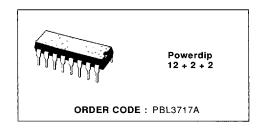


PBL3717A

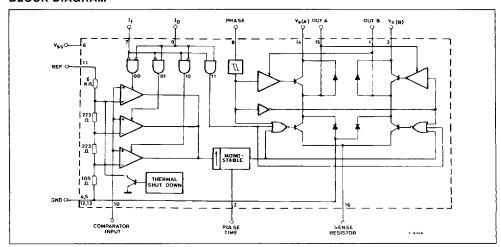
STEPPER MOTOR DRIVER

- FULL STEP HALF STEP QUARTER STEP OPERATING MODE
- BIPOLAR OUTPUT CURRENT UP TO 1 A
- FROM 10 V UP TO 46 V MOTOR SUPPLY VOLTAGE
- LOW SATURATION VOLTAGE WITH INTE-GRATED BOOTSTRAP
- BUILT IN FAST PROTECTION DIODES
- EXTERNALLY SELECTABLE CURRENT LE-VEL
- OUTPUT CURRENT LEVEL DIGITALLY OR ANALOGUE CONTROLLED
- THERMAL PROTECTION WITH SOFT INTER-VENTION

A monostable, programmed by an external RC network, sets the current decay time.


The power section is a full H-bridge driver with four internal clamp diodes for current recirculation. An external connection to the lower emitters is available for the insertion of a sensing resistor. Two PBL3717As and few external components form a complete stepper motor drive subsystem.

The raccomended operating ambient temperature ranges is from 0 to 70 °C.

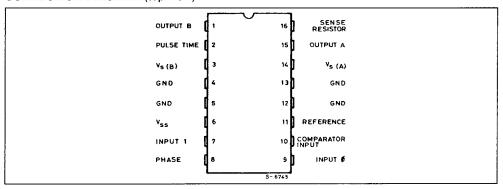

The PBL3717A is supplied in a 12 + 2 + 2 lead Powerdip package.

DESCRIPTION

The PBL3717A is a monolithic IC which controls and drives one phase of a bipolar stepper motor with chopper control of the phase current. Current levels may be selected in three steps by means of two logic inputs which select one of three current comparators. When both of these inputs are high the device is disabled. A separate logic input controls the direction of current flow.

BLOCK DIAGRAM

October 1991


1/10

■ 7929237 0053040 416 **■**

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Power Supply Voltage (pins 14, 3)	50	V
V _{ss}	Logic Supply Voltage (pin 6)	7	V
V _i	Logic Input Voltage (pins 7, 8, 9)	6	V
V _c	Comparator Input (pin 10)	V _{ss}	
Vr	Reference Input Voltage (pin 11)	15	V
I _o	Output Current (DC operation)	1.2	Α
T _{stg}	Storage Temperature	- 55 to + 150	°C
T,	Operating Junction Temperature	150	_ ∘c

CONNECTION DIAGRAM (top view)

TRUTH TABLE

Input 0 (pin 9)	Input 1 (pin 7)	
Н	Н	No Current
L	н	Low Current
н	L	Medium Current
L	L	High Current

THERMAL DATA

Rth I-case	Thermal Resistance Junction-pins	11	°C/W
R _{th I-amb}	Thermal Resistance Junction-ambient*	40	°C/W

^{*} Soldered on a 35µ thick 20 cm² P.C. board copper area.

