Hitachi Single-Chip Microcomputer H8/3834 Series

HD6433833

HD6473834, HD6433834

HD6433835

HD6433836

HD6473837, HD6433837

Hardware Manual

Preface

The H8/300L Series of single-chip microcomputers has the high-speed H8/300L CPU at its core, with many necessary peripheral functions on-chip. The H8/300L CPU instruction set is compatible with the H8/300 CPU.

The H8/3834 Series has a system-on-a-chip architecture that includes such peripheral functions as an LCD controller/driver, five types of timers, a 14-bit PWM, a three-channel serial communication interface, and an A/D converter. This makes it ideal for use in systems requiring an LCD display.

This manual describes the hardware of the H8/3834 Series. For details on the H8/3834 Series instruction set, refer to the H8/300L Series Programming Manual.

Revised Sections and Contents

Page	Section	Revision Contents
All	_	Description of H8/3833 and H8/3835 added
1 to 12	Overview	Description of H8/3833 and H8/3835 added
47 to 51	Memory Map	Description of H8/3833 and H8/3835 added
54	Notes on Data Access	Description of H8/3833 and H8/3835 added
76	Setting conditions of timer C interrupt request flag	Table modified
105	Transition to Standby Mode and Port Pin States	Description added
111	Calculation of Direct Transfer Time before Transition	Description added
115	ROM overview	Description of H8/3833 and H8/3835 added
133	RAM overview	Description of H8/3833 and H8/3835 added
158	Port 4 pin functions	Table modified
251, 267	Application Notes on SCI1 and SCI2	Description added
319	Application Notes on SCI3	Description added
353	Waveforms at 1/2 Duty	Figure modified
357 to 381	Electrical Characteristics	Description of H8/3833 and H8/3835 added
382 to 406	Electrical Characteristics	Wide temperature range (I-spec) version add
431	I/O Registers (1)	Table modified
481	Figure C-2 (a) Port 2 Block Diagram	Figure modified
503	Package Dimensions	TFP-100B added

Contents

Secti	on 1	Overview	1
1.1	Overv	iew	1
1.2	Interna	al Block Diagram	5
1.3	Pin Ar	rangement and Functions	6
	1.3.1	Pin Arrangement	6
	1.3.2	Pin Functions	8
Secti	on 2	CPU	13
2.1	Overv	iew	13
	2.1.1	Features	13
	2.1.2	Address Space	14
	2.1.3	Register Configuration	14
2.2	Regist	er Descriptions	15
	2.2.1	General Registers	15
	2.2.2	Control Registers	15
	2.2.3	Initial Register Values	17
2.3	Data F	Formats	17
	2.3.1	Data Formats in General Registers	18
	2.3.2	Memory Data Formats	19
2.4	Addre	ssing Modes	20
	2.4.1	Addressing Modes	20
	2.4.2	Effective Address Calculation	22
2.5	Instruc	ction Set	26
	2.5.1	Data Transfer Instructions	28
	2.5.2	Arithmetic Operations	30
	2.5.3	Logic Operations	31
	2.5.4	Shift Operations	31
	2.5.5	Bit Manipulations	33
	2.5.6	Branching Instructions	37
	2.5.7	System Control Instructions	39
	2.5.8	Block Data Transfer Instruction	40
2.6	Basic	Operational Timing	42
	2.6.1	Access to On-Chip Memory (RAM, ROM)	
	2.6.2	Access to On-Chip Peripheral Modules	43
2.7	CPU S	States	45
	2.7.1	Overview	45
	2.7.2	Program Execution State	
	2.7.3	Program Halt State	
	2.7.4		46

2.8	Memo	ry Map	47
	2.8.1	Memory Map	47
	2.8.2	LCD RAM Address Relocation	52
2.9	Applic	cation Notes	53
	2.9.1	Notes on Data Access	53
	2.9.2	Notes on Bit Manipulation	55
	2.9.3	Notes on Use of the EEPMOV Instruction	61
Section	on 3	Exception Handling	63
3.1	Overv	iew	63
3.2	Reset		63
	3.2.1	Overview	63
	3.2.2	Reset Sequence	63
	3.2.3	Interrupt Immediately after Reset	65
3.3	Interru	ipts	66
	3.3.1	Overview	66
	3.3.2	Interrupt Control Registers	68
	3.3.3	External Interrupts	77
	3.3.4	Internal Interrupts	78
	3.3.5	Interrupt Operations	79
	3.3.6	Interrupt Response Time	84
3.4	Applic	eation Notes	85
	3.4.1	Notes on Stack Area Use	85
	3.4.2	Notes on Rewriting Port Mode Registers	86
Section	on 4	Clock Pulse Generators	89
4.1	Overv	iew	89
	4.1.1	Block Diagram	89
	4.1.2	System Clock and Subclock	89
4.2	Systen	n Clock Generator	90
4.3	Subclo	ock Generator	93
4.4	Presca	lers	95
4.5	Note o	on Oscillators	96
Section	on 5	Power-Down Modes	97
5.1		iew	97
	5.1.1	System Control Registers	100
5.2	Sleep	Mode	103
	5.2.1	Transition to Sleep Mode	
	5.2.2	Clearing Sleep Mode	103
5.3	Standb	by Mode	104

	5.3.1	Transition to Standby Mode	104
	5.3.2	Clearing Standby Mode	
	5.3.3	Oscillator Settling Time after Standby Mode is Cleared	
	5.3.4	Transition to Standby Mode and Port Pin States	
5.4	Watch	n Mode	
	5.4.1	Transition to Watch Mode	
	5.4.2	Clearing Watch Mode	
	5.4.3	Oscillator Settling Time after Watch Mode is Cleared	
5.5	Subsl	eep Mode	
	5.5.1	Transition to Subsleep Mode	107
	5.5.2	Clearing Subsleep Mode	107
5.6	Subac	ctive Mode	108
	5.6.1	Transition to Subactive Mode	108
	5.6.2	Clearing Subactive Mode	108
	5.6.3	Operating Frequency in Subactive Mode	108
5.7	Activ	e (medium-speed) Mode	109
	5.7.1	Transition to Active (medium-speed) Mode	109
	5.7.2	Clearing Active (medium-speed) Mode	109
	5.7.3	Operating Frequency in Active (medium-speed) Mode	109
5.8	Direct	t Transfert	110
	5.8.1	Direct Transfer Overview	110
	5.8.2	Calculation of Direct Transfer Time before Transition	111
Sect	tion 6	ROM	115
6.1	Overv	view	115
	6.1.1	Block Diagram	115
6.2	H8/38	334 PROM Mode	116
	6.2.1	Setting to PROM Mode	116
	6.2.2	Socket Adapter Pin Arrangement and Memory Map	116
6.3	H8/38	334 Programming	119
	6.3.1	Writing and Verifying	119
	6.3.2	Programming Precautions	122
6.4	H8/38	337 PROM Mode	123
	6.4.1	Setting to PROM Mode	123
	6.4.2	Socket Adapter Pin Arrangement and Memory Map	123
6.5	H8/38	337 Programming	126
	6.5.1	Writing and Verifying	126
	6.5.2	Programming Precautions	131
6.6	Relial	bility of Programmed Data	132

Section	on 7	RAM	133
7.1	Overvi	ew	133
	7.1.1	Block Diagram	133
Section	on 8	I/O Ports	135
8.2	Port 1		137
	8.2.1	Overview	
	8.2.2	Register Configuration and Description	
	8.2.3	Pin Functions	
	8.2.4	Pin States	143
	8.2.5	MOS Input Pull-Up	143
8.3	Port 2		144
	8.3.1	Overview	144
	8.3.2	Register Configuration and Description	144
	8.3.3	Pin Functions	148
	8.3.4	Pin States	148
8.4	Port 3		149
	8.4.1	Overview	149
	8.4.2	Register Configuration and Description	149
	8.4.3	Pin Functions	153
	8.4.4	Pin States	155
	8.4.5	MOS Input Pull-Up	155
8.5	Port 4		156
	8.5.1	Overview	156
	8.5.2	Register Configuration and Description	156
	8.5.3	Pin Functions	158
	8.5.4	Pin States	159
8.6	Port 5		160
	8.6.1	Overview	
	8.6.2	Register Configuration and Description	
	8.6.3	Pin Functions	163
	8.6.4	Pin States	
	8.6.5	MOS Input Pull-Up	164
8.7	Port 6		165
	8.7.1	Overview	
	8.7.2	Register Configuration and Description	
	8.7.3	Pin Functions	
	8.7.4	Pin States	
	8.7.5	MOS Input Pull-Up	168
8.8	Port 7		169

	8.8.1	Overview	169
	8.8.2	Register Configuration and Description	169
	8.8.3	Pin Functions	171
	8.8.4	Pin States	
8.9	Port 8		172
	8.9.1	Overview	172
	8.9.2	Register Configuration and Description	
	8.9.3	Pin Functions	
	8.9.4	Pin States	174
8.10	Port 9		
	8.10.1	Overview	175
		Register Configuration and Description	
		Pin Functions	
		Pin States	
8.11	Port A		179
		Overview	
		Register Configuration and Description	
		Pin Functions	
		Pin States	
8.12	Port B		183
		Overview	
		Register Configuration and Description	
8.13			
	8.13.1	Overview	184
	8.13.2	Register Configuration and Description	184
Secti	on 9	Timers	185
9.1	Overv	iew	185
9.2	Timer	A	186
	9.2.1	Overview	186
	9.2.2	Register Descriptions	
	9.2.3	Timer Operation	
	9.2.4	Timer A Operation States	
9.3	Timer	В	192
	9.3.1	Overview	192
	9.3.2	Register Descriptions	193
	9.3.3	Timer Operation	
	9.3.4	Timer B Operation States	
9.4		C	
	9.4.1	Overview	
	9.4.2	Register Descriptions	
	-		

	9.4.3	Timer Operation	202
	9.4.4	Timer C Operation States	203
9.5	Timer	F	204
	9.5.1	Overview	204
	9.5.2	Register Descriptions 2	206
	9.5.3	Interface with the CPU	213
	9.5.4	Timer Operation	217
	9.5.5	Application Notes	220
9.6	Timer	G	222
	9.6.1	Overview	222
	9.6.2	Register Descriptions	224
	9.6.3	Noise Canceller Circuit	228
	9.6.4	Timer Operation	229
	9.6.5	Application Notes	233
	9.6.6	Sample Timer G Application	237
Section	on 10	Serial Communication Interface	239
10.1	Overvi	iew	239
10.2	SCI1		240
	10.2.1	Overview	240
	10.2.2	Register Descriptions	242
	10.2.3	Operation	247
	10.2.4	Interrupts	251
	10.2.5	Application Notes	251
10.3	SCI2		252
	10.3.1	Overview	252
	10.3.2	Register Descriptions	254
	10.3.3	Operation	260
	10.3.4	Interrupts	267
	10.3.5	Application Notes	267
10.4	SCI3		268
	10.4.1	Overview	268
	10.4.2	Register Descriptions	271
	10.4.3	1	
	10.4.4	Operation in Asynchronous Mode	93
	10.4.5	Operation in Synchronous Mode	
	10.4.6	1	
	10.4.7	Interrupts	314
	10.4.8	Application Notes	315
Section	on 11	14-Bit PWM 3	321

11.1	Overvie	ew	321
	11.1.1	Features	321
	11.1.2	Block Diagram	321
	11.1.3	Pin Configuration	322
	11.1.4	Register Configuration	322
11.2	Registe	r Descriptions	323
	11.2.1	PWM Control Register (PWCR)	323
	11.2.2	PWM Data Registers U and L (PWDRU, PWDRL)	324
11.3	Operati	on	325
Section	on 12	A/D Converter	327
12.1	Overvie	PW	
	12.1.1	Features	
	12.1.2	Block Diagram	
	12.1.3	Pin Configuration	
	12.1.4	Register Configuration	
12.2	Registe	r Descriptions	
	12.2.1	A/D Result Register (ADRR)	
	12.2.2	A/D Mode Register (AMR)	
	12.2.3	A/D Start Register (ADSR)	331
12.3	Operati	on	332
	12.3.1	A/D Conversion Operation	332
	12.3.2	Start of A/D Conversion by External Trigger Input	332
12.4	Interrup	ots	333
12.5	Typical	Use	333
12.6	Applica	tion Notes	336
Section	on 13	LCD Controller/Driver	337
13.1		ew	
10.1	13.1.1	Features	
	13.1.2	Block Diagram	
	13.1.3	Pin Configuration.	
	13.1.4	Register Configuration.	
13.2		r Descriptions	
		LCD Port Control Register (LPCR)	
	13.2.2	LCD Control Register (LCR)	
13.3		on	
	13.3.1	Settings Prior to LCD Display	
	13.3.2	Relation of LCD RAM to Display	
	13.3.3	Connection to HD66100	
	13.3.4	Operation in Power-Down Modes	

	13.3.5	Boosting the LCD Driver Power Supply	355
Section	on 14	Electrical Characteristics	357
14.1		4 Series Absolute Maximum Ratings	
14.2		3 and H8/3834 Electrical Characteristics	
11.2	14.2.1	Power Supply Voltage and Operating Range	
	14.2.2	DC Characteristics	
	14.2.3	AC Characteristics	
	14.2.4	A/D Converter Characteristics	
		LCD Characteristics.	
14.3		5, H8/3836, and H8/3837 Electrical Characteristics	
1 1.0	14.3.1	Power Supply Voltage and Operating Range	
	14.3.2	DC Characteristics	
	14.3.3	AC Characteristics	
	14.3.4	A/D Converter Characteristics	
		LCD Characteristics.	
14.4		Series Absolute Maximum Ratings (Wide Temperature Range (I-Spec) Version)	
14.5		and H8/3834 Electrical Characteristics (Wide Temperature Range (I-Spec) Version)	
	14.5.1	Power Supply Voltage and Operating Range	
	14.5.2	DC Characteristics	
	14.5.3	AC Characteristics	390
	14.5.4	A/D Converter Characteristics	393
	14.5.5	LCD Characteristics	394
14.6	H8/3835	5, H8/3836, and H8/3837 Electrical Characteristics	
		emperature Range (I-Spec) Version)	395
	14.6.1	Power Supply Voltage and Operating Range	395
	14.6.2	DC Characteristics	397
	14.6.3	AC Characteristics	402
	14.6.4	A/D Converter Characteristics	405
	14.6.5	LCD Characteristics	406
14.7	Operation	on Timing	407
14.8	Output l	Load Circuit	412
Anno	ndiv A	CDI I Instruction Set	412
		CPU Instruction Set	
A.1 A.2		on Code Map	
A.2 A.3	-	of Execution States	
A.J	number	of Execution States	423
Appe	ndix B	On-Chip Registers	430
B.1		isters (1)	
B.2	I/O Reg	isters (2)	433

Appe	ndix C I/O Port Block Diagrams 476	5
C.1	Schematic Diagram of Port 1	5
C.2	Schematic Diagram of Port 2	l
C.3	Schematic Diagram of Port 3	1
C.4	Schematic Diagram of Port 4)
C.5	Schematic Diagram of Port 5	3
C.6	Schematic Diagram of Port 6	1
C.7	Schematic Diagram of Port 7	5
C.8	Schematic Diagram of Port 8	5
C.9	Schematic Diagram of Port 9	
C.10	Schematic Diagram of Port A	3
C.11	Schematic Diagram of Port B)
C.12	Schematic Diagram of Port C)
Appe	ndix D Port States in the Different Processing States 500)
Appe	ndix E Package Dimensions	l

Section 1 Overview

1.1 Overview

The H8/300L Series is a series of single-chip microcomputers (MCU: microcomputer unit), built around the high-speed H8/300L CPU and equipped with peripheral system functions on-chip.

Within the H8/300L Series, the H8/3834 Series features an on-chip liquid crystal display (LCD) controller/driver. Other on-chip peripheral functions include five timers, a 14-bit pulse width modulator (PWM), three serial communication interface channels, and an analog-to-digital (A/D) converter. Together these functions make the H8/3834 Series ideally suited for embedded control of systems requiring an LCD display. On-chip memory is 24 kbytes of ROM and 1 kbyte of RAM in the H8/3833, 32 kbytes of ROM and 1 kbyte of RAM in the H8/3834, 40 kbytes of ROM and 2 kbytes of RAM in the H8/3835, 48 kbytes of ROM and 2 kbytes of RAM in the H8/3836, and 60 kbytes of ROM and 2 kbytes of RAM in the H8/3837.

The H8/3834 and H8/3837 both include a ZTATTM version*, featuring a user-programmable on-chip PROM.

Table 1-1 summarizes the features of the H8/3834 Series.

Note: * ZTAT is a trademark of Hitachi, Ltd.

Table 1-1 Features

Item	Description
CPU	High-speed H8/300L CPU
	General-register architecture
	General registers: Sixteen 8-bit registers (can be used as eight 16-bit registers)
	Operating speed
	 Max. operating speed: 5 MHz
	 Add/subtract: 0.4 μs (operating at 5 MHz)
	 Multiply/divide: 2.8 µs (operating at 5 MHz)
	 Can run on 32.768 kHz subclock
	 Instruction set compatible with H8/300 CPU
	 Instruction length of 2 bytes or 4 bytes
	 Basic arithmetic operations between registers
	 MOV instruction for data transfer between memory and registers

Table 1-1 Features (cont)

Item	Description
CPU	Typical instructions
	• Multiply (8 bits × 8 bits)
	• Divide (16 bits ÷ 8 bits)
	Bit accumulator
	Register-indirect designation of bit position
Interrupts	•13 external interrupt pins: IRQ4 to IRQ0, WKP7 to WKP0
	• 20 internal interrupt sources
Clock pulse generators	Two on-chip clock pulse generators
	System clock pulse generator: 1 to 10 MHz
	Subclock pulse generator: 32.768 kHz
Power-down modes	Six power-down modes
	• Sleep mode
	Standby mode
	Watch mode
	Subsleep mode
	Subactive mode
	Active (medium-speed) mode
Memory	Large on-chip memory
	• H8/3833: 24-kbyte ROM, 1-kbyte RAM
	• H8/3834: 32-kbyte ROM, 1-kbyte RAM
	• H8/3835: 40-kbyte ROM, 2-kbyte RAM
	• H8/3836: 48-kbyte ROM, 2-kbyte RAM
	• H8/3837: 60-kbyte ROM, 2-kbyte RAM
I/O ports	• I/O pins: 71
	• Input pins: 13
Timers	Five on-chip timers
	• Timer A: 8-bit timer
	Count-up timer with selection of eight internal clock signals divided from the system clock (Ø)* and four clock signals divided from the watch clock (Ø_w)*

Table 1-1 Features (cont)

Item	Description					
Timers	• Timer B: 8-bit timer					
	 Count-up timer with selection of seven internal clock signals or even input from external pin 					
	 Auto-reloading 					
	• Timer C: 8-bit timer					
	 Count-up/count-down timer with selection of seven internal clock signals or event input from external pin 					
	 Auto-reloading 					
	• Timer F: 16-bit timer					
	 Can be used as two independent 8-bit timers. 					
	 Count-up timer with selection of four internal clock signals or event input from external pin 					
	 Compare-match function with toggle output 					
	• Timer G: 8-bit timer					
	 Count-up timer with selection of four internal clock signals 					
	 Input capture function with built-in noise canceller circuit 					
	Note: * ø and $ø_w$ are defined in section 4, Clock Pulse Generators.					
Serial communication	Three channels on chip					
interface	SCI1: synchronous serial interface					
	Choice of 8-bit or 16-bit data transfer					
	SCI2: 8-bit synchronous serial interface					
	Automatic transfer of 32-byte data segments					
	SCI3: 8-bit synchronous or asynchronous serial interface					
	Built-in function for multiprocessor communication					
14-bit PWM	Pulse-division PWM output for reduced ripple					
	 Can be used as a 14-bit D/A converter by connecting to an external low-pass filter. 					
A/D converter	Successive approximations using a resistance ladder					
	Resolution: 8 bits					
	• 12-channel analog input port					
	• Conversion time: 31/ø or 62/ø per channel					

Table 1-1 Features (cont)

Item	Specification						
LCD controller/driver	Up to 40 segment pins and 4 common pins • Choice of four duty cycles (static, 1/2, 1/3, 1/4)						
	 Segments ca 	an be expanded	externally				
	 Segment pins can be switched to general-purpose ports in groups of four 						
Product lineup	Produ	ct Code					
	Mask ROM Version	ZTAT™ Version	 Package	ROM/RAM Size			
	HD6433833H	_	100-pin QFP (FP-100B)	ROM: 24 kbytes			
	HD6433833F	_	100-pin QFP (FP-100A)	RAM: 1 kbyte			
	HD6433833X	_	100-pin TQFP (TFP-100B)	· 			
	HD6433834H	HD6473834H	100-pin QFP (FP-100B)	ROM: 32 kbytes RAM: 1 kbyte			
	HD6433834F	HD6473834F	100-pin QFP (FP-100A)				
	HD6433834X	HD6473834X	100-pin TQFP (TFP-100B)	•			
	HD6433835H	_	100-pin QFP (FP-100B)	ROM: 40 kbytes			
	HD6433835F	_	100-pin QFP (FP-100A)	RAM: 2 kbytes			
	HD6433835X	_	100-pin TQFP (TFP-100B)				
	HD6433836H	_	100-pin QFP (FP-100B)	ROM: 48 kbytes RAM: 2 kbytes			
	HD6433836F	_	100-pin QFP (FP-100A)				
	HD6433836X	_	100-pin TQFP (TFP-100B)				
	HD6433837H	HD6473837H	100-pin QFP (FP-100B)	ROM: 60 kbytes			
	HD6433837F	HD6473837F	100-pin QFP (FP-100A)	RAM: 2 kbytes			
	HD6433837X	HD6473837X	100-pin TQFP (TFP-100B)				
	HD6433833D	_	100-pin QFP (FP-100B)	ROM: 24 kbytes RAM: 1 kbyte			
	HD6433833E	_	100-pin QFP (FP-100A)	WTR (I-spec)			
	HD6433834D	HD6473834D	100-pin QFP (FP-100B)	ROM: 32 kbytes RAM: 1 kbyte			
	HD6433834E	HD6473834E	100-pin QFP (FP-100A)	WTR (I-spec)			
	HD6433835D	_	100-pin QFP (FP-100B)	ROM: 40 kbytes RAM: 2 kbytes			
	HD6433835E	_	100-pin QFP (FP-100A)	WTR (I-spec)			
	HD6433836D	_	100-pin QFP (FP-100B)	ROM: 48 kbytes RAM: 2 kbytes			
	HD6433836E	_	100-pin QFP (FP-100A)	WTR (I-spec)			
	HD6433837D	HD6473837D	100-pin QFP (FP-100B)	ROM: 60 kbytes RAM: 2 kbytes			
	HD6433837E	HD6473837E	100-pin QFP (FP-100A)	WTR (I-spec)			

1.2 Internal Block Diagram

Figure 1-1 shows a block diagram of the H8/3834 Series.

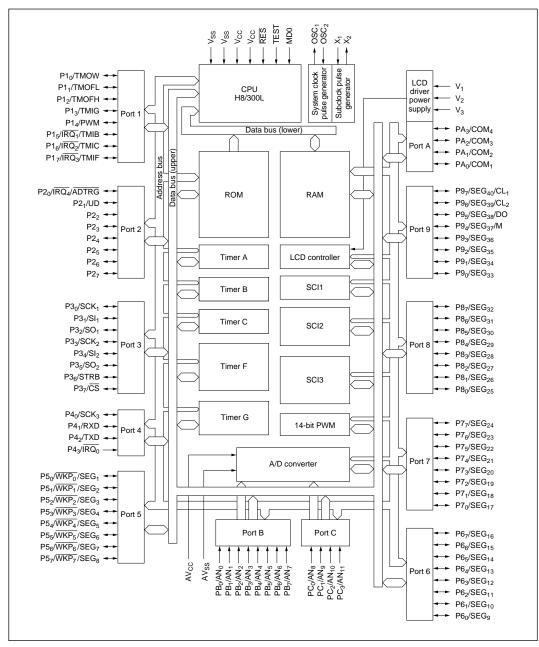


Figure 1-1 Block Diagram

1.3 Pin Arrangement and Functions

1.3.1 Pin Arrangement

The H8/3834 Series pin arrangement is shown in figures 1-2 and 1-3.

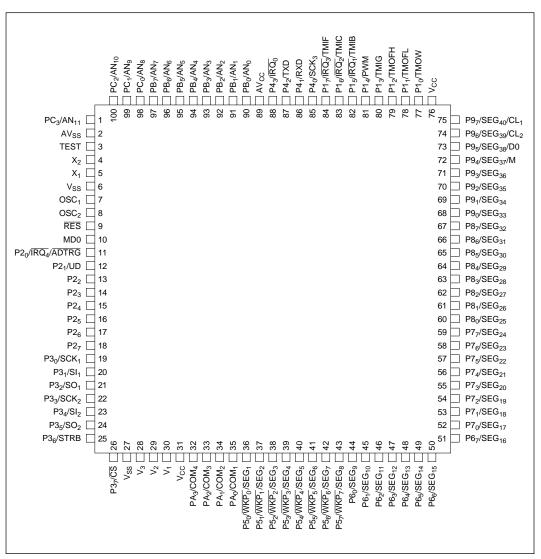


Figure 1-2 Pin Arrangement (FP-100B, TFP-100B: Top View)

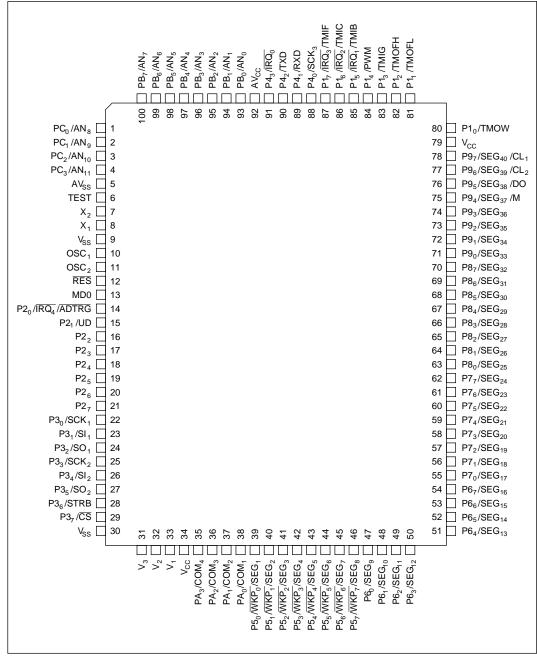


Figure 1-3 Pin Arrangement (FP-100A: Top View)

1.3.2 Pin Functions

Table 1-2 outlines the pin functions of the H8/3834 Series.

Table 1-2 Pin Functions

	Pin No.				
Туре	Symbol	FP-100B	FP-100A	I/O	Name and Functions
Power source pins	V _{CC}	31, 76	34, 79	Input	Power supply: All V _{CC} pins should be connected to the system power supply (+5 V)
	V _{SS}	6, 27	9, 30	Input	Ground: All V _{SS} pins should be connected to the system power supply (0 V)
	AV _{CC}	89	92	Input	Analog power supply: This is the power supply pin for the A/D converter. When the A/D converter is not used, connect this pin to the system power supply (+5 V).
	AV _{SS}	2	5	Input	Analog ground: This is the A/D converter ground pin. It should be connected to the system power supply (0 V).
	V ₁ , V ₂ , V ₃	30, 29, 28	33, 32, 31	Input	LCD power supply: These are power supply pins for the LCD controller/driver. A built-in resistor divider is provided for the power supply, so these pins are normally left open. Power supply conditions are $V_{CC} \ge V_1 \ge V_2 \ge V_3 \ge V_{SS}$.
Clock pins	OSC ₁	7	10	Input	System clock: This pin connects to a
	OSC ₂	8	11	Output	crystal or ceramic oscillator, or can be used to input an external clock. See section 4, Clock Pulse Generators, for a typical connection diagram.
	X ₁	5	8	Input	Subclock: This pin connects to a
	X ₂	4	7	Output	 32.768-kHz crystal oscillator. See section 4, Clock Pulse Generators, for a typical connection diagram.

Table 1-2 Pin Functions (cont)

'n	No.	_	
_	ED 400A	1/0	

				_	
Туре	Symbol	FP-100B	FP-100A	I/O	Name and Functions
System control	RES	9	12	Input	Reset: When this pin is driven low, the chip is reset
	MD0	10	13	Input	Mode: This pin controls system clock oscillation in the reset state
	TEST	3	6	Input	Test: This is a test pin, not for use in application systems. It should be connected to V _{SS} .
Interrupt pins	$\begin{array}{c} IRQ_0 \\ IRQ_1 \\ IRQ_2 \\ IRQ_3 \\ IRQ_4 \end{array}$	88 82 83 84 11	91 85 86 87 14	Input	External interrupt request 0 to 4: These are input pins for external interrupts for which there is a choice between rising and falling edge sensing
	WKP ₇ to	43 to 36	46 to 39	Input	Wakeup interrupt request 0 to 7: These are input pins for external interrupts that are detected at the falling edge
Timer pins	TMOW	77	80	Output	Clock output: This is an output pin for waveforms generated by the timer A output circuit
	TMIB	82	85	Input	Timer B event counter input: This is an event input pin for input to the timer B counter
	TMIC	83	86	Input	Timer C event counter input: This is an event input pin for input to the timer C counter
	UD	12	15	Input	Timer C up/down select: This pin selects whether the timer C counter is used for up- or down-counting. At high level it selects up-counting, and at low level down-counting.
	TMIF	84	87	Input	Timer F event counter input: This is an event input pin for input to the timer F counter

Table 1-2 Pin Functions (cont)

	Pin No.				
Туре	Symbol	FP-100B	FP-100A	I/O	Name and Functions
Timer pins	TMOFL	78	81	Output	Timer FL output: This is an output pin for waveforms generated by the timer FL output compare function
	TMOFH	79	82	Output	Timer FH output: This is an output pin for waveforms generated by the timer FH output compare function
	TMIG	80	83	Input	Timer G capture input: This is an input pin for the timer G input capture function
14-bit PWM pin	PWM	81	84	Output	14-bit PWM output: This is an output pin for waveforms generated by the 14-bit PWM
I/O ports	PB ₇ to PB ₀	97 to 90	100 to 93	Input	Port B: This is an 8-bit input port
	PC ₃ to PC ₀	1, 100 to 98	4 to 1	Input	Port C: This is a 4-bit input port
	P4 ₃	88	91	Input	Port 4 (bit 3): This is a 1-bit input port
	P4 ₂ to P4 ₀	87 to 85	90 to 88	I/O	Port 4 (bits 2 to 0): This is a 3-bit I/O port. Input or output can be designated for each bit by means of port control register 4 (PCR4).
	PA ₃ to PA ₀	32 to 35	35 to 38	I/O	Port A: This is a 4-bit I/O port. Input or output can be designated for each bit by means of port control register A (PCRA).
	P1 ₇ to P1 ₀	84 to 77	87 to 80	I/O	Port 1: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 1 (PCR1).
	P2 ₇ to P2 ₀	18 to 11	21 to 14	I/O	Port 2: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 2 (PCR2).
	P3 ₇ to P3 ₀	26 to 19	29 to 22	I/O	Port 3: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 3 (PCR3).

Table 1-2 Pin Functions (cont)

		Pin No.				
Туре	Symbol	FP-100B	FP-100A	I/O	Name and Functions	
I/O ports	P5 ₇ to P5 ₀	43 to 36	46 to 39	I/O	Port 5: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 5 (PCR5).	
	P6 ₇ to P6 ₀	51 to 44	54 to 47	I/O	Port 6: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 6 (PCR6).	
	P7 ₇ to P7 ₀	59 to 52	62 to 55	I/O	Port 7: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 7 (PCR7).	
	P8 ₇ to P8 ₀	67 to 60	70 to 63	I/O	Port 8: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 8 (PCR8).	
	P9 ₇ to P9 ₀	75 to 68	78 to 71	I/O	Port 9: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 9 (PCR9).	
Serial communi-	SI ₁	20	23	Input	SCI1 receive data input: This is the SCI1 data input pin	
cation interface (SCI)	SO ₁	21	24	Output	SCI1 send data output: This is the SCI1 data output pin	
(00.)	SCK ₁	19	22	I/O	SCI1 clock I/O : This is the SCI1 clock I/O pin	
	SI ₂	23	26	Input	SCI2 receive data input: This is the SCI2 data input pin	
	SO ₂	24	27	Output	SCI2 send data output: This is the SCI2 data output pin	
	SCK ₂	22	25	I/O	SCI2 clock I/O : This is the SCI2 clock I/O pin	
	CS	26	29	Input	SCI2 chip select input: This pin controls the start of SCI2 transfers	
	STRB	25	28	Output	SCI2 strobe output: This pin outputs a strobe pulse each time a byte of data is transferred	

Table 1-2 Pin Functions (cont)

		Pin No.				
Туре	Symbol	FP-100B	FP-100A	I/O	Name and Functions	
Serial communi-	RXD	86	89	Input	SCI3 receive data input: This is the SCI3 data input pin	
cation interface (SCI)	TXD	87	90	Output	SCI3 send data output: This is the SCI3 data output pin	
(001)	SCK ₃	85	88	I/O	SCI3 clock I/O : This is the SCI3 clock I/O pin	
A/D converter	AN ₁₁ to AN ₀	1, 100 to 90	4 to 1 100 to 93	Input	Analog input channels 0 to 11: These are analog data input channels to the A/D converter	
	ADTRG	11	14	Input	A/D converter trigger input: This is the external trigger input pin to the A/D converter	
LCD controller/ driver	COM ₄ to	35 to 32	38 to 35	Output	LCD common output: These are LCD common output pins	
	SEG ₄₀ to SEG ₁	75 to 36	78 to 39	Output	LCD segment output: These are LCD segment output pins	
	CL ₁	75	78	Output	LCD latch clock: This is the display data latch clock output pin for external segment expansion	
	CL ₂	74	77	Output	LCD shift clock: This is the display data shift clock output pin for external segment expansion	
	DO	73	76	Output	LCD serial data output: This is the serial display data output pin for external segment expansion	
	M	72	75	Output	LCD alternating signal output: This is the LCD alternating signal output pin for external segment expansion	

Section 2 CPU

2.1 Overview

The H8/300L CPU has sixteen 8-bit general registers, which can also be paired as eight 16-bit registers. Its concise, optimized instruction set is designed for high-speed operation.

2.1.1 Features

Features of the H8/300L CPU are listed below.

- General-register architecture
 Sixteen 8-bit general registers, also usable as eight 16-bit general registers
- Instruction set with 55 basic instructions, including:
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
- Eight addressing modes
 - Register direct
 - Register indirect
 - Register indirect with displacement
 - Register indirect with post-increment or pre-decrement
 - Absolute address
 - Immediate
 - Program-counter relative
 - Memory indirect
- 64-kbyte address space
- High-speed operation
 - All frequently used instructions are executed in two to four states
 - High-speed arithmetic and logic operations

8- or 16-bit register-register add or subtract: $0.4 \mu s^*$ 8 × 8-bit multiply: $2.8 \mu s^*$ $16 \div 8$ -bit divide: $2.8 \mu s^*$

Low-power operation modes
 SLEEP instruction for transfer to low-power operation

Note: * These values are at $\emptyset = 5$ MHz.

2.1.2 Address Space

The H8/300L CPU supports an address space of up to 64 kbytes for storing program code and data.

See 2.8, Memory Map, for details of the memory map.

