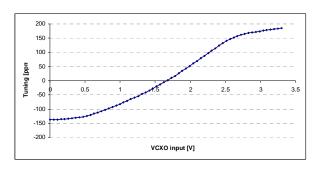
The second mode disables the VCXO input control and utilizes a standard 27 MHz crystal. Crystal requirements are relaxed relative to the VCXO mode. The crystal is connected between the XIN/CLKIN and XOUT pins. See "Crystal Requirements." In this mode, tie the VIN pin to AVDD.

The third mode accepts an external 27 MHz reference clock, applied to the XIN/CLKIN pin. In this configuration, the XOUT pin must be unconnected. The VCXO feature is not available; tie the VIN pin to AVDD.

Analog VCXO

The VCXO feature allows the user to fine tune the output frequency via a control voltage applied to the VIN pin. A special pullable crystal must be used in order to have adequate VCXO pull range. This data sheet lists specific crystals that have been qualified for used with the CY24488. Specific serial programming values are also given for each crystal.

Page 2 of 15


The special crystal requirements are eliminated if the VCXO feature is not needed. To disable the VCXO, the VIN pin must be tied high, and the appropriate register values given in the programming table must be programmed into the device.

The VCXO is completely analog, so there is infinite resolution on the VCXO pull curve. The analog-to-digital converter steps that are normally associated with a digital VCXO input are not present in this device.

VCXO Profile

Figure 1 shows an example of what a VCXO profile looks like. The analog voltage input is on the X-axis and the PPM range is on the Y-axis. An increase in the VCXO input voltage results in a corresponding increase in the output frequency. This has the effect of moving the PPM from a negative to positive offset

Figure 1. VCXO Profile

Crystal Requirements

The crystal requirements for the CY24488 differ for the VCXO and non-VCXO modes. In all cases, the device must be programmed correctly for the specific crystal used, as indicated in *Table 2*.

Crystals for Non-VCXO Mode

When not using the VCXO, the VIN pin should be tied high. The CY24488 uses a standard AT-cut parallel resonant crystal, which is available in a variety of packages. The key crystal parameter is load capacitance (C_L). The CY24488 has programmable load capacitance, to match a range of crystal C_L values. The specific configurations are shown in *Table 2*. Crystals with C_L values outside this range are not recommended.

Pullable Crystals for VCXO Mode

When the VCXO mode is used, the crystal requirements increase considerably in order to ensure the pullable range and glitch-free pulling. *Table 2* lists the crystals that Cypress has qualified for use with the CY24488, as well as the corresponding programming configurations. Customers wishing to use non-qualified crystals should first contact Cypress technical support.

Output Configurations

CLKC, CLKD, and CLKE are the three primary synthesized output clocks. For each one, the user can select from several

clock frequencies, as shown in the tables below. To do this, find the desired frequency from the appropriate table, then use the serial programming interface to write the specified hexadecimal data into the specified memory addresses.

In some cases the data at a particular memory address controls multiple functions, so only some of the bit values are specified. Since a byte is the smallest unit of data that can be written, it is necessary to construct the full data byte prior to writing it. To do this, look in the other tables to find the correct values for the other bits in that byte.

Any of the remaining output clocks (CLKF and CLKG) can be configured to generate duplicate copies of any the three primary clocks. Any of them can also drive a buffered version of the reference crystal frequency.

Enabling and Disabling Output Clocks

All output clocks can be individually enabled or disabled. Only CLKG is on at power on. All other clocks are off (driven low), and their respective PLLs are off. When using the serial programming interface to set an output to a desired frequency, the PLL Lock Time (AC Parameters Table) applies.

When turning off an output, the output buffer and associated PLL are turned off by different register addresses. Therefore it is possible to turn off an output by programming just one byte, but the PLL will continue to run and consume some power. Therefore the PLL Lock Time does not apply when turning the output back on.