^{2/10} **■ 7929237 0053041 352 ■**

PIN FUNCTIONS

Ν°	Name	Function
1	OUTPUT B	Output Connection (with pin 15) The output stage is a "H" bridge formed by four transistors and four diodes suitable for switching applications.
2	PULSE TIME	A parallel RC network connected to this pin sets the OFF time of the lower power transistors. The pulse generator is a monostable triggered by the rising edge of the output of the comparators ($t_{\rm off}$ = 0.69 R _T C _T)
3	SUPPLY VOLTAGE B	Supply Voltage Input for Half Output Stage See also pin 14
4	GROUND	Ground Connection. With pins 5, 12 and 13 also conducts heat from die to printed circuit copper.
5	GROUND	See pin 4.
6	LOGIC SUPPLY	Supply Voltage Input for Logic Circuitry
7	INPUT 1	This pin and pin 9 (INPUT 0) are logic inputs which select the outputs of the three comparators to set the current level. Current also depends on the sensing resistor and reference voltage. See truth table.
8	PHASE	This TTL-compatible logic input sets the direction of current flow through the load. A high level causes current to flow from OUTPUT A (source) to OUTPUT B (sink) A schmitt trigger on this input provides good noise immunity and a delay circuit prevents output stage short circuits during switching
9	INPUT 0	See INPUT 1 (pin 7)
10	COMPARATOR INPUT	Input connected to the three comparators. The voltage across the sense resistor is feedback to this input through the low pass filter R_C C_C The lower power transistor are disabled when the sense voltage exceeds the reference voltage of the selected comparator. When this occurs the current decays for a time set by R_T C_T , t_{off} = 0.69 R_T C_T .
11	REFERENCE	A voltage applied to this pin sets the reference voltage of the three comparators, this determining the output current (also thus depending on R _s and the two inputs INPUT 0 and INPUT 1)
12	GROUND	See pin 4.
13	GROUND	See pin 4.
14	SUPPLY VOLTAGE A	Supply Voltage Input for Half Output Stage See also pin 13
15	OUTPUT A	See pin 1
16	SENSE RESISTOR	Connection to Lower Emitters of Output Stage for Insertion of Current Sense Resistor.

3/10

Figure 1: Test and Application Circuit.

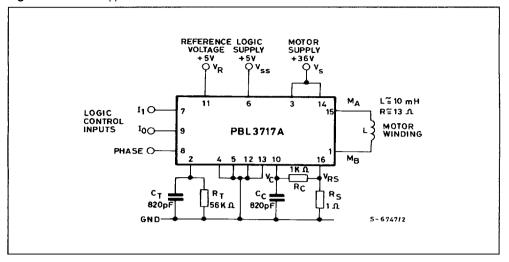
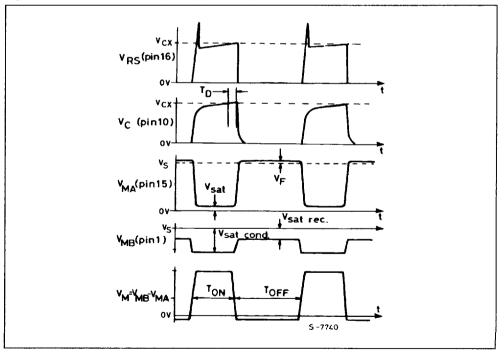
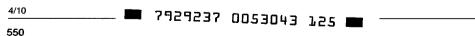




Figure 2: Waveforms with MA Regulating (phase = 0).

This Material Copyrighted By Its Respective Manufacturer

ELECTRICAL CHARACTERISTICS (refer to the test circuit $V_s = 36$ V, $V_{ss} = 5$ V, Tamb = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Uņit
Vs	Supply Voltage (pin 3, 14)		10		46	٧
V _{ss}	Logic Supply Voltage (pin 6)		4.75		5.25	٧
I _{ss}	Logic Supply Current (pin 6)			7	15	mA
I _R	Reference Input Current (pin 11)	V _R = 5 V		0.75	1	mA

LOGIC INPUTS

	V _I L	Input Low Voltage (pins 7, 8, 9)				0.8	V
	V _{iH}	Input High Voltage (pin 7, 8, 9)			2	V _{ss}	٧
ſ	I _{tL}	Low Voltage Input Current	V ₁ = 0.4 V	pin 8		- 100	μА
		(pins 7, 8, 9)		pins 7, 9		- 400	μА
Ī	l _{iH}	High Voltage Input Current (pins 7, 8, 9)	V ₁ = 2.4 V			10	μА