2.1.3 Register Configuration

Figure 2-1 shows the register structure of the H8/300L CPU. There are two groups of registers: the general registers and control registers.

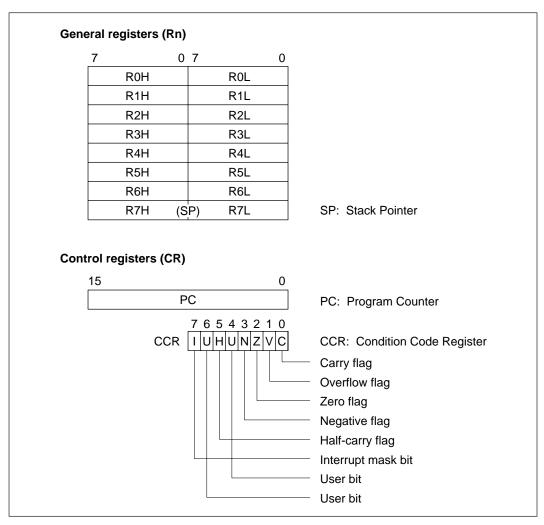


Figure 2-1 CPU Registers

2.2 Register Descriptions

2.2.1 General Registers

All the general registers can be used as both data registers and address registers.

When used as data registers, they can be accessed as 16-bit registers (R0 to R7), or the high bytes (R0H to R7H) and low bytes (R0L to R7L) can be accessed separately as 8-bit registers.

When used as address registers, the general registers are accessed as 16-bit registers (R0 to R7).

R7 also functions as the stack pointer (SP), used implicitly by hardware in exception processing and subroutine calls. When it functions as the stack pointer, as indicated in figure 2-2, SP (R7) points to the top of the stack.

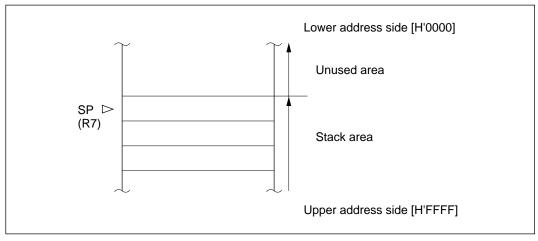


Figure 2-2 Stack Pointer

2.2.2 Control Registers

The CPU control registers include a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

Program Counter (PC): This 16-bit register indicates the address of the next instruction the CPU will execute. All instructions are fetched 16 bits (1 word) at a time, so the least significant bit of the PC is ignored (always regarded as 0).

Condition Code Register (CCR): This 8-bit register contains internal status information, including the interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags. These bits can be read and written by software (using the LDC, STC, ANDC, ORC, and XORC instructions). The N, Z, V, and C flags are used as branching conditions for conditional branching (Bcc) instructions.

Bit 7—Interrupt Mask Bit (I): When this bit is set to 1, interrupts are masked. This bit is set to 1 automatically at the start of exception handling. The interrupt mask bit may be read and written by software. For further details, see section 3.3, Interrupts.

Bit 6—User Bit (U): Can be used freely by the user.

Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and is cleared to 0 otherwise.

The H flag is used implicitly by the DAA and DAS instructions.

When the ADD.W, SUB.W, or CMP.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11, and is cleared to 0 otherwise.

Bit 4—User Bit (U): Can be used freely by the user.

Bit 3—Negative Flag (N): Indicates the most significant bit (sign bit) of the result of an instruction.

Bit 2—Zero Flag (Z): Set to 1 to indicate a zero result, and cleared to 0 to indicate a non-zero result.

Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times.

Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:

- Add instructions, to indicate a carry
- Subtract instructions, to indicate a borrow
- Shift and rotate instructions, to store the value shifted out of the end bit

The carry flag is also used as a bit accumulator by bit manipulation instructions.

Some instructions leave some or all of the flag bits unchanged.

Refer to the *H8/300L Series Programming Manual* for the action of each instruction on the flag bits.

2.2.3 Initial Register Values

When the CPU is reset, the program counter (PC) is initialized to the value stored at address H'0000 in the vector table, and the I bit in the CCR is set to 1. The other CCR bits and the general registers are not initialized. In particular, the stack pointer (R7) is not initialized. To prevent program crashes the stack pointer should be initialized by software, by the first instruction executed after a reset.

2.3 Data Formats

The H8/300L CPU can process 1-bit data, 4-bit (BCD) data, 8-bit (byte) data, and 16-bit (word) data.

- Bit manipulation instructions operate on 1-bit data specified as bit n in a byte operand (n = 0, 1, 2, ..., 7).
- All arithmetic and logic instructions except ADDS and SUBS can operate on byte data.
- The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits \times 8 bits), and DIVXU (16 bits \div 8 bits) instructions operate on word data.
- The DAA and DAS instructions perform decimal arithmetic adjustments on byte data in packed BCD form. Each nibble of the byte is treated as a decimal digit.

2.3.1 Data Formats in General Registers

Data of all the sizes above can be stored in general registers as shown in figure 2-3.

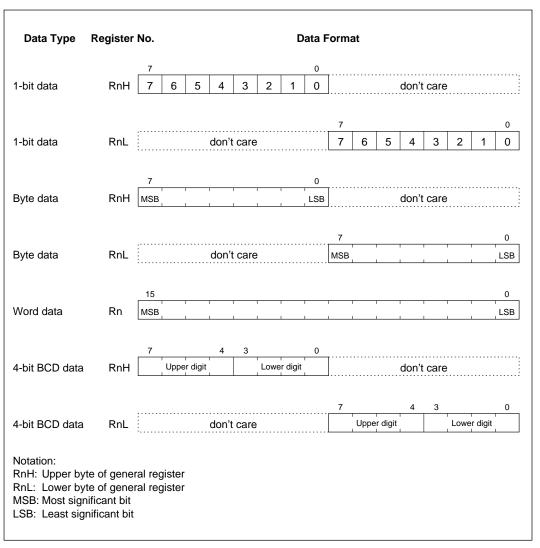


Figure 2-3 Register Data Formats

2.3.2 Memory Data Formats

Figure 2-4 indicates the data formats in memory. For access by the H8/300L CPU, word data stored in memory must always begin at an even address. In word access the least significant bit of the address is regarded as 0. If an odd address is specified, the access is performed at the preceding even address. This rule affects the MOV.W instruction, and also applies to instruction fetching.

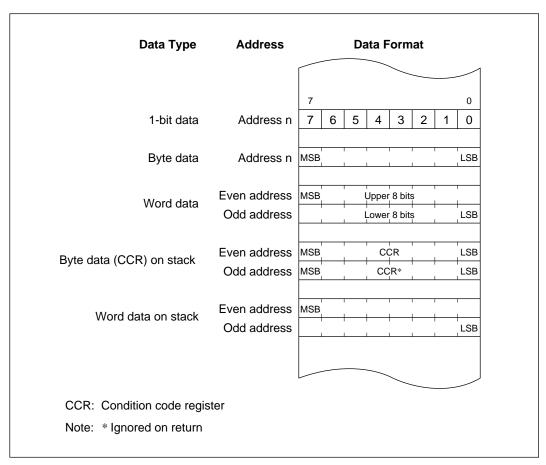


Figure 2-4 Memory Data Formats

When the stack is accessed using R7 as an address register, word access should always be performed. When the CCR is pushed on the stack, two identical copies of the CCR are pushed to make a complete word. When they are restored, the lower byte is ignored.

2.4 Addressing Modes

2.4.1 Addressing Modes

The H8/300L CPU supports the eight addressing modes listed in table 2-1. Each instruction uses a subset of these addressing modes.

Table 2-1 Addressing Modes

No.	Address Modes	Symbol
1	Register direct	Rn
2	Register indirect	@Rn
3	Register indirect with displacement	@(d:16, Rn)
4	Register indirect with post-increment Register indirect with pre-decrement	@Rn+ @-Rn
5	Absolute address	@aa:8 or @aa:16
6	Immediate	#xx:8 or #xx:16
7	Program-counter relative	@(d:8, PC)
8	Memory indirect	@@aa:8

1. **Register Direct—Rn:** The register field of the instruction specifies an 8- or 16-bit general register containing the operand.

Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits \times 8 bits), and DIVXU (16 bits \div 8 bits) instructions have 16-bit operands.

- 2. **Register Indirect**—@**Rn:** The register field of the instruction specifies a 16-bit general register containing the address of the operand in memory.
- 3. Register Indirect with Displacement—@(d:16, Rn): The instruction has a second word (bytes 3 and 4) containing a displacement which is added to the contents of the specified general register to obtain the operand address in memory.

This mode is used only in MOV instructions. For the MOV.W instruction, the resulting address must be even.

- 4. Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @-Rn:
 - Register indirect with post-increment—@Rn+

The @Rn+ mode is used with MOV instructions that load registers from memory.

The register field of the instruction specifies a 16-bit general register containing the address of the operand. After the operand is accessed, the register is incremented by 1 for MOV.B or 2 for MOV.W. For MOV.W, the original contents of the 16-bit general register must be even.

• Register indirect with pre-decrement—@-Rn

The @-Rn mode is used with MOV instructions that store register contents to memory.

The register field of the instruction specifies a 16-bit general register which is decremented by 1 or 2 to obtain the address of the operand in memory. The register retains the decremented value. The size of the decrement is 1 for MOV.B or 2 for MOV.W. For MOV.W, the original contents of the register must be even.

5. Absolute Address—@aa:8 or @aa:16: The instruction specifies the absolute address of the operand in memory.

The absolute address may be 8 bits long (@aa:8) or 16 bits long (@aa:16). The MOV.B and bit manipulation instructions can use 8-bit absolute addresses. The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute addresses.

For an 8-bit absolute address, the upper 8 bits are assumed to be 1 (H'FF). The address range is H'FF00 to H'FFFF (65280 to 65535).

6. Immediate—**#xx:8 or #xx:16:** The instruction contains an 8-bit operand (#xx:8) in its second byte, or a 16-bit operand (#xx:16) in its third and fourth bytes. Only MOV.W instructions can contain 16-bit immediate values.

The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data. Some bit manipulation instructions contain 3-bit immediate data in the second or fourth byte of the instruction, specifying a bit number.

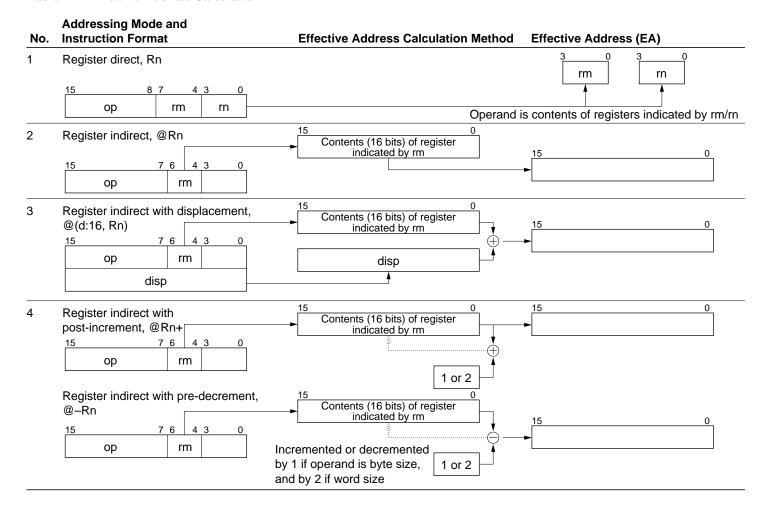
7. **Program-Counter Relative**—@(d:8, PC): This mode is used in the Bcc and BSR instructions. An 8-bit displacement in byte 2 of the instruction code is sign-extended to 16 bits and added to the program counter contents to generate a branch destination address. The possible branching range is -126 to +128 bytes (-63 to +64 words) from the current address. The displacement should be an even number.

8. Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions. The second byte of the instruction code specifies an 8-bit absolute address. The word located at this address contains the branch destination address.

The upper 8 bits of the absolute address are assumed to be 0 (H'00), so the address range is from H'0000 to H'00FF (0 to 255). Note that with the H8/300L Series, the lower end of the address area is also used as a vector area. See 3.3, Interrupts, for details on the vector area.

If an odd address is specified as a branch destination or as the operand address of a MOV.W instruction, the least significant bit is regarded as 0, causing word access to be performed at the address preceding the specified address. See 2.3.2, Memory Data Formats, for further information.

2.4.2 Effective Address Calculation


Table 2-2 shows how effective addresses are calculated in each of the addressing modes.

Arithmetic and logic instructions use register direct addressing (1). The ADD.B, ADDX, SUBX, CMP.B, AND, OR, and XOR instructions can also use immediate addressing (6).

Data transfer instructions can use all addressing modes except program-counter relative (7) and memory indirect (8).

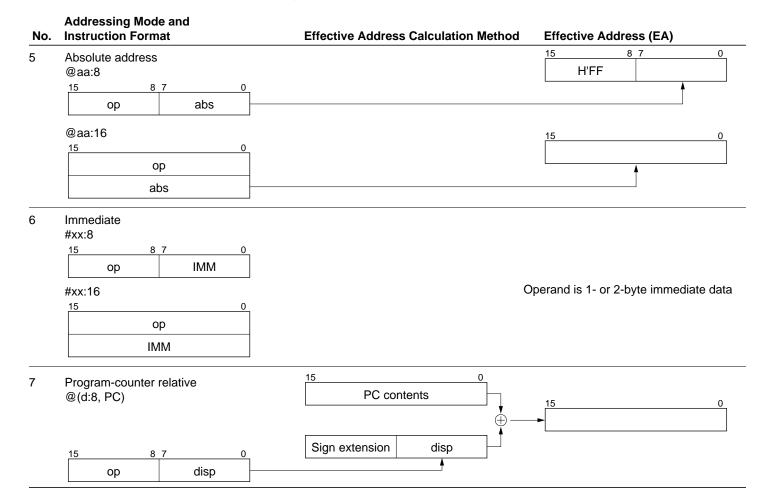
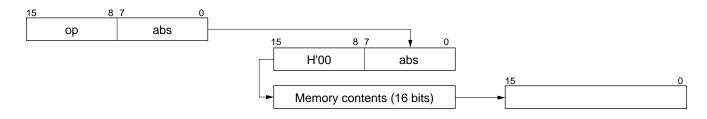

Bit manipulation instructions use register direct (1), register indirect (2), or absolute addressing (5) to specify a byte operand, and 3-bit immediate addressing (6) to specify a bit position in that byte. The BSET, BCLR, BNOT, and BTST instructions can also use register direct addressing (1) to specify the bit position.

Table 2-2 Effective Address Calculation

24

Table 2-2 Effective Address Calculation (cont)



25

Table 2-2 Effective Address Calculation (cont)

Addressing Mode and No. Instruction Format

8 Memory indirect, @@aa:8

Notation:

rm, rn: Register field op: Operation field

disp: Displacement

IMM: Immediate data abs: Absolute address

2.5 Instruction Set

The H8/300L Series can use a total of 55 instructions, which are grouped by function in table 2-3.

Table 2-3 Instruction Set

Function	Instructions	Number
Data transfer	MOV, PUSH*1, POP*1	1
Arithmetic operations	ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, DAA, DAS, MULXU, DIVXU, CMP, NEG	14
Logic operations	AND, OR, XOR, NOT	4
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	8
Bit manipulation	BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST	14
Branch	Bcc*2, JMP, BSR, JSR, RTS	5
System control	RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	8
Block data transfer	EEPMOV	1

Total: 55

Notes: 1. PUSH Rn is equivalent to MOV.W Rn, @-SP. POP Rn is equivalent to MOV.W @SP+, Rn.

2. Bcc is a conditional branch instruction in which cc represents a condition code.

The following sections give a concise summary of the instructions in each category, and indicate the bit patterns of their object code. The notation used is defined next.

Notation

Rd	General register (destination)
Rs	General register (source)
Rn	General register
(EAd), <ead></ead>	Destination operand
(EAs), <eas></eas>	Source operand
CCR	Condition code register
N	N (negative) flag of CCR
Z	Z (zero) flag of CCR
V	V (overflow) flag of CCR
С	C (carry) flag of CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
_	Subtraction
×	Multiplication
÷	Division
^	AND logical
<u></u>	OR logical
\oplus	Exclusive OR logical
\rightarrow	Move
~	Logical negation (logical complement)
:3	3-bit length
:8	8-bit length
:16	16-bit length
(), < >	Contents of operand indicated by effective address

2.5.1 Data Transfer Instructions

Table 2-4 describes the data transfer instructions. Figure 2-5 shows their object code formats.

Table 2-4 Data Transfer Instructions

Instruction	Size*	Function
MOV	B/W	(EAs) o Rd, Rs o (EAd)
		Moves data between two general registers or between a general register and memory, or moves immediate data to a general register.
		The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:16, @-Rn, and @Rn+addressing modes are available for byte or word data. The @aa:8 addressing mode is available for byte data only.
		The @-R7 and @R7+ modes require word operands. Do not specify byte size for these two modes.
POP	W	@SP+ → Rn
		Pops a 16-bit general register from the stack. Equivalent to MOV.W @SP+, Rn.
PUSH	W	$Rn \rightarrow @-SP$
		Pushes a 16-bit general register onto the stack. Equivalent to MOV.W Rn, @-SP.

Notes: * Size: Operand size

B: Byte W: Word

Certain precautions are required in data access. See 2.9.1, Notes on Data Access, for details.

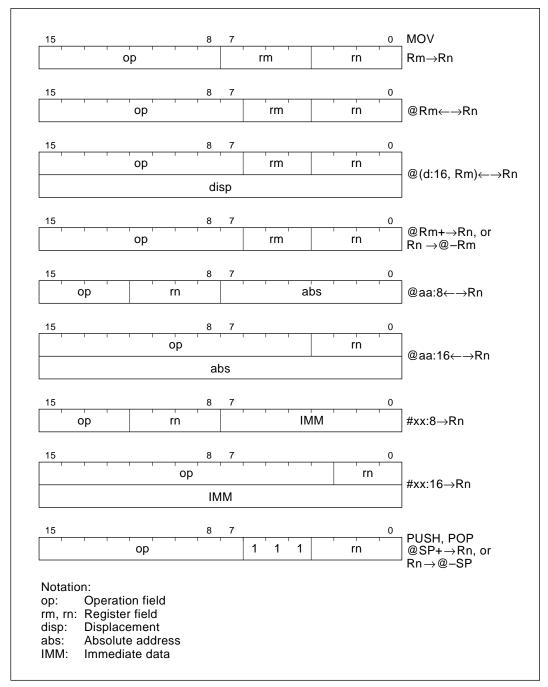


Figure 2-5 Data Transfer Instruction Codes

2.5.2 Arithmetic Operations

Table 2-5 describes the arithmetic instructions.

Table 2-5 Arithmetic Instructions

Instruction	Size*	Function			
ADD SUB	B/W	Rd \pm Rs \rightarrow Rd, Rd $+$ #IMM \rightarrow Rd Performs addition or subtraction on data in two general registers, or addition on immediate data and data in a general register. Immediat data cannot be subtracted from data in a general register. Word data can be added or subtracted only when both words are in general registers.			
ADDX SUBX	В	Rd \pm Rs \pm C \rightarrow Rd, Rd \pm #IMM \pm C \rightarrow Rd Performs addition or subtraction with carry or borrow on byte data in two general registers, or addition or subtraction on immediate data and data in a general register.			
INC DEC	В	$Rd \pm 1 \rightarrow Rd$ Increments or decrements a general register			
ADDS SUBS	W	Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd Adds or subtracts immediate data to or from data in a general register. The immediate data must be 1 or 2.			
DAA DAS	В	Rd decimal adjust \to Rd Decimal-adjusts (adjusts to packed BCD) an addition or subtraction result in a general register by referring to the CCR			
MULXU	В	$Rd \times Rs \rightarrow Rd$ Performs 8-bit \times 8-bit unsigned multiplication on data in two general registers, providing a 16-bit result			
DIVXU	В	Rd ÷ Rs → Rd Performs 16-bit ÷ 8-bit unsigned division on data in two general registers, providing an 8-bit quotient and 8-bit remainder			
СМР	B/W	Rd – Rs, Rd – #IMM Compares data in a general register with data in another general register or with immediate data, and the result is stored in the CCR. Word data can be compared only between two general registers.			
NEG	В	$0-Rd \to Rd$ Obtains the two's complement (arithmetic complement) of data in a general register			

Notes: * Size: Operand size

B: Byte W: Word

2.5.3 Logic Operations

Table 2-6 describes the four instructions that perform logic operations.

Table 2-6 Logic Operation Instructions

Instruction	Size*	Function
AND	В	$Rd \wedge Rs \rightarrow Rd, Rd \wedge \#IMM \rightarrow Rd$
		Performs a logical AND operation on a general register and another general register or immediate data
OR	В	$Rd \lor Rs \rightarrow Rd, Rd \lor \#IMM \rightarrow Rd$
		Performs a logical OR operation on a general register and another general register or immediate data
XOR	В	$Rd \oplus Rs \to Rd, \ Rd \oplus \#IMM \to Rd$
		Performs a logical exclusive OR operation on a general register and another general register or immediate data
NOT	В	\sim Rd \rightarrow Rd
		Obtains the one's complement (logical complement) of general register contents

Notes: * Size: Operand size

B: Byte

2.5.4 Shift Operations

Table 2-7 describes the eight shift instructions.

Table 2-7 Shift Instructions

Instruction	Size*	Function
SHAL	В	$Rd ext{ shift} \rightarrow Rd$
SHAR		Performs an arithmetic shift operation on general register contents
SHLL	В	$Rd ext{ shift} o Rd$
SHLR		Performs a logical shift operation on general register contents
ROTL	В	$Rd rotate \rightarrow Rd$
ROTR		Rotates general register contents
ROTXL	В	Rd rotate through carry \rightarrow Rd
ROTXR		Rotates general register contents through the C (carry) bit

Notes: * Size: Operand size

B: Byte

Figure 2-6 shows the instruction code format of arithmetic, logic, and shift instructions.

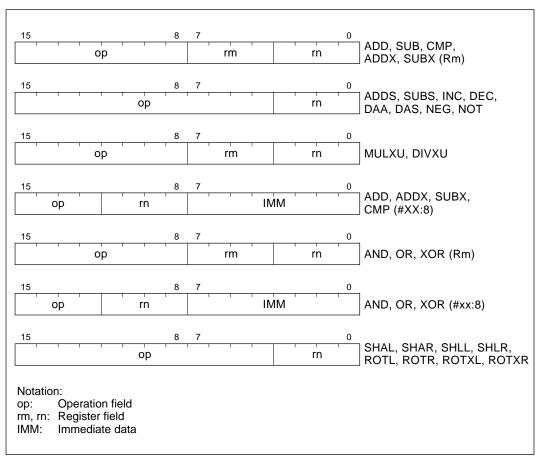


Figure 2-6 Arithmetic, Logic, and Shift Instruction Codes

2.5.5 Bit Manipulations

Table 2-8 describes the bit-manipulation instructions. Figure 2-7 shows their object code formats.

Table 2-8 Bit-Manipulation Instructions

Instruction	Size*	Function
BSET	В	$1 \rightarrow (\text{sbit-No.> of } \text{EAd>})$
		Sets a specified bit in a general register or memory to 1. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BCLR	В	$0 \rightarrow (\text{sbit-No.} > \text{of } < \text{EAd} >)$
		Clears a specified bit in a general register or memory to 0. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BNOT	В	~ (<bit-no.> of <ead>) \rightarrow (<bit-no.> of <ead>)</ead></bit-no.></ead></bit-no.>
		Inverts a specified bit in a general register or memory. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BTST	В	~ (<bit-no.> of <ead>) \rightarrow Z</ead></bit-no.>
		Tests a specified bit in a general register or memory and sets or clears the Z flag accordingly. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BAND	В	$C \land (}\ of\) \to C$
		ANDs the C flag with a specified bit in a general register or memory, and stores the result in the C flag.
BIAND	В	$C \wedge [\sim (<\!\!bit\text{-No.}\!\!> of <\!\!EAd\!\!>)] \to C$
		ANDs the C flag with the inverse of a specified bit in a general register or memory, and stores the result in the C flag.
		The bit number is specified by 3-bit immediate data.
BOR	В	$C \lor (\ of\) \to C$
		ORs the C flag with a specified bit in a general register or memory, and stores the result in the C flag.
BIOR	В	$C \vee [\sim (<\!\!bit\text{-No.}\!\!> of <\!\!EAd\!\!>)] \to C$
		ORs the C flag with the inverse of a specified bit in a general register or memory, and stores the result in the C flag.
		The bit number is specified by 3-bit immediate data.

Notes: * Size: Operand size

B: Byte

Table 2-8 Bit-Manipulation Instructions (cont)

Instruction	Size*	Function
BXOR	В	$C \oplus (\text{sbit-No.> of } \in \text{EAd>}) \rightarrow C$
		XORs the C flag with a specified bit in a general register or memory, and stores the result in the C flag.
BIXOR	В	$C \oplus \ [\mathord{\sim} (< bit\text{-No.> of } < EAd >)] \to C$
		XORs the C flag with the inverse of a specified bit in a general register or memory, and stores the result in the C flag.
		The bit number is specified by 3-bit immediate data.
BLD	В	$($ < bit-No. $>$ of < EAd $>$ $) \rightarrow C$
		Copies a specified bit in a general register or memory to the C flag.
BILD	В	~ (<bit-no.> of <ead>) \rightarrow C</ead></bit-no.>
		Copies the inverse of a specified bit in a general register or memory to the C flag.
		The bit number is specified by 3-bit immediate data.
BST	В	$C o (\;of\;)$
		Copies the C flag to a specified bit in a general register or memory.
BIST	В	\sim C \rightarrow (<bit-no.> of <ead>)</ead></bit-no.>
		Copies the inverse of the C flag to a specified bit in a general register or memory.
		The bit number is specified by 3-bit immediate data.

Notes: * Size: Operand size

B: Byte

Certain precautions are required in bit manipulation. See 2.9.2, Notes on Bit Manipulation, for details.

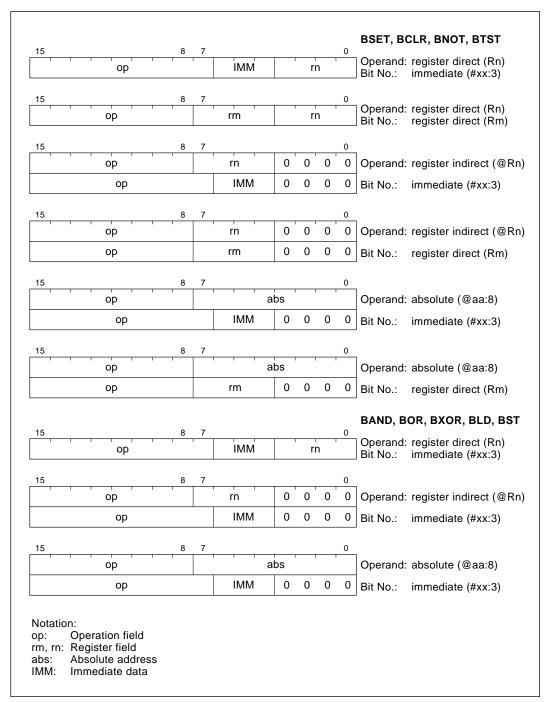


Figure 2-7 Bit Manipulation Instruction Codes

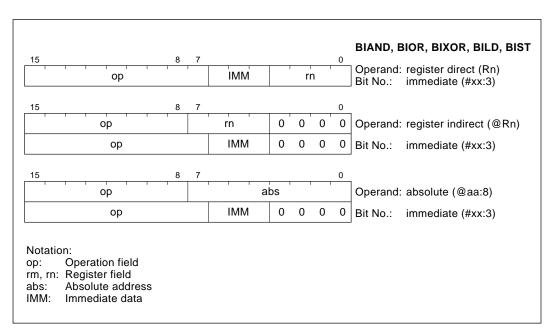


Figure 2-7 Bit Manipulation Instruction Codes (cont)

2.5.6 Branching Instructions

Table 2-9 describes the branching instructions. Figure 2-8 shows their object code formats.

Table 2-9 Branching Instructions

Instruction	Size	Function				
Bcc	_	Branches to the designated address if condition cc is true. The branching conditions are given below.				
		Mnemonic	Description	Condition		
		BRA (BT)	Always (true)	Always		
		BRN (BF)	Never (false)	Never		
		BHI	High	C ∨ Z = 0		
		BLS	Low or same	C ∨ Z = 1		
		BCC (BHS)	Carry clear (high or same)	C = 0		
		BCS (BLO)	Carry set (low)	C = 1		
		BNE	Not equal	Z = 0		
		BEQ	Equal	Z = 1		
		BVC	Overflow clear	V = 0		
		BVS	Overflow set	V = 1		
		BPL	Plus	N = 0		
		BMI	Minus	N = 1		
		BGE	Greater or equal	N ⊕ V = 0		
		BLT	Less than	N ⊕ V = 1		
		BGT	Greater than	Z ∨ (N ⊕ V) = 0		
		BLE	Less or equal	$Z \vee (N \oplus V) = 1$		
JMP	_	Branches unconditionally to a specified address				
BSR	_	Branches to a subroutine at a specified displacement from the cuaddress				
JSR	_	Branches to a	Branches to a subroutine at a specified address			
RTS	_	Returns from a subroutine				

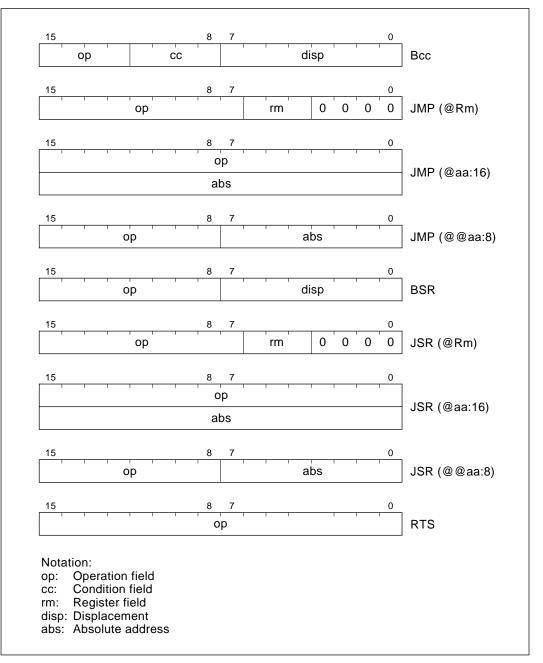


Figure 2-8 Branching Instruction Codes

2.5.7 System Control Instructions

Table 2-10 describes the system control instructions. Figure 2-9 shows their object code formats.

Table 2-10 System Control Instructions

Instruction	Size*	Function
RTE	_	Returns from an exception-handling routine
SLEEP	_	Causes a transition from active mode to a power-down mode. See section 5, Power-Down Modes, for details
LDC	В	$Rs \rightarrow CCR$, $\#IMM \rightarrow CCR$
		Moves immediate data or general register contents to the condition code register
STC	В	CCR o Rd
		Copies the condition code register to a specified general register
ANDC	В	$CCR \land \#IMM \to CCR$
		Logically ANDs the condition code register with immediate data
ORC	В	$CCR \vee \#IMM \to CCR$
		Logically ORs the condition code register with immediate data
XORC	В	$CCR \oplus \#IMM \rightarrow CCR$
		Logically exclusive-ORs the condition code register with immediate data
NOP	_	$PC + 2 \rightarrow PC$
		Only increments the program counter

Notes: * Size: Operand size

B: Byte

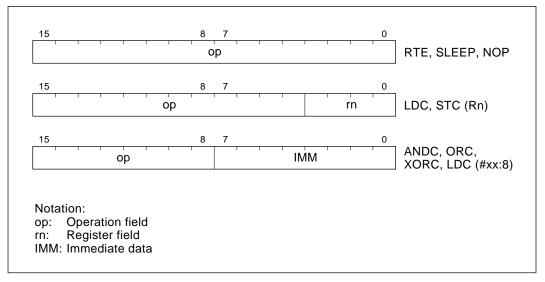


Figure 2-9 System Control Instruction Codes

2.5.8 Block Data Transfer Instruction

Table 2-11 describes the block data transfer instruction. Figure 2-10 shows its object code format.

Table 2-11 Block Data Transfer Instruction

Instruction	Size	Function
EEPMOV	_	If R4L ≠ 0 then
		repeat $@R5+ \rightarrow @R6+$ R4L - 1 \rightarrow R4L
		until $R4L = 0$
		else next;
		Moves a data block according to parameters set in general registers R4L, R5, and R6.
		R4L: Size of block (bytes)
		R5: Starting source address
		R6: Starting destination address
		Execution of the next instruction starts as soon as the block transfer is completed.

Certain precautions are required in using the EEPMOV instruction. See 2.9.3, Notes on Use of the EEPMOV Instruction, for details.

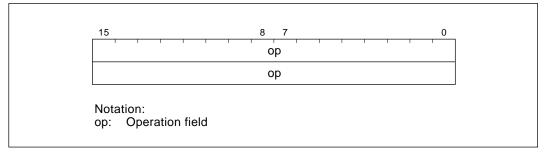


Figure 2-10 Block Data Transfer Instruction Code

2.6 Basic Operational Timing

CPU operation is synchronized by a system clock (\emptyset) or a subclock (\emptyset_{SUB}) . For details on these clock signals see section 4, Clock Pulse Generators. The period from a rising edge of \emptyset or \emptyset_{SUB} to the next rising edge is called one state. A bus cycle consists of two states or three states. The cycle differs depending on whether access is to on-chip memory or to on-chip peripheral modules.

2.6.1 Access to On-Chip Memory (RAM, ROM)

Access to on-chip memory takes place in two states. The data bus width is 16 bits, allowing access in byte or word size. Figure 2-11 shows the on-chip memory access cycle.

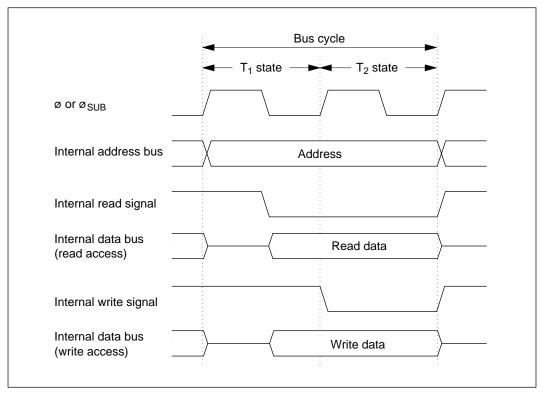


Figure 2-11 On-Chip Memory Access Cycle

2.6.2 Access to On-Chip Peripheral Modules

On-chip peripheral modules are accessed in two states or three states. The data bus width is 8 bits, so access is by byte size only. This means that for accessing word data, two instructions must be used. Figures 2-12 and 2-13 show the on-chip peripheral module access cycle.