The clock configuration tables also show a second off state that also turns off the PLL, saving additional power. This requires programming one or two additional bytes, and the PLL Lock Time applies.

Output Drive Strength

Output drive strength is configurable, with 2 bits available to set the drive strength for each output. The default value is '10', which is medium-high. This is the recommended setting for outputs operating at 3.3V. The recommended setting for 2.5V outputs is '11', which must be programmed by the user. *Table 10* shows which bits must be changed, and how to integrate these bits with other control bits to create valid bytes for shifting in.

The user may program any output to a lower drive strength if EMI is a problem. '00' is the lowest drive strength, while '11' is the highest. Note that the lowest setting is very weak and is not suitable for most applications.

Output Supply Voltage

The clock outputs may be operated at either 3.3V or 2.5V. CLKC has its own power pin (VDD1), while all other clocks are powered by VDD2. VDD1 and VDD2 may be operated at different voltages if desired. AVDD must always be 3.3V.

The CY24488 also has internal register settings that should be configured for the actual output supply voltage. The default settings are optimized for VDD1 = VDD2 = 3.3V. *Table 10* and *Table 3* show the values that need to be programmed for 2.5V supply voltage.

Programming Flow

The device registers may be programmed in any sequence, but for convenience, a suggested programming flow is shown in *Figure 2*.

Any step in this programming sequence may be skipped if the default value is the desired value.

When programming an output frequency, the new frequency will be valid on that output after all of the specified data values have been written to all of the specified addresses. When changing an output frequency, the output may transition through one or more indeterminate frequencies between the writing of the first byte and the last byte.

Note that some of the programming steps are not as independent as they appear in the flow diagram. In particular, addresses 48H, 53H, and 57H control both output frequencies and drive strength. Because a byte is the smallest unit that may be programmed through the serial interface, the user must consider both the frequency setting and the output drive strength when constructing the byte value to be written into these particular address. It is not necessary to write more than once to any given address, but that one write must have all of the bits set correctly.

Example: configure CLKC for 33.8688 MHz and 2.5V output. For address 48H, start with the value in *Table 4*: 89H (binary 10001001). *Table 9* shows that bits 7 & 6 control the drive strength, which should be '11' (from *Table 10*). Therefore, the final value is 11001001, which is C9H. This value is written once.

Figure 2. Programming Flow

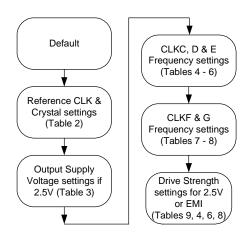


Table 2. Register Settings for VCXO and Reference

Deference Cleak and VCVO	Cry	Address			
Reference Clock and VCXO	Manufacturer Part No.	Package	Specified C _L	16H	17H
CLKIN (external reference), VCXO off	-	-	_	89	3A
Crystal, VCXO off	any	any	10.7 pF	88	4F
Crystal, VCXO off	any	any	12 pF	88	5F
Crystal, VCXO off (default)	any	any	12.6 pF	88	67
Crystal, VCXO off	any	any	14 pF	88	77
Crystal, VCXO on	KDS DSX530GA	5x3.2 mm	12.6 pF	88	3A
Crystal, VCXO on	KDS DSX530GA	5x3.2 mm	10.7 pF	88	2A
Crystal, VCXO on	RIVER FCX-03	5x3.2 mm	12 pF	88	41
Crystal, VCXO on	KDK	5x3.2 mm	12 pF	88	3A
Crystal, VCXO on	KDS	SMD-49	12 pF	88	39
Crystal, VCXO on	Ecliptek ECX-6277	SMD-49	12 pF	88	41

Table 3. Register Settings for Output Supply Voltages

Output	Output Supply Voltages	Address			
Output	Output Supply Voltages	41H	43H		
CLKC	VDD1 = 3.3V	BF (default)	_		
	VDD1 = 2.5V	7F	_		
CLKD, CLKE, CLKF, CLKG	VDD2 = 3.3V	-	A0 (default)		
	VDD2 = 2.5V	-	90		