COMPARATORS

V _{CL}	Comparator Low Threshold Voltage (pin 10)	V _R = 5 V	l _o = L l ₁ = H	66	78	90	mV
V _{CM}	Comparator Medium Threshold Voltage (pin 10)	V _R = 5 V	I _o = H I ₁ = L	236	251	266	mV
V _{CH}	Comparator High Threshold Voltage (pin 10)	V _R = 5 V	I _o = L I ₁ = L	396	416	436	mV
Ic	Comparator Input Current (pin 10)					± 20	μА
toff	Cutoff Time	R _T = 56 KΩ	C _T = 820 pF	25		35	μs
td	Turn Off Delay	(see fig. 2)				2	μs
l _{off}	Output Leakage Current (pins 1, 15)	l _o = H	I ₁ = H			100	μΑ

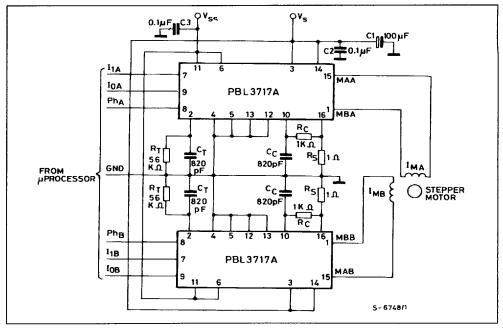
SOURCE DIODE-TRANSISTOR PAIR

V _{sat}	Saturation Voltage	$I_{M} = -0.5 A$	Conduction Period	17	2.1	.,
	(pins 1, 15)	(see fig. 2)	Recirculation Period	1.1	1.35	V
V _{sat}	Saturation Voltage	I _M = - 1 A	Conduction Period	2.1	28	V
	(pins 1, 15)	(see fig. 2)	Recirculation Period	1.7	25	V
ILK	Leakage Current	V _s = 46 V			300	μΑ
V _F	Diode Forward Voltage	$I_{M} = -0.5 A$		1	1 25	V
		I _M = - 1 A		1.3	17	V
I _{SLK}	Substrate Leakage Current	$I_{M} = -0.5 A$			2	
	when Clamped	I _M = - 1A			5	mA

--- 7929237 0053044 061 **---**

5/10

ELECTRICAL CHARACTERISTICS (continued)


	Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
--	--------	-----------	-----------------	------	------	------	------

SINK DIODE-TRANSISTOR PAIR

V_{sat}	Saturation Voltage	I _M = 0.5 A	1.1	1.35	٧
	(pins 1, 15)	i _M = 1 A	1.6	2.3	٧
I _{LK}	Leakage Current	V _s = 46 V		300	μΑ
VF	Diode Forward Voltage	I _M = 0.5 A	1.1	1.5	
		I _M = 1 A	1.4	2] '

APPLICATION CIRCUIT

Figure 3: Two Phase Bipolar Stepper Motor Driver.

6/10

7929237 0053045 TT& I

553

Figure 4: P.C. Board and Component Layout of the Circuit of fig. 3 (1:1 scale).

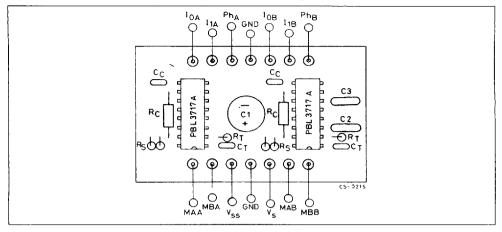
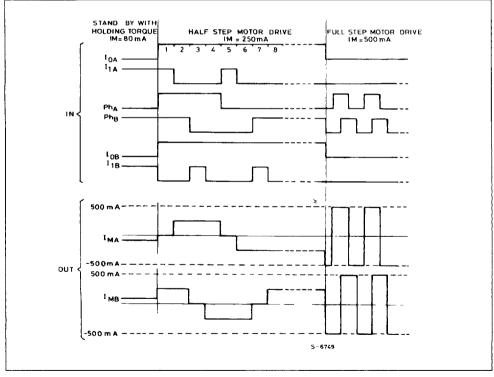



Figure 5: Input and Output Sequences for Half Step and Full Step Operation.

7/10

APPLICATION INFORMATIONS

Fig. 3 shows a typical application in which two PBL3717A control a two phase bipolar stepper motor.