Two-state access to on-chip peripheral modules

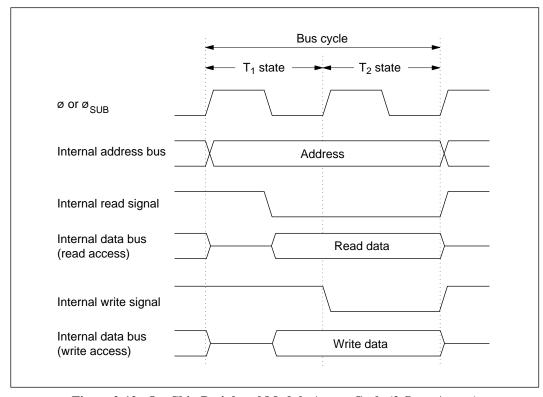


Figure 2-12 On-Chip Peripheral Module Access Cycle (2-State Access)

Three-state access to on-chip peripheral modules

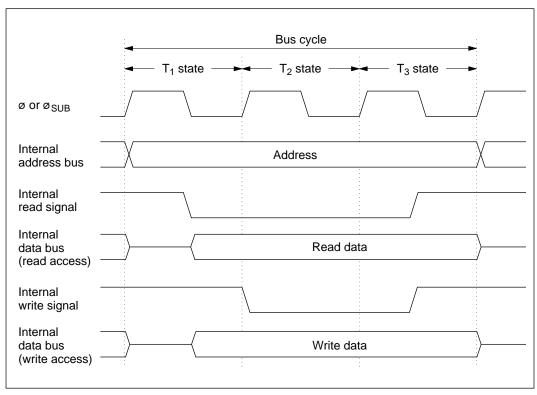


Figure 2-13 On-Chip Peripheral Module Access Cycle (3-State Access)

2.7 CPU States

2.7.1 Overview

There are four CPU states: the reset state, program execution state, program halt state, and exception-handling state. The program execution state includes active (high-speed or medium-speed) mode and subactive mode. In the program halt state there are a sleep mode, standby mode, watch mode, and sub-sleep mode. These states are shown in figure 2-14. Figure 2-15 shows the state transitions.

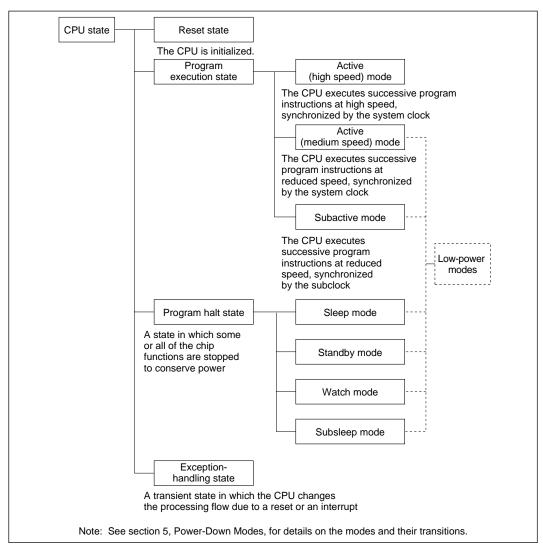


Figure 2-14 CPU Operation States

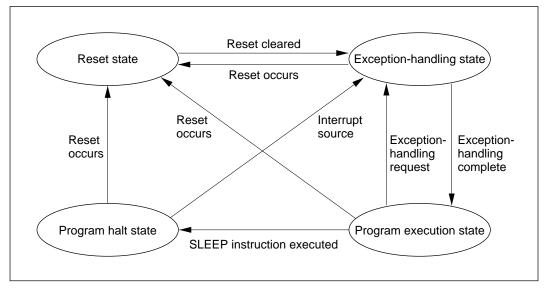


Figure 2-15 State Transitions

2.7.2 Program Execution State

In the program execution state the CPU executes program instructions in sequence.

There are three modes in this state, two active modes (high speed and medium speed) and one subactive mode. Operation is synchronized with the system clock in active mode (high speed and medium speed), and with the subclock in subactive mode. See section 5, Power-Down Modes for details on these modes.

2.7.3 Program Halt State

In the program halt state there are four modes: sleep mode, standby mode, watch mode, and subsleep mode. See section 5, Power-Down Modes for details on these modes.

2.7.4 Exception-Handling State

The exception-handling state is a transient state occurring when exception handling is started by a reset or interrupt and the CPU changes its normal processing flow. In exception handling caused by an interrupt, SP (R7) is referenced and the PC and CCR values are saved on the stack.

For details on interrupt handling, see section 3, Exception Handling.

2.8 Memory Map

2.8.1 Memory Map

Figure 2-16 (a) shows the H8/3833 memory map. Figure 2-16 (b) shows the H8/3834 memory map. Figure 2-16 (c) shows the H8/3835 memory map. Figure 2-16 (d) shows the H8/3836 memory map. Figure 2-16 (e) shows the H8/3837 memory map.

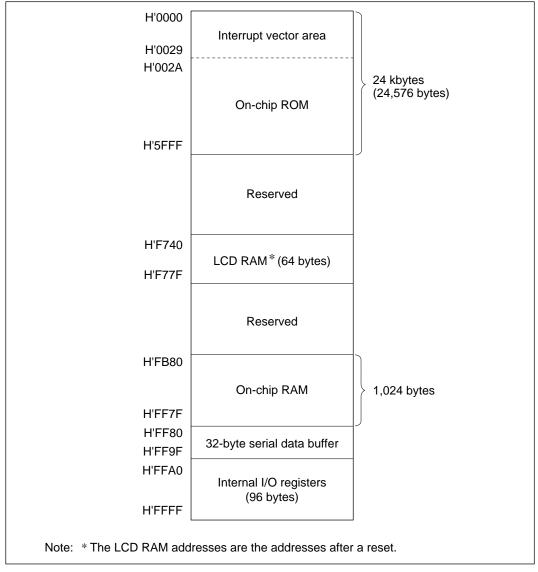
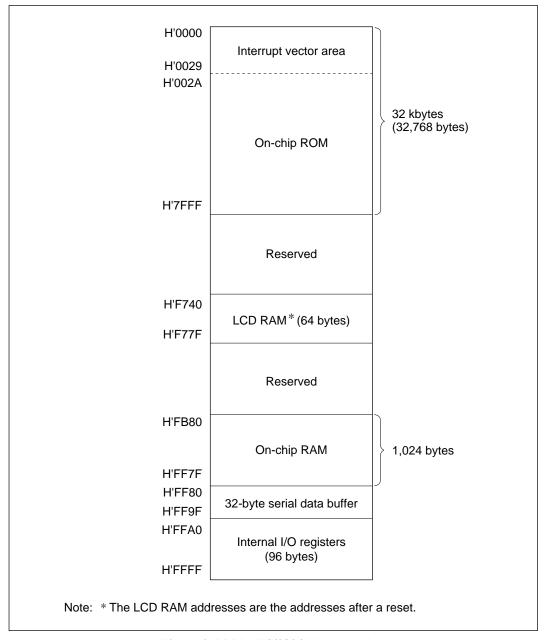



Figure 2-16 (a) H8/3833 Memory Map

Figure 2-16 (b) H8/3834 Memory Map

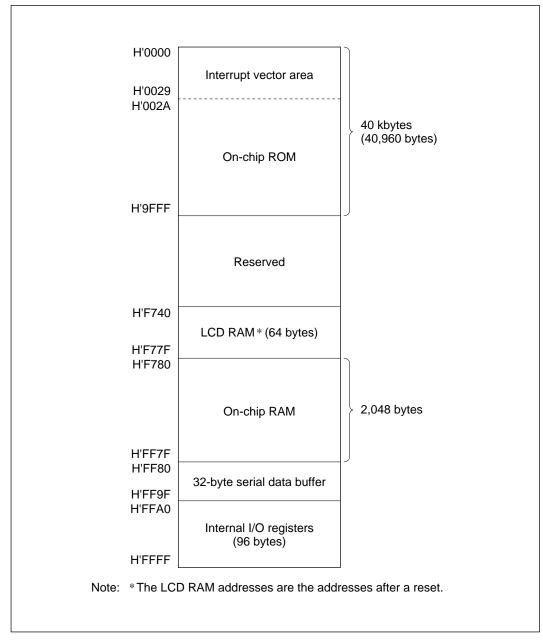


Figure 2-16 (c) H8/3835 Memory Map

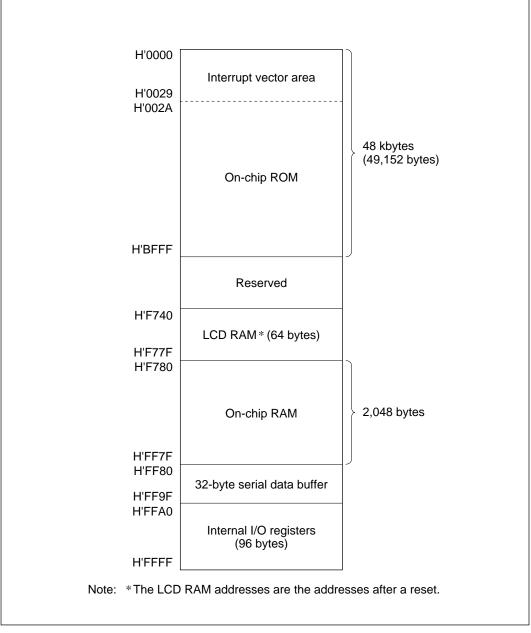


Figure 2-16 (d) H8/3836 Memory Map

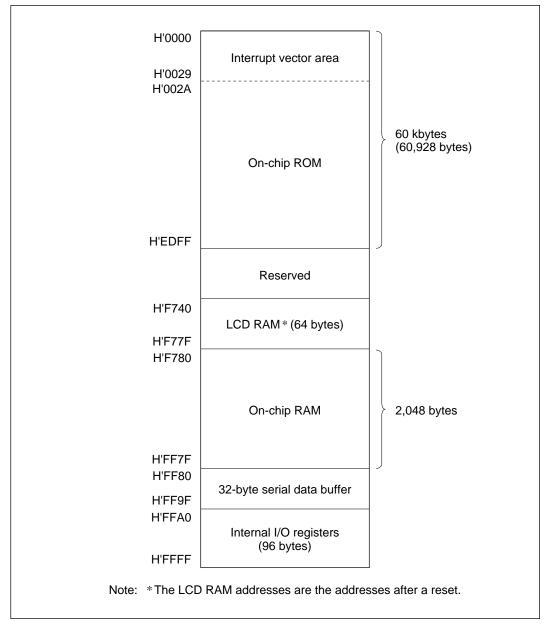


Figure 2-16 (e) H8/3837 Memory Map

2.8.2 LCD RAM Address Relocation

After a reset, the LCD RAM area is located at addresses H'F740 to H'F77F. However, this area can be relocated by setting the LCD RAM relocation register (RLCTR) bits. The LCD RAM relocation register is explained below.

LCD RAM relocation register (RLCTR: H'FFCF)

Bit	7	6	5	4	3	2	1	0
	_	_	_	_	_	_	RLCT1	RLCT0
Initial value	1	1	1	1	1	1	0	0
Read/Write	_	_	_	_	_	_	R/W	R/W

RLCTR is an 8-bit read/write register that selects the LCD RAM address space. Upon reset, RLCTR is initialized to H'00.

Bits 7 to 2: Reserved bits

Bits 7 to 2 are reserved; they are always read as 1, and cannot be modified.

Bits 1 and 0: LCD RAM relocation select (RLCT1, RLCT0)

Bits 1 and 0 select the LCD RAM address space.

Bit 1 RLCT1	Bit 0 RLCT0	Description	
0	0	H'F740 toH'F77F	(initial value)
0	1	H'F940 to H'F97F*2	
1	0	H'FB40 to H'FB7F*2	
1	1	H'FD40 to H'FD7F*1, 2	

- Notes: 1. In devices with 1,024-byte RAM, if RLCT1 to 0 are set to 11, on-chip RAM addresses H'FB80 to H'FD7F become inaccessible.
 - In devices with 2,048-byte RAM, if RLCT1 to 0 are set to any value except 00, these on-chip RAM addresses become inaccessible.

2.9 Application Notes

2.9.1 Notes on Data Access

1. The address space of the H8/300L CPU includes empty areas in addition to the RAM, registers, and ROM areas available to the user. If these empty areas are mistakenly accessed by an application program, the following results will occur.

Data transfer from CPU to empty area:

The transferred data will be lost. This action may also cause the CPU to misoperate.

Data transfer from empty area to CPU:

Unpredictable data is transferred.

Internal data transfer to or from on-chip modules other than the ROM and RAM areas makes
use of an 8-bit data width. If word access is attempted to these areas, the following results
will occur.

Word access from CPU to I/O register area:

Upper byte: Will be written to I/O register. Lower byte: Transferred data will be lost.

Word access from I/O register to CPU:

Upper byte: Will be written to upper part of CPU register.

Lower byte: Unpredictable data will be written to lower part of CPU register.

Byte size instructions should therefore be used when transferring data to or from I/O registers other than the on-chip ROM and RAM areas. Figure 2-17 shows the data size and number of states in which on-chip peripheral modules can be accessed.

			Acc	ess Byte	States
H'0000 H'0029 H'002A	Interrupt vector area (42 bytes) On-chip ROM	32 kbytes*2	0	O	2
H'7FFF*2					
	Reserved		_	_	_
H'F740 H'F77F	LCD RAM*1 (64 bytes)		0	0	2
	Reserved		_	_	_
H'FB80*3	On-chip RAM	1,024 bytes*3	0	0	2
H'FF80 H'FF9F	32-byte serial data buffer		×	0	2
H'FFA0			×	0	2
	Internal I/O registers (96 bytes)	H'FFA8 H'FFAD	×	0	3
H'FFFF			×	0	2

: Access possible

x: Not possible

Notes: The above example is a description of the H8/3834.

- 1. The indicated addresses for the LCD RAM area are initial values after system reset.
- 2. The H8/3833 has 24 kbytes of on-chip ROM, and its ending address is H'5FFF. The H8/3835 has 40 kbytes of on-chip ROM, and its ending address is H'9FFF. The H8/3836 has 48 kbytes of on-chip ROM, and its ending address is H'BFFF. The H8/3837 has 60 kbytes of on-chip ROM, and its ending address is H'EDFF.
- 3. The H8/3833 has 1,024 bytes of on-chip RAM and its starting address is H'FB80. The H8/3835, H8/3836, and H8/3837 each have 2,048 bytes of on-chip RAM, and their starting address is H'F780.

Figure 2-17 Data Size and Number of States for Access to and from On-Chip Peripheral Modules

2.9.2 Notes on Bit Manipulation

The BSET, BCLR, BNOT, BST, and BIST instructions read one byte of data, modify the data, then write the data byte again. Special care is required when using these instructions in cases where two registers are assigned to the same address, in the case of registers that include write-only bits, and when the instruction accesses an I/O.

Ord	er of Operation	Operation
1	Read	Read byte data at the designated address
2	Modify	Modify a designated bit in the read data
3	Write	Write the altered byte data to the designated address

1. Bit manipulation in two registers assigned to the same address

Example 1

Figure 2-18 shows an example in which two timer registers share the same address. When a bit manipulation instruction accesses the timer load register and timer counter of a reloadable timer, since these two registers share the same address, the following operations take place.

Ord	ler of Operation	Operation
1	Read	Timer counter data is read (one byte)
2	Modify	The CPU modifies (sets or resets) the bit designated in the instruction
3	Write	The altered byte data is written to the timer load register

The timer counter is counting, so the value read is not necessarily the same as the value in the timer load register. As a result, bits other than the intended bit in the timer load register may be modified to the timer counter value.

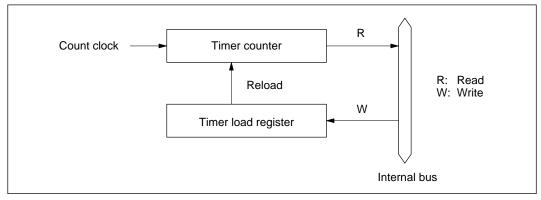


Figure 2-18 Timer Configuration Example

Example 2

Here a BSET instruction is executed designating port 3.

P3₇ and P3₆ are designated as input pins, with a low-level signal input at P3₇ and a high-level signal at P3₆. The remaining pins, P3₅ to P3₀, are output pins and output low-level signals. In this example, the BSET instruction is used to change pin P3₀ to high-level output.

[A: Prior to executing BSET]

	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR3	0	0	1	1	1	1	1	1
PDR3	1	0	0	0	0	0	0	0

[B: BSET instruction executed]

BSET #0 , @PDR3

The BSET instruction is executed designating port 3.

[C: After executing BSET]

	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	High level
PCR3	0	0	1	1	1	1	1	1
PDR3	0	1	0	0	0	0	0	1

[D: Explanation of how BSET operates]

When the BSET instruction is executed, first the CPU reads port 3.

Since P3₇ and P3₆ are input pins, the CPU reads the pin states (low-level and high-level input). P3₅ to P3₀ are output pins, so the CPU reads the value in PDR3. In this example PDR3 has a value of H'80, but the value read by the CPU is H'40.

Next, the CPU sets bit 0 of the read data to 1, changing the PDR3 data to H'41. Finally, the CPU writes this value (H'41) to PDR3, completing execution of BSET.

As a result of this operation, bit 0 in PDR3 becomes 1, and P3₀ outputs a high-level signal. However, bits 7 and 6 of PDR3 end up with different values.

To avoid this problem, store a copy of the PDR3 data in a work area in memory. Perform the bit manipulation on the data in the work area, then write this data to PDR3.

[A: Prior to executing BSET]

MOV.	В	#80,	R0L
MOV.	В	ROL,	@RAM0
MOV.	В	ROL,	@PDR3

The PDR3 value (H'80) is written to a work area in memory (RAM0) as well as to PDR3.

	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR3	0	0	1	1	1	1	1	1
PDR3	1	0	0	0	0	0	0	0
RAM0	1	0	0	0	0	0	0	0

[B: BSET instruction executed]

BSET	#0	,	@RAM0
		,	-

The BSET instruction is executed designating the PDR3 work area (RAM0).

[C: After executing BSET]

MOV. B @RAMO, ROL MOV. B ROL, @PDR3

The work area (RAM0) value is written to PDR3.

	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	High level
PCR3	0	0	1	1	1	1	1	1
PDR3	1	0	0	0	0	0	0	1
RAM0	1	0	0	0	0	0	0	1

2. Bit manipulation in a register containing a write-only bit

Example 3

In this example, the port 3 control register PCR3 is accessed by a BCLR instruction.

As in the examples above, $P3_7$ and $P3_6$ are input pins, with a low-level signal input at $P3_7$ and a high-level signal at $P3_6$. The remaining pins, $P3_5$ to $P3_0$, are output pins that output low-level signals. In this example, the BCLR instruction is used to change pin $P3_0$ to an input port. It is assumed that a high-level signal will be input to this input pin.

[A: Prior to executing BCLR]

	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR3	0	0	1	1	1	1	1	1
PDR3	1	0	0	0	0	0	0	0

[B: BCLR instruction executed]

BCLR #0 , @PCR3

The BCLR instruction is executed designating PCR3.

[C: After executing BCLR]

	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Input/output	Output	Input						
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	High level
PCR3	1	1	1	1	1	1	1	0
PDR3	1	0	0	0	0	0	0	0

[D: Explanation of how BCLR operates]

When the BCLR instruction is executed, first the CPU reads PCR3. Since PCR3 is a write-only register, the CPU reads a value of H'FF, even though the PCR3 value is actually H'3F.

Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE. Finally, this value (H'FE) is written to PCR3 and BCLR instruction execution ends.

As a result of this operation, bit 0 in PCR3 becomes 0, making P3₀ an input port. However, bits 7 and 6 in PCR3 change to 1, so that P3₇ and P3₆ change from input pins to output pins.

To avoid this problem, store a copy of the PCR3 data in a work area in memory. Perform the bit manipulation on the data in the work area, then write this data to PCR3.

[A: Prior to executing BCLR]

MOV.	В	#3F,	R0L
MOV.	В	ROL,	@RAM0
MOV.	В	ROL,	@PCR3

The PCR3 value (H'3F) is written to a work area in memory (RAM0) as well as to PCR3.

	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR3	0	0	1	1	1	1	1	1
PDR3	1	0	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1	1

[B: BCLR instruction executed]

	BCLR	#0	,	@RAM0
--	------	----	---	-------

The BCLR instruction is executed designating the PCR3 work area (RAM0).

[C: After executing BCLR]

MOV. B @RAMO, ROL MOV. B ROL, @PCR3

The work area (RAM0) value is written to PCR3.

	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	High level
PCR3	0	0	1	1	1	1	1	0
PDR3	1	0	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1	0

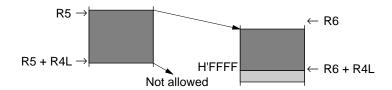
The tables below list registers that share the same address, and registers that contain write-only bits.

Registers with shared addresses

Register Name	Abbreviation	Address
Timer counter B and timer load register B	TCB/TLB	H'FFB3
Timer counter C and timer load register C	TCC/TLC	H'FFB5
Port data register 1*	PDR1	H'FFD4
Port data register 2*	PDR2	H'FFD5
Port data register 3*	PDR3	H'FFD6
Port data register 4*	PDR4	H'FFD7
Port data register 5*	PDR5	H'FFD8
Port data register 6*	PDR6	H'FFD9
Port data register 7*	PDR7	H'FFDA
Port data register 8*	PDR8	H'FFDB
Port data register 9*	PDR9	H'FFDC
Port data register A*	PDRA	H'FFDD


Note: * These port registers are used also for pin input.

Registers with write-only bits


Register Name	Abbreviation	Address
Port control register 1	PCR1	H'FFE4
Port control register 2	PCR2	H'FFE5
Port control register 3	PCR3	H'FFE6
Port control register 4	PCR4	H'FFE7
Port control register 5	PCR5	H'FFE8
Port control register 6	PCR6	H'FFE9
Port control register 7	PCR7	H'FFEA
Port control register 8	PCR8	H'FFEB
Port control register 9	PCR9	H'FFEC
Port control register A	PCRA	H'FFED
Timer control register F	TCRF	H'FFB6
PWM control register	PWCR	H'FFD0
PWM data register U	PWDRU	H'FFD1
PWM data register L	PWDRL	H'FFD2

2.9.3 Notes on Use of the EEPMOV Instruction

• The EEPMOV instruction is a block data transfer instruction. It moves the number of bytes specified by R4L from the address specified by R5 to the address specified by R6.

When setting R4L and R6, make sure that the final destination address (R6 + R4L) does not
exceed H'FFFF. The value in R6 must not change from H'FFFF to H'0000 during execution of
the instruction.

Section 3 Exception Handling

3.1 Overview

Exception handling is performed in the H8/3834 Series when a reset or interrupt occurs. Table 3-1 shows the priorities of these two types of exception handling.

Table 3-1 Exception Handling Types and Priorities

Priority	Exception Source	Time of Start of Exception Handling
High	Reset	Exception handling starts as soon as the reset state is cleared
	Interrupt	When an interrupt is requested, exception handling starts after execution of the present instruction or the exception
Low		handling in progress is completed

3.2 Reset

3.2.1 Overview

A reset is the highest-priority exception. The internal state of the CPU and the registers of the onchip peripheral modules are initialized.

3.2.2 Reset Sequence

As soon as the \overline{RES} pin goes low, all processing is stopped and the H8/3834 enters the reset state.

To make sure the chip is reset properly, observe the following precautions.

- At power on: Hold the \overline{RES} pin low until the clock pulse generator output stabilizes.
- Resetting during operation: Hold the \overline{RES} pin low for at least 10 system clock cycles.

If the MD0 pin is at the high level, reset exception handling begins when the \overline{RES} pin is held low for a given period, then returned to the high level. If the MD0 pin is low, however, when the \overline{RES} pin is held low for a given period and then returned to high level, the reset is not cleared immediately. First the MD0 pin must go from low to high, then after 8,192 clock cycles the reset is cleared and reset exception handling begins.

Reset exception handling takes place as follows.

- The CPU internal state and the registers of on-chip peripheral modules are initialized, with the I bit of the condition code register (CCR) set to 1.
- The PC is loaded from the reset exception handling vector address (H'0000 to H'0001), after which the program starts executing from the address indicated in PC.

When system power is turned on or off, the \overline{RES} pin should be held low.

Figures 3-1 and 3-2 show the reset sequence.

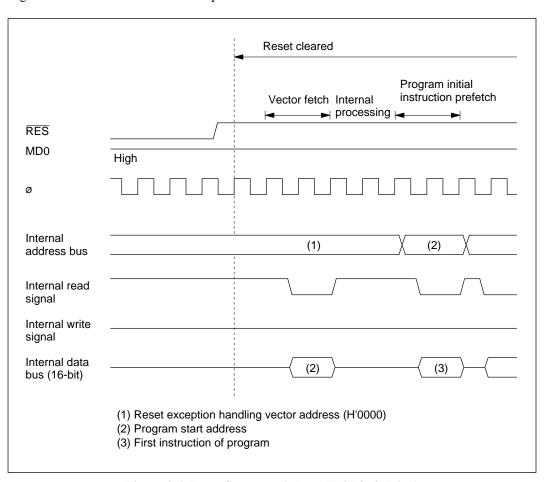


Figure 3-1 Reset Sequence (when MD0 Pin is High)

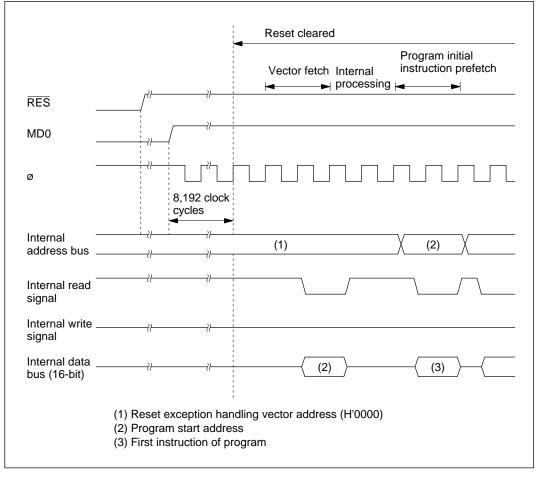


Figure 3-2 Reset Sequence (when MD0 Pin is Low)

3.2.3 Interrupt Immediately after Reset

After a reset, if an interrupt were to be accepted before the stack pointer (SP: R7) was initialized, PC and CCR would not be pushed onto the stack correctly, resulting in program runaway. To prevent this, immediately after reset exception handling all interrupts are masked. For this reason, the initial program instruction is always executed immediately after a reset. This instruction should initialize the stack pointer (e.g. MOV.W #xx: 16, SP).

3.3 Interrupts

3.3.1 Overview

The interrupt sources include 13 external interrupts (WKP $_0$ to WKP $_7$, IRQ $_0$ to IRQ $_4$), and 20 internal interrupts from on-chip peripheral modules. Table 3-2 shows the interrupt sources, their priorities, and their vector addresses. When more than one interrupt is requested, the interrupt with the highest priority is processed.

The interrupts have the following features:

- Both internal and external interrupts can be masked by the I bit of CCR. When this bit is set to 1, interrupt request flags are set but interrupts are not accepted.
- The external interrupt pins IRQ₀ to IRQ₄ can each be set independently to either rising edge sensing or falling edge sensing.

Table 3-2 Interrupt Sources and Priorities

Priority	Interrupt Source	Interrupt	Vector Number	Vector Address
High	RES	Reset	0	H'0000 to H'0001
A	ĪRQ ₀	IRQ ₀	4	H'0008 to H'0009
	ĪRQ ₁	IRQ ₁	5	H'000A to H'000B
	$\overline{IRQ_2}$	IRQ_2	6	H'000C to H'000D
	ĪRQ ₃	IRQ ₃	7	H'000E to H'000F
	ĪRQ ₄	IRQ ₄	8	H'0010 to H'0011
	WKP ₀	WKP ₀	9	H'0012 to H'0013
	$\overline{\text{WKP}_1}$	WKP ₁		
	$\overline{WKP_2}$	WKP ₂		
	$\overline{WKP_3}$	WKP ₃		
	$\overline{WKP_4}$	WKP ₄		
	$\overline{WKP_5}$	WKP ₅		
	$\overline{WKP_6}$	WKP ₆		
V	WKP ₇	WKP ₇		
Low	SCI1	SCI1 transfer complete	10	H'0014 to H'0015

 Table 3-2
 Interrupt Sources and Priorities (cont)

Priority	Interrupt Source	Interrupt	Vector Number	Vector Address
High	Timer A	Timer A overflow	11	H'0016 to H'0017
A	Timer B	Timer B overflow	12	H'0018 to H'0019
	Timer C	Timer C overflow or underflow	13	H'001A to H'001B
	Timer FL	Timer FL compare match	14	H'001C to H'001D
		Timer FL overflow		
	Timer FH	Timer FH compare match	15	H'001E to H'001F
		Timer FH overflow		
	Timer G	Timer G input capture	16	H'0020 to H'0021
		Timer G overflow		
	SCI2	SCI2 transfer complete	17	H'0022 to H'0023
		SCI2 transfer abort		
	SCI3	SCI3 transmit end	18	H'0024 to H'0025
		SCI3 transmit data empty		
		SCI3 receive data full		
		SCI3 overrun error		
		SCI3 framing error		
		SCI3 parity error		
	A/D converter	A/D conversion end	19	H'0026 to H'0027
Low	(SLEEP instruction executed)	Direct transfer	20	H'0028 to H'0029

Note: Vector addresses H'0002 to H'0007 are reserved and cannot be used.

3.3.2 Interrupt Control Registers

Table 3-3 lists the registers that control interrupts.

Table 3-3 Interrupt Control Registers

Register Name	Abbreviation	R/W	Initial Value	Address
IRQ edge select register	IEGR	R/W	H'E0	H'FFF2
Interrupt enable register 1	IENR1	R/W	H'00	H'FFF3
Interrupt enable register 2	IENR2	R/W	H'00	H'FFF4
Interrupt request register 1	IRR1	R/W*	H'20	H'FFF6
Interrupt request register 2	IRR2	R/W*	H'00	H'FFF7
Wakeup interrupt request register	IWPR	R/W*	H'00	H'FFF9

Note: * Write is enabled only for writing of 0 to clear a flag.

1. IRQ edge select register (IEGR)

Bit	7	6	5	4	3	2	1	0
	_	_	_	IEG4	IEG3	IEG2	IEG1	IEG0
Initial value	1	1	1	0	0	0	0	0
Read/Write	_	_	_	R/W	R/W	R/W	R/W	R/W

IEGR is an 8-bit read/write register, used to designate whether pins $\overline{IRQ_0}$ to $\overline{IRQ_4}$ are set to rising edge sensing or falling edge sensing.

Bits 7 to 5: Reserved bits

Bits 7 to 5 are reserved; they are always read as 1, and cannot be modified.

Bit 4: IRQ₄ edge select (IEG4)

Bit 4 selects the input sensing of pin $\overline{IRQ_4}/\overline{ADTRG}$.

Bit 4

IEG4	Description	
0	Falling edge of IRQ ₄ /ADTRG pin input is detected	(initial value)
1	Rising edge of IRQ ₄ /ADTRG pin input is detected	

Bit 3: IRQ₃ edge select (IEG3)

Bit 3 selects the input sensing of pin $\overline{IRQ_3}/TMIF$.

Bit 3

IEG3	Description					
0	Falling edge of IRQ ₃ /TMIF pin input is detected	(initial value)				
1	Rising edge of IRQ3/TMIF pin input is detected					

Bit 2: IRQ₂ edge select (IEG2)

Bit 2 selects the input sensing of pin $\overline{IRQ_2}/TMIC$.

Bit 2

IEG2	Description	
0	Falling edge of IRQ2/TMIC pin input is detected	(initial value)
1	Rising edge of IRQ2/TMIC pin input is detected	

Bit 1: IRQ₁ edge select (IEG1)

Bit 1 selects the input sensing of pin $\overline{IRQ_1}/TMIB$.

Bit 1

IEG1	Description	
0	Falling edge of IRQ ₁ /TMIB pin input is detected	(initial value)
1	Rising edge of $\overline{IRQ_1}/TMIB$ pin input is detected	

Bit 0: IRQ₀ edge select (IEG0)

Bit 0 selects the input sensing of pin $\overline{IRQ_0}$.

Bit 0

IEG0	Description	
0	Falling edge of $\overline{\text{IRQ}_0}$ pin input is detected	(initial value)
1	Rising edge of $\overline{IRQ_0}$ pin input is detected	

2. Interrupt enable register 1 (IENR1)

Bit	7	6	5	4	3	2	1	0
	IENTA	IENS1	IENWP	IEN4	IEN3	IEN2	IEN1	IEN0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

IENR1 is an 8-bit read/write register that enables or disables interrupt requests.

Bit 7: Timer A interrupt enable (IENTA)

Bit 7 enables or disables timer A overflow interrupt requests.

Bit 7

IENTA	Description	
0	Disables timer A interrupts	(initial value)
1	Enables timer A interrupts	

Bit 6: SCI1 interrupt enable (IENS1)

Bit 6 enables or disables SCI1 transfer complete interrupt requests.

Bit 6

IENS1	Description	
0	Disables SCI1 interrupts	(initial value)
1	Enables SCI1 interrupts	

Bit 5: Wakeup interrupt enable (IENWP)

Bit 5 enables or disables WKP₇ to WKP₀ interrupt requests.

Bit 5

IENWP	Description	
0	Disables interrupt requests from $\overline{WKP_7}$ to $\overline{WKP_0}$	(initial value)
1	Enables interrupt requests from $\overline{WKP_7}$ to $\overline{WKP_0}$	

Bits 4 to 0: IRQ₄ to IRQ₀ interrupt enable (IEN4 to IEN0)

Bits 4 to 0 enable or disable IRQ_4 to IRQ_0 interrupt requests.

Bit n IENn	Description	
0	Disables interrupt request IRQn	(initial value)
1	Enables interrupt request IRQn	
		(n = 4 to 0)

3. Interrupt Enable Register 2 (IENR2)

Bit	7	6	5	4	3	2	1	0
	IENDT	IENAD	IENS2	IENTG	IENTFH	IENTFL	IENTC	IENTB
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

IENR2 is an 8-bit read/write register that enables or disables interrupt requests.

Bit 7: Direct transfer interrupt enable (IENDT)

Bit 7 enables or disables direct transfer interrupt requests.

Bit 7 IENDT	Description	
0	Disables direct transfer interrupt requests	(initial value)
1	Enables direct transfer interrupt requests	

Bit 6: A/D converter interrupt enable (IENAD)

Bit 6 enables or disables A/D converter interrupt requests.

Bit 6		
IENAD	Description	
0	Disables A/D converter interrupt requests	(initial value)
1	Enables A/D converter interrupt requests	

Bit 5: SCI2 interrupt enable (IENS2)

Bit 5 enables or disables SCI2 transfer complete and transfer abort interrupt requests.

Bit 5

IENS2	Description	
0	Disables SCI2 interrupts	(initial value)
1	Enables SCI2 interrupts	

Bit 4: Timer G interrupt enable (IENTG)

Bit 4 enables or disables timer G input capture and overflow interrupt requests.

Bit 4

IENTG	Description	
0	Disables timer G interrupts	(initial value)
1	Enables timer G interrupts	

Bit 3: Timer FH interrupt enable (IENTFH)

Bit 3 enables or disables timer FH compare match and overflow interrupt requests.

Bit 3

IENTFH	Description	
0	Disables timer FH interrupts	(initial value)
1	Enables timer FH interrupts	

Bit 2: Timer FL interrupt enable (IENTFL)

Bit 2 enables or disables timer FL compare match and overflow interrupt requests.

Bit 2

IENTFL	Description	
0	Disables timer FL interrupts	(initial value)
1	Enables timer FL interrupts	

Bit 1: Timer C interrupt enable (IENTC)

Bit 1 enables or disables timer C overflow or underflow interrupt requests.