Document #: 001-09608 Rev. *A Page 4 of 15

Table 4. CLKC Output Frequencies (Audio, iLink, or HDMI)

Fraguency (MU=)	Application	Frequency	Register Address						
Frequency (MHz)	Application	Error	0AH	0BH	0CH	0DH	0EH	0FH	48H ^[1]
CLKC off and PLL off (default)	_	_	_	-	88	-	-	44	8D
CLKC off	_	-	_	_	-	_	_	_	8D
25.175	HDMI	0 ppm	01	07	D2	26	18	72	AD
28.322	HDMI	0 ppm	10	39	E2	94	39	6A	91
6.144 (48K x 128)	Audio	0 ppm	17	3E	D0	1C	06	64	A5
12.288 (32K x 384)	Audio	0 ppm	17	3E	D0	1C	06	64	A9
16.384 (32K x 512)	Audio	0 ppm	17	3E	D0	19	0E	64	81
18.432 (48K x 384)	Audio	0 ppm	17	3E	D0	1C	06	64	89
24.576 (48K x 512)	Audio, iLink	0 ppm	17	3E	D0	1C	06	64	B5
36.864 (48K x 768)	Audio	0 ppm	17	3E	D0	1C	06	64	95
11.2896 (44.1K x 256)	Audio	0 ppm	17	3E	D0	30	16	66	A5
16.9344 (44.1K x 384)	Audio	0 ppm	17	3E	D0	30	16	66	85
22.5792 (44.1K x 512)	Audio	0 ppm	17	3E	D0	30	16	66	A9
33.8688 (44.1K x 768)	Audio	0 ppm	17	3E	D0	30	16	66	89

Table 5. CLKD Output Frequencies (Video, Pixel rate, USB, modem or iLink)

Fraguency (MH=)	Application	Frequency	Register Address				
Frequency (MHz)	Application	Error	10H	11H	12H	50H	
CLKD off and PLL off (default)	-	-	_	_	00	8E	
CLKD off	-	-	_	_	_	8E	
12	USB	0 ppm	01	08	30	A2	
24	USB	0 ppm	07	1E	30	86	
48	USB	0 ppm	07	1E	30	8A	
4.9152	Modem	+38 ppm	18	21	26	A2	
11.0592	Modem	+11 ppm	39	8F	28	A6	
24.576	iLink	6 ppm	56	8E	33	82	
27 (reference)	Video	0 ppm	_	_	02	9A	
27.027	Video	0 ppm	7B	F2	33	86	
54 (ref * 2)	Video	0 ppm	02	0E	30	8A	
54.054	Video	0 ppm	7B	F2	33	8A	
74.25/1.001	Video pixel rate	0 ppm	59	F8	2C	96	
74.25	Video pixel rate	0 ppm	00	03	22	96	
81 (ref * 3)	Video	0 ppm	00	07	30	В6	
148.5/1.001	Video pixel rate	0 ppm	59	F8	2C	B2	
148.5	Video pixel rate	0 ppm	00	03	22	B2	

Document #: 001-09608 Rev. *A Page 5 of 15

Note
1. Bits [7:6] control CLKC drive strength. The values given in this table correspond to a drive strength setting of '10'. See *Table 9* and *Table 10*.