PROGRAMMING

The logic inputs I_0 and I_1 set at three different levels the amplitude of the current flowing in the motor winding according to the truth table of page 2. A high level on the "PHASE" logic input sets the direction of that current from output A to output B; a low level from output B to output A.

It is recommended that unused inputs are tied to pin 6 (V_{ss}) or pin 4 (GND) as appropriate to avoid noise problem.

The current levels can be varied continuously by changing the ref. voltage on pin 11.

CONTROL OF THE MOTOR

The stepper motor can rotate in either directions according to the sequence of the input signals. It is possible to obtain a full step, a half step and a quarter step operation.

FULL STEP OPERATION

Both the windings of the stepper motor are energized all the time with the same current IMA = IMB.

 I_0 and I_1 remain fixed at whatever torque value is required.

Calling A the condition with winding A energized in one direction and \overline{A} in the other direction, the sequence for full step rotation is :

$$AB \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow A\overline{B}$$
 etc.

For the rotation in the other direction the sequence must be reserved.

In the full step operation the torque is constant each step.

HALF STEP OPERATION

Power is applied alternately to one winding then both according to the sequence:

 $AB \rightarrow B \rightarrow \overline{AB} \rightarrow \overline{A} \rightarrow \overline{AB} \rightarrow \overline{B} \rightarrow A\overline{B} \rightarrow A$ etc.

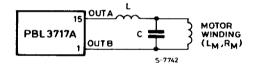
Like full step this can be done at any current level; the torque is not constant but it is lower when only one winding is energized.

A coil is turned off by setting lo and l1 both high.

QUARTER STEP OPERATION

It is preferable to realize the quarter step operation at full power otherwise the steps will be of very irreqular size.

The extra quarter steps are added to the half steps sequence by putting one coil on half current according to the sequence.


$$AB \to \frac{A}{2} \ B \to B \to \frac{\overline{A}}{2} \ B \to \overline{A}B \to \overline{A} \ \frac{B}{2} \to \overline{A} \ \text{etc.}$$

MOTOR SELECTION

As the PBL3717A provides constant current drive, with a switching operation, care must be taken to select stepper motors with low hysteresis losses to prevent motor over heat.

L -C FILTER

To reduce EMI and chopping losses in the motor a low pass L -C filter can be inserted across the outputs of the PBL3717A as shown on the following picture.

$$L \cong \frac{1}{10} LM \qquad \qquad C \cong \frac{4 \cdot 10^{-10}}{L}$$

8/10

7929237 0053047 870

Figure 6: Source sat. Voltage vs. Output Current (recirc. period).

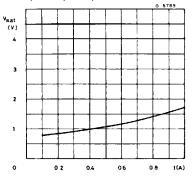
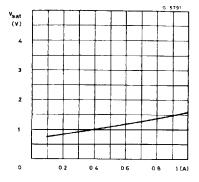



Figure 8: Sink sat. Voltage vs. Output Current.

MOUNTING INSTRUCTIONS

The Rth pamb of the PBL 3717A can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heatsink.

The diagram of fig. 11 shows the maximum dissipable power P_{tot} and the $R_{th - amb}$ as a function of the

Figure 7: Source sat. Voltage vs. Output Current (conduction period).

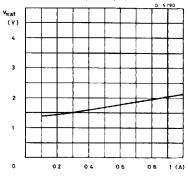
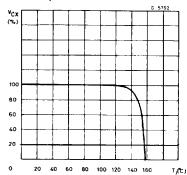



Figure 9 : Comparator threshold vs. Junction Temperature.

side " α " of two equal square copper areas having a thichkness of 35 μ (see fig. 10)

The external heatsink or printed circuit copper area must be connected to electrical ground

Figure 10 : Example of P.C. Board Copper Area Which is Used as Heatsink.

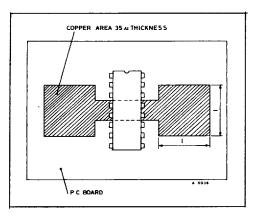


Figure 11 : Max. Dissipable Power and Junction to Ambient Thermal Resistance vs. size "α".

10/10

7929237 0053049 643