Bit 1

IENTC	Description	
0	Disables timer C interrupts	(initial value)
1	Enables timer C interrupts	

Bit 0: Timer B interrupt enable (IENTB)

Bit 0 enables or disables timer B overflow interrupt requests.

Bit	0

IENTB	Description	
0	Disables timer B interrupts	(initial value)
1	Enables timer B interrupts	

SCI3 interrupt control is covered in 10.4.2, in the description of serial control register 3.

4. Interrupt request register 1 (IRR1)

Bit	7	6	5	4	3	2	1	0
	IRRTA	IRRS1	_	IRRI4	IRRI3	IRRI2	IRRI1	IRRI0
Initial value	0	0	1	0	0	0	0	0
Read/Write	R/W*	R/W*	_	R/W*	R/W*	R/W*	R/W*	R/W*

Note: * Only a write of 0 for flag clearing is possible.

IRR1 is an 8-bit read/write register, in which the corresponding bit is set to 1 when a timer A, SCI1, or IRQ_4 to IRQ_0 interrupt is requested. The flags are not cleared automatically when an interrupt is accepted. It is necessary to write 0 to clear each flag.

Bit 7: Timer A interrupt request flag (IRRTA)

Bit 7

IRRTA	Description	
0	Clearing conditions: When IRRTA = 1, it is cleared by writing 0	(initial value)
1	Setting conditions: When the timer A counter value overflows (goes from H'FF to H'00)	

Bit 6: SCI1 interrupt request flag (IRRS1)

Bit 6 IRRS1	Description	
0	Clearing conditions: When IRRS1 = 1, it is cleared by writing 0	(initial value)
1	Setting conditions: When an SCI1 transfer is completed	

Bit 5: Reserved bit

Initial value

Read/Write

Bit 5 is reserved; it is always read as 1, and cannot be modified.

Bits 4 to 0: IRQ₄ to IRQ₀ interrupt request flags (IRRI4 to IRRI0)

Bit n IRRIn	Descript	ion						
0	J	conditions RIn = 1, it		by writing	0 to IRRIr	۱.	(i	nitial value)
1		-	oin IRQ _n is	set to inte	errupt inpu	t, and the	designate	d signal
5. Interrupt re	quest regis	ster 2 (IRR	(2)				(r	n = 4 to 0
Bit	7	6	5	4	3	2	1	0
	IRRDT	IRRAD	IRRS2	IRRTG	IRRTFH	IRRTFL	IRRTC	IRRTB

0

R/W*

0

R/W*

0

R/W*

0

R/W*

R/W*

Note: * Only a write of 0 for flag clearing is possible.

R/W*

0

R/W*

IRR2 is an 8-bit read/write register, in which the corresponding bit is set to 1 when a direct transfer, A/D converter, SCI2, timer G, timer FH, timer FL, timer C, or timer B interrupt is requested. The flags are not cleared automatically when an interrupt is accepted. It is necessary to write 0 to clear each flag.

0

R/W*

Bit 7: Direct transfer interrupt request flag (IRRDT)

Bit 7 IRRDT	Description	
0	Clearing conditions: (in When IRRDT = 1, it is cleared by writing 0	itial value)
1	Setting conditions: When DTON = 1 and a direct transfer is made immediately after a SLEEP is executed	instruction

Bit 6: A/D converter interrupt request flag (IRRAD)

Bit 6 IRRAD Description 0 Clearing conditions: (initial value) When IRRAD = 1, it is cleared by writing 0 1 Setting conditions: When A/D conversion is completed and ADSF is reset

Bit 5: SCI2 interrupt request flag (IRRS2)

Bit 5 IRRS2	Description	
0	Clearing conditions: When IRRS2 = 1, it is cleared by writing 0	(initial value)
1	Setting conditions: When an SCI2 transfer is completed or aborted	

Bit 4: Timer G interrupt request flag (IRRTG)

Bit 4 IRRTG	Description	
0	Clearing conditions: When IRRTG = 1, it is cleared by writing 0	(initial value)
1	Setting conditions: When pin TMIG is set to TMIG input and the designated signal ed	dge is detected

Bit 3: Timer FH interrupt request flag (IRRTFH)

Bit 3 IRRTFH	Description
0	Clearing conditions: (initial value) When IRRTFH = 1, it is cleared by writing 0
1	Setting conditions: When counter FH matches output compare register FH in 8-bit timer mode, or when 16-bit counter F (TCFL, TCFH) matches output compare register F (OCRFL, OCRFH) in 16-bit timer mode

Bit 2: Timer FL interrupt request flag (IRRTFL)

Bit 2

IRRTFL	Description	
0	Clearing conditions: When IRRTFL = 1, it is cleared by writing 0	(initial value)
1	Setting conditions: When counter FL matches output compare register FL in 8-bit timer	mode

Bit 1: Timer C interrupt request flag (IRRTC)

Bit 1

IRRTC	Description	
0	Clearing conditions: When IRRTC = 1, it is cleared by writing 0	(initial value)
1	Setting conditions: When the timer C counter value overflows (goes from H'FF to (goes from H'00 to H'FF)	H'00) or underflows

Bit 0: Timer B interrupt request flag (IRRTB)

Bit 0

IRRTB	Description	
0	Clearing conditions: When IRRTB = 1, it is cleared by writing 0	(initial value)
1	Setting conditions: When the timer B counter value overflows (goes from H'FF to H'00)	

6. Wakeup interrupt request register (IWPR)

Bit	7	6	5	4	3	2	1	0
	IWPF7	IWPF6	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W*							

Note: * Only a write of 0 for flag clearing is possible.

 $\overline{\text{IWPR}}$ is an 8-bit read/write register, in which the corresponding bit is set to 1 when pins $\overline{\text{WKP}}_7$ to $\overline{\text{WKP}}_0$ are set to wakeup input and a pin receives a falling edge input. The flags are not cleared automatically when an interrupt is accepted. It is necessary to write 0 to clear each flag.

Bits 7 to 0: Wakeup interrupt request flags (WKPF7 to WKPF0)

Bit n IWPFn	Description
0	Clearing conditions: When IWPFn = 1, it is cleared by writing 0 to IWPFn.
1	Setting conditions: IWPFn is set when pin WKPn is set to wakeup interrupt input, and a falling edge input is detected at the pin.
	(n = 7 to 0)

3.3.3 External Interrupts

There are 13 external interrupts, WKP₀ to WKP₇ and IRQ₀ to IRQ₄.

1. Interrupts WKP₀ to WKP₇

Interrupts WKP $_0$ to WKP $_7$ are requested by falling edge inputs at pins \overline{WKP}_0 to \overline{WKP}_7 . When these pins are designated as \overline{WKP}_0 to \overline{WKP}_7 pins in port mode register 5 (PMR5) and falling edge input is detected, the corresponding bit in the wakeup interrupt request register (IWPR) is set to 1, requesting an interrupt. Wakeup interrupt requests can be disabled by clearing the IENWP bit in IENR1 to 0. It is also possible to mask all interrupts by setting the CCR I bit to 1.

When an interrupt exception handling request is received for interrupts WKP0 to WKP7, the CCR I bit is set to 1. The vector number for interrupts WKP0 to WKP7 is 9. Since all eight interrupts are assigned the same vector number, the interrupt source must be determined by the exception handling routine.

2. Interrupts IRQ₀ to IRQ₄

Interrupts IRQ₀ to IRQ₄ are requested by into pins inputs to $\overline{IRQ_0}$ to $\overline{IRQ_4}$. These interrupts are detected by either rising edge sensing or falling edge sensing, depending on the settings of bits IEG0 to IEG4 in the edge select register (IEGR).

When these pins are designated as pins $\overline{IRQ_0}$ to $\overline{IRQ_4}$ in port mode registers 1 and 2 (PMR1 and PMR2) and the designated edge is input, the corresponding bit in IRR1 is set to 1, requesting an interrupt. Interrupts IRQ₀ to IRQ₄ can be disabled by clearing bits IEN0 to IEN4 in IENR1 to 0. All interrupts can be masked by setting the I bit in CCR to 1.

When IRQ_0 to IRQ_4 interrupt exception handling is initiated, the I bit is set to 1. Vector numbers 4 to 8 are assigned to interrupts IRQ_0 to IRQ_4 . The order of priority is from IRQ_0 (high) to IRQ_4 (low). Table 3-2 gives details.

3.3.4 Internal Interrupts

There are 20 internal interrupts that can be requested by the on-chip peripheral modules. When a peripheral module requests an interrupt, the corresponding bit in IRR1 or IRR2 is set to 1. Individual interrupt requests can be disabled by clearing the corresponding bit in IENR1 or IENR2 to 0. All interrupts can be masked by setting the I bit in CCR to 1. When an internal interrupt request is accepted, the I bit is set to 1. Vector numbers 10 to 20 are assigned to these interrupts. Table 3-2 shows the order of priority of interrupts from on-chip peripheral modules.

3.3.5 Interrupt Operations

Interrupts are controlled by an interrupt controller. Figure 3-3 shows a block diagram of the interrupt controller. Figure 3-4 shows the flow up to interrupt acceptance.

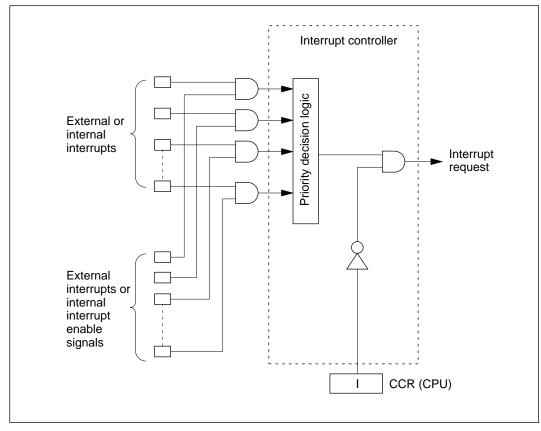


Figure 3-3 Block Diagram of Interrupt Controller

Interrupt operation is described as follows.

- When an interrupt condition is met while the interrupt enable register bit is set to 1, an interrupt request signal is sent to the interrupt controller.
- When the interrupt controller receives an interrupt request, it sets the interrupt request flag.
- From among the interrupts with interrupt request flags set to 1, the interrupt controller selects the interrupt request with the highest priority and holds the others pending. (Refer to table 3-2 for a list of interrupt priorities.)

- The interrupt controller checks the I bit of CCR. If the I bit is 0, the selected interrupt request is accepted; if the I bit is 1, the interrupt request is held pending.
- If the interrupt is accepted, after processing of the current instruction is completed, both PC and CCR are pushed onto the stack. The state of the stack at this time is shown in figure 3-5. The PC value pushed onto the stack is the address of the first instruction to be executed upon return from interrupt handling.
- The I bit of CCR is set to 1, masking all further interrupts.
- The vector address corresponding to the accepted interrupt is generated, and the interrupt handling routine located at the address indicated by the contents of the vector address is executed.

Notes:

- 1. When disabling interrupts by clearing bits in an interrupt enable register, or when clearing bits in an interrupt request register, always do so while interrupts are masked (I = 1).
- 2. If the above clear operations are performed while I = 0, and as a result a conflict arises between the clear instruction and an interrupt request, exception processing for the interrupt will be executed after the clear instruction has been executed.

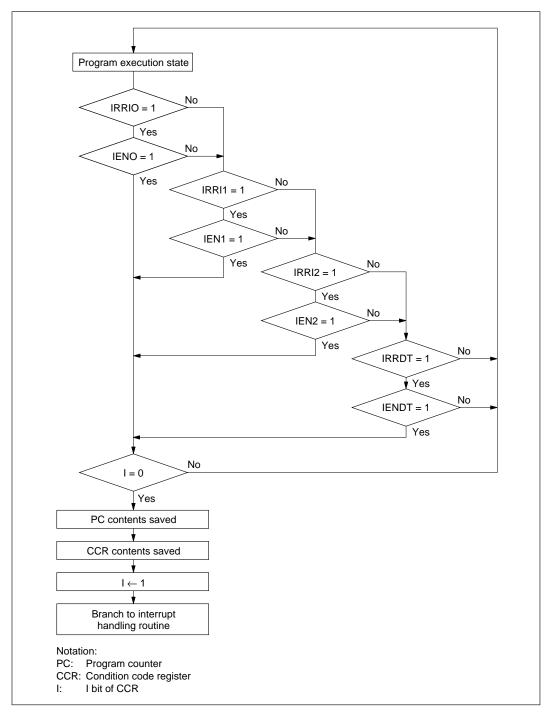


Figure 3-4 Flow up to Interrupt Acceptance

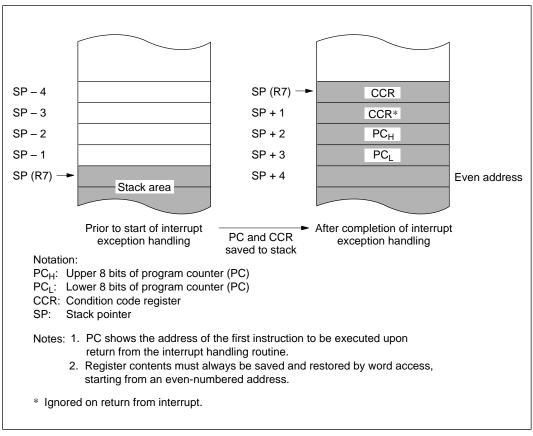


Figure 3-5 Stack State after Completion of Interrupt Exception Handling

Figure 3-6 shows a typical interrupt sequence where the program area is in the on-chip ROM and the stack area is in the on-chip RAM.

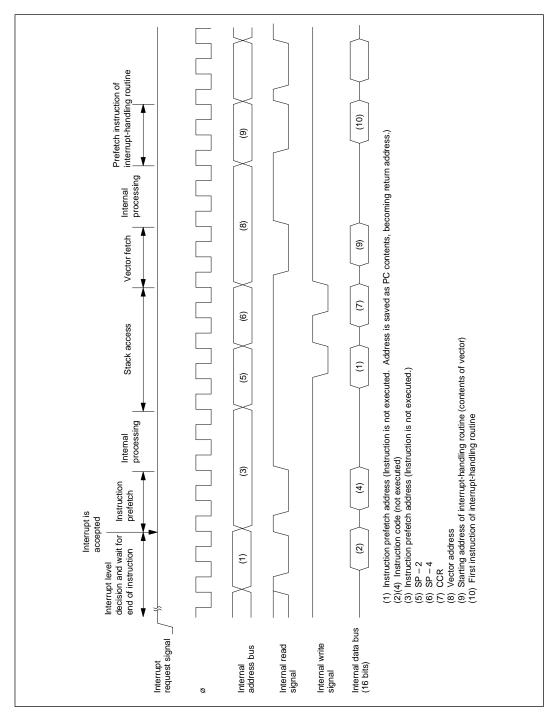


Figure 3-6 Interrupt Sequence

3.3.6 Interrupt Response Time

Table 3-4 shows the number of wait states after an interrupt request flag is set until the first instruction of the interrupt handler is executed.

Table 3-4 Interrupt Wait States

Item	States
Waiting time for completion of executing instruction*	1 to 13
Saving of PC and CCR to stack	4
Vector fetch	2
Instruction fetch	4
Internal processing	4
Total	15 to 27

Note: * Not including EEPMOV instruction.

3.4 Application Notes

3.4.1 Notes on Stack Area Use

When word data is accessed in the H8/3834 Series, the least significant bit of the address is regarded as 0. Access to the stack always takes place in word size, so the stack pointer (SP: R7) should never indicate an odd address. Use PUSH Rn (MOV.W Rn, @-SP) or POP Rn (MOV.W @SP+, Rn) to save or restore register values.

Setting an odd address in SP may cause a program to crash. An example is shown in figure 3-7.

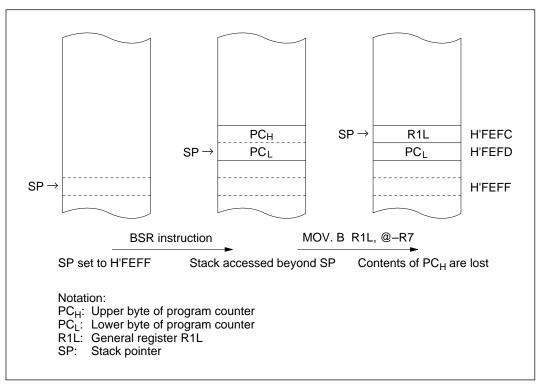


Figure 3-7 Operation when Odd Address is Set in SP

When CCR contents are saved to the stack during interrupt exception handling or restored when RTE is executed, this also takes place in word size. Both the upper and lower bytes of word data are saved to the stack; on return, the even address contents are restored to CCR while the odd address contents are ignored.

3.4.2 Notes on Rewriting Port Mode Registers

When a port mode register is rewritten to switch the functions of external interrupt pins, the following points should be observed.

When an external interrupt pin function is switched by rewriting the port mode register that controls these pins ($\overline{IRQ_4}$ to $\overline{IRQ_0}$, and $\overline{WKP_7}$ to $\overline{WKP_0}$), the interrupt request flag may be set to 1 at the time the pin function is switched, even if no valid interrupt is input at the pin. Be sure to clear the interrupt request flag to 0 after switching pin functions. Table 3-5 shows the conditions under which interrupt request flags are set to 1 in this way.

Table 3-5 Conditions under which Interrupt Request Flag is Set to 1

Interrupt Request Flags Set to 1		Conditions				
IRR1	IRRI4	• When PMR2 bit IRQ4 is changed from 0 to 1 while pin $\overline{IRQ_4}$ is low and IEGR bit IEG4 = 0.				
		• When PMR2 bit IRQ4 is changed from 1 to 0 while pin $\overline{IRQ_4}$ is low and IEGR bit IEG4 = 1.				
	IRRI3	• When PMR1 bit IRQ3 is changed from 0 to 1 while pin $\overline{IRQ_3}$ is low and IEGR bit IEG3 = 0.				
		• When PMR1 bit IRQ3 is changed from 1 to 0 while pin $\overline{IRQ_3}$ is low and IEGR bit IEG3 = 1.				
	IRRI2	• When PMR1 bit IRQ2 is changed from 0 to 1 while pin $\overline{IRQ_2}$ is low and IEGR bit IEG2 = 0.				
		• When PMR1 bit IRQ2 is changed from 1 to 0 while pin $\overline{IRQ_2}$ is low and IEGR bit IEG2 = 1.				
	IRRI1	• When PMR1 bit IRQ1 is changed from 0 to 1 while pin $\overline{IRQ_1}$ is low and IEGR bit IEG1 = 0.				
		 When PMR1 bit IRQ1 is changed from 1 to 0 while pin IRQ₁ is low and IEGR bit IEG1 = 1. 				
	IRRI0	• When PMR2 bit IRQ0 is changed from 0 to 1 while pin $\overline{IRQ_0}$ is low and IEGR bit IEG0 = 0.				
		• When PMR2 bit IRQ0 is changed from 1 to 0 while pin $\overline{IRQ_0}$ is low and IEGR bit IEG0 = 1.				

Table 3-5 Conditions under which Interrupt Request Flag is Set to 1 (cont)

Interrupt Request Flags Set to 1		Conditions
IWPR	IWPF7	When PMR5 bit WKP7 is changed from 0 to 1 while pin $\overline{\text{WKP}_7}$ is low
	IWPF6	When PMR5 bit WKP6 is changed from 0 to 1 while pin $\overline{\text{WKP}_6}$ is low
	IWPF5	When PMR5 bit WKP5 is changed from 0 to 1 while pin $\overline{\text{WKP}_5}$ is low
	IWPF4	When PMR5 bit WKP4 is changed from 0 to 1 while pin $\overline{\text{WKP}_4}$ is low
	IWPF3	When PMR5 bit WKP3 is changed from 0 to 1 while pin $\overline{\text{WKP}_3}$ is low
	IWPF2	When PMR5 bit WKP2 is changed from 0 to 1 while pin $\overline{\text{WKP}_2}$ is low
	IWPF1	When PMR5 bit WKP1 is changed from 0 to 1 while pin $\overline{\text{WKP}_1}$ is low
	IWPF0	When PMR5 bit WKP0 is changed from 0 to 1 while pin $\overline{\text{WKP}_0}$ is low

Figure 3-8 shows the procedure for setting a bit in a port mode register and clearing the interrupt request flag.

When switching a pin function, mask the interrupt before setting the bit in the port mode register. After accessing the port mode register, execute at least one instruction (e.g., NOP), then clear the interrupt request flag from 1 to 0. If the instruction to clear the flag is executed immediately after the port mode register access without executing an intervening instruction, the flag will not be cleared.

An alternative method is to avoid the setting of interrupt request flags when pin functions are switched by keeping the pins at the high level so that the conditions in table 3-5 do not occur.

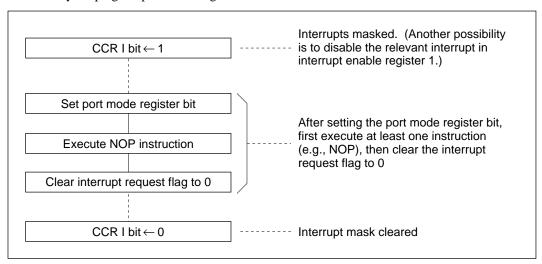


Figure 3-8 Port Mode Register Setting and Interrupt Request Flag Clearing Procedure

Section 4 Clock Pulse Generators

4.1 Overview

Clock oscillator circuitry (CPG: clock pulse generator) is provided on-chip, including both a system clock pulse generator and a subclock pulse generator. The system clock pulse generator consists of a system clock oscillator and system clock dividers. The subclock pulse generator consists of a subclock oscillator circuit and a subclock divider.

4.1.1 Block Diagram

Figure 4-1 shows a block diagram of the clock pulse generators.

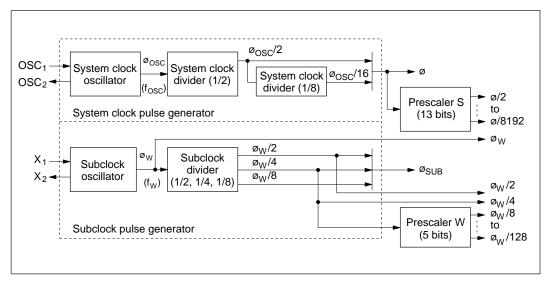


Figure 4-1 Block Diagram of Clock Pulse Generators

4.1.2 System Clock and Subclock

The basic clock signals that drive the CPU and on-chip peripheral modules are \emptyset and \emptyset_{SUB} . Four of the clock signals have names: \emptyset is the system clock, \emptyset_{SUB} is the subclock, \emptyset_{OSC} is the oscillator clock, and \emptyset_{W} is the watch clock.

The clock signals available for use by peripheral modules are $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, $\phi/64$, $\phi/128$, $\phi/256$, $\phi/512$, $\phi/1024$, $\phi/2048$, $\phi/4096$, $\phi/8192$, ϕ_W , ϕ

4.2 System Clock Generator

Clock pulse can be supplied to the system clock divider either by connecting a crystal or ceramic oscillator, or by providing external clock input.

1. Connecting a crystal oscillator

Figure 4-2 shows a typical method of connecting a crystal oscillator.

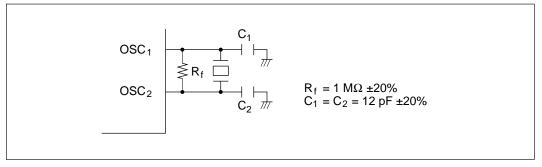


Figure 4-2 Typical Connection to Crystal Oscillator

Figure 4-3 shows the equivalent circuit of a crystal oscillator. An oscillator having the characteristics given in table 4-1 should be used.

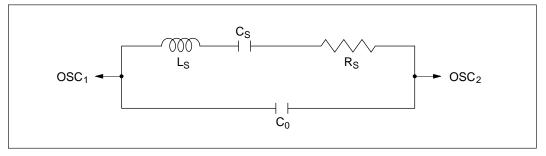


Figure 4-3 Equivalent Circuit of Crystal Oscillator

Table 4-1 Crystal Oscillator Parameters

Frequency (MHz)	2	4	8	10
Rs max (Ω)	500	100	50	30
Co (pF)	7 pF max			

2. Connecting a ceramic oscillator

Figure 4-4 shows a typical method of connecting a ceramic oscillator.

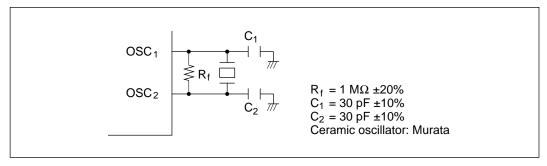


Figure 4-4 Typical Connection to Ceramic Oscillator

3. Notes on board design

When generating clock pulses by connecting a crystal or ceramic oscillator, pay careful attention to the following points.

Avoid running signal lines close to the oscillator circuit, since the oscillator may be adversely affected by induction currents. (See figure 4-5.)

The board should be designed so that the oscillator and load capacitors are located as close as possible to pins OSC_1 and OSC_2 .

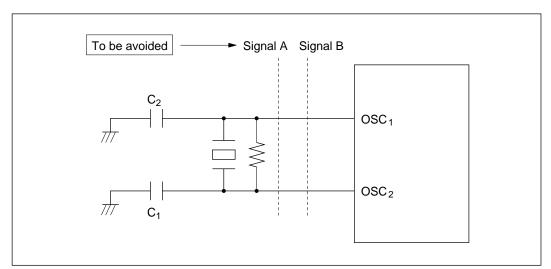


Figure 4-5 Board Design of Oscillator Circuit

4. External clock input method

Connect an external clock signal to pin OSC1, and leave pin OSC_2 open. Figure 4-6 shows a typical connection.

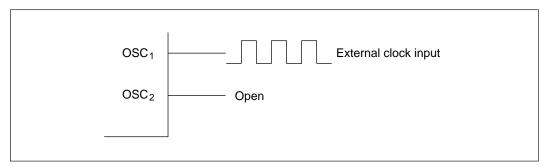


Figure 4-6 External Clock Input (Example)

Frequency	Oscillator Clock (ø _{OSC})
Duty cycle	45% to 55%

4.3 Subclock Generator

1. Connecting a 32.768-kHz crystal oscillator

Clock pulses can be supplied to the subclock divider by connecting a 32.768-kHz crystal oscillator, as shown in figure 4-7. Follow the same precautions as noted under 4.2.3 for the system clock.

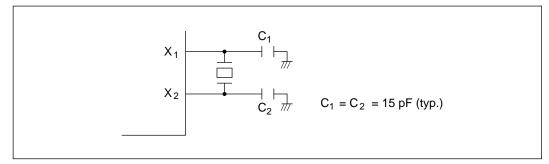


Figure 4-7 Typical Connection to 32.768-kHz Crystal Oscillator (Subclock)

Figure 4-8 shows the equivalent circuit of the 32.768-kHz crystal oscillator.

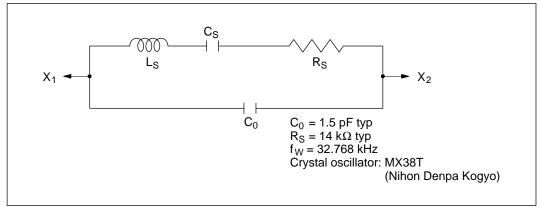


Figure 4-8 Equivalent Circuit of 32.768-kHz Crystal Oscillator

2. Pin connection when not using subclock

When the subclock is not used, connect pin X_1 to V_{CC} and leave pin X_2 open, as shown in figure 4-9.

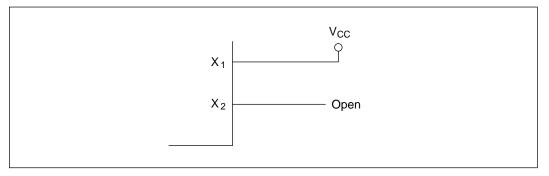


Figure 4-9 Pin Connection when not Using Subclock

4.4 Prescalers

The H8/3834 Series is equipped with two on-chip prescalers having different input clocks (prescaler S and prescaler W). Prescaler S is a 13-bit counter using the system clock (\emptyset) as its input clock. Its prescaled outputs provide internal clock signals for on-chip peripheral modules. Prescaler W is a 5-bit counter using a 32.768-kHz signal divided by 4 (\emptyset _W/4) as its input clock. Its prescaled outputs are used by timer A as a time base for timekeeping.

1. Prescaler S (PSS)

Prescaler S is a 13-bit counter using the system clock (\emptyset) as its input clock. It is incremented once per clock period.

Prescaler S is initialized to H'0000 by a reset, and starts counting on exit from the reset state.

In standby mode, watch mode, subactive mode, and subsleep mode, the system clock pulse generator stops. Prescaler S also stops and is initialized to H'0000.

The CPU cannot read or write prescaler S.

The output from prescaler S is shared by timer A, timer B, timer C, timer F, timer G, SCI1, SCI2, SCI3, the A/D converter, LCD controller, and 14-bit PWM. The divider ratio can be set separately for each on-chip peripheral function.

In active (medium-speed) mode the clock input to prescaler S is $\phi_{OSC}/16$.

2. Prescaler W (PSW)

Prescaler W is a 5-bit counter using a 32.768 kHz signal divided by 4 (ϕ_W /4) as its input clock.

Prescaler W is initialized to H'00 by a reset, and starts counting on exit from the reset state.

Even in standby mode, watch mode, subactive mode, or subsleep mode, prescaler W continues functioning so long as clock signals are supplied to pins X_1 and X_2 .

Prescaler W can be reset by setting 1s in bits TMA3 and TMA2 of timer mode register A (TMA).

Output from prescaler W can be used to drive timer A, in which case timer A functions as a time base for timekeeping.

4.5 Note on Oscillators

Oscillator characteristics of both the masked ROM and ZTATTM versions are closely related to board design and should be carefully evaluated by the user, referring to the examples shown in this section. Oscillator circuit constants will differ depending on the oscillator element, stray capacitance in its interconnecting circuit, and other factors. Suitable constants should be determined in consultation with the oscillator element manufacturer. Design the circuit so that the oscillator element never receives voltages exceeding its maximum rating.

Section 5 Power-Down Modes

5.1 Overview

The H8/3834 Series has seven modes of operation after a reset. These include six power-down modes, in which power dissipation is significantly reduced.

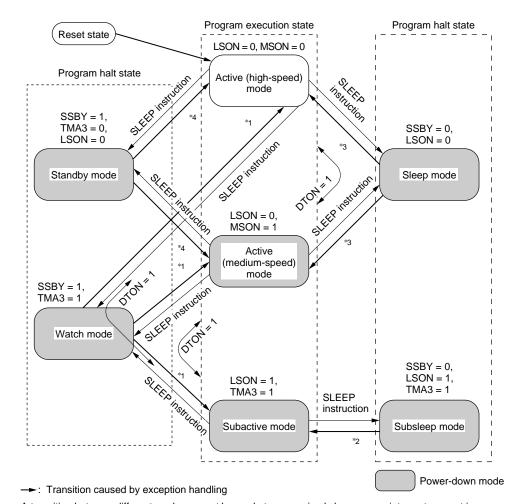

Table 5-1 gives a summary of the seven operation modes. All but the active (high-speed) mode are power-down modes.

Table 5-1 Operation Modes

Operating Mode	Description			
Active (high-speed) mode	The CPU runs on the system clock, executing program instructions at high speed			
Active (medium-speed) mode	The CPU runs on the system clock, executing program instructions at reduced speed			
Subactive mode	The CPU runs on the subclock, executing program instructions at reduced speed			
Sleep mode	The CPU halts. On-chip peripheral modules continue to operate on the system clock.			
Subsleep mode	The CPU halts. Timer A, timer C, timer G, and the LCD controller/driver continue to operate on the subclock.			
Watch mode	The CPU halts. The time-base function of timer A and the LCD controller/driver continue to operate on the subclock.			
Standby mode	The CPU and all on-chip peripheral modules stop operating			

In this section the two active modes (high-speed and medium-speed) are referred to collectively as active mode.

Figure 5-1 shows the transitions among these operation modes. Table 5-2 indicates the internal states in each mode.

A transition between different modes cannot be made to occur simply because an interrupt request is generated. Make sure that the interrupt is accepted and interrupt handling is performed. Details on the mode transition conditions are given in the explanations of each mode, in sections 5.2 through 5.8.

Notes: 1. Timer A interrupt, IRQ₀ interrupt, WKP₀ to WKP₇ interrupts

- Timer A interrupt, timer C interrupt, timer G interrupt, IRQ₀ to IRQ₄ interrupts, WKP₀ to WKP₇ interrupts
- 3. All interrupts
- 4. IRQ₀ interrupt, IRQ₁ interrupt, WKP₀ to WKP₇ interrupts

Figure 5-1 Operation Mode Transition Diagram

Table 5-2 Internal State in Each Operation Mode

	Active Mode							
Function		High Speed	Medium Speed	Sleep Mode	Watch Mode	Subactive Mode	Subsleep Mode	Standby Mode
System clo	ock oscillator	Functions	Functions	Functions	Halted	Halted	Halted	Halted
Subclock of	oscillator	Functions	Functions	Functions	Functions	Functions	Functions	Functions
CPU	Instructions	Functions	Functions	Halted	Halted	Functions	Halted	Halted
operation	RAM			Retained	Retained		Retained	Retained
	Registers							
	I/O							Retained*1
External	IRQ ₀	Functions	Functions	Functions	Functions	Functions	Functions	Functions
interrupts	IRQ ₁				Retained*6			
	IRQ ₂							Retained*6
	IRQ ₃							
	IRQ ₄							
	WKP ₀	Functions	Functions	Functions	Functions	Functions	Functions	Functions
	WKP ₁							
	WKP ₂							
	WKP ₃							
	WKP ₄							
	WKP ₅							
	WKP ₆							
	WKP ₇							
Peripheral	Timer A	Functions	Functions	Functions	Functions*5	Functions*5	Functions*5	Retained
module	Timer B				Retained	Retained	Retained	-
functions	Timer C					Functions/ Retained*2	Functions/ Retained*2	-
	Timer F					Retained	Retained	
	Timer G					Functions/ Retained*3	Functions/ Retained*3	-
	SCI1	Functions	Functions	Functions	Retained	Retained	Retained	Retained
	SCI2							
	SCI3				Reset	Reset	Reset	Reset
	PWM	Functions	Functions	Retained	Retained	Retained	Retained	Retained
	A/D	Functions	Functions	Functions	Retained	Retained	Retained	Retained
	LCD	Functions	Functions	Functions	Functions/ Retained*4	Functions/ Retained*4	Functions/ Retained*4	Retained

Notes: 1. Register contents held; high-impedance output.

- 2. Functions only if external clock or $\omega_W/4$ internal clock is selected; otherwise halted and retained.
- 3. Functions only if $\phi_W/2$ internal clock is selected; otherwise halted and retained.
- 4. Functions only if σ_W or $\sigma_W/2$ internal clock is selected; otherwise halted and retained.
- 5. Functions when timekeeping time-base function is selected.
- 6. External interrupt requests are ignored. The interrupt request register contents are not affected.

5.1.1 System Control Registers

The operation mode is selected using the system control registers described in table 5-3.

Table 5-3 System Control Register

Name	Abbreviation	R/W	Initial Value	Address
System control register 1	SYSCR1	R/W	H'07	H'FFF0
System control register 2	SYSCR2	R/W	H'E0	H'FFF1

1. System control register 1 (SYSCR1)

Bit	7	6	5	4	3	2	1	0
	SSBY	STS2	STS1	STS0	LSON	_	_	_
Initial value	0	0	0	0	0	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	_	_	_

SYSCR1 is an 8-bit read/write register for control of the power-down modes.