Table 6. CLKE Output Frequencies (Ethernet, Video, PCI, Processor)

Francisco (MILL)	Amplication	Frequency		R	egister Ad	Idress
Frequency (MHz)	Application	Error	13H	14H	15H	53H ^[2]
CLKE off and PLL off (default)	_	_	_	_	00	3E
CLKE off	_	_	1	_	_	3E
13.5	Video	0 ppm	00	05	26	8E
27 (reference)	Video	0 ppm	1	_	02	6E
54	Video	0 ppm	00	06	24	2E
81	Video	0 ppm	00	07	24	DE
108	Video	0 ppm	00	06	24	5E
20	Processor	0 ppm	07	26	24	9E
25	Ethernet	0 ppm	07	17	30	AE
30	Processor	0 ppm	01	08	28	AE
33.333333	PCI	0 ppm	19	62	30	AE
40	Processor	0 ppm	07	26	30	AE
50	Processor	0 ppm	19	62	30	2E
60	Processor	0 ppm	01	08	28	DE
66.666666	PCI	0 ppm	19	62	30	DE
80	Processor	0 ppm	07	26	30	DE
100	Processor	0 ppm	19	62	30	5E

Table 7. CLKF Output Clock

Frequency (MHz)	Address 55H					
Frequency (WH2)	Data value (hex)					
CLKF off (default)	0C					
27 MHz reference	18					
Copy of CLKC	copy of data from Table 4 address 48H					
Copy of CLKD	copy of data from Table 5 address 50H					
Copy of CLKE	copy of data from <i>Table</i> 6 address 53H, divided by 4 ^[3]					

Table 8. CLKG Output Clock (Default = Reference out)

Fraguency (MUT)	Address 57H					
Frequency (MHz)	bits [7:6]	bits [5:0]				
CLKG off	10	001100				
27 MHz reference (default)	drive strength (default=10) – see Table 10	011000				
Copy of CLKC	drive strength (default=10) – see Table 10	bits[5:0] of address 48H – see Table 4				
Copy of CLKD	drive strength (default=10) – see Table 10	bits[5:0] of address 50H – see Table 5				
Copy of CLKE	drive strength (default=10) – see Table 10	bits[7:2] of address 53H – see Table 6				

Bits [1:0] control CLKD drive strength. The values given in this table correspond to a drive strength setting of '10'. See *Table 9* and *Table 10*.
 Bits [7:6] of address 55H are don't care. Dividing by 4 is equivalent to right shifting by 2 bits.

Table 9. Register Settings for Output Drive Strength $^{[4]}$

Output Clock	Drive strength bits	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
CLKC	bits[7:6] of 48H	DS		see address 48H in Ta				Table 4		
CLKD	bits[1:0] of 53H		see address 53H in Table 6				DS			
CLKE	bits[7:6] of 54H	D	S	0	0	0	0	0	0	
CLKF	bits[5:4] of 56H	1	1	D	S	0	0	0	0	
CLKG	bits[7:6] of 57H	DS		see address 57H in Table 8						

Table 10. Drive Strength (DS) $Values^{[4]}$

DS Value	Drive Strength	3.3V Output	2.5V Output
00	Very low	EMI Adjustment	EMI Adjustment
01	Medium low	EMI Adjustment	EMI Adjustment
10 (default)	Medium high	Standard	EMI Adjustment
11	High	Extra Drive	Standard

Document #: 001-09608 Rev. *A

Page 7 of 15

^{4.} The default drive strength (DS) setting for all clocks is '10'. All output specifications for 3.3V outputs are given for this value. Output specifications for 2.5V outputs are given for a setting of '11'. To change the DS settings, the serial programming interface must be used to program in the desired values. Users may program in any 2-bit value, but certain output specifications will not be valid for settings other than '10' (3.3V) or '11' (2.5V). See the DC Parameters and AC Parameters tables for further details.

Serial Programming Interface Protocol and Timing

The CY24488 utilizes pins SDAT and SCLK for a 2-wire serial interface that operates up to 400 kbit/s in Read or Write mode. The basic Write protocol is as follows:

Start Bit; 7-bit Device Address (DA); R/W Bit; Slave Clock Acknowledge (ACK); 8-bit Memory Address (MA); ACK; 8-bit Data; ACK; 8-bit Data in MA+1 if desired; ACK; 8-bit Data in MA+2; ACK; etc. until STOP Bit. The basic serial format is illustrated in *Figure 4*.

