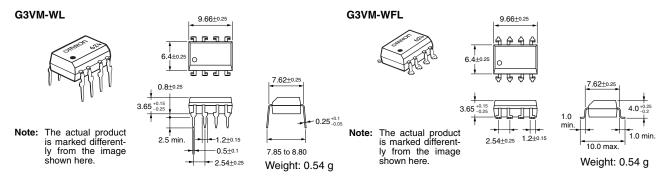
MOS FET Relays G3VM-W(F)L

MOS FET Relay Series with 350-V Load Voltage Current-limiting Models with 2 Outputs.

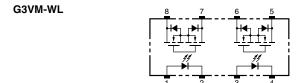
- Current Limit: 100 to 300 mA
- RoHS Compliant.

■ Application Examples

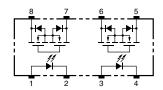
- Electronic automatic exchange systems
- Multi-functional telephones
- Cordless telephones
- Measurement devices


Note: The actual product is marked differently from the image shown

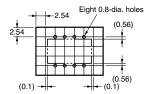
■ List of Models


Contact form	Terminals	Load voltage (peak value)	Model	Current limit	Number per stick	Number per tape
DPST-NO	PCB terminals	350 VAC	G3VM-WL	Yes	50	
	Surface-mounting		G3VM-WFL			
	terminals		G3VM-WFL(TR)			1,500

■ Dimensions


Note: All units are in millimeters unless otherwise indicated.

■ Terminal Arrangement/Internal Connections (Top View)



G3VM-WFL

■ PCB Dimensions (Bottom View)

G3VM-WL

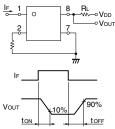
■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

8.3 to 8.8 1.3 1.5

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Unit	Measurement conditions	
Input	LED forward current	I _F	50	mA		
	Repetitive peak LED forward current	I _{FP}	1	Α	100 μs pulses, 100 pps	
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	Ta ≥ 25°C	
	LED reverse voltage	V_R	6	٧		
	Connection temperature	T _j	125	°C		
Output	Load voltage (AC peak/DC)	V_{OFF}	350	٧		
	Continuous load current	Io	120	mA		
	ON current reduction rate	Δ I _{ON} /°C	-1.2	mA/°C	Ta ≥ 25°C	
	Connection temperature	T _j	125	°C		
	ic strength between input and See note 1.)	V _{I-O}	2,500	$V_{\rm rms}$	AC for 1 min	
Operati	perating temperature		-40 to +85	°C	With no icing or condensati	
Storage	Storage temperature		-55 to +125	°C	With no icing or condensation	
Soldering temperature (10 s)			260	°C	10 s	

Note:

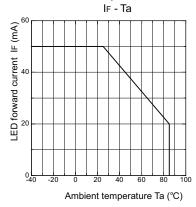

1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Note:

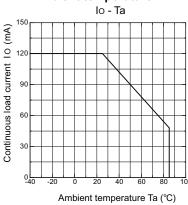
■ Electrical Characteristics (Ta = 25°C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	
	Reverse current	I _R			10	μΑ	V _{R =} 5 V	
	Capacity between terminals	C _T		30		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}		1	3	mA	I _O = 120 mA	
Output	Maximum resistance with output ON	R _{ON}		22	35	Ω	I _F = 5 mA, I _O = 120 mA	
	Current leakage when the relay is open	I _{LEAK}		0.0005	1.0	μΑ	V _{OFF} = 350 V	
	Capacity between terminals	C _{OFF}		40		pF	V = 0, f = 1MHz	
Limit current		I _{LIM}	150		300	mA	$I_F = 5 \text{ mA},$ $V_{DD} = 5 \text{ V}, t = 5 \text{ ms}$	
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V	
Insulation resistance		R _{I-O}	1,000			ΜΩ	$V_{I-O} = 500 \text{ VDC}, R_{oH} \le 60\%$	
Turn-ON time		t _{ON}		0.25	1.0	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$	
Turn-OFF time		t _{OFF}		0.15	1.0	ms	$V_{DD} = 20 \text{ V (See note 2)}$	

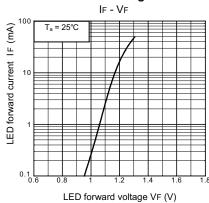
2. Turn-ON and Turn-OFF Times

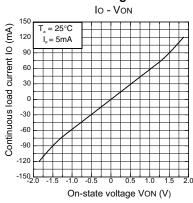

■ Recommended Operating Conditions

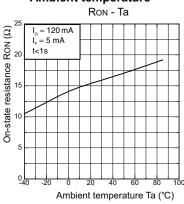
Use the G3VM under the following conditions so that the Relay will operate properly.

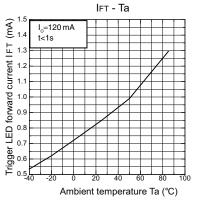

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}			280	V
Operating LED forward current	I _F	5	7.5	25	mA
Continuous load current (AC peak/DC)	Io			100	mA
Operating temperature	T _a	- 20		65	°C

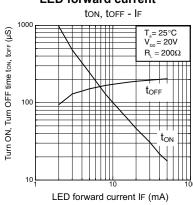
■ Engineering Data

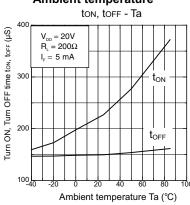

LED forward current vs. Ambient temperature

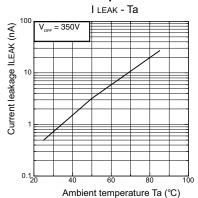

Continuous load current vs. Ambient temperature


LED forward current vs. LED forward voltage


Continuous load current vs. On-state voltage


On-state resistance vs. Ambient temperature


Trigger LED forward current vs. Ambient temperature


Turn ON, Turn OFF time vs. LED forward current

Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Ambient temperature

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON **OMRON ELECTRONIC**

COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Specifications subject to change without notice Printed in USA

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron:

G3VM-WFL G3VM-WL G3VM-WFL(TR)