Bit 7: Software standby (SSBY)

This bit designates transition to standby mode or watch mode.

Bit 7 SSBY	Description					
0	When a SLEEP instruction is executed in active mode, a transition (initial value) is made to sleep mode.					
	 When a SLEEP instruction is executed in subactive mode, a transition is made to subsleep mode. 					
1	 When a SLEEP instruction is executed in active mode, a transition is made to standby mode or watch mode. 					
	 When a SLEEP instruction is executed in subactive mode, a transition is made to watch mode. 					

Bits 6 to 4: Standby timer select 2 to 0 (STS2 to STS0)

These bits designate the time the CPU and peripheral modules wait for stable clock operation after exiting from standby mode or watch mode to active mode due to an interrupt. The designation should be made according to the clock frequency so that the waiting time is at least 10 ms.

Bit 6	Bit 5	Bit 4		
STS2	STS1	STS0	Description	
0	0	0	Wait time = 8,192 states	(initial value)
0	0	1	Wait time = 16,384 states	
0	1	0	Wait time = 32,768 states	
0	1	1	Wait time = 65,536 states	
1	*	*	Wait time = 131,072 states	

Note: * Don't care

Bit 3: Low speed on flag (LSON)

This bit chooses the system clock (\emptyset) or subclock (\emptyset_{SUB}) as the CPU operating clock when watch mode is cleared. The resulting operation mode depends on the combination of other control bits and interrupt input.

Bit 3
LSON Description

0 The CPU operates on the system clock (Ø) (initial value)

1 The CPU operates on the subclock (Ø_{SUB})

Bits 2 to 0: Reserved bits

These bits are reserved; they are always read as 1, and cannot be modified.

2. System control register 2 (SYSCR2)

Bit	7	6	5	4	3	2	1	0
		_	_	NESEL	DTON	MSON	SA1	SA0
Initial value	1	1	1	0	0	0	0	0
Read/Write		_		R/W	R/W	R/W	R/W	R/W

SYSCR2 is an 8-bit read/write register for power-down mode control.

Bits 7 to 5: Reserved bits

These bits are reserved; they are always read as 1, and cannot be modified.

Bit 4: Noise elimination sampling frequency select (NESEL)

This bit selects the frequency at which the watch clock signal (ϕ_W) generated by the subclock pulse generator is sampled, in relation to the oscillator clock (ϕ_{OSC}) generated by the system clock pulse generator. When $\phi_{OSC} = 2$ to 10 MHz, clear NESEL to 0.

Bit 4	
NESEL	Description
0	Sampling rate is Ø _{OSC} /16
1	Sampling rate is Ø _{OSC} /4

Bit 3: Direct transfer on flag (DTON)

This bit designates whether or not to make direct transitions among active (high-speed), active (medium-speed) and subactive mode when a SLEEP instruction is executed. The mode to which the transition is made after the SLEEP instruction is executed depends on a combination of this and other control bits.

Bit 3 DTON	Description					
0	When a SLEEP instruction is executed in active mode, a transition is made to standby mode, watch mode, or sleep mode.	(initial value)				
	When a SLEEP instruction is executed in subactive mode, a transition is made to watch mode or subsleep mode.					
1	When a SLEEP instruction is executed in active (high-speed) mode, a direct transition is made to active (medium-speed) mode if SSBY = 0, MSON = 1, and LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1.					
	When a SLEEP instruction is executed in active (medium-speed) mode, a direct transition is made to active (high-speed) mode if SSBY = 0, MSON = 0, and LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1.					
	When a SLEEP instruction is executed in subactive mode, a direct transition is made to active (high-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0, and MSON = 0, active (medium-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0, and MSON = 1.					

Bit 2: Medium speed on flag (MSON)

After standby, watch, or sleep mode is cleared, this bit selects active (high-speed) or active (medium-speed) mode.

Bit 2 MSON	Description	
0	Operation is in active (high-speed) mode	(initial value)
1	Operation is in active (medium-speed) mode	

Bits 1 and 0: Subactive mode clock select (SA1 and SA0)

These bits select the CPU clock rate ($\phi_W/2$, $\phi_W/4$, or $\phi_W/8$) in subactive mode. SA1 and SA0 cannot be modified in subactive mode.

Bit 1 SA1	Bit 0 SA0	Description	
0	0	ø _W /8	(initial value)
0	1	ø _W /4	
1	*	ø _W /2	

Note: * Don't care

5.2 Sleep Mode

5.2.1 Transition to Sleep Mode

The system goes from active mode to sleep mode when a SLEEP instruction is executed while the SSBY and LSON bits in system control register 1 (SYSCR1) are cleared to 0. In sleep mode CPU operation is halted but the on-chip peripheral functions other than PWM are operational. The CPU register contents are retained.

5.2.2 Clearing Sleep Mode

Sleep mode is cleared by an interrupt (timer A, timer B, timer C, timer F, timer G, IRQ_0 to IRQ_4 , WKP_0 to WKP_7 , SCI1, SCI2, SCI3, A/D converter) or by input at the \overline{RES} pin.

Clearing by interrupt

When an interrupt is requested, sleep mode is cleared and interrupt exception handling starts. Operation resumes in active (high-speed) mode if MSON = 0 in SYSCR2, or active (medium-speed) mode if MSON = 1. Sleep mode is not cleared if the I bit of the condition code register (CCR) is set to 1 or the particular interrupt is disabled in the interrupt enable register.

Clearing by RES input

When the \overline{RES} pin goes low, the CPU goes into the reset state and sleep mode is cleared.

5.3 Standby Mode

5.3.1 Transition to Standby Mode

The system goes from active mode to standby mode when a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1, the LSON bit is cleared to 0, and bit TMA3 in timer register A (TMA) is cleared to 0. In standby mode the clock pulse generator stops, so the CPU and on-chip peripheral modules stop functioning. As long as a minimum required voltage is applied, the CPU register contents and data in the on-chip RAM will be retained. The I/O ports go to the high-impedance state.

5.3.2 Clearing Standby Mode

Standby mode is cleared by an interrupt (IRQ₀, IRQ₁, WKP₀ to WKP₇) or by input at the \overline{RES} pin.

Clearing by interrupt

When an interrupt is requested, the system clock pulse generator starts. After the time set in bits STS2–STS0 in SYSCR1 has elapsed, a stable system clock signal is supplied to the entire chip, standby mode is cleared, and interrupt exception handling starts. Operation resumes in active (high-speed) mode if MSON = 0 in SYSCR2, or active (medium-speed) mode if MSON = 1. Standby mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

• Clearing by RES input

When the \overline{RES} pin goes low, the system clock pulse generator starts and standby mode is cleared. After the pulse generator output has stabilized, if the \overline{RES} pin is driven high, the CPU starts reset exception handling.

Since system clock signals are supplied to the entire chip as soon as the system clock pulse generator starts functioning, the \overline{RES} pin should be kept at the low level until the pulse generator output stabilizes.

5.3.3 Oscillator Settling Time after Standby Mode is Cleared

Bits STS2 to STS0 in SYSCR1 should be set as follows.

When a crystal oscillator is used

The table below gives settings for various operating frequencies. Set bits STS2 to STS0 for a waiting time of at least 10 ms.

When an external clock is used

Any values may be set. Normally the minimum time (STS2 = STS1 = STS0 = 0) should be set.

Table 5-3 Clock Frequency and Settling Time (times are in ms)

STS2	STS1	STS0	Waiting Time	5 MHz	4 MHz	2 MHz	1 MHz	0.5 MHz
0	0	0	8,192 states	1.6	2.0	4.1	8.2	16.4
0	0	1	16,384 states	3.2	4.1	8.2	16.4	32.8
0	1	0	32,768 states	6.6	8.2	16.4	32.8	65.5
0	1	1	65,536 states	13.1	16.4	32.8	65.5	131.1
1	*	*	131,072 states	26.2	32.8	65.5	131.1	262.1

Note: * Don't care

5.3.4 Transition to Standby Mode and Port Pin States

The system goes from active (high-speed or medium-speed) mode to standby mode when a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1, the LSON bit is cleared to 0, and bit TMA3 in TMA is cleared to 0. Port pins (except those with their MOS pull-up turned on) enter high-impedance state when the transition to standby mode is made. This timing is shown in figure 5-2.

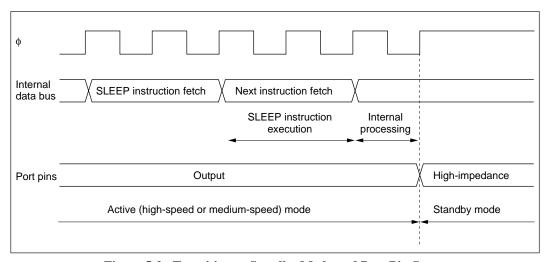


Figure 5-2 Transition to Standby Mode and Port Pin States

5.4 Watch Mode

5.4.1 Transition to Watch Mode

The system goes from active or subactive mode to watch mode when a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1 and bit TMA3 in TMA is set to 1.

In watch mode, operation of on-chip peripheral modules other than timer A and the LCD controller is halted. The LCD controller can be selected to operate or to halt. As long as a minimum required voltage is applied, the contents of CPU registers and some registers of the on-chip peripheral modules, and the on-chip RAM contents, are retained. I/O ports keep the same states as before the transition.

5.4.2 Clearing Watch Mode

Watch mode is cleared by an interrupt (timer A, IRQ_0 , WKP_0 to WKP_7) or by a low input at the \overline{RES} pin.

Clearing by interrupt

Watch mode is cleared when an interrupt is requested. The mode to which a transition is made depends on the settings of LSON in SYSCR1 and MSON in SYSCR2. If both LSON and MSON are cleared to 0, transition is to active (high-speed) mode; if LSON = 0 and MSON = 1, transition is to active (medium-speed) mode; if LSON = 1, transition is to subactive mode. When the transition is to active mode, after the time set in SYSCR1 bits STS2–STS0 has elapsed, a stable clock signal is supplied to the entire chip, watch mode is cleared, and interrupt exception handling starts. Watch mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

Clearing by RES input

Clearing by $\overline{\text{RES}}$ pin is the same as for standby mode; see 5.3.2, Clearing Standby Mode.

5.4.3 Oscillator Settling Time after Watch Mode is Cleared

The waiting time is the same as for standby mode; see 5.3.3, Oscillator Settling Time after Standby Mode is Cleared.

5.5 Subsleep Mode

5.5.1 Transition to Subsleep Mode

The system goes from subactive mode to subsleep mode when a SLEEP instruction is executed while the SSBY bit in SYSCR1 is cleared to 0, LSON bit in SYSCR1 is set to 1, and TMA3 bit in TMA is set to 1.

In subsleep mode, operation of on-chip peripheral modules other than timer A, timer C, timer G, and the LCD controller is halted. As long as a minimum required voltage is applied, the contents of CPU registers and some registers of the on-chip peripheral modules, and the on-chip RAM contents, are retained. I/O ports keep the same states as before the transition.

5.5.2 Clearing Subsleep Mode

Subsleep mode is cleared by an interrupt (timer A, timer C, timer G, IRQ_0 to IRQ_4 , WKP_0 to WKP_7) or by a low input at the \overline{RES} pin.

Clearing by interrupt

When an interrupt is requested, subsleep mode is cleared and interrupt exception handling starts. Subsleep mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

Clearing by RES input

Clearing by RES pin is the same as for standby mode; see 5.3.2, Clearing Standby Mode.

5.6 Subactive Mode

5.6.1 Transition to Subactive Mode

Subactive mode is entered from watch mode if a timer A, IRQ_0 , or WKP_0 to WKP_7 interrupt is requested while the LSON bit in SYSCR1 is set to 1. From subsleep mode, subactive mode is entered if a timer A, timer C, timer G, IRQ_0 to IRQ_4 , or WKP_0 to WKP_7 interrupt is requested. A transition to subactive mode does not take place if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

5.6.2 Clearing Subactive Mode

Subactive mode is cleared by a SLEEP instruction or by a low input at the \overline{RES} pin.

Clearing by SLEEP instruction

If a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1 and TMA3 bit in TMA is set to 1, subactive mode is cleared and watch mode is entered. If a SLEEP instruction is executed while SSBY = 0 and LSON = 1 in SYSCR1 and TMA3 = 1 in TMA, subsleep mode is entered. Direct transfer to active mode is also possible; see 5.8, Direct Transfer, below.

• Clearing by \overline{RES} pin

Clearing by \overline{RES} pin is the same as for standby mode; see 5.3.2, Clearing Standby Mode.

5.6.3 Operating Frequency in Subactive Mode

The operating frequency in subactive mode is set in bits SA1 and SA0 in SYSCR2. The choices are $\phi_W/2$, $\phi_W/4$, and $\phi_W/8$.

5.7 Active (medium-speed) Mode

5.7.1 Transition to Active (medium-speed) Mode

If the MSON bit in SYSCR2 is set to 1 while the LSON bit in SYSCR1 is cleared to 0, a transition to active (medium-speed) mode results from IRQ_0 , IRQ_1 , or WKP_0 to WKP_7 interrupts in standby mode, timer A, IRQ_0 , or WKP_0 to WKP_7 interrupts in watch mode, or any interrupt in sleep mode. A transition to active (medium-speed) mode does not take place if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

5.7.2 Clearing Active (medium-speed) Mode

Active (medium-speed) mode is cleared by a SLEEP instruction or by a low input at the RES pin.

• Clearing by SLEEP instruction

A transition to standby mode takes place if a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, and TMA3 bit in TMA is cleared to 0. The system goes to watch mode if the SSBY bit in SYSCR1 is set to 1 and TMA3 bit in TMA is set to 1 when a SLEEP instruction is executed. Sleep mode is entered if both SSBY and LSON are cleared to 0 when a SLEEP instruction is executed. Direct transfer to active (high-speed) mode or to subactive mode is also possible. See 5.8, Direct Transfer, below for details.

Clearing by RES pin

When the \overline{RES} pin goes low, the CPU enters the reset state and active (medium-speed) mode is cleared.

5.7.3 Operating Frequency in Active (medium-speed) Mode

In active (medium-speed) mode, the CPU is clocked at 1/8 the frequency in active (high-speed) mode.

5.8 Direct Transfer

5.8.1 Direct Transfer Overview

The CPU can execute programs in three modes: active (high-speed) mode, active (medium-speed) mode, and subactive mode. A direct transfer is a transition among these three modes without the stopping of program execution. A direct transfer can be made by executing a SLEEP instruction while the DTON bit in SYSCR2 is set to 1. After the mode transition, direct transfer interrupt exception handling starts.

If the direct transfer interrupt is disabled in interrupt enable register 2 (IENR2), a transition is made instead to sleep mode or watch mode. Note that if a direct transition is attempted while the I bit in CCR is set to 1, sleep mode or watch mode will be entered, and it will be impossible to clear the resulting mode by means of an interrupt.

• Direct transfer from active (high-speed) mode to active (medium-speed) mode

When a SLEEP instruction is executed in active (high-speed) mode while the SSBY and LSON bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is set to 1, and the DTON bit in SYSCR2 is set to 1, a transition is made to active (medium-speed) mode via sleep mode.

• Direct transfer from active (medium-speed) mode to active (high-speed) mode

When a SLEEP instruction is executed in active (medium-speed) mode while the SSBY and LSON bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is cleared to 0, and the DTON bit in SYSCR2 is set to 1, a transition is made to active (high-speed) mode via sleep mode.

• Direct transfer from active (high-speed) mode to subactive mode

When a SLEEP instruction is executed in active (high-speed) mode while the SSBY and LSON bits in SYSCR1 are set to 1, the DTON bit in SYSCR2 is set to 1, and TMA3 bit in TMA is set to 1, a transition is made to subactive mode via watch mode.

• Direct transfer from subactive mode to active (high-speed) mode

When a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, the MSON bit in SYSCR2 is cleared to 0, the DTON bit in SYSCR2 is set to 1, and TMA3 bit in TMA is set to 1, a transition is made directly to active (high-speed) mode via watch mode after the waiting time set in SYSCR1 bits STS2 to STS0 has elapsed.

• Direct transfer from active (medium-speed) mode to subactive mode

When a SLEEP instruction is executed in active (medium-speed) while the SSBY and LSON bits in SYSCR1 are set to 1, the DTON bit in SYSCR2 is set to 1, and TMA3 bit in TMA is set to 1, a transition is made to subactive mode via watch mode.

Direct transfer from subactive mode to active (medium-speed) mode

When a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, the MSON bit in SYSCR2 is set to 1, the DTON bit in SYSCR2 is set to 1, and TMA3 bit in TMA is set to 1, a transition is made directly to active (medium-speed) mode via watch mode after the waiting time set in SYSCR1 bits STS2 to STS0 has elapsed.

5.8.2 Calculation of Direct Transfer Time before Transition

 Time required before direct transfer from active (high-speed) mode to active (medium-speed) mode

A direct transfer is made from active (high-speed) mode to active (medium-speed) mode when a SLEEP instruction is executed in active (high-speed) mode while the SSBY and LSON bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is set to 1, and the DTON bit in SYSCR2 is set to 1. A direct transfer time, that is, the time from SLEEP instruction execution to interrupt exception handling completion is calculated by expression (1) below.

Direct transfer time = (number of states for SLEEP instruction execution + number of states for internal processing) × tcyc before transition + number of states for interrupt exception handling execution × tcyc after transition (1)

Example: Direct transfer time for the H8/3834 Series

 $= (2+1) \times 2 \operatorname{tosc} + 14 \times 16 \operatorname{tosc} = 230 \operatorname{tosc}$

Notation:

tosc: OSC clock cycle time

tcyc: System clock (φ) cycle time

Time required before direct transfer from active (medium-speed) mode to active (high-speed)
 mode

A direct transfer is made from active (medium-speed) mode to active (high-speed) mode when a SLEEP instruction is executed in active (medium-speed) mode while the SSBY and LSON bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is cleared to 0, and the DTON bit in SYSCR2 is set to 1. A direct transfer time, that is, the time from SLEEP instruction execution to interrupt exception handling completion is calculated by expression (2) below.

Direct transfer time = (number of states for SLEEP instruction execution + number of states for internal processing) × tcyc before transition + number of states for interrupt exception handling execution × tcyc after transition (2)

Example: Direct transfer time for the H8/3834 Series

 $= (2+1) \times 16 tosc + 14 \times 2 tosc = 76 tosc$

Notation:

tosc: OSC clock cycle time tcyc: System clock (φ) cycle time

• Time required before direct transfer from subactive mode to active (high-speed) mode

A direct transfer is made from subactive mode to active (high-speed) mode when a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, the MSON bit in SYSCR2 is cleared to 0, the DTON bit in SYSCR2 is set to 1, and the TMA3 bit in TMA is set to 1. A direct transfer time, that is, the time from SLEEP instruction execution to interrupt exception handling completion is calculated by expression (3) below.

Direct transfer time = (number of states for SLEEP instruction execution + number of states for internal processing) × tsubcyc before transition + (wait time designated by STS2 to STS0 bits in SCR + number of states for interrupt exception handling execution) × tcyc after transition (3)

Example: Direct transfer time for the H8/3834 Series

(when CPU clock frequency is $\phi w/8$ and wait time is 8192 states)

 $= (2 + 1) \times 8tw + (8192 + 14) \times 2tosc = 24tw + 16412tosc$

Notation:

tosc: OSC clock cycle time tw: Watch clock cycle time tcyc: System clock (φ) cycle time tsubcyc: Subclock (φSUB) cycle time

Time required before direct transfer from subactive mode to active (medium-speed) mode

A direct transfer is made from subactive mode to active (medium-speed) mode when a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, the MSON and DTON bits in SYSCR2 are set to 1, and the TMA3 bit in TMA is set to 1. A direct transfer time, that is, the time from SLEEP instruction execution to interrupt exception handling completion is calculated by expression (4) below.

Direct transfer time = (number of states for SLEEP instruction execution + number of states for internal processing) × tsubcyc before transition + (wait time designated by

STS2 to STS0 bits in SCR + number of states for interrupt exception handling execution) × tcyc after transition (4)

Example: Direct transfer time for the H8/3834 Series

(when CPU clock frequency is $\phi w/8$ and wait time is 8192 states)

 $= (2 + 1) \times 8tw + (8192 + 14) \times 16tosc = 24tw + 131296tosc$

Notation:

tosc: OSC clock cycle time tw: Watch clock cycle time

tcyc: System clock (ϕ) cycle time tsubcyc: Subclock (ϕ SUB) cycle time

Section 6 ROM

6.1 Overview

The H8/3833 has 24 kbytes of on-chip ROM, while the H8/3834 has 32 kbytes, the H8/3835 has 40 kbytes, the H8/3836 has 48 kbytes, and the H8/3837 has 60 kbytes. The ROM is connected to the CPU by a 16-bit data bus, allowing high-speed 2-state access for both byte data and word data. The ZTATTM versions of the H8/3834 and H8/3837 each have 32 kbytes and 60 kbytes of PROM.

6.1.1 Block Diagram

Figure 6-1 shows a block diagram of the on-chip ROM.

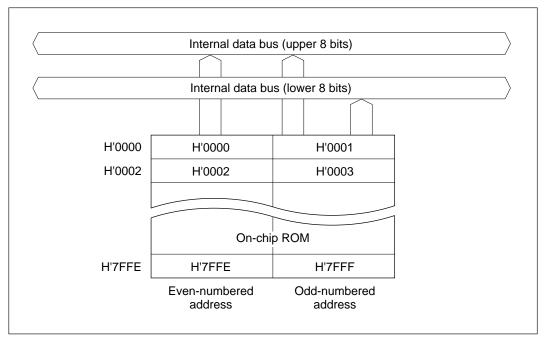


Figure 6-1 ROM Block Diagram (H8/3834)

6.2 H8/3834 PROM Mode

6.2.1 Setting to PROM Mode

If the on-chip ROM is PROM, setting the chip to PROM mode stops operation as a microcontroller and allows the PROM to be programmed in the same way as the standard HN27C256 EPROM. Table 6-1 shows how to set the chip to PROM mode.

Table 6-1 Setting to PROM Mode

Pin Name	Setting
TEST	High level
PB ₄ /AN ₄	Low level
PB ₅ /AN ₅	
PB ₆ /AN ₆	High level

6.2.2 Socket Adapter Pin Arrangement and Memory Map

A standard PROM programmer can be used to program the PROM. A socket adapter is required for conversion to 28 pins, as listed in table 6-2.

Figure 6-2 shows the pin-to-pin wiring of the socket adapter. Figure 6-3 shows a memory map.

Table 6-2 Socket Adapter

Package	Socket Adapter
100-pin (FP-100B)	HS3834ESH01H
100-pin (FP-100A)	HS3834ESF01H
100-pin (TFP-100B)	HS3834ESN01H

	H8/3834			EPRO	M socket
FP-100A	FP-100B	Pin		Pin	HN27C256
12	9	RES		V _{PP}	1
47	44	P6 ₀		EO ₀	11
48	45	P6 ₁		EO ₁	12
49	46	P6 ₂		EO ₂	13
50	47	P6 ₃		EO ₃	15
51	48	P6 ₄		EO ₄	16
52	49	P6 ₅		EO ₅	17
53	50	P6 ₆		EO ₆	18
54	51	P6 ₇		EO ₇	19
70	67	P8 ₇		EA ₀	10
69	66	P8 ₆		EA ₁	9
68	65	P8 ₅		EA ₂	8
67	64	P8 ₄		EA ₃	7
66	63	P8 ₃		EA ₄	6
65	62	P8 ₂		EA ₅	5
64	61	P8 ₁		EA ₆	4
63	60	P8 ₀		EA ₇	3
55	52	P7 ₀		EA ₈	25
91	88	P4 ₃		EA ₉	24
57	54	P7 ₂		EA ₁₀	21
58	55	P7 ₃		EA ₁₁	23
59	56	P7 ₄		EA ₁₂	2
60	57	P7 ₅		EA ₁₃	26
61	58	P7 ₆		EA ₁₄	27
62	59	P7 ₇		CE	20
56	53	P7 ₁		ŌĒ	22
34, 79	31, 76	V _{CC}	•	V _{CC}	28
92	89	AV _{CC}	—		
6	3	TEST	—		
8	5	X ₁			
99	96	PB ₆	—		
13	10	MD0			
81	78	P1 ₁			
82	79	P1 ₂			
83	80	P1 ₃			
9, 30	6, 27	V _{SS}	_	V _{SS}	14
5	2	AV _{SS}			
97	94	PB ₄			
98	95	PB₅	_		
84	81	P1 ₄			
85	82	P1 ₅	_		
86	83	P1 ₆			

Note: Pins not indicated in the figure should be left open.

Figure 6-2 Socket Adapter Pin Correspondence (with HN27C256)

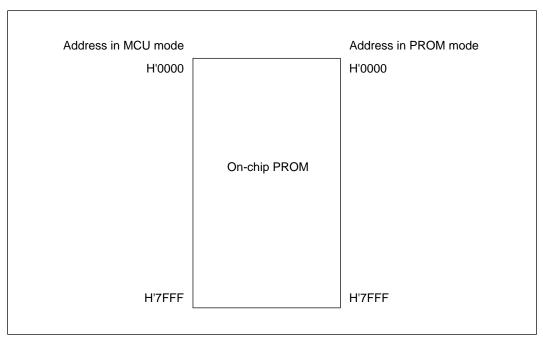


Figure 6-3 H8/3834 Memory Map in PROM Mode

Note: When programming with a PROM programmer, be sure to specify addresses from H'0000 to H'7FFF.

6.3 H8/3834 Programming

The write, verify, and other modes are selected as shown in table 6-3 in H8/3834 PROM mode.

Table 6-3 Mode Selection in H8/3834 PROM Mode

		Pin						
Mode	CE	ŌΕ	V _{PP}	V _{CC}	EO ₇ to EO ₀	EA ₁₄ to EA ₀		
Write	L	Н	V_{PP}	V_{CC}	Data input	Address input		
Verify	Н	L	V_{PP}	V_{CC}	Data output	Address input		
Programming disabled	Н	Н	V_{PP}	V _{CC}	High impedance	Address input		

Notation:

 $\begin{array}{ll} \text{L:} & \text{Low level} \\ \text{H:} & \text{High level} \\ \text{V}_{\text{PP}} \text{:} & \text{V}_{\text{PP}} \text{ level} \\ \text{V}_{\text{CC}} \text{:} & \text{V}_{\text{CC}} \text{ level} \end{array}$

The specifications for writing and reading the on-chip PROM are identical to those for the standard HN27C256 EPROM.

6.3.1 Writing and Verifying

An efficient, high-performance programming method is available for writing and verifying the PROM data. This method achieves high speed without voltage stress on the device and without lowering the reliability of written data. HTFF data is written in unused address areas.

The basic flow of this high-performance programming method is shown in figure 6-4. Table 6-4 and table 6-5 give the electrical characteristics in programming mode. Figure 6-5 shows a write/verify timing diagram.

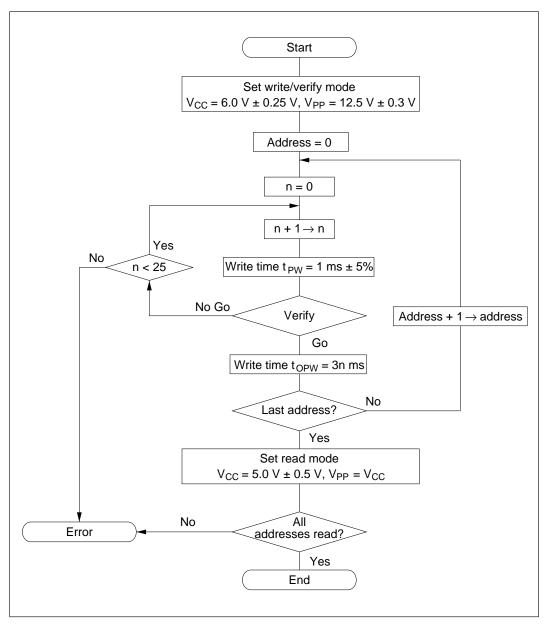


Figure 6-4 High-Performance Programming Flowchart

Table 6-4 DC Characteristics

(Conditions: $V_{CC} = 6.0 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Input high- level voltage	$\frac{EO_7}{OE}$ to EO_0 , EA_{14} to EA_0 ,	V_{IH}	2.4	_	V _{CC} + 0.3	V	
Input low- level voltage	$\frac{EO_7}{OE}$ to EO_0 , EA_{14} to EA_0 ,	V _{IL}	-0.3	_	0.8	V	
Output high- level voltage	EO ₇ to EO ₀	V _{OH}	2.4	_	_	V	$I_{OH} = -200 \ \mu A$
Output low- level voltage	EO ₇ to EO ₀	V _{OL}	_	_	0.45	V	I _{OL} = 0.8 mA
Input leakage current	$\frac{EO_7}{OE}$ to EO_0 , EA_{14} to EA_0 ,	I _{LI}	_	_	2	μΑ	V _{IN} = 5.25 V/0.5 V
V _{CC} current		I _{CC}	_	_	40	mΑ	
V _{PP} current		I _{PP}		_	40	mΑ	

Table 6-5 AC Characteristics

(Conditions: $V_{CC} = 6.0 \text{ V} \pm 0.25 \text{ V}, V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}, T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$)

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Address setup time	t _{AS}	2	_	_	μs	Figure 6-5*1
OE setup time	t _{OES}	2	_	_	μs	_
Data setup time	t _{DS}	2	_	_	μs	_
Address hold time	t _{AH}	0	_	_	μs	_
Data hold time	t _{DH}	2	_	_	μs	_
Data output disable time	t _{DF} *2	0	_	130	ns	_
V _{PP} setup time	t _{VPS}	2	_	_	μs	_
Programming pulse width	t _{PW}	0.95	1.0	1.05	ms	_
CE pulse width for overwrite programming	t _{OPW} *3	2.85	_	78.7	ms	-
V _{CC} setup time	t _{VCS}	2	_	_	μs	-
Data output delay time	t _{OE}	0	_	500	ns	-

Notes: 1. Input pulse level: 0.8 V to 2.2 V Input rise time/fall time ≤ 20 ns

> Timing reference levels Input: 1.0 V, 2.0 V

Output: 0.8 V, 2.0 V

- 2. t_{DF} is defined at the point at which the output is floating and the output level cannot be
- 3. $t_{\mbox{\scriptsize OPW}}$ is defined by the value given in figure 6-4 high-performance programming flow chart.

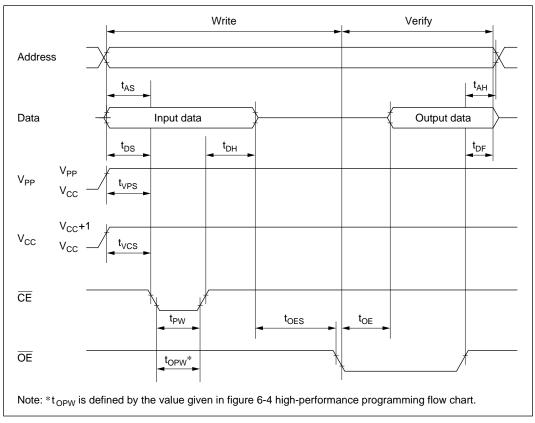


Figure 6-5 PROM Write/Verify Timing

6.3.2 Programming Precautions

• Use the specified programming voltage and timing.

The programming voltage in PROM mode (V_{PP}) is 12.5 V. Use of a higher voltage can permanently damage the chip. Be especially careful with respect to PROM programmer overshoot.

Setting the PROM programmer to Hitachi specifications for the HN27C256 will result in a correct V_{PP} of 12.5 V.

- Make sure the index marks on the PROM programmer socket, socket adapter, and chip are
 properly aligned. If they are not, the chip may be destroyed by excessive current flow.
 Before programming, be sure that the chip is properly mounted in the PROM programmer.
- Avoid touching the socket adapter or chip during programming, since this may cause contact faults and write errors.

6.4 H8/3837 PROM Mode

6.4.1 Setting to PROM Mode

If the on-chip ROM is PROM, setting the chip to PROM mode stops operation as a microcontroller and allows the PROM to be programmed in the same way as the standard HN27C101 EPROM. Table 6-6 shows how to set the chip to PROM mode.

Table 6-6 Setting to PROM Mode

Pin Name	Setting
TEST	High level
PB ₄ /AN ₄	Low level
PB ₅ /AN ₅	_
PB ₆ /AN ₆	High level

6.4.2 Socket Adapter Pin Arrangement and Memory Map

A standard PROM programmer can be used to program the PROM. A socket adapter is required for conversion to 32 pins, as listed in table 6-7.

Figure 6-6 shows the pin-to-pin wiring of the socket adapter. Figure 6-7 shows a memory map.

Table 6-7 Socket Adapter

Package	Socket Adapter				
100-pin (FP-100B)	HS3836ESH01H				
100-pin (FP-100A)	HS3836ESF01H				
100-pin (TFP-100B)	HS3836ESN01H				

	H8/3837		EI	PROM socket
FP-100A	FP-100B	Pin	Pin	HN27C101 (32 pins)
12	9	RES	V _{PP}	1
47	44	P6 ₀	EO ₀	13
48	45	P6 ₁	EO ₁	14
49	46	P6 ₂	EO ₂	15
50	47	P6 ₃	EO ₃	17
51	48	P6 ₄	EO ₄	18
52	49	P6 ₅	EO ₅	19
53	50	P6 ₆	EO ₆	20
54	51	P6 ₇	EO ₇	21
70	67	P8 ₇	EA ₀	12
69	66	P8 ₆	EA ₁	11
68	65	P8 ₅	EA ₂	10
67	64	P8 ₄	EA ₃	9
66	63	P8 ₃	EA ₄	8
65	62	P8 ₂	EA ₅	7
64	61	P8 ₁	EA ₆	6
63	60	P8 ₀	EA ₇	5
55	52	P7 ₀	EA ₈	27
91	88	P4 ₃	EA ₉	26
57	54	P7 ₂	EA ₁₀	23
58	55	P7 ₃	EA ₁₁	25
59	56	P7 ₄	EA ₁₂	4
60	57	P7 ₅	EA ₁₃	28
61	58	P7 ₆	EA ₁₄	29
84	81	P1 ₄	EA ₁₅	3
85	82	P1 ₅	EA ₁₆	2
62	59	P7 ₇	CE	22
56	53	P7 ₁	ŌĒ	24
83	80	P1 ₃	PGM	31
34, 79	31, 76	V _{CC}	V _{CC}	32
92	89	AV _{CC}	-	
6	3	TEST	→	
8	5	X ₁	-	
99	96	PB ₆	-	
13	10	MD0	→	
81	78	P1 ₁	-	
82	79	P1 ₂	-	
86	83	P1 ₆		
9, 30	6, 27	V _{SS}	V _{SS}	16
5	2	AV _{SS}	-	
97	94	PB ₄	-	
98	95	PB ₅		

Note: Pins not indicated in the figure should be left open.