Device Address

The device address is a 7-bit value. The default serial interface address is 47H.

Data Valid

Data is valid when the clock is HIGH, and may only be transitioned when the clock is LOW, as illustrated in *Figure 5*.

Data Frame

Every new data frame is indicated by a start and stop sequence, as illustrated in *Figure 6*.

START Sequence - Start Frame is indicated by SDAT going LOW when SCLK is HIGH. Every time a start signal is given, the next 8-bit data must be the device address (seven bits) and a R/W bit, followed by register address (eight bits) and register data (eight bits).

STOP Sequence - Stop Frame is indicated by SDAT going HIGH when SCLK is HIGH. A Stop Frame frees the bus to write to another part on the same bus or writing to another random register address.

Acknowledge Pulse

During Write Mode the CY24488 will respond with an Acknowledge (ACK) pulse after every eight bits. This is accomplished by pulling the SDAT line LOW during the N*9th clock cycle, as illustrated in *Figure 7* (N = the number of bytes transmitted). During Read Mode the acknowledge pulse after the data packet is sent is generated by the master.

Write Operations

Writing Individual Bytes

A valid write operation must have a full 8-bit register address after the device address word from the master, which is followed by an acknowledge bit from the slave (SDAT = 0/LOW). The next eight bits must contain the data word intended for storage. After the data word is received, the slave responds with another acknowledge bit (SDAT = 0/LOW), and the master must end the write sequence with a STOP condition.

Writing Multiple Bytes

In order to write more than one byte at a time, the master does not end the write sequence with a STOP condition. Instead, the master can send multiple contiguous bytes of data to be stored. After each byte, the slave responds with an acknowledge bit, the same as after the first byte, and will accept data until the acknowledge bit is responded to by the STOP condition. When receiving multiple bytes, the CY24488 internally increments the register address.

Read Operations

Read operations are initiated the same way as Write operations except that the R/W bit of the slave address is set to '1' (HIGH). There are three basic read operations: current address read, random read, and sequential read.

Current Address Read

The CY24488 has an onboard address counter that retains 1 more than the address of the last word access. If the last word written or read was word 'n', then a current address read operation would return the value stored in location 'n+1'. When the CY24488 receives the slave address with the R/W bit set to a '1', the CY24488 issues an acknowledge and transmits the 8-bit word. The master device does not acknowledge the transfer, but does generate a STOP condition, which causes the CY24488 to stop transmission.

Random Read

Through random read operations, the master may access any memory location. To perform this type of read operation, first set the word address. Send the address to the CY24488 as part of a write operation. After the word address is sent, the master generates a START condition following the acknowledge. This terminates the write operation before any data is stored in the address, but not before the internal address pointer is set. Next the master reissues the control byte with the R/W byte set to '1'. The CY24488 then issues an acknowledge and transmits the 8-bit word. The master device does not acknowledge the transfer, but does generate a STOP condition, which causes the CY24488 to stop transmission.

Sequential Read

Sequential read operations follow the same process as random reads except that the master issues an acknowledge instead of a STOP condition after transmission of the first 8-bit data word. This action results in an incrementing of the internal address pointer, and subsequently output of the next 8-bit data word. By continuing to issue acknowledges instead of STOP conditions, the master may serially read the entire contents of the slave device memory. Note that register addresses outside of 0AH to 17H and 40H to 57H can be read from but are not real registers and do not contain configuration information. When the internal address pointer points to the FFH register, after the next increment, the pointer will point to the 00H register.