Figure 6-6 Socket Adapter Pin Correspondence (with HN27C101)

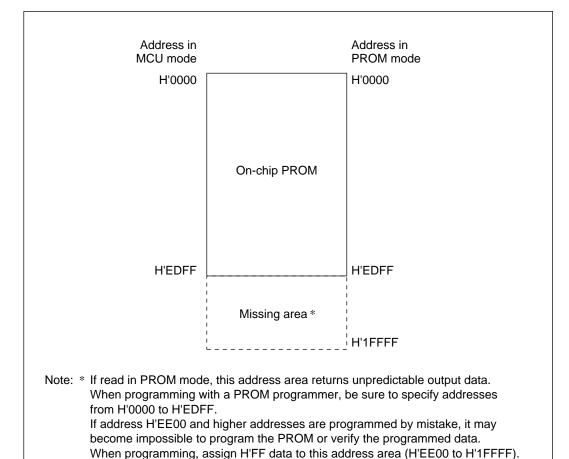


Figure 6-7 H8/3837 Memory Map in PROM Mode

6.5 H8/3837 Programming

The write, verify, and other modes are selected as shown in table 6-8 in H8/3837 PROM mode.

Table 6-8 Mode Selection in H8/3837 PROM Mode

	Pin						
Mode	CE	OE	PGM	V_{PP}	v_{cc}	EO ₇ to EO ₀	EA ₁₆ to EA ₀
Write	L	Н	L	V_{PP}	V_{CC}	Data input	Address input
Verify	L	L	Н	V_{PP}	V _{CC}	Data output	Address input
Programming	L	L	L	V_{PP}	V_{CC}	High impedance	Address input
disabled	L	Н	Н				
	Н	L	L				
	Н	Н	Н				

Notation

 $\begin{array}{ll} \text{L:} & \text{Low level} \\ \text{H:} & \text{High level} \\ \text{V}_{\text{PP}} \text{:} & \text{V}_{\text{PP}} \text{ level} \\ \text{V}_{\text{CC}} \text{:} & \text{V}_{\text{CC}} \text{ level} \end{array}$

The specifications for writing and reading the on-chip PROM are identical to those for the standard HN27C101 EPROM. Page programming is not supported, however. The PROM writer must not be set to page mode. A PROM programmer that provides only page programming mode cannot be used. When selecting a PROM programer, check that it supports a byte-by-byte high-speed, high-reliability programming method. Be sure to set the address range to H'0000 to H'EDFE.

6.5.1 Writing and Verifying

An efficient, high-speed, high-reliability method is available for writing and verifying the PROM data. This method achieves high speed without voltage stress on the device and without lowering the reliability of written data. The basic flow of this high-speed, high-reliability programming method is shown in figure 6-8.

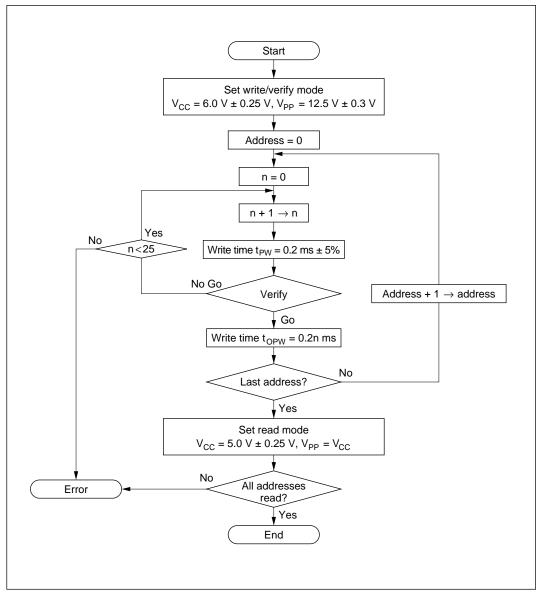


Figure 6-8 High-Speed, High-Reliability Programming Flow Chart

Table 6-9 and table 6-10 give the electrical characteristics in programming mode.

Table 6-9 DC Characteristics (preliminary)

(Conditions: $V_{CC} = 6.0 \text{ V} \pm 0.25 \text{ V}, V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}, V_{SS} = 0 \text{ V}, T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Input high- level voltage	$\frac{EO_7}{OE}, \frac{to}{CE}, \frac{EO_0}{PGM}, \frac{EA_{16}}{PGM}$	V _{IH}	2.4	_	V _{CC} + 0.3	V	
Input low- level voltage	$\frac{EO_7}{OE}, \frac{to}{CE}, \frac{EO_0}{PGM}, \frac{EA_{16}}{PGM}$	V _{IL}	-0.3	_	0.8	V	
Output high- level voltage	EO ₇ to EO ₀	V _{OH}	2.4	_	_	V	I _{OH} = -200 μA
Output low- level voltage	EO ₇ to EO ₀	V _{OL}	_	_	0.45	V	I _{OL} = 0.8 mA
Input leakage current	$\frac{EO_7}{OE}$ to $\frac{EO_0}{DE}$, $\frac{EA_{16}}{PGM}$ to $\frac{EA_0}{EA_{16}}$	I _{LI}	_	_	2	μΑ	V _{in} = 5.25 V/ 0.5 V
V _{CC} current		I _{CC}	_	_	40	mA	
V _{PP} current		I _{PP}	_	_	40	mA	

Table 6-10 AC Characteristics

(Conditions: $V_{CC} = 6.0 \text{ V} \pm 0.25 \text{ V}, V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}, T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$)

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Address setup time	t _{AS}	2	_	_	μs	Figure 6-9*1
OE setup time	t _{OES}	2	_	_	μs	_
Data setup time	t _{DS}	2	_	_	μs	_
Address hold time	t _{AH}	0	_	_	μs	_
Data hold time	t _{DH}	2	_	_	μs	_
Data output disable time	t _{DF} *2	_	_	130	ns	_
V _{PP} setup time	t _{VPS}	2	_	_	μs	_
Programming pulse width	t _{PW}	0.19	0.20	0.21	ms	_
PGM pulse width for overwrite programming	t _{OPW} *3	0.19	_	5.25	ms	_
V _{CC} setup time	t _{VCS}	2	_	_	μs	_
CE setup time	t _{CES}	2	_	_	μs	_
Data output delay time	t _{OE}	0	_	200	ns	_

Notes: 1. Input pulse level: 0.45 V to 2.4 V

Input rise time/fall time \leq 20 ns

Timing reference levels Input: 0.8 V, 2.0 V

Output: 0.8 V, 2.0 V

- t_{DF} is defined at the point at which the output is floating and the output level cannot be read.
- 3. t_{OPW} is defined by the value given in figure 6-8 high-speed, high-reliability programming flow chart.

Figure 6-9 shows a write/verify timing diagram.

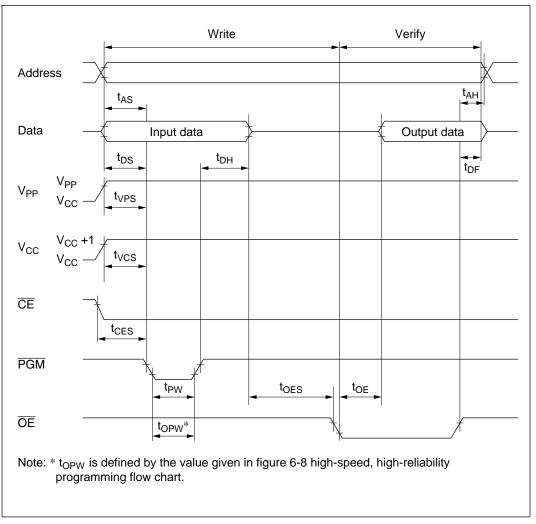


Figure 6-9 PROM Write/Verify Timing

6.5.2 Programming Precautions

• Use the specified programming voltage and timing.

The programming voltage in PROM mode (V_{PP}) is 12.5 V. Use of a higher voltage can permanently damage the chip. Be especially careful with respect to PROM programmer overshoot.

Setting the PROM programmer to Hitachi specifications for the HN27C101 will result in correct $V_{\rm PP}$ of 12.5 V.

- Make sure the index marks on the PROM programmer socket, socket adapter, and chip are
 properly aligned. If they are not, the chip may be destroyed by excessive current flow. Before
 programming, be sure that the chip is properly mounted in the PROM programmer.
- Avoid touching the socket adapter or chip while programming, since this may cause contact faults and write errors.
- Select the programming mode carefully. The chip cannot be programmed in page programming mode.
- When programming with a PROM programmer, be sure to specify addresses from H'0000 to H'EDFF. If address H'EE00 and higher addresses are programmed by mistake, it may become impossible to program the PROM or verify the programmed data. When programming, assign H'FF data to the address area from H'EE00 to H'1FFFF.

6.6 Reliability of Programmed Data

A highly effective way of assuring data retention characteristics after programming is to screen the chips by baking them at a temperature of 150°C. This quickly eliminates PROM memory cells prone to initial data retention failure.

Figure 6-10 shows a flowchart of this screening procedure.

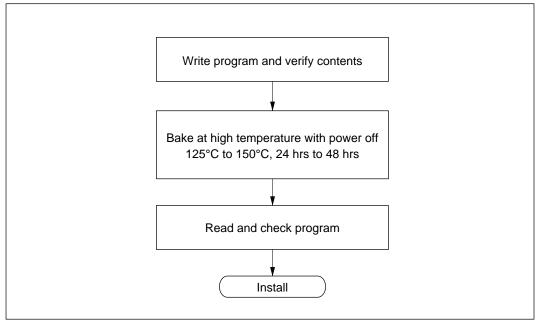


Figure 6-10 Recommended Screening Procedure

If write errors occur repeatedly while the same PROM programmer is being used, stop programming and check for problems in the PROM programmer and socket adapter, etc.

Please notify your Hitachi representative of any problems occurring during programming or in screening after high-temperature baking.

Section 7 RAM

7.1 Overview

The H8/3833 and H8/3834 have 1 kbyte of high-speed static RAM on-chip, while the H8/3835, H8/3836, and H8/3837 each have 2 kbytes. The RAM is connected to the CPU by a 16-bit data bus, allowing high-speed 2-state access for both byte data and word data.

7.1.1 Block Diagram

Figure 7-1 shows a block diagram of the on-chip RAM.

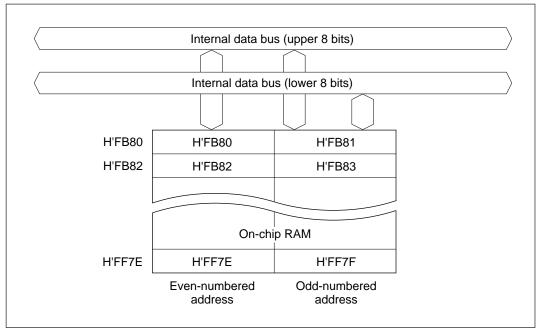


Figure 7-1 RAM Block Diagram (H8/3834)

Section 8 I/O Ports

8.1 Overview

The H8/3834 Series is provided with eight 8-bit I/O ports, one 4-bit I/O port, one 3-bit I/O port, one 8-bit input-only port, one 4-bit input-only port, and one 1-bit input-only port. Table 8-1 indicates the functions of each port.

Each port has of a port control register (PCR) that controls input and output, and a port data register (PDR) for storing output data. Input or output can be assigned to individual bits. See 2.9.2, Notes on Bit Manipulation, for information on executing bit-manipulation instructions to write data in PCR or PDR.

Ports 5, 6, 7, 8, 9, and A double as LCD segment pins and common pins. The choice of pin functions can be made in 4-bit groupings.

Block diagrams of each port are given in Appendix C.

Table 8-1 Port Functions

Port	Description	Pins	Other Functions	Function Switching Register
Port 1	8-bit I/O port Input pull-up MOS option	$\frac{\text{P1}_7 \text{ to P1}_5/}{\text{IRQ}_3 \text{ to IRQ}_1/}$ TMIF, TMIC,	External interrupts 3 to 1 Timer event input TMIF, TMIC, TMIB	PMR1 TCRF, TMC, TMB
		P1 ₄ /PWM	14-bit PWM output	PMR1
		P1 ₃ /TMIG	Timer G input capture	PMR1
		P1 ₂ , P1 ₁ / TMOFH, TMOFL	Timer F output compare	PMR1
		P1 ₀ /TMOW	Timer A clock output	PMR1
Port 2	• 8-bit I/O port	P2 ₇ to P2 ₂	None	
	 Open drain output option 	P2 ₁ /UD	Timer C count-up/down selection	PMR2
	High-current port	P2 ₀ /IRQ ₄ / ADTRG	External interrupt 4 and A/D converter external trigger	PMR2 AMR

Table 8-1 Port Functions (cont)

Dowt	Description	Dina	Other Franctions	Function Switching
Port	Description	Pins	Other Functions	Register
Port 3	 8-bit I/O port Input pull-up MOS option High-current port 	$P3_7/\overline{CS}$ $P3_6/STRB$ $P3_5/SO_2$ $P3_4/SI_2$ $P3_3/SCK_2$	SCI2 chip select input (\overline{CS}), strobe output (STRB), data output (SO ₂), data input (SI ₂), clock input/output (SCK ₂)	PMR3
		P3 ₂ /SO ₁ P3 ₁ /SI ₁ P3 ₀ /SCK ₁	SCI1 data output (SO ₁), data input (SI ₁), clock input/output (SCK ₁)	PMR3
Port 4	• 1-bit input-only port • 3-bit I/O port	P4 ₃ /IRQ ₀	External interrupt 0	PMR2
		P4 ₂ /TXD P4 ₁ /RXD P4 ₀ /SCK ₃	SCI3 data output (TXD), data input (RXD), clock input/output (SCK ₃)	SCR3 SMR3
Port 5	8-bit I/O port Input pull-up MOS option	P5 ₇ to P5 ₀ / WKP ₇ to WKP ₀ / SEG ₈ to SEG ₁	 Wakeup input (WKP₇ to WKP₀) Segment output (SEG₈ to SEG₁) 	PMR5 LPCR
Port 6	8-bit I/O port Input pull-up MOS option	P6 ₇ to P6 ₀ / SEG ₁₆ to SEG ₉	Segment output (SEG ₁₆ to SEG ₉)	LPCR
Port 7	• 8-bit I/O port	P7 ₇ to P7 ₀ / SEG ₂₄ to SEG ₁₇	Segment output (SEG ₂₄ to SEG ₁₇)	LPCR
Port 8	• 8-bit I/O port	P8 ₇ to P8 ₀ / SEG ₃₂ to SEG ₂₅	Segment output (SEG ₃₂ to SEG ₂₅)	LPCR
Port 9	• 8-bit I/O port	P9 ₇ /SEG ₄₀ /CL ₁ P9 ₆ /SEG ₃₉ /CL ₂ P9 ₅ /SEG ₃₈ /DO P9 ₄ /SEG ₃₇ /M P9 ₃ to P9 ₀ / SEG ₃₆ to SEG ₃₃	 Segment output (SEG₄₀ to SEG₃₇) Latch clock (CL₁), for external segment expansion, shift clock (CL₂), display data port (DO), and alternating signal (M) Segment output (SEG₃₆ to SEG₃₃) 	LPCR
Port A	• 4-bit I/O port	PA ₃ to PA ₀ / COM ₄ to COM ₁	Common output (COM ₄ to COM ₁)	LPCR
Port B	8-bit input port	PB ₇ to PB ₀ / AN ₇ to AN ₀	A/D converter analog input	AMR
Port C	• 4-bit input port	PC ₃ to PC ₀ / AN ₁₁ to AN ₈	A/D converter analog input	AMR

8.2 Port 1

8.2.1 Overview

Port 1 is an 8-bit I/O port. Figure 8-1 shows its pin configuration.

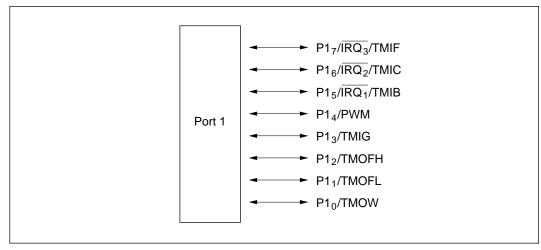


Figure 8-1 Port 1 Pin Configuration

8.2.2 Register Configuration and Description

Table 8-2 shows the port 1 register configuration.

Table 8-2 Port 1 Registers

Name	Abbrev.	R/W	Initial Value	Address
Port data register 1	PDR1	R/W	H'00	H'FFD4
Port control register 1	PCR1	W	H'00	H'FFE4
Port pull-up control register 1	PUCR1	R/W	H'00	H'FFE0
Port mode register 1	PMR1	R/W	H'00	H'FFC8

1. Port data register 1 (PDR1)

Bit	7	6	5	4	3	2	1	0
	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PDR1 is an 8-bit register that stores data for pins P1₇ through P1₀. If port 1 is read while PCR1 bits are set to 1, the values stored in PDR1 are read, regardless of the actual pin states. If port 1 is read while PCR1 bits are cleared to 0, the pin states are read.

Upon reset, PDR1 is initialized to H'00.

2. Port control register 1 (PCR1)

Bit	7	6	5	4	3	2	1	0
	PCR1 ₇	PCR1 ₆	PCR1 ₅	PCR1 ₄	PCR1 ₃	PCR1 ₂	PCR1 ₁	PCR1 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR1 is an 8-bit register for controlling whether each of the port 1 pins P1₇ to P1₀ functions as an input pin or output pin. Setting a PCR1 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR1 and in PDR1 are valid only when the corresponding pin is designated in PMR1 as a general I/O pin.

Upon reset, PCR1 is initialized to H'00.

PCR1 is a write-only register. All bits are read as 1.

3. Port pull-up control register 1 (PUCR1)

Bit	7	6	5	4	3	2	1	0
	PUCR1 ₇	PUCR1 ₆	PUCR1 ₅	PUCR1 ₄	PUCR1 ₃	PUCR1 ₂	PUCR1 ₁	PUCR1 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PUCR1 controls whether the MOS pull-up of each port 1 pin is on or off. When a PCR1 bit is cleared to 0, setting the corresponding PUCR1 bit to 1 turns on the MOS pull-up for the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.

Upon reset, PUCR1 is initialized to H'00.

4. Port mode register 1 (PMR1)

Bit	7	6	5	4	3	2	1	0
	IRQ3	IRQ2	IRQ1	PWM	TMIG	TMOFH	TMOFL	TMOW
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PMR1 is an 8-bit read/write register, controlling the selection of pin functions for port 1 pins.

Upon reset, PMR1 is initialized to H'00.

Bit 7: P1₇/IRQ₃/TMIF pin function switch (IRQ3)

This bit selects whether pin $P1_7/\overline{IRQ_3}/TMIF$ is used as $P1_7$ or as $\overline{IRQ_3}/TMIF$.

Bit 7
IRQ3 Description

0 Functions as P1₇ I/O pin (initial value)

1 Functions as IRQ₃/TMIF input pin

Note: Rising or falling edge sensing can be designated for $\overline{RQ_3}$ /TMIF. For details on TMIF pin settings, see 9.5.2 (3), timer control register F (TCRF).

Bit 6: P1₆/IRQ₂/TMIC pin function switch (IRQ2)

This bit selects whether pin P1₆/ $\overline{IRQ_2}$ /TMIC is used as P1₆ or as $\overline{IRQ_2}$ /TMIC.

Bit 6 IRQ2	Description	
0	Functions as P1 ₆ I/O pin	(initial value)
1	Functions as IRQ2/TMIC input pin	

Note: Rising or falling edge sensing can be designated for IRQ₂/TMIC. For details on TMIC pin settings, see 9.4.2 (1), timer mode register C (TMC).

Bit 5: $P1_5/\overline{IRQ_1}/TMIB$ pin function switch (IRQ1)

This bit selects whether pin $P1_5/\overline{IRQ_1}/TMIB$ is used as $P1_5$ or as $\overline{IRQ_1}/TMIB$.

Bit 5 IRQ1	Description	
0	Functions as P1 ₅ I/O pin	(initial value)
1	Functions as IRQ ₁ /TMIB input pin	

Note: Rising or falling edge sensing can be designated for IRQ₁/TMIB. For details on TMIB pin settings, see 9.3.2 (1), timer mode register B (TMB).

Bit 4: P1₄/PWM pin function switch (PWM)

This bit selects whether pin P1₄/PWM is used as P1₄ or as PWM.

Bit 4		
PWM	Description	
0	Functions as P1 ₄ I/O pin	(initial value)
1	Functions as PWM output pin	

Bit 3: P1₃/TMIG pin function switch (TMIG)

This bit selects whether pin P1₃/TMIG is used as P1₃ or as TMIG.

Bit 3 TMIG Description 0 Functions as P1₃ I/O pin (initial value) 1 Functions as TMIG input pin

Bit 2: P1₂/TMOFH pin function switch (TMOFH)

This bit selects whether pin P1₂/TMOFH is used as P1₂ or as TMOFH.

Bit 2 TMOFH	Description	
0	Functions as P1 ₂ I/O pin	(initial value)
1	Functions as TMOFH output pin	

Bit 1: P1₁/TMOFL pin function switch (TMOFL)

This bit selects whether pin P1₁/TMOFL is used as P1₁ or as TMOFL.

Bit 1 TMOFL	Description	
0	Functions as P1 ₁ I/O pin	(initial value)
1	Functions as TMOFL output pin	

Bit 0: P1₀/TMOW pin function switch (TMOW)

This bit selects whether pin P1₀/TMOW is used as P1₀ or as TMOW.

Pin Functions and Selection Method

Bit 0

TMOW	Descrition	
0	Functions as P1 ₀ I/O pin	(initial value)
1	Functions as TMOW output pin	

8.2.3 Pin Functions

Table 8-3 shows the port 1 pin functions.

Table 8-3 Port 1 Pin Functions

P1₇/IRQ₃/TMIF

Pin

The pin function depends on bit IRQ3 in PMR1, bits CKSL2 to CKSL0 in TCRF, and bit $PCR1_7$ in PCR1.

IRQ3	(0	1		
PCR1 ₇	0 1		*		
CKSL2 to CKSL0	*		Not 0**	0**	
Pin function	P1 ₇ input pin P1 ₇ output pin		IRQ ₃ input pin	IRQ ₃ /TMIF input pin	

Note: When using as TMIF input pin, clear bit IEN3 in IENR1 to 0, disabling IRQ_3 interrupts.

 $P1_6/\overline{IRQ_2}/TMIC$

The pin function depends on bit IRQ2 in PMR1, bits TMC2 to TMC0 in TMC, and bit $PCR1_6$ in PCR1.

IRQ2		0	1	
PCR1 ₆	0	1	*	
TMC2 to TMC0	;	*	Not 111	111
Pin function	P1 ₆ input pin P1 ₆ output pin		IRQ ₂ input pin	IRQ ₂ /TMIC input pin

Note: When using as TMIC input pin, clear bit IEN2 in IENR1 to 0, disabling IRQ2 interrupts.

Note: * Don't care

Table 8-3 Port 1 Pin Functions (cont)

P1 ₅ /IRQ ₁ / TMIB	The pin function depends on bit IRQ1 in PMR1, bits TMB2 to TMB0 in TMB, and
	bit PCR1 ₅ in PCR1.

IRQ1		0	1	
PCR1 ₅	0	1	*	
TMB2 to TMB0	:	*	Not 111	111
Pin function	P1 ₅ input pin P1 ₅ output pin		IRQ ₁ input pin	IRQ ₁ /TMIB input pin

Note: When using as TMIB input pin, clear bit IEN1 in IENR1 to 0, disabling IRQ1 interrupts.

P1₄/PWM The pin function depends on bit PWM in PMR1 and bit PCR1₄ in PCR1.

PWM		0	1
PCR1 ₄	0 1		*
Pin function	P1 ₄ input pin P1 ₄ output pin		PWM output pin

P1₃/TMIG The pin function depends on bit TMIG in PMR1 and bit PCR1₃ in PCR1.

TMIG		0	1
PCR1 ₃	0 1		*
Pin function	P1 ₃ input pin P1 ₃ output pin		TMIG input pin

$P1_2$ /TMOFH The pin function depends on bit TMOFH in PMR1 and bit PCR1₂ in PCR1.

TMOFH	(0	1
PCR1 ₂	0 1		*
Pin function	P1 ₂ input pin	P1 ₂ output pin	TMOFH output pin

$P1_1/TMOFL$ The pin function depends on bit TMOFL in PMR1 and bit PCR1₁ in PCR1.

TMOFL		0	1
PCR1 ₁	0 1		*
Pin function	P1 ₁ input pin P1 ₁ output pin		TMOFL output pin

P1₀/TMOW The pin function depends on bit TMOW in PMR1 and bit PCR1₀ in PCR1.

TMOW		0	1
PCR1 ₀	0 1		*
Pin function	P1 ₀ input pin P1 ₀ output pin		TMOW output pin

Note: * Don't care

8.2.4 Pin States

Table 8-4 shows the port 1 pin states in each operating mode.

Table 8-4 Port 1 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P1 ₇ /IRQ ₃ /TMIF P1 ₆ /IRQ ₂ /TMIC P1 ₅ /IRQ ₁ /TMIB P1 ₄ /PWM P1 ₃ /TMIG P1 ₂ /TMOFH P1 ₁ /TMOFL P1 ₀ /TMOW	High- impedance	Retains previous state	Retains previous state	High- impedance*	Retains previous state	Functional	Functional

Note: * A high-level signal is output when the MOS pull-up is in the on state.

8.2.5 MOS Input Pull-Up

Port 1 has a built-in MOS input pull-up function that can be controlled by software. When a PCR1 bit is cleared to 0, setting the corresponding PUCR1 bit to 1 turns on the MOS input pull-up for that pin. The MOS input pull-up function is in the off state after a reset.

PCR1 _n	0		1
PUCR1 _n	0 1		*
MOS input pull-up	Off	On	Off

Note: * Don't care n = 7 to 0

8.3 Port 2

8.3.1 Overview

Port 2 is an 8-bit I/O port. Figure 8-2 shows its pin configuration.

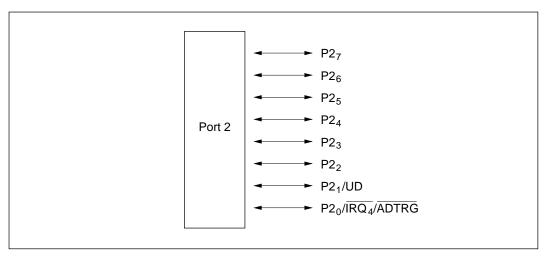


Figure 8-2 Port 2 Pin Configuration

8.3.2 Register Configuration and Description

Table 8-5 shows the port 2 register configuration.

 Table 8-5
 Port 2 Registers

Name	Abbrev.	R/W	Initial Value	Address
Port data register 2	PDR2	R/W	H'00	H'FFD5
Port control register 2	PCR2	W	H'00	H'FFE5
Port mode register 2	PMR2	R/W	H'C0	H'FFC9
Port mode register 4	PMR4	R/W	H'00	H'FFCB

1. Port data register 2 (PDR2)

Bit	7	6	5	4	3	2	1	0
	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PDR2 is an 8-bit register that stores data for pins P2₇ through P2₀. If port 2 is read while PCR2 bits are set to 1, the values stored in PDR2 are read, regardless of the actual pin states. If port 2 is read while PCR2 bits are cleared to 0, the pin states are read.

Upon reset, PDR2 is initialized to H'00.

2. Port control register 2 (PCR2)

Bit	7	6	5	4	3	2	1	0
	PCR2 ₇	PCR2 ₆	PCR2 ₅	PCR2 ₄	PCR2 ₃	PCR2 ₂	PCR2 ₁	PCR2 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR2 is an 8-bit register for controlling whether each of the port 2 pins $P2_7$ to $P2_0$ functions as an input pin or output pin. Setting a PCR2 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR2 and in PDR2 are valid only when the corresponding pin is designated in PMR2 as a general I/O pin.

Upon reset, PCR2 is initialized to H'00.

PCR2 is a write-only register. All bits are read as 1.

3. Port mode register 2 (PMR2)

Bit	7	6	5	4	3	2	1	0
	_	_	POF2	NCS	IRQ0	POF1	UD	IRQ4
Initial value	1	1	0	0	0	0	0	0
Read/Write	_	_	R/W	R/W	R/W	R/W	R/W	R/W

PMR2 is an 8-bit read/write register, controlling the selection of pin functions for pins $P2_0$, $P2_1$, and $P4_3$, controlling the PMOS on/off option for pins $P3_5/SO_2$ and $P3_2/SO_1$, and controlling the TMIG input noise canceller.

Upon reset, PMR2 is initialized to H'CO.

Bits 7 to 6: Reserved bits

Bits 7 to 6 are reserved; they are always read as 1, and cannot be modified.

Bit 5: P3₅/SO₂ pin PMOS control (POF2)

This bit controls the PMOS transistor in the P3₅/SO₂ pin output buffer.

Bit 5

POF2	Description	
0	CMOS output	(initial value)
1	NMOS open-drain output	

Bit 4: TMIG noise canceller select (NCS)

This bit controls the noise canceller circuit for input capture at pin TMIG.

Bit 4

NCS	Description	
0	Noise canceller function not selected	(initial value)
1	Noise canceller function selected	

Bit 3: $P4_3/\overline{IRQ_0}$ pin function switch (IRQ0)

This bit selects whether pin $P4_3/\overline{IRQ_0}$ is used as $P4_3$ or as $\overline{IRQ_0}$.

Bit 3

IRQ0	Description	
0	Functions as P4 ₃ input pin	(initial value)
1	Functions as $\overline{IRQ_0}$ input pin	

Bit 2: P3₂/SO₁ pin PMOS control (POF1)

This bit controls the PMOS transistor in the P3₂/SO₁ pin output buffer.

Bit 2

POF1	Description	
0	CMOS output	(initial value)
1	NMOS open-drain output	

Bit 1: P2₁/UD pin function switch (UD)

This bit selects whether pin P2₁/UD is used as P2₁ or as UD.

Bit 1 UD Description

0	Functions as P2 ₁ I/O pin	(initial value)
1	Functions as UD input pin	

Bit 0: P2₀/IRQ₄/ADTRG pin function switch (IRQ4)

This bit selects whether pin $P2_0/\overline{IRQ_4}/\overline{ADTRG}$ is used as $P2_0$ or as $\overline{IRQ_4}/\overline{ADTRG}$.

Bit 0		
IRQ4	Description	
0	Functions as P2 ₀ I/O pin	(initial value)
1	Functions as IRQ ₄ /ADTRG input pin	

Note: See 12.3.2, Start of A/D Conversion by External Trigger Input, for the ADTRG pin setting.

4. Port mode register 4 (PMR4)

Bit	7	6	5	4	3	2	1	0
	NMOD ₇	NMOD ₆	NMOD ₅	NMOD ₄	NMOD ₃	NMOD ₂	NMOD ₁	NMOD ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PMR4 is an 8-bit read/write register, used to select CMOS output or NMOS open drain output for each port 2 pin.

Upon reset, PMR4 is initialized to H'00.

Bit n: NMOS open-drain output select (NMODn)

This bit selects CMOS output or NMOS open-drain output when pin $P2_n$ is used as an output pin.

Bit n NMODn	Description	
0	CMOS output	
1	NMOS open-drain output	
	(n =	= 7 to 0)

8.3.3 Pin Functions

Table 8-6 shows the port 2 pin functions.

Table 8-6 Port 2 Pin Functions

Pin	Pin Functions and Selection Method						
P2 ₇ to P2 ₂	Input or output is selected as follows by the bit settings in PCR2. $(n = 2 \text{ to } 7)$						
	PCR2n		0		1		
	Pin function	P2 _n in	put pin	P2 _n ou	utput pin		
P2 ₁ /UD	The pin function depends on bit UD in PMR2 and bit PCR2 ₁ in PCR2.						
	UD		0	1			
	PCR2 ₁	0 1		*			
	Pin function	P2 ₁ input pin	P2 ₁ output pin	UD ir	put pin		
P2 ₀ /IRQ ₄ /ADTRG	The pin function depends on bit IRQ4 in PMR2, bit TRGE in AMR, and bit PCR2 ₀ in PCR2.						
	IRQ4 0			1			
	PCR2 ₀	PCR2 ₀ 0 1		*			
	TRGE		*	0	1		
	Pin function	P2 ₀ input pin	P2 ₀ output pin	IRQ ₄ input pin	IRQ ₄ /ADTRG		
	Note: When using as ADTRG input pin, clear bit IEN4 in IENR1 to 0, disabling $\overline{IRQ_4}$ interrupts.						

Note: * Don't care

8.3.4 Pin States

Table 8-7 shows the port 2 pin states in each operating mode.

Table 8-7 Port 2 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P2 ₇ to P2 ₂ P2 ₁ /UD P2 ₀ /IRQ ₄ / ADTRG	High- impedance	Retains previous state	Retains previous state	High- impedance	Retains previous state	Functional	Functional

8.4 Port 3

8.4.1 Overview

Port 3 is an 8-bit I/O port, configured as shown in figure 8-3.

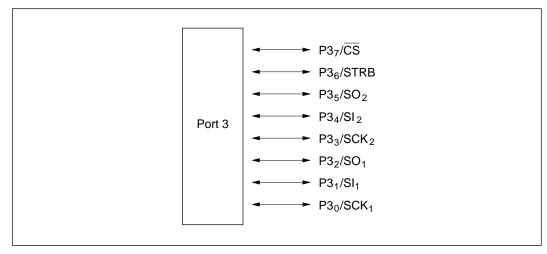


Figure 8-3 Port 3 Pin Configuration

8.4.2 Register Configuration and Description

Table 8-8 shows the port 3 register configuration.

Table 8-8 Port 3 Registers

Name	Abbrev.	R/W	Initial Value	Address
Port data register 3	PDR3	R/W	H'00	H'FFD6
Port control register 3	PCR3	W	H'00	H'FFE6
Port pull-up control register 3	PUCR3	R/W	H'00	H'FFE1
Port mode register 3	PMR3	R/W	H'00	H'FFCA

1. Port data register 3 (PDR3)

Bit	7	6	5	4	3	2	1	0
	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PDR3 is an 8-bit register that stores data for port 3 pins P3₇ to P3₀. If port 3 is read while PCR3 bits are set to 1, the values stored in PDR3 are read, regardless of the actual pin states. If port 3 is read while PCR3 bits are cleared to 0, the pin states are read.

Upon reset, PDR3 is initialized to H'00.

2. Port control register 3 (PCR3)

Bit	7	6	5	4	3	2	1	0
	PCR3 ₇	PCR3 ₆	PCR3 ₅	PCR3 ₄	PCR3 ₃	PCR3 ₂	PCR3 ₁	PCR3 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR3 is an 8-bit register for controlling whether each of the port 3 pins P3₇ to P3₀ functions as an input pin or output pin. Setting a PCR3 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR3 and in PDR3 are valid only when the corresponding pin is designated in PMR3 as a general I/O pin.

Upon reset, PCR3 is initialized to H'00.

PCR3 is a write-only register. All bits are read as 1.

3. Port pull-up control register 3 (PUCR3)

Bit	7	6	5	4	3	2	1	0
	PUCR3 ₇	PUCR3 ₆	PUCR3 ₅	PUCR3 ₄	PUCR3 ₃	PUCR3 ₂	PUCR3 ₁	PUCR3 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PUCR3 controls whether the MOS pull-up of each port 3 pin is on or off. When a PCR3 bit is cleared to 0, setting the corresponding PUCR3 bit to 1 turns on the MOS pull-up for the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.

Upon reset, PUCR3 is initialized to H'00.

4. Port mode register 3 (PMR3)

Bit	7	6	5	4	3	2	1	0
	cs	STRB	SO2	SI2	SCK2	SO1	SI1	SCK1
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PMR3 is an 8-bit read/write register, controlling the selection of pin functions for port 3 pins.

Upon reset, PMR3 is initialized to H'00.

Bit 7: $P3_7/\overline{CS}$ pin function switch (CS)

This bit selects whether pin $P3_7/\overline{CS}$ is used as $P3_7$ or as \overline{CS} .

Bit 7 CS Description Functions as P3₇ I/O pin Functions as CS input pin (initial value)

Bit 6: P3₆/STRB pin function switch (STRB)

This bit selects whether pin P3₆/STRB is used as P3₆ or as STRB.

Description	
Functions as P3 ₆ I/O pin	(initial value)
Functions as STRB output pin	
	Functions as P3 ₆ I/O pin

Bit 5: P3₅/SO₂ pin function switch (SO2)

This bit selects whether pin P3₅/SO₂ is used as P3₅ or as SO₂.

Bit 5 SO2	Description	
0	Functions as P3 ₅ I/O pin	(initial value)
1	Functions as SO ₂ output pin	

Bit 4: P3₄/SI₂ pin function switch (SI2)

This bit selects whether pin P3₄/SI₂ is used as P3₄ or as SI₂.

Bit	4
SI2	

SI2	Description	
0	Functions as P3 ₄ I/O pin	(initial value)
1	Functions as SI ₂ input pin	

Bit 3: P3₃/SCK₂ pin function switch (SCK2)

This bit selects whether pin P3₃/SCK₂ is used as P3₃ or as SCK₂.

Bit 3

SCK2	Description	
0	Functions as P3 ₃ I/O pin	(initial value)
1	Functions as SCK ₂ I/O pin	

Bit 2: P3₂/SO₁ pin function switch (SO1)

This bit selects whether pin $P3_2/SO_1$ is used as $P3_2$ or as SO_1 .

Bit 2

SO1	Description	
0	Functions as P3 ₂ I/O pin	(initial value)
1	Functions as SO ₁ output pin	

Bit 1: P3₁/SI₁ pin function switch (SI1)

This bit selects whether pin P3₁/SI₁ is used as P3₁ or as SI₁.

Bit 1

SI1	Description	
0	Functions as P3 ₁ I/O pin	(initial value)
1	Functions as SI ₁ input pin	

Bit 0: P3₀/SCK₁ pin function switch (SCK1)

This bit selects whether pin P3₀/SCK₁ is used as P3₀ or as SCK₁.

Bit 0
SCK1 Description

0 Functions as P3₀ I/O pin (initial value)

1 Functions as SCK₁ I/O pin

8.4.3 Pin Functions

Table 8-9 shows the port 3 pin functions.

Table 8-9 Port 3 Pin Functions

Pin	Pin Functions a	and Selection I	Method	
P3 ₇ /CS	The pin function	depends on bit	CS in PMR3 ar	nd bit PCR3 ₇ in PCR3.
	CS		0	1
	PCR3 ₇	0	1	*
	Pin function	P3 ₇ input pin	P3 ₇ output pin	CS input pin
P3 ₆ /STRB	The pin function	depends on bit	STRB in PMR3	3 and bit PCR3 ₆ in PCR3.
	STRB		0	1
	PCR3 ₆	0	1	*
	Pin function	P3 ₆ input pin P3 ₆ output pin		STRB output pin
P3 ₅ /SO ₂	The pin function	depends on bit	and bit PCR3 ₅ in PCR3.	
	SO2		0	1
	PCR3 ₅	0	1	*
	Pin function	P3 ₅ input pin	P3 ₅ output pin	SO ₂ output pin
P3 ₄ /SI ₂	The pin function	depends on bit	SI ₂ in PMR3 ar	nd bit PCR3 ₄ in PCR3.
	SI2		0	1
	PCR3 ₄	0	1	*
	Pin function	P3 ₄ input pin	P3 ₄ output pin	SI ₂ input pin

Note: * Don't care

Table 8-9 Port 3 Pin Functions (cont)

Pin	Pin Functions and Selection Method						
P3 ₃ /SCK ₂	The pin function depends on bit SCK2 in PMR3, bits CKS2 to 0 in SCR2, and bit PCR3 $_3$ in PCR3.						
	SCK2		0		1		
	CKS2 to CKS0		*	Not 111	111		
	PCR3 ₃	0	1	*	*		
	Pin function	P3 ₃ input pin	P3 ₃ output pin	SCK ₂ output pin	SCK ₂ input pin		
P3 ₂ /SO ₁	The pin function depends on bit SO1 in PMR3 and bit PCR3 ₂ in PCR3.						
SO1 0 1							
	PCR3 ₂	0	1	*			
	Pin function	P3 ₂ input pin	P3 ₂ output pin	SO ₁ ou	tput pin		
P3 ₁ /SI ₁	The pin function	depends on bi	t SI1 in PMR3 a	nd bit PCR3 ₁ in I	PCR3.		
	SI1		0	1			
	PCR3 ₁	0	1	:	*		
	Pin function	P3 ₁ input pin	P3 ₁ output pin	SI ₁ in	out pin		
P3 ₀ /SCK ₁	The pin function PCR3 ₀ in PCR3		t SCK1 in PMR	3, bit CKS3 in SC	CR1, and bit		
	SCK1		0		1		
	CKS3		*	0	1		
	PCR3 ₀	0	1	*	*		
	Pin function	P3 ₀ input pin	P3 ₀ output pin	SCK ₁ output pin	SCK ₁ input pin		

Note: * Don't care

8.4.4 Pin States

Table 8-10 shows the port 3 pin states in each operating mode.

Table 8-10 Port 3 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P3 ₇ /CS P3 ₆ /STRB P3 ₅ /SO ₂ P3 ₄ /SI ₂ P3 ₃ /SCK ₂ P3 ₂ /SO ₁ P3 ₁ /SI ₁ P3 ₀ /SCK ₁	High- impedance	Retains previous state	Retains previous state	High- impedance*	Retains previous state	Functional	Functional

Note: * A high-level signal is output when the MOS pull-up is in the on state.

8.4.5 MOS Input Pull-Up

Port 3 has a built-in MOS input pull-up function that can be controlled by software. When a PCR3 bit is cleared to 0, setting the corresponding PUCR3 bit to 1 turns on the MOS pull-up for that pin. The MOS pull-up function is in the off state after a reset.

PCR3 _n		0	1
PUCR3 _n	0	1	*
MOS input pull-up	Off	On	Off

Note: * Don't care (n = 7 to 0)

8.5 Port 4

8.5.1 Overview

Port 4 consists of a 3-bit I/O port and a 1-bit input port, and is configured as shown in figure 8-4.

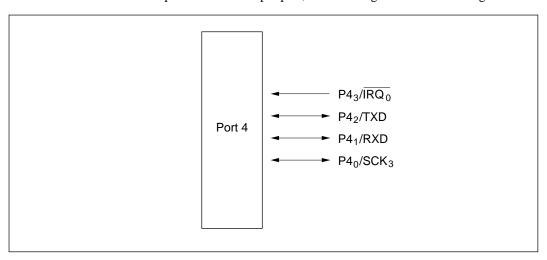


Figure 8-4 Port 4 Pin Configuration

8.5.2 Register Configuration and Description

Table 8-11 shows the port 4 register configuration.

Table 8-11 Port 4 Registers

Name	Abbrev.	R/W	Initial Value	Address
Port data register 4	PDR4	R/W	H'F8	H'FFD7
Port control register 4	PCR4	W	H'F8	H'FFE7

1. Port data register 4 (PDR4)

Bit	7	6	5	4	3	2	1	0
	_	_	_	_	P4 ₃	P4 ₂	P4 ₁	P4 ₀
Initial value	1	1	1	1	1	0	0	0
Read/Write	_	_			R	R/W	R/W	R/W

PDR4 is an 8-bit register that stores data for port 4 pins P4₂ to P4₀. If port 4 is read while PCR4 bits are set to 1, the values stored in PDR4 are read, regardless of the actual pin states. If port 4 is read while PCR4 bits are cleared to 0, the pin states are read.

Upon reset, PDR4 is initialized to H'F8.

2. Port control register 4 (PCR4)

Bit	7	6	5	4	3	2	1	0
	_	_	_	_	_	PCR4 ₂	PCR4 ₁	PCR4 ₀
Initial value	1	1	1	1	1	0	0	0
Read/Write	_	_	_	_	_	W	W	W

PCR4 controls whether each of the port 4 pins $P4_2$ to $P4_0$ functions as an input pin or output pin. Setting a PCR4 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR4 and in PDR4 are valid only when the corresponding pin is designated in SCR3 as a general I/O pin.

Upon reset, PCR4 is initialized to H'F8.

PCR4 is a write-only register. All bits are read as 1.

8.5.3 Pin Functions

Table 8-12 shows the port 4 pin functions.

Table 8-12 Port 4 Pin Functions

Pin	Pin Functions a	Pin Functions and Selection Method						
P4 ₃ /IRQ ₀	The pin function	depends on the	e IRQ0 bit settir	ng in PM	IR2.			
	IRQ0		0		1			
	Pin function	P4 ₃ in	put pin		ĪRQ ₀ in	put pin		
P4 ₂ /TXD	The pin function	depends on bit	TE in SCR3 ar	nd bit PC	CR4 ₂ in F	PCR4.		
	UD		0		1			
	PCR4 ₂	0	1		*	:		
	Pin function	P4 ₂ input pin	P4 ₂ output pin		TXD o	utput pin		
P4 ₁ /RXD	The pin function	nction depends on bit RE in SCR3 and bit				it PCR4 ₁ in PCR4.		
	RE			1				
	PCR4 ₁	0	1		*	:		
	Pin function	P4 ₁ input pin	P4 ₁ output pin	output pin RXD in		put pin		
P4 ₀ /SCK ₃	The pin function and bit PCR4 ₀ ir		ts CKE1 and Ch	KE0 in S	CR3, bit	COM in SMR,		
	CKE1		0			1		
	CKE0		0		1	*		
	COM	0		1	*	*		
	PCR4 ₀	0	1		*	*		
	Pin function	P4 ₀ input pin	P4 ₀ output pin	4 ₀ output pin SCK ₃ output pin		SCK ₃ input pin		

Note: * Don't care

8.5.4 Pin States

Table 8-13 shows the port 4 pin states in each operating mode.

Table 8-13 Port 4 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P4 ₃ /IRQ ₀ P4 ₂ /TXD P4 ₁ /RXD P4 ₀ /SCK ₃	High- impedance	Retains previous state	Retains previous state	High- impedance	Retains previous state	Functional	Functional

8.6 Port 5

8.6.1 Overview

Port 5 is an 8-bit I/O port, configured as shown in figure 8-5.

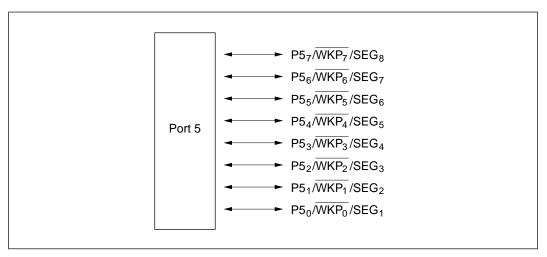


Figure 8-5 Port 5 Pin Configuration

8.6.2 Register Configuration and Description

Table 8-14 shows the port 5 register configuration.

Table 8-14 Port 5 Registers

Name	Abbrev.	R/W	Initial Value	Address
Port data register 5	PDR5	R/W	H'00	H'FFD8
Port control register 5	PCR5	W	H'00	H'FFE8
Port pull-up control register 5	PUCR5	R/W	H'00	H'FFE2
Port mode register 5	PMR5	R/W	H'00	H'FFCC

1. Port data register 5 (PDR5)

Bit	7	6	5	4	3	2	1	0
	P5 ₇	P5 ₆	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PDR5 is an 8-bit register that stores data for port 5 pins P5₇ to P5₀. If port 5 is read while PCR5 bits are set to 1, the values stored in PDR5 are read, regardless of the actual pin states. If port 5 is read while PCR5 bits are cleared to 0, the pin states are read.

Upon reset, PDR5 is initialized to H'00.

2. Port control register 5 (PCR5)

Bit	7	6	5	4	3	2	1	0
	PCR5 ₇	PCR5 ₆	PCR5 ₅	PCR5 ₄	PCR5 ₃	PCR5 ₂	PCR5 ₁	PCR5 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR5 is an 8-bit register for controlling whether each of the port 5 pins P5₇ to P5₀ functions as an input pin or output pin. Setting a PCR5 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR5 and in PDR5 are valid only when the corresponding pin is designated as a general I/O pin in PMR5 and in bits SGS3 to SGS0 of LPCR.

Upon reset, PCR5 is initialized to H'00.

PCR5 is a write-only register. All bits are read as 1.

3. Port pull-up control register 5 (PUCR5)

Bit	7	6	5	4	3	2	1	0
	PUCR5 ₇	PUCR5 ₆	PUCR5 ₅	PUCR5 ₄	PUCR5 ₃	PUCR5 ₂	PUCR5 ₁	PUCR5 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PUCR5 controls whether the MOS pull-up of each port 5 pin is on or off. When a PCR5 bit is cleared to 0, setting the corresponding PUCR5 bit to 1 turns on the MOS pull-up for the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.

Upon reset, PUCR5 is initialized to H'00.

4. Port mode register 5 (PMR5)

Bit	7	6	5	4	3	2	1	0
	WKP7	WKP6	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PMR5 is an 8-bit read/write register, controlling the selection of pin functions for port 5 pins.

Upon reset, PMR5 is initialized to H'00.

Bit n: $P5_n/\overline{WKP_n}/SEG_{n+1}$ pin function switch (WKPn)

When pin $P5_n \sqrt{WKP_n} / SEG_{n+1}$ is not used as a SEG_{n+1} pin, this bit selects whether it is used as $P5_n$ or as $\overline{WKP_n}$.

Bit n WKPn	Description	
0	Functions as P5 _n I/O pin	(initial value)
1	Functions as WKP _n input pin	
		(n = 7 to 0)

Note: For information on use as a SEG_{n+1} pin, see 13.2.1, LCD Port Control Register (LPCR).

8.6.3 Pin Functions

Table 8-15 shows the port 5 pin functions.

Table 8-15 Port 5 Pin Functions

Pin	Pin Functions	Pin Functions and Selection Method							
P5 ₇ /WKP ₇ / SEG ₈ to P5 ₄ /	The pin function	•	oit WKPn in PM	R5, bit PCR5 _n in	PCR5, and bits				
WKP ₄ /SEG ₅					(n = 7 to 4)				
	SGS3 to SGS0		0***						
	WKP _n	0 1		1	*				
	PCR5 _n	0	1	*	*				
	Pin function	P5 _n input pin	P5 _n output pin	WKP _n input pin	SEG _{n+1} output pin				
P5 ₃ /WKP ₃ / SEG ₄ to P5 ₀ /	The pin function SGS3 to SGS0	•	oit WKP _n in PMI	R5, bit PCR5n in	PCR5, and bits				
WKP ₀ /SEG ₁					(n = 3 to 0)				
	SGS3 to SGS0		0*** or 1**0		1**1				
	WKPn		0	1	*				
	PCR5n	0	1	*	*				
	Pin function	P5 _n input pin	P5 _n output pin	WKP _n input pin	SEG _{n+1} output pin				

Note: * Don't care

8.6.4 Pin States

Table 8-16 shows the port 5 pin states in each operating mode.

Table 8-16 Port 5 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P5 ₇ /WKP ₇ / SEG ₈ to P5 ₀ / WKP ₀ /SEG ₁	High- impedance	Retains previous state	Retains previous state	High- impedance*		Functional	Functional

Note: * A high-level signal is output when the MOS pull-up is in the on state.

8.6.5 MOS Input Pull-Up

Port 5 has a built-in MOS input pull-up function that can be controlled by software. When a PCR5 bit is cleared to 0, setting the corresponding PUCR5 bit to 1 turns on the MOS pull-up for that pin. The MOS pull-up function is in the off state after a reset.

PCR5 _n	(0	1
PUCR5 _n	0	1	*
MOS input pull-up	Off	On	Off

Note: * Don't care (n = 7 to 0)

8.7 Port 6

8.7.1 Overview

Port 6 is an 8-bit I/O port, configured as shown in figure 8-6.

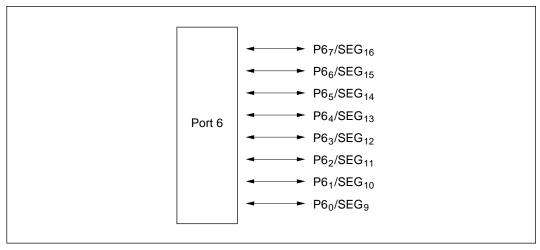


Figure 8-6 Port 6 Pin Configuration

8.7.2 Register Configuration and Description

Table 8-17 shows the port 6 register configuration.

Table 8-17 Port 6 Registers

Name	Abbrev.	R/W	Initial Value	Address
Port data register 6	PDR6	R/W	H'00	H'FFD9
Port control register 6	PCR6	W	H'00	H'FFE9
Port pull-up control register 6	PUCR6	R/W	H'00	H'FFE3

1. Port data register 6 (PDR6)

Bit	7	6	5	4	3	2	1	0
	P6 ₇	P6 ₆	P6 ₅	P6 ₄	P6 ₃	P6 ₂	P6 ₁	P6 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PDR6 is an 8-bit register that stores data for port 6 pins P6₇ to P6₀. If port 6 is read while PCR6 bits are set to 1, the values stored in PDR6 are read, regardless of the actual pin states. If port 6 is read while PCR6 bits are cleared to 0, the pin states are read.

Upon reset, PDR6 is initialized to H'00.

2. Port control register 6 (PCR6)

Bit	7	6	5	4	3	2	1	0
	PCR6 ₇	PCR6 ₆	PCR6 ₅	PCR6 ₄	PCR6 ₃	PCR6 ₂	PCR6 ₁	PCR6 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR6 is an 8-bit register for controlling whether each of the port 6 pins P6₇ to P6₀ functions as an input pin or output pin. Setting a PCR6 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR6 and in PDR6 are valid only when the corresponding pin is designated in bits SGS3 to SGS0 in LPCR as a general I/O pin.

Upon reset, PCR6 is initialized to H'00.

PCR6 is a write-only register. All bits are read as 1.

3. Port pull-up control register 6 (PUCR6)

Bit	7	6	5	4	3	2	1	0
	PUCR67	PUCR6 ₆	PUCR65	PUCR6 ₄	PUCR6 ₃	PUCR6 ₂	PUCR6 ₁	PUCR6 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PUCR6 controls whether the MOS pull-up of each port 6 pin is on or off. When a PCR6 bit is cleared to 0, setting the corresponding PUCR6 bit to 1 turns on the MOS pull-up for the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.

Upon reset, PUCR6 is initialized to H'00.

8.7.3 Pin Functions

Table 8-18 shows the port 6 pin functions.

Table 8-18 Port 6 Pin Functions

Pin	Pin Functions	Pin Functions and Selection Method								
P6 ₇ /SEG ₁₆ to P6 ₄ /SEG ₁₃	The pin function depends on bit $\mathrm{PCR6}_{\mathrm{n}}$ in PCR6 and bits SGS3 to SGS0 in LPCR.									
	(n = 7 to 4)									
	SGS3 to SGS0	00** (or 010*	011* or 1***						
	PCR6 _n	0	1	*						
	Pin function	P6 _n input pin	P6 _n output pin	SEG _{n+9} output pin						
P6 ₃ /SEG ₁₂ to P6 ₀ /SEG ₉	The pin function LPCR.	n depends on b	it PCR6 _n in PCF	R6 and bits SGS3 to SGS0 in						
				(n = 3 to 0)						
	SGS3 to SGS0	00**, 0	10* or 0110	0111 or 1***						
	PCR6 _n	0 1		*						
	Pin function	P6 _n input pin	P6 _n output pin	SEG _{n+9} output pin						

Note: * Don't care

8.7.4 Pin States

Table 8-19 shows the port 6 pin states in each operating mode.

Table 8-19 Port 6 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P6 ₇ /SEG ₁₆ to P6 ₀ /SEG ₉	High- impedance	Retains previous state	Retains previous state	High- impedance*	Retains previous state	Functional	Functional

Note: * A high-level signal is output when the MOS pull-up is in the on state.

8.7.5 MOS Input Pull-Up

Port 6 has a built-in MOS input pull-up function that can be controlled by software. When a PCR6 bit is cleared to 0, setting the corresponding PUCR6 bit to 1 turns on the MOS pull-up for that pin. The MOS pull-up function is in the off state after a reset.

PCR6 _n	(0	1
PUC6 _n	0	1	*
MOS input pull-up	Off	On	Off

Note: * Don't care (n = 7 to 0)

8.8 Port 7

8.8.1 Overview

Port 7 is an 8-bit I/O port, configured as shown in figure 8-7.

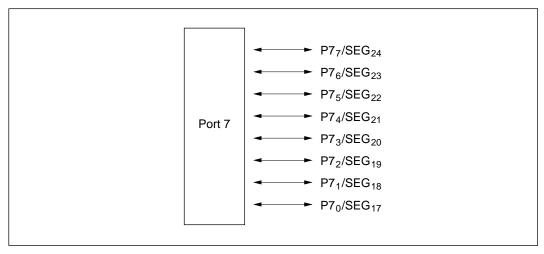


Figure 8-7 Port 7 Pin Configuration

8.8.2 Register Configuration and Description

Table 8-20 shows the port 7 register configuration.

Table 8-20 Port 7 Registers

Name	Abbrev.	R/W	Initial Value	Address
Port data register 7	PDR7	R/W	H'00	H'FFDA
Port control register 7	PCR7	W	H'00	H'FFEA

1. Port data register 7 (PDR7)

Bit	7	6	5	4	3	2	1	0
	P7 ₇	P7 ₆	P7 ₅	P7 ₄	P7 ₃	P7 ₂	P7 ₁	P7 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PDR7 is an 8-bit register that stores data for port 7 pins P7₇ to P7₀. If port 7 is read while PCR7 bits are set to 1, the values stored in PDR7 are read, regardless of the actual pin states. If port 7 is read while PCR7 bits are cleared to 0, the pin states are read.

Upon reset, PDR7 is initialized to H'00.

2. Port control register 7 (PCR7)

Bit	7	6	5	4	3	2	1	0
	PCR7 ₇	PCR7 ₆	PCR7 ₅	PCR7 ₄	PCR7 ₃	PCR7 ₂	PCR7 ₁	PCR7 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR7 is an 8-bit register for controlling whether each of the port 7 pins $P7_7$ to $P7_0$ functions as an input pin or output pin. Setting a PCR7 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR7 and in PDR7 are valid only when the corresponding pin is designated in bits SGS3 to SGS0 in LPCR as a general I/O pin.

Upon reset, PCR7 is initialized to H'00.

PCR7 is a write-only register. All bits are read as 1.

8.8.3 Pin Functions

Table 8-21 shows the port 7 pin functions.

Table 8-21 Port 7 Pin Functions

Pin	Pin Functions and Selection Method								
P7 ₇ /SEG ₂₄ to P7 ₄ /SEG ₂₁	The pin function depends on bit $PCR7_n$ in $PCR7$ and bits $SGS3$ to $SGS0$ in $LPCR$.								
				(n = 7 to 4)					
	SGS3 to SGS0	00)**	01** or 1***					
	PCR7 _n 0 1 *								
	Pin function	P7 _n input pin	P7 _n output pin	SEG _{n+17} output pin					
P7 ₃ /SEG ₂₀ to P7 ₀ /SEG ₁₇	The pin function depends on bit $PCR7_n$ in $PCR7$ and bits $SGS3$ to $SGS0$ in $LPCR$.								
				(n = 3 to 0)					
	SGS3 to SGS0 00** or 0100 0101, 011* or 1***								
	PCR7 _n 0 1 *								
	Pin function	P7 _n input pin	P7 _n output pin	SEG _{n+17} output pin					

Note: * Don't care

8.8.4 Pin States

Table 8-22 shows the port 7 pin states in each operating mode.

Table 8-22 Port 7 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P7 ₇ /SEG ₂₄ to P7 ₀ /SEG ₁₇	High- impedance	Retains previous state	Retains previous state	High- impedance	Retains previous state	Functional	Functional

8.9 Port 8

8.9.1 Overview

Port 8 is an 8-bit I/O port configured as shown in figure 8-9.

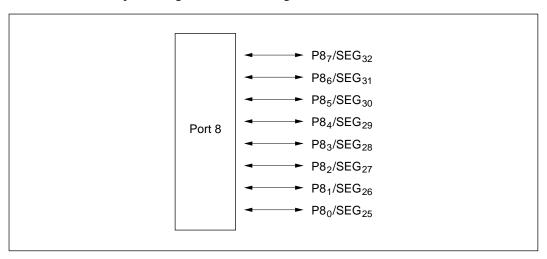


Figure 8-8 Port 8 Pin Configuration

8.9.2 Register Configuration and Description

Table 8-23 shows the port 8 register configuration.

Table 8-23 Port 8 Registers

Name	Abbrev.	R/W	Initial Value	Address
Port data register 8	PDR8	R/W	H'00	H'FFDB
Port control register 8	PCR8	W	H'00	H'FFEB

1. Port data register 8 (PDR8)

Bit	7	6	5	4	3	2	1	0
	P8 ₇	P8 ₆	P8 ₅	P8 ₄	P8 ₃	P8 ₂	P8 ₁	P8 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PDR8 is an 8-bit register that stores data for port 8 pins P8₇ to P8₀. If port 8 is read while PCR8 bits are set to 1, the values stored in PDR8 are read, regardless of the actual pin states. If port 8 is read while PCR8 bits are cleared to 0, the pin states are read.

Upon reset, PDR8 is initialized to H'00.

2. Port control register 8 (PCR8)

Bit	7	6	5	4	3	2	1	0
	PCR8 ₇	PCR8 ₆	PCR8 ₅	PCR8 ₄	PCR8 ₃	PCR8 ₂	PCR8 ₁	PCR8 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR8 is an 8-bit register for controlling whether each of the port 8 pins P8₇ to P8₀ functions as an input or output pin. Setting a PCR8 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR8 and in PDR8 are valid only when the corresponding pin is designated in bits SGS3 to SGS0 in LPCR as a general I/O pin.

Upon reset, PCR8 is initialized to H'00.

PCR8 is a write-only register. All bits are read as 1.

8.9.3 Pin Functions

Table 8-24 shows the port 8 pin functions.

Table 8-24 Port 8 Pin Functions

Pin	Pin Functions	Pin Functions and Selection Method								
P8 ₇ /SEG ₃₂ to P8 ₄ /SEG ₂₉	The pin function LPCR.	n depends on b	it PCR8 _n in PCF	R8 and bits SGS3 to SGS0 in						
				(n = 7 to 4)						
	SGS3 to SGS0			001*, 01** or 1***						
	PCR8 _n	0	1	*						
	Pin function	P8 _n input pin	P8 _n output pin	SEG _{n+25} output pin						
P8 ₃ /SEG ₂₈ to P8 ₀ /SEG ₂₅	The pin function LPCR.	n depends on b	oit PCR8 _n in PCF	R8 and bits SGS3 to SGS0 in						
				(n = 3 to 0)						
	SGS3 to SGS0	000* (or 0010	0011, 01** or 1***						
	PCR8 _n	0	1	*						
	Pin function	P8 _n input pin	P8 _n output pin	SEG _{n+25} output pin						

Note: * Don't care

8.9.4 Pin States

Table 8-25 shows the port 8 pin states in each operating mode.

Table 8-25 Port 8 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P8 ₇ /SEG ₃₂ to P8 ₀ /SEG ₂₅	High- impedance	Retains previous state	Retains previous state	High- impedance	Retains previous state	Functional	Functional

8.10 Port 9

8.10.1 Overview

Port 9 is an 8-bit I/O port configured as shown in figure 8-9.

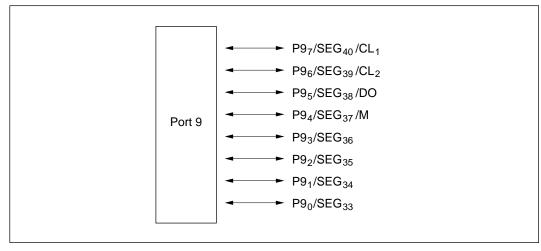


Figure 8-9 Port 9 Pin Configuration

8.10.2 Register Configuration and Description

Table 8-26 shows the port 9 register configuration.

Table 8-26 Port 9 Registers

Name	Abbrev.	R/W	Initial Value	Address
Port data register 9	PDR9	R/W	H'00	H'FFDC
Port control register 9	PCR9	W	H'00	H'FFEC

1. Port data register 9 (PDR9)

Bit	7	6	5	4	3	2	1	0
	P9 ₇	P9 ₆	P9 ₅	P9 ₄	P9 ₃	P9 ₂	P9 ₁	P9 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PDR9 is an 8-bit register that stores data for port 9 pins P9₇ to P9₀. If port 9 is read while PCR9 bits are set to 1, the values stored in PDR9 are read, regardless of the actual pin states. If port 9 is read while PCR9 bits are cleared to 0, the pin states are read.

Upon reset, PDR9 is initialized to H'00.

2. Port control register 9 (PCR9)

Bit	7	6	5	4	3	2	1	0
	PCR9 ₇	PCR9 ₆	PCR9 ₅	PCR9 ₄	PCR9 ₃	PCR9 ₂	PCR9 ₁	PCR9 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR9 is an 8-bit register for controlling whether each of the port 9 pins P9₇ to P9₀ functions as an input or output pin. Setting a PCR9 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR9 and in PDR9 are valid only when the corresponding pin is designated in bits SGS3 to SGS0 in LPCR as a general I/O pin.

Upon reset, PCR9 is initialized to H'00.

PCR9 is a write-only register. All bits are read as 1.

8.10.3 Pin Functions

Table 8-27 shows the port 9 pin functions.

Table 8-27 Port 9 Pin Functions

Pin	Pin Functions	Pin Functions and Selection Method								
P9 ₇ /SEG ₄₀ /CL ₁	The pin function SGS0 in LPCR		oit PCR9 ₇ in PC	R9, and bits SGX	and SGS3 to					
	SGS3 to SGS0	00	000	Not 0000	*					
	SGX		0	0	1					
	PCR9 ₇	0	1	*	*					
	Pin function	P9 ₇ input pin	P9 ₇ output pin	SEG ₄₀ output pin	CL ₁ output pin					
P9 ₆ /SEG ₃₉ /CL ₂	The pin function SGS0 in LPCR		oit PCR9 ₆ in PC	R9, and bits SGX	and SGS3 to					
	SGS3 to SGS0	00	000	Not 0000	*					
	SGX	0		0	1					
	PCR9 ₆	0	1	*	*					
	Pin function	P9 ₆ input pin P9 ₆ output pin		SEG ₃₉ output pin	CL ₂ output pin					
P9 ₅ /SEG ₃₈ /DO	The pin function depends on bit $PCR9_5$ in $PCR9$, and bits SGX and SGS3 to SGS0 in LPCR.									
	SGS3 to SGS0	00	000	Not 0000	*					
	SGX		0	0	1					
	PCR9 ₅	0	1	*	*					
	Pin function	P9 ₅ input pin	P9 ₅ output pin	SEG ₃₈ output pin	DO output pin					
P9 ₄ /SEG ₃₇ /M	The pin function		oit PCR9 ₄ in PC	R9, and bits SGX	and SGS3 to					
	SGS3 to SGS0	00	000	Not 0000	*					
	SGX		0	0	1					
	PCR9 ₄	0	1	*	*					
	Pin function	P9 ₄ input pin	P9 ₄ output pin	SEG ₃₇ output pin	M output pin					

Note: * Don't care

Table 8-27 Port 9 Pin Functions (cont)

Pin	Pin Functions	Pin Functions and Selection Method								
9 ₃ /SEG ₃₆ to P9 ₀ /SEG ₃₃	The pin function LPCR.	The pin function depends on bit $PCR9_n$ in $PCR9$ and bits SGS3 to SGS0 in LPCR.								
				(n = 3 to 0)						
	SGS3 to SGS0	0000		Not 0000						
	PCR9 _n	0	1	*						
	Pin function	P9 _n input pin	P9 _n output pin	SEG _{n+33} output pin						

Note: * Don't care

8.10.4 Pin States

Table 8-28 shows the port 9 pin states in each operating mode.

Table 8-28 Port 9 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P9 ₇ /SEG ₄₀ /CL ₁ P9 ₆ /SEG ₃₉ /CL ₂ P9 ₅ /SEG ₃₈ /DO P9 ₄ /SEG ₃₇ /M P9 ₃ /SEG ₃₆ to P9 ₀ /SEG ₃₃	High- impedance	Retains previous state	Retains previous state	High- impedance	Retains previous state	Functional	Functional

8.11 Port A

8.11.1 Overview

Port A is a 4-bit I/O port, configured as shown in figure 8-10.

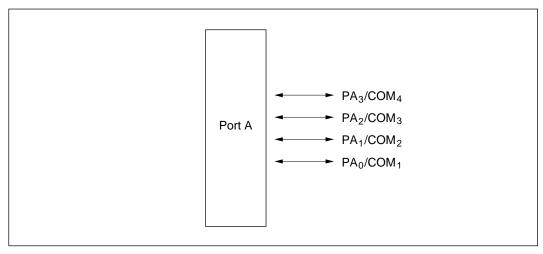


Figure 8-10 Port A Pin Configuration

8.11.2 Register Configuration and Description

Table 8-29 shows the port A register configuration.

Table 8-29 Port A Registers

Name	Abbrev.	R/W	Initial Value	Address
Port data register A	PDRA	R/W	H'F0	H'FFDD
Port control register A	PCRA	W	H'F0	H'FFED

1. Port data register A (PDRA)

Bit	7	6	5	4	3	2	1	0	
	_	_	_	_	PA ₃	PA ₂	PA ₁	PA ₀	
Initial value	1	1	1	1	0	0	0	0	-
Read/Write	_	_	_	_	R/W	R/W	R/W	R/W	

PDRA is an 8-bit register that stores data for port A pins PA_3 to PA_0 . If port A is read while PCRA bits are set to 1, the values stored in PDRA are read, regardless of the actual pin states. If port A is read while PCRA bits are cleared to 0, the pin states are read.

Upon reset, PDRA is initialized to H'F0.

2. Port control register A (PCRA)

Bit	7	6	5	4	3	2	1	0
	_	_	_	_	PCRA ₃	PCRA ₂	PCRA ₁	PCRA ₀
Initial value	1	1	1	1	0	0	0	0
Read/Write	_	_	_	_	W	W	W	W

PCRA is an 8-bit register for controlling whether each of the port A pins PA_3 to PA_0 functions as an input or output pin. Setting a PCRA bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCRA and in PDRA are valid only when the corresponding pin is designated in LPCR as a general I/O pin.

Upon reset, PCRA is initialized to H'F0.

PCRA is a write-only register. All bits are read as 1.

8.11.3 Pin Functions

Table 8-30 gives the port A pin functions.