Figure 3. Data Transfer Sequence on the Serial Bus

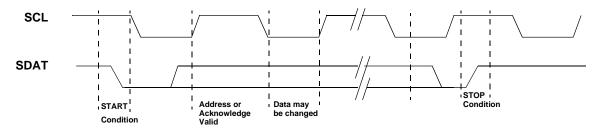


Figure 4. Data Frame Architecture

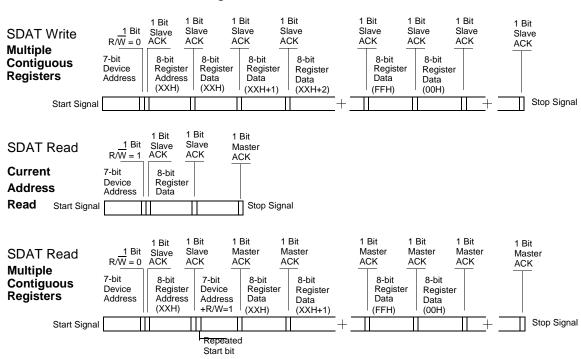
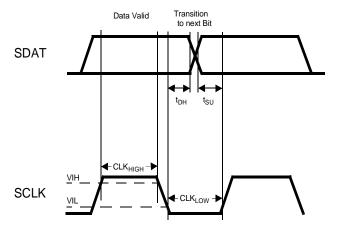



Figure 5. Data Valid and Data Transition Periods

Serial Programming Interface Timing

Figure 6. Start and Stop Frame

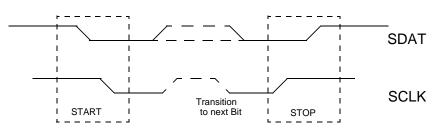
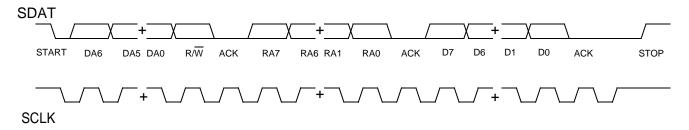



Figure 7. Frame Format (Device Address, R/W, Register Address, Register Data)

Serial Programming Interface Timing Specifications

Parameter	Description	Min.	Max.	Unit
f _{SCLK}	Frequency of SCLK	_	400	kHz
	Start Mode Time from SDA LOW to SCL LOW	0.6	_	μS
CLK _{LOW}	SCLK LOW Period	1.3	_	μs
CLK _{HIGH}	SCLK HIGH Period	0.6	_	μS
t _{SU}	Data Transition to SCLK HIGH	100	_	ns
t _{DH}	Data Hold (SCLK LOW to data transition)	0	_	ns
	Rise Time of SCLK and SDAT	_	300	ns
	Fall Time of SCLK and SDAT	_	300	ns
	Stop Mode Time from SCLK HIGH to SDAT HIGH	0.6	_	μS
	Stop Mode to Start Mode	1.3	_	μs

Absolute Maximum Conditions

Parameter	Description	Condition	Min.	Max.	Unit
$AV_{DD}/V_{DD1}/V_{DD2}$	Core Supply Voltage		-0.5	4.6	V
V _{IN}	Input Voltage	Relative to VSS	-0.5	$V_{DD} + 0.5$	VDC
T _S	Temperature, Storage	Non-Functional	-65	+125	°C
ESD _{HBM}	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000	_	Volts
UL-94	Flammability Rating	V-0 @1/8 in.	_	10	ppm
MSL	Moisture Sensitivity Level	16 TSSOP	1		

Pullable Crystal Specifications (for VCXO applications)[5]

Parameter	Description	Comments		Тур.	Max.	Unit
F _{NOM}	AT-cut Crystal	Parallel resonance, Fundamental mode		27		MHz
C _{LNOM}	Nominal Load Capacitance	Order crystal at one specific C _{LNOM} 0 ppm	11.4	12	12.6	pF
R ₁	Equivalent Series Resistance (ESR)	Fundamental mode (CL = Series)	_	_	40	Ω
DL	Crystal Drive Level	Nominal V _{DD} @ 25°C over ±120 ppm Pull Range	-	_	300	μW
F _{3SEPHI} ^[6]	Third Overtone Separation from 3*F _{NOM}	Mechanical Third (High side of 3*F _{NOM})	240	-	_	ppm
F _{3SEPLO} ^[6]	Third Overtone Separation from 3*F _{NOM}	Mechanical Third (Low side of 3*F _{NOM})	ı	_	-120	ppm