Table 8-30 Port A Pin Functions

Pin	Pin Functions	and	l Se	election	Me	tho	d				
PA ₃ /COM ₄	The pin function depends on bit $PCRA_3$ in $PCRA$ and bits DTS1, DTS0, CMX, SGX, and SGS3 to SGS0 in LPCR.										O, CMX,
	CMX	*		0	*		0		1	*	k
	DTS1,DTS0	**	١	lot 11	**	Ν	lot 11	No	t 11	1	1
	SGX	0	1	*	0	1	*	1	*	1	*
	SGS3 to SGS0	00	00	Not 0000	0000 Not 0000		0000	Not 0000	0000	Not 0000	
	PCRA ₃		()			1		,	ķ	•
	Pin function	PA	3 in	put pin	PA	ou	tput pin		COM ₄ o	utput pir	1
PA ₂ /COM ₃	The pin function depends on bit $PCRA_2$ in PCRA and bits DTS1, DTS0, CN SGX, and SGS3 to SGS0 in LPCR.								O, CMX,		
	CMX	* 0		*	0		1		*		
	DTS1,DTS0	**	00	or 01	**	00	or 01	00 or 01		Not 00	or 01
	SGX	0	1	*	0	1	*	1	*	1	*
	SGS3 to SGS0	00	00	Not 0000	000	00	Not 0000	0000	Not 0000	0000	Not 0000
	PCRA ₂		()		1 *					
	Pin function	PA	₂ in	put pin	PA ₂	PA ₂ output pin COM ₃ o			utput pir	1	
PA ₁ /COM ₂	The pin function SGX, and SGS						A ₁ in PC	RA and	bits DTS	1, DTS(O, CMX,
	CMX	*		0	*		0	,	1	*	k
	DTS1,DTS0	**		00	**		00	0	0	Not	: 00
	SGX	0	1	*	0	1	*	1	*	1	*
	SGS3 to SGS0	00	00	Not 0000	000	00	Not 0000	0000	Not 0000	0000	Not 0000
	PCRA ₁		()			1		*	k	
	Pin function	PA	ı ₁ in	put pin	PA ₁	ou	tput pin		COM ₂ o	utput pir	1

Note: * Don't care

Table 8-30 Port A Pin Functions (cont)

Pin	Pin Functions and Selection Method							
PA ₀ /COM ₁	The pin function SGS0 in LPCR	•	oit PCRA ₀ in PC	RA, and bits SG	X and SGS3 to			
	SGS3 to SGS0	00	00	0000	Not 0000			
	SGX	()	1	*			
	PCRA ₀	0 1		*				
	Pin function	PA ₀ input pin PA ₀ output pin		COM ₁ output pin				

Note: * Don't care

8.11.4 Pin States

Table 8-31 shows the port A pin states in each operating mode.

Table 8-31 Port A Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
PA ₃ /COM ₄ PA ₂ /COM ₃ PA ₁ /COM ₂ PA ₀ /COM ₁	High- impedance	Retains previous state	Retains previous state	High- impedance	Retains previous state	Functional	Functional

8.12 Port B

8.12.1 Overview

Port B is an 8-bit input-only port, configured as shown in figure 8-11.

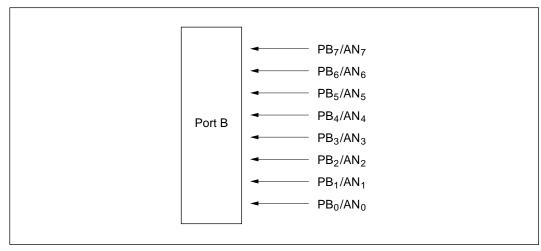


Figure 8-11 Port B Pin Configuration

8.12.2 Register Configuration and Description

Table 8-32 shows the port B register configuration.

Table 8-32 Port B Register

Name		4	Abbrev.	R/W	Add	Iress				
Port data register B		F	DRB	R	H'FI	FDE				
Port Data Register B (PDRB)										
Bit	7	6	5	4	3	2	1	0		
	PB ₇	PB ₆	PB ₅	PB ₄	PB ₃	PB ₂	PB ₁	PB ₀		
Read/Write	R	R	R	R	R	R	R	R		

Reading PDRB always gives the pin states. However, if a port B pin is selected as an analog input channel for the A/D converter by AMR bits CH3 to CH0, that pin reads 0 regardless of the input voltage.

8.13 Port C

8.13.1 Overview

Port C is a 4-bit input-only port, configured as shown in figure 8-12.

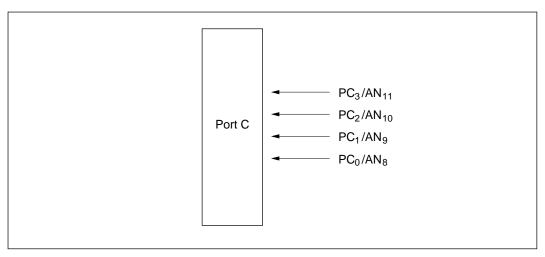


Figure 8-12 Port C Pin Configuration

8.13.2 Register Configuration and Description

Table 8-33 shows the port C register configuration.

Table 8-33 Port C Register

Name Port data register C			Abbrev. R/		R/W Addr		ress		
			PDRC	R	H'FFDF				
Port Data Regis	ter C (PDR	RC)							
Bit	7	6	5	4	3	2	1	0	
	_	_	_	_	PC ₃	PC ₂	PC ₁	PC ₀	
Read/Write	_	_	_	_	R	R	R	R	

Reading PDRC always gives the pin states. However, if a port C pin is selected as an analog input channel for the A/D converter by AMR bits CH3 to CH0, that pin reads 0 regardless of the input voltage.

Section 9 Timers

9.1 Overview

The H8/3834 Series provides five timers (timers A, B, C, F, and G) on-chip.

Table 9-1 outlines the functions of timers A, B, C, F, and G.

Table 9-1 Timer Functions

Name	Functions	Internal Clock	Event Input Pin	Waveform Output Pin	Remarks
Timer A	8-bit timer Interval timer	ø/8 to ø/8192 (8 choices)	_	_	
	8-bit timer Time base	ø _W /128 (choice of 4 overflow periods)	_	_	
	8-bit timer clock output	ø/4 to ø/32, ø _W /4 to ø _W /32 (8 choices)	_	TMOW	
Timer B	8-bit timer Interval timer Event counter	ø/4 to ø/8192 (7 choices)	TMIB	_	
Timer C	8-bit timer Interval timer Event counter Choice of up- or down-counting	ø/4 to ø/8192, ω_{W} /4 (7 choices)	TMIC	_	Counting direction can be controlled by software or hardware
Timer F	16-bit timer Event counter Can be used as two independent 8-bit timers Output compare	ø/2 to ø/32 (4 choices)	TMIF	TMOFL TMOFH	
Timer G	8-bit timer Input capture Interval timer	ø/2 to ø/64, ø _W /2 (4 choices)	TMIG	_	Counter clear designation possible
					Built-in noise canceller circuit for input capture

9.2 Timer A

9.2.1 Overview

Timer A is an 8-bit timer with interval timing and real-time clock time-base functions. The clock time-base function is available when a 32.768-kHz crystal oscillator is connected. A clock signal divided from 32.768 kHz or from the system clock can be output at the TMOW pin.

1. Features

Features of timer A are given below.

- Choice of eight internal clock sources (ø/8192, ø/4096, ø/2048, ø/512, ø/256, ø/128, ø/32, ø/8).
- Choice of four overflow periods (1 s, 0.5 s, 0.25 s, 31.25 ms) when timer A is used as a clock time base (using a 32.768 kHz crystal oscillator).
- An interrupt is requested when the counter overflows.
- Any of eight clock signals can be output from pin TMOW: 32.768 kHz divided by 32, 16, 8, or 4 (1 kHz, 2 kHz, 4 kHz, 8 kHz), or the system clock divided by 32, 16, 8, or 4.

2. Block diagram

Figure 9-2-1 shows a block diagram of timer A.

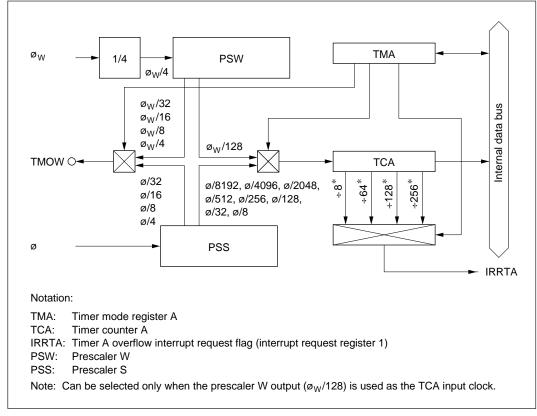


Figure 9-2-1 Block Diagram of Timer A

3. Pin configuration

Table 9-2-1 shows the timer A pin configuration.

Table 9-2-1 Pin Configuration

Name	Abbrev.	I/O	Function
Clock output	TMOW	Output	Output of waveform generated by timer A output circuit

4. Register configuration

Table 9-2-2 shows the register configuration of timer A.

Table 9-2-2 Timer A Registers

Name	Abbrev.	R/W	Initial Value	Address
Timer mode register A	TMA	R/W	H'10	H'FFB0
Timer counter A	TCA	R	H'00	H'FFB1

9.2.2 Register Descriptions

1. Timer mode register A (TMA)

Bit	7	6	5	4	3	2	1	0
	TMA7	TMA6	TMA5	_	TMA3	TMA2	TMA1	TMA0
Initial value	0	0	0	1	0	0	0	0
Read/Write	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W

TMA is an 8-bit read/write register for selecting the prescaler, input clock, and output clock.

Upon reset, TMA is initialized to H'10.

Bits 7 to 5: Clock output select (TMA7 to TMA5)

Bits 7 to 5 choose which of eight clock signals is output at the TMOW pin. The system clock divided by 32, 16, 8, or 4 can be output in active mode and sleep mode. A 32.768 kHz signal divided by 32, 16, 8, or 4 can be output in active mode, sleep mode, and subactive mode.

Bit 7 TMA7	Bit 6 TMA6	Bit 5 TMA5	Clock Output	
0	0	0	ø/32	(initial value)
		1	ø/16	
	1	0	ø/8	
		1	ø/4	
1	0	0	ø _W /32	
		1	ø _W /16	
	1	0	ø _W /8	
		1	ø _W /4	

Bit 4: Reserved bit

Bit 4 is reserved; it is always read as 1, and cannot be modified.

Bits 3 to 0: Internal clock select (TMA3 to TMA0)

Bits 3 to 0 select the clock input to TCA. The selection is made as follows.

				Description						
Bit 3 TMA3	Bit 2 TMA2	Bit 1 TMA1	Bit 0 TMA0	Prescaler and Divider Ratio or Overflow Period		Function				
0	0	0	0	PSS, ø/8192	(initial value)	Interval timer				
			1	PSS, ø/4096						
		1	0	PSS, ø/2048						
			1	PSS, ø/512						
	1	0	0	PSS, ø/256						
			1	PSS, ø/128						
		1	0	PSS, ø/32						
			1	PSS, ø/8						
1	0	0	0	PSW, 1 s		Clock time				
			1	PSW, 0.5 s		base				
		1	0	PSW, 0.25 s						
			1	PSW, 0.03125 s						
	1	0	0	PSW and TCA are reset						
			1							
		1	0							
			1							

2. Timer counter A (TCA)

Bit	7	6	5	4	3	2	1	0
	TCA7	TCA6	TCA5	TCA4	TCA3	TCA2	TCA1	TCA0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

TCA is an 8-bit read-only up-counter, which is incremented by internal clock input. The clock source for input to this counter is selected by bits TMA3 to TMA0 in timer mode register A (TMA). TCA values can be read by the CPU in active mode, but cannot be read in subactive mode. When TCA overflows, the IRRTA bit in interrupt request register 1 (IRR1) is set to 1.

TCA is cleared by setting bits TMA3 and TMA2 of TMA to 11.

Upon reset, TCA is initialized to H'00.

9.2.3 Timer Operation

1. Interval timer operation

When bit TMA3 in timer mode register A (TMA) is cleared to 0, timer A functions as an 8-bit interval timer.

Upon reset, TCA is cleared to H'00 and bit TMA3 is cleared to 0, so up-counting and interval timing resume immediately. The clock input to timer A is selected by bits TMA2 to TMA0 in TMA; any of eight internal clock signals output by prescaler S can be selected.

After the count value in TCA reaches H'FF, the next clock signal input causes timer A to overflow, setting bit IRRTA to 1 in interrupt request register 1 (IRR1). If IENTA = 1 in interrupt enable register 1 (IENR1), a CPU interrupt is requested.*

At overflow, TCA returns to H'00 and starts counting up again. In this mode timer A functions as an interval timer that generates an overflow output at intervals of 256 input clock pulses.

Note: * For details on interrupts, see 3.3, Interrupts.

2. Real-time clock time base operation

When bit TMA3 in TMA is set to 1, timer A functions as a real-time clock time base by counting clock signals output by prescaler W.

The overflow period of timer A is set by bits TMA1 and TMA0 in TMA. A choice of four periods is available. In time base operation (TMA3 = 1), setting bit TMA2 to 1 clears both TCA and prescaler W to their initial values of H'00.

3. Clock output

Setting bit TMOW in port mode register 1 (PMR1) to 1 causes a clock signal to be output at pin TMOW. Eight different clock output signals can be selected by means of bits TMA7 to TMA5 in TMA. The system clock divided by 32, 16, 8, or 4 can be output in active mode and sleep mode. A 32.768 kHz signal divided by 32, 16, 8, or 4 can be output in active mode, sleep mode, and subactive mode.

9.2.4 Timer A Operation States

Table 9-2-3 summarizes the timer A operation states.

Table 9-2-3 Timer A Operation States

Oper	ation Mode	Reset	Active	Sleep	Watch	Sub- active	Sub- sleep	Standby
TCA	Interval	Reset	Functions	Functions	Halted	Halted	Halted	Halted
	Clock time base	Reset	Functions	Functions	Functions	Functions	Functions	Halted
TMA		Reset	Functions	Retained	Retained	Functions	Retained	Retained

Note: When real-time clock time base function is selected as the internal clock of TCA in active mode or sleep mode, the internal clock is not synchronous with the system clock, so it is synchronized by a synchronizing circuit. This may result in a maximum error of 1/ø (s) in the count cycle.

9.3 Timer B

9.3.1 Overview

Timer B is an 8-bit timer that increments each time a clock pulse is input. This timer has two operation modes, interval and auto reload.

Features

Features of timer B are given below.

- Choice of seven internal clock sources (ø/8192, ø/2048, ø/512, ø/256, ø/64, ø/16, ø/4) or an external clock (can be used to count external events).
- An interrupt is requested when the counter overflows.

2. Block Diagram

Figure 9-3-1 shows a block diagram of timer B.

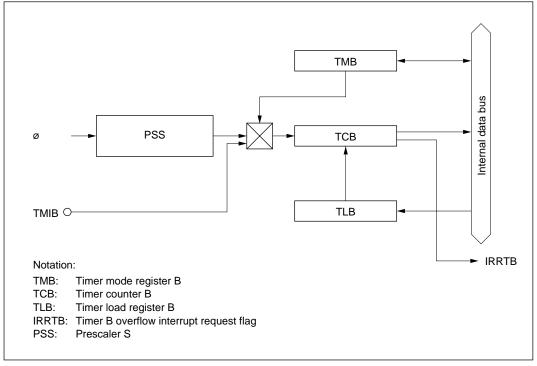


Figure 9-3-1 Block Diagram of Timer B

3. Pin configuration

Table 9-3-1 shows the timer B pin configuration.

Table 9-3-1 Pin Configuration

Name	Abbrev.	I/O	Function
Timer B event input	TMIB	Input	Event input to TCB

4. Register configuration

Table 9-3-2 shows the register configuration of timer B.

Table 9-3-2 Timer B Registers

Name	Abbrev.	R/W	Initial Value	Address
Timer mode register B	TMB	R/W	H'78	H'FFB2
Timer counter B	TCB	R	H'00	H'FFB3
Timer load register B	TLB	W	H'00	H'FFB3

9.3.2 Register Descriptions

1. Timer mode register B (TMB)

Bit	7	6	5	4	3	2	1	0
	TMB7	_	_	_	_	TMB2	TMB1	TMB0
Initial value	0	1	1	1	1	0	0	0
Read/Write	R/W	_	_	_	_	R/W	R/W	R/W

TMB is an 8-bit read/write register for selecting the auto-reload function and input clock.

Upon reset, TMB is initialized to H'78.

Bit 7: Auto-reload function select (TMB7)

Bit 7 selects whether timer B is used as an interval timer or auto-reload timer.

Bit 7
TMB7 Descrip

TMB7	Description	
0	Interval timer function selected	(initial value)
1	Auto-reload function selected	

Bits 6 to 3: Reserved bits

Bits 6 to 3 are reserved; they always read 1, and cannot be modified.

Bits 2 to 0: Clock select (TMB2 to TMB0)

Bits 2 to 0 select the clock input to TCB. For external event counting, either the rising or falling edge can be selected.

Bit 2 TMB2	Bit 1 TMB1	Bit 0 TMB0	Description	
0	0	0	Internal clock: ø/8192	(initial value)
0	0	1	Internal clock: ø/2048	
0	1	0	Internal clock: ø/512	
0	1	1	Internal clock: ø/256	
1	0	0	Internal clock: ø/64	
1	0	1	Internal clock: ø/16	
1	1	0	Internal clock: ø/4	
1	1	1	External event (TMIB): rising or falling edge*	

Note: * The edge of the external event signal is selected by bit IEG1 in the IRQ edge select register (IEGR). See 3.3.2, Interrupt Control Registers, for details on the IRQ edge select register. Be sure to set bit IRQ1 in port mode register 1 (PMR1) to 1 before setting bits TMB2 to TMB0 to 111.

2. Timer counter B (TCB)

Bit	7	6	5	4	3	2	1	0
	TCB7	TCB6	TCB5	TCB4	TCB3	TCB2	TCB1	TCB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

TCB is an 8-bit read-only up-counter, which is incremented by internal clock or external event input. The clock source for input to this counter is selected by bits TMB2 to TMB0 in timer mode register B (TMB). TCB values can be read by the CPU at any time.

When TCB overflows from H'FF to H'00 or to the value set in TLB, the IRRTB bit in interrupt request register 2 (IRR2) is set to 1.

TCB is allocated to the same address as timer load register B (TLB).

Upon reset, TCB is initialized to H'00.

3. Timer load register B (TLB)

Bit	7	6	5	4	3	2	1	0
	TLB7	TLB6	TLB5	TLB4	TLB3	TLB2	TLB1	TLB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

TLB is an 8-bit write-only register for setting the reload value of timer counter B.

When a reload value is set in TLB, the same value is loaded into timer counter B (TCB) as well, and TCB starts counting up from that value. When TCB overflows during operation in autoreload mode, the TLB value is loaded into TCB. Accordingly, overflow periods can be set within the range of 1 to 256 input clocks.

The same address is allocated to TLB as to TCB.

Upon reset, TLB is initialized to H'00.

9.3.3 Timer Operation

1. Interval timer operation

When bit TMB7 in timer mode register B (TMB) is cleared to 0, timer B functions as an 8-bit interval timer.

Upon reset, TCB is cleared to H'00 and bit TMB7 is cleared to 0, so up-counting and interval timing resume immediately. The clock input to timer B is selected from seven internal clock signals output by prescaler S, or an external clock input at pin TMIB. The selection is made by bits TMB2 to TMB0 of TMB.

After the count value in TCB reaches H'FF, the next clock signal input causes timer B to overflow, setting bit IRRTB to 1 in interrupt request register 2 (IRR2). If IENTB = 1 in interrupt enable register 2 (IENR2), a CPU interrupt is requested.*

At overflow, TCB returns to H'00 and starts counting up again.

During interval timer operation (TMB7 = 0), when a value is set in timer load register B (TLB), the same value is set in TCB.

Note: * For details on interrupts, see 3.3, Interrupts.

2. Auto-reload timer operation

Setting bit TMB7 in TMB to 1 causes timer B to function as an 8-bit auto-reload timer. When a reload value is set in TLB, the same value is loaded into TCB, becoming the value from which TCB starts its count.

After the count value in TCB reaches H'FF, the next clock signal input causes timer B to overflow. The TLB value is then loaded into TCB, and the count continues from that value. The overflow period can be set within a range from 1 to 256 input clocks, depending on the TLB value.

The clock sources and interrupts in auto-reload mode are the same as in interval mode.

In auto-reload mode (TMB7 = 1), when a new value is set in TLB, the TLB value is also set in TCB.

3. Event counter operation

Timer B can operate as an event counter, counting rising or falling edges of an external event signal input at pin TMIB. External event counting is selected by setting bits TMB2 to TMB0 in timer mode register B to all 1s (111).

When timer B is used to count external event input, bit IRQ1 in port mode register 1 (PMR1) should be set to 1, and bit IEN1 in interrupt enable register 1 (IENR1) should be cleared to 0 to disable IRQ_1 interrupt requests.

9.3.4 Timer B Operation States

Table 9-3-3 summarizes the timer B operation states.

Table 9-3-3 Timer B Operation States

Oper	ation Mode	Reset	Active	Sleep	Watch	Sub- active	Sub- sleep	Standby
TCB	Interval	Reset	Functions	Functions	Halted	Halted	Halted	Halted
	Auto reload	Reset	Functions	Functions	Halted	Halted	Halted	Halted
TMB		Reset	Functions	Retained	Retained	Retained	Retained	Retained

9.4 Timer C

9.4.1 Overview

Timer C is an 8-bit timer that increments or decrements each time a clock pulse is input. This timer has two operation modes, interval and auto reload.

Features

The main features of timer C are given below.

- Choice of seven internal clock sources (ø/8192, ø/2048, ø/512, ø/64, ø/16, ø/4, ø_W/4) or an external clock (can be used to count external events).
- An interrupt is requested when the counter overflows.
- Can be switched between up- and down-counting by software or hardware.
- When $\phi_W/4$ is selected as the internal clock source, or when an external clock is selected, timer C can function in subactive mode and subsleep mode.

2. Block diagram

Figure 9-4-1 shows a block diagram of timer C.

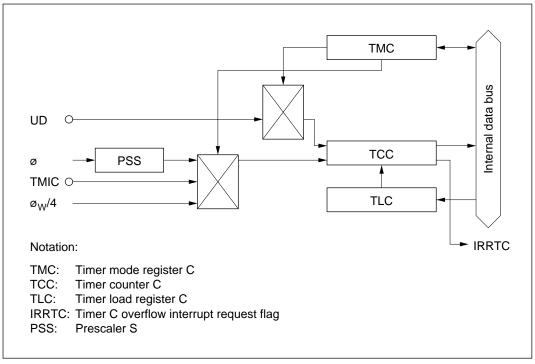


Figure 9-4-1 Block Diagram of Timer C

3. Pin configuration

Table 9-4-1 shows the timer C pin configuration.

Table 9-4-1 Pin Configuration

Name	Abbrev.	I/O	Function
Timer C event input	TMIC	Input	Event input to TCC
Timer C up/down control	UD	Input	Selection of counting direction

4. Register configuration

Table 9-4-2 shows the register configuration of timer C.

Table 9-4-2 Timer C Registers

Name	Abbrev.	R/W	Initial Value	Address
Timer mode register C	TMC	R/W	H'18	H'FFB4
Timer counter C	TCC	R	H'00	H'FFB5
Timer load register C	TLC	W	H'00	H'FFB5

9.4.2 Register Descriptions

1. Timer mode register C (TMC)

Bit	7	6	5	4	3	2	1	0
	TMC7	TMC6	TMC5	_	_	TMC2	TMC1	TMC0
Initial value	0	0	0	1	1	0	0	0
Read/Write	R/W	R/W	R/W	_		R/W	R/W	R/W

TMC is an 8-bit read/write register for selecting the auto-reload function, counting direction, and input clock.

Upon reset, TMC is initialized to H'18.

Bit 7: Auto-reload function select (TMC7)

Bit 7 selects whether timer C is used as an interval timer or auto-reload timer.

Bit 7 TMC7 Description

TIVIC	Description	
0	Interval timer function selected	(initial value)
1	Auto-reload function selected	

Bits 6 and 5: Counter up/down control (TMC6 and TMC5)

These bits select the counting direction of timer counter C (TCC), or allow hardware to control the counting direction using pin UD.

Bit 6 TMC6	Bit 5 TMC5	Description	
0	0	TCC is an up-counter	(initial value)
0	1	TCC is a down-counter	
1	*	TCC up/down control is determined by input at pin UD. TC counter if the UD input is high, and an up-counter if the UD	

Note: * Don't care

Bits 4 and 3: Reserved bits

Bits 4 and 3 are reserved; they are always read as 1, and cannot be modified.

Bits 2 to 0: Clock select (TMC2 to TMC0)

Bits 2 to 0 select the clock input to TCC. For external clock counting, either the rising or falling edge can be selected.

Bit 2 TMC2	Bit 1 TMC1	Bit 0 TMC0	Description	
0	0	0	Internal clock: ø/8192	(initial value)
0	0	1	Internal clock: ø/2048	
0	1	0	Internal clock: ø/512	
0	1	1	Internal clock: ø/64	
1	0	0	Internal clock: ø/16	
1	0	1	Internal clock: ø/4	
1	1	0	Internal clock: Ø _W /4	
1	1	1	External event (TMIC): rising or falling edge*	

Note: * The edge of the external event signal is selected by bit IEG2 in the IRQ edge select register (IEGR). See 3.3.2, Interrupt Control Registers, for details on the IRQ edge select register. Be sure to set bit IRQ2 in port mode register 1 (PMR1) to 1 before setting bits TMC2 to TMC0 to 111.

2. Timer counter C (TCC)

Bit	7	6	5	4	3	2	1	0
	TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

TCC is an 8-bit read-only up-/down-counter, which is incremented or decremented by internal or external clock input. The clock source for input to this counter is selected by bits TMC2 to TMC0 in timer mode register C (TMC). TCC values can be read by the CPU at any time.

When TCC overflows (from H'FF to H'00 or to the value set in TLC) or underflows (from H'00 to H'FF or to the value set in TLC), the IRRTC bit in interrupt request register 2 (IRR2) is set to 1.

TCC is allocated to the same address as timer load register C (TLC).

Upon reset, TCC is initialized to H'00.

3. Timer load register C (TLC)

Bit	7	6	5	4	3	2	1	0
	TLC7	TLC6	TLC5	TLC4	TLC3	TLC2	TLC1	TLC0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

TLC is an 8-bit write-only register for setting the reload value of TCC.

When a reload value is set in TLC, the same value is loaded into timer counter C (TCC) as well, and TCC starts counting up or down from that value. When TCC overflows or underflows during operation in auto-reload mode, the TLC value is loaded into TCC. Accordingly, overflow and underflow periods can be set within the range of 1 to 256 input clocks.

The same address is allocated to TLC as to TCC.

Upon reset, TLC is initialized to H'00.

9.4.3 Timer Operation

1. Interval timer operation

When bit TMC7 in timer mode register C (TMC) is cleared to 0, timer C functions as an 8-bit interval timer.

Upon reset, timer counter C (TCC) is initialized to H'00 and TMC to H'18, so counting and interval timing resume immediately. The clock input to timer C is selected from seven internal clock signals output by prescalers S and W, or an external clock input at pin TMIC. The selection is made by bits TMC2 to TMC0 in TMC.

Either software or hardware can control whether TCC counts up or down. The selection is made by TMC bits TMC6 and TMC5.

After the count value in TCC reaches H'FF (H'00), the next clock signal input causes timer C to overflow (underflow), setting bit IRRTC to 1 in interrupt request register 2 (IRR2). If IENTC = 1 in interrupt enable register 2 (IENR2), a CPU interrupt is requested.*

At overflow or underflow, TCC returns to H'00 or H'FF and starts counting up or down again.

During interval timer operation (TMC7 = 0), when a value is set in timer load register C (TLC), the same value is set in TCC.

Note: * For details on interrupts, see 3.3, Interrupts.

2. Auto-reload timer operation

Setting bit TMC7 in TMC to 1 causes timer C to function as an 8-bit auto-reload timer. When a reload value is set in TLC, the same value is loaded into TCC, becoming the value from which TCC starts its count.

After the count value in TCC reaches H'FF (H'00), the next clock signal input causes timer C to overflow (underflow). The TLC value is then loaded TCC, and the count continues from that value. The overflow (underflow) period can be set within a range from 1 to 256 input clocks, depending on the TLC value.

The clock sources, up/down control, and interrupts in auto-reload mode are the same as in interval mode.

In auto-reload mode (TMC7 = 1), when a new value is set in TLC, the TLC value is also set in TCC.

3. Event counter operation

Timer C can operate as an event counter, counting an event signal input at pin TMIC. External event counting is selected by setting TMC bits TMC2 to TMC0 to all 1s (111). TCC counts up or down at the rising or falling edge of the input at pin TMIC.

When timer C is used to count external event inputs, bit IRQ2 in port mode register 1 (PMR1) should be set to 1, and bit IEN2 in interrupt enable register 1 (IENR1) should be cleared to 0 to disable IRQ2 interrupt requests.

4. TCC up/down control by hardware

The counting direction of timer C can be controlled by input at pin UD. When bit TMC6 in TMC is set to 1, high-level input at the UD pin selects down-counting, while low-level input selects upcounting.

When using input at pin UD for this control function, set the UD bit in port mode register 2 (PMR2) to 1.

9.4.4 Timer C Operation States

Table 9-4-3 summarizes the timer C operation states.

Table 9-4-3 Timer C Operation States

Operation	on Mode	Reset	Active	Sleep	Watch	Sub- active	Sub- sleep	Standby
TCC Int	terval	Reset	Functions	Functions	Halted	Functions/ Halted*	Functions/ Halted*	Halted
TCC Au	ıto reload	Reset	Functions	Functions	Halted	Functions/ Halted*	Functions/ Halted*	Halted
TMC		Reset	Functions	Retained	Retained	Functions	Retained	Retained

Note: When $\varnothing_W/4$ is selected as the internal clock of TCC in active mode or sleep mode, the internal clock is not synchronous with the system clock, so it is synchronized by a synchronizing circuit. This may result in a maximum error of $1/\varnothing$ (s) in the count cycle.

^{*} When timer C is operated in subactive mode or subsleep mode, either an external clock or the $\omega_{W}/4$ internal clock must be selected. The counter will not operate in these modes if another clock is selected. If the internal $\omega_{W}/4$ clock is selected when $\omega_{W}/8$ is being used as the subclock ω_{SUB} , the lower 2 bits of the counter will operate on the same cycle, with the least significant bit not being counted.

9.5 Timer F

9.5.1 Overview

Timer F is a 16-bit timer with an output compare function. Compare match signals can be used to reset the counter, request an interrupt, or toggle the output. Timer F can also be used for external event counting, and can operate as two independent 8-bit timers, timer FH and timer FL.

1. Features

Features of timer F are given below.

- Choice of four internal clock sources ($\emptyset/32$, $\emptyset/16$, $\emptyset/4$, $\emptyset/2$) or an external clock (can be used as an external event counter).
- Output from pin TMOFH is toggled by one compare match signal (the initial value of the toggle output can be set).
- Counter can be reset by the compare match signal.
- Two interrupt sources: counter overflow and compare match.
- Can operate as two independent 8-bit timers (timer FH and timer FL) in 8-bit mode.

Timer FH

- 8-bit timer (clocked by timer FL overflow signals when timer F operates as a 16-bit timer).
- Choice of four internal clocks ($\phi/32$, $\phi/16$, $\phi/4$, $\phi/2$).
- Output from pin TMOFH is toggled by one compare match signal (the initial value of the toggle output can be set).
- Counter can be reset by the compare match signal.
- Two interrupt sources: counter overflow and compare match.

Timer FL

- 8-bit timer/event counter
- Choice of four internal clocks ($\emptyset/32$, $\emptyset/16$, $\emptyset/4$, $\emptyset/2$) or event input at pin TMIF.
- Output from pin TMOFL is toggled by one compare match signal (the initial value of the toggle output can be set).
- Counter can be reset by the compare match signal.
- Two interrupt sources: counter overflow and compare match.

2. Block diagram

Figure 9-5-1 shows a block diagram of timer F.

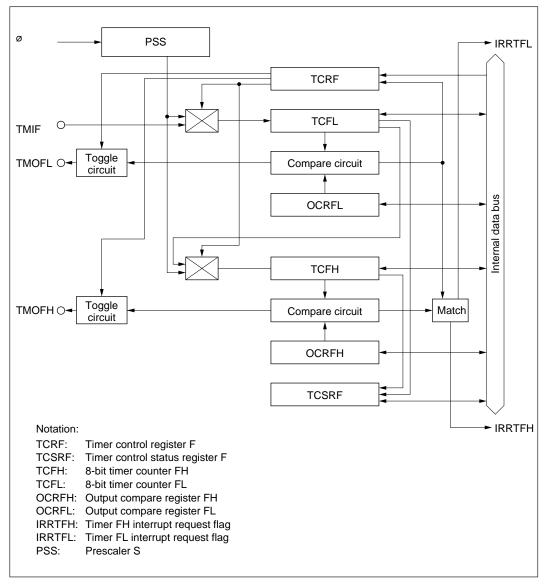


Figure 9-5-1 Block Diagram of Timer F

3. Pin configuration

Table 9-5-1 shows the timer F pin configuration.

Table 9-5-1 Pin Configuration

Name	Abbrev.	I/O	Function
Timer F event input	TMIF	Input	Event input to TCFL
Timer FH output	TMOFH	Output	Timer FH output
Timer FL output	TMOFL	Output	Timer FL output

4. Register configuration

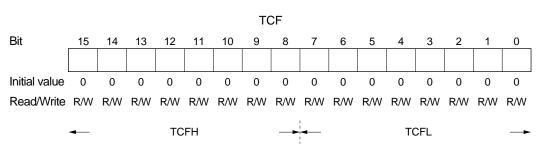

Table 9-5-2 shows the register configuration of timer F.

Table 9-5-2 Timer F Registers

Name	Abbrev.	R/W	Initial Value	Address
Timer control register F	TCRF	W	H'00	H'FFB6
Timer control/status register F	TCSRF	R/W	H'00	H'FFB7
8-bit timer counter FH	TCFH	R/W	H'00	H'FFB8
8-bit timer counter FL	TCFL	R/W	H'00	H'FFB9
Output compare register FH	OCRFH	R/W	H'FF	H'FFBA
Output compare register FL	OCRFL	R/W	H'FF	H'FFBB

9.5.2 Register Descriptions

16-bit timer counter (TCF)
 8-bit timer counter (TCFH)
 8-bit timer counter (TCFL)

TCF is a 16-bit read/write up-counter consisting of two cascaded 8-bit timer counters, TCFH and TCFL. TCF can be used as a 16-bit counter, with TCFH as the upper 8 bits and TCFL as the lower 8 bits of the counter, or TCFH and TCFL can be used as independent 8-bit counters.

TCFH and TCFL can be read and written by the CPU, but in 16-bit mode, data transfer with the CPU takes place via a temporary register (TEMP). For details see 9.5.3, Interface with the CPU.

Upon reset, TCFH and TCFL are each initialized to H'00.

• 16-bit mode (TCF)

16-bit mode is selected by clearing bit CKSH2 to 0 in timer control register F (TCRF). The TCF input clock is selected by TCRF bits CKSL2 to CKSL0.

Timer control status register F (TCSRF) can be set so that counter TCF will be cleared by compare match.

When TCF overflows from H'FFFF to H'0000, the overflow flag (OVFH) in TCSRF is set to 1. If bit OVIEH in TCSRF is set to 1 when an overflow occurs, bit IRRTFH in interrupt request register 2 (IRR2) will be set to 1; and if bit IENTFH in interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt will be requested.

• 8-bit mode (TCFH, TCFL)

When bit CKSH2 in timer control register F (TCRF) is set to 1, timer F functions as two separate 8-bit counters, TCFH and TCFL. The TCFH (TCFL) input clock is selected by TCRF bits CKSH2 to CKSH2 to CKSL2 to CKSL0).

TCFH (TCFL) can be cleared by a compare match signal. This designation is made in bit CCLRH (