Non-pullable Crystal Specifications (for non-VCXO applications)[5]

Parameter	Description	Comments	Min.	Тур.	Max.	Unit
F _{NOM}	AT-cut Crystal	Parallel resonance, Fundamental mode		27		MHz
C _{LNOM}	Nominal Load Capacitance	Order crystal at one specific C _{LNOM} 0 ppm	10.7	12	14.0	pF
R ₁	Equivalent Series Resistance (ESR)	Fundamental mode (CL = Series)	-	-	40	Ω
DL	Crystal Drive Level	Nominal V _{DD} @ 25°C	-	-	300	μW

Recommended Operating Conditions

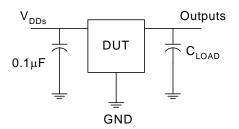
Parameter	Description	Min.	Тур.	Max.	Unit
AV_{DD}	Core Operating Voltage	3.0	3.3	3.6	V
$V_{\rm DD1}/V_{\rm DD2}$	Output Operating Voltage			3.6	V
		2.3	2.5	2.7	V
T _A	Ambient Temperature	-10	_	70	°C
C _{LOAD}	Maximum Load Capacitance	_	-	15	pF
t _{PU}	Power up time for all V_{DD} s reach minimum specified voltage (power ramps must be monotonic)		_	500	ms

Device operates to following specs which are guaranteed by design.
 Increased tolerance available from pull range less than ±120 PPM.

DC Parameters [7]

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
I _{OH} [8]	Output High Current	$V_{OH} = V_{DD} - 0.5, V_{DD} = 3.3V$	12	-	_	mA
I _{OL} [8]	Output Low Current	$V_{OL} = 0.5, V_{DD} = 3.3V$	12	-	_	mA
I _{IH}	Input High Current	V _{IH} = V _{DD} , excluding Vin, XIN/CLKIN	_	5	10	μΑ
I _{IL}	Input Low Current	V _{IL} = 0V, excluding Vin, XIN/CLKIN	_	5	10	μA
V _{IH}	Input High Voltage	XIN/CLKIN input CMOS levels	0.7xAV _{DD}	_	_	V
V _{IL}	Input Low Voltage	XIN/CLKIN input CMOS levels	_	_	0.3xAV _D	V
					D	
V_{VCXO}	VIN Input Range		0	-	AV_{DD}	V
C _{IN}	Input Capacitance	XIN/CLKIN pin only	_	_	TBD	pF
I_{VDD}	Supply Current	V _{DD} Current	-	60	_	mΑ
C _{INXIN}	Input Capacitance at XIN/CLKIN	VCXO Disabled External Reference	_	15	-	pF
C _{INXTAL}	Input Capacitance at Crystal	VCXO Disabled Fixed Freq. Oscillator	_	12	_	pF

AC Parameters^[7]


Parameter	Description Conditions		Min.	Тур.	Max.	Units	
1/t1	Output Frequency	PLL _{minmax} /Divider _{maximum}	4.2	_	166	MHz	
DC1 ^[8, 9]	Output Duty Cycle (excluding REFOUT) Duty Cycle is defined in Figure 9; t_2/t_1 , 50% of V_{DD} External reference duty cycle between 40% and 60% measured at $V_{DD}/2$ (Clock output is \leq 125 MHz)				55	%	
DC2 ^[8, 9]	Output Duty Cycle (excluding REFOUT)	Duty Cycle is defined in <i>Figure</i> 9; t ₂ /t ₁ , 50% of V _{DD} External reference duty cycle between 40% and 60% measured at V _{DD} /2 (Clock output is > 125 MHz)	40	50	60	%	
DC _{REFOUT} [8, 9]	Output Duty Cycle	Duty Cycle is defined in <i>Figure 9</i> ; t ₂ /t ₁ , 50% of V _{DD} (XIN/CLKIN Duty Cycle = 45/55%)	40	50	60	%	
ER ^[8]	Rising Edge Rate	Output Clock Edge Rate. Measured from 20% to 80% of V _{DD} . C _{LOAD} = 15 pF. See <i>Figure 10</i> .		1.2	_	V/ns	
EF ^[8]	Falling Edge Rate	Output Clock Edge Rate. Measured from 80% to 20% of V _{DD} . C _{LOAD} = 15 pF See <i>Figure 10</i> .	0.75	1.2	_	V/ns	
T ₉	Clock Jitter	Period Jitter; VDD1 = VDD2 = 3.3V, drive strength = '10'		±250	_	ps	
T ₁₀	PLL Lock Time	From end of serial programming sequence to correct output frequency		1	5	ms	
$f_{\Delta XO}$	VCXO Crystal Pull Range	Using non-SMD-49 crystal specified in <i>Table 2</i> . Nominal Crystal Frequency Input assumed (0 ppm) @ 25°C and 3.3V	±110	±120	-	ppm	
		Using SMD-49 crystal specified in <i>Table 2</i> . Nominal Crystal Frequency Input assumed (0 ppm) @ 25°C and 3.3V	±105	±120	-	ppm	

- Notes
 7. Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with fully loaded outputs.
 8. Drive strength settings: '10' for 3.3V outputs; '11' for 2.5V outputs.
 9. Guaranteed when values in *Table 3* and *Table 9* are programmed to match the output supply voltage.

Test and Measurement Set-up

Figure 8. Test and Measurement Diagram

Voltage and Timing Definitions

Figure 9. Duty Cycle Definition

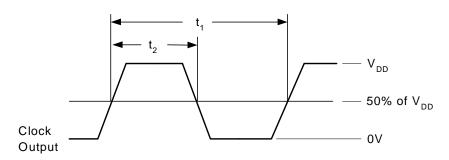
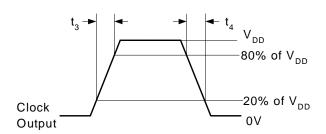
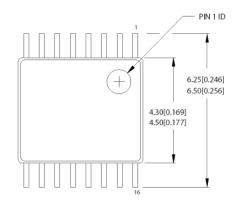



Figure 10. ER = $(0.6 \times V_{DD})/t_3$, EF = $(0.6 \times V_{DD})/t_4$

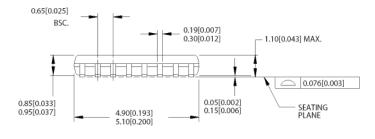


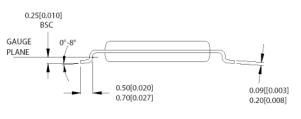
Ordering Information

Part Number	Туре	Production Flow
Lead-free		
CY24488ZXC	16-pin TSSOP	Commercial, 0°C to +70°C
CY24488ZXCT	16-pin TSSOP - Tape and Reel	Commercial, 0°C to +70°C

Package Drawing and Dimensions

Figure 11. 16-lead TSSOP 4.40 mm Body Z16.173




DIMENSIONS IN MM[INCHES] MIN. MAX.

REFERENCE JEDEC MO-153

PACKAGE WEIGHT 0.05 gms

PART #				
Z16.173	STANDARD PKG.			
ZZ16.173	LEAD FREE PKG.			

51-85091-*A

All product and company names mentioned in this document are trademarks of their respective holders.

Document History Page

Document Title: CY24488 Quad PLL Clock Generator with Serial Interface (I ² C) (Final) Document Number: 001-09608						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	497098	See ECN	RGL	New data sheet		
*A	504259	See ECN	RGL	Minor text additions Change status from Advance Information to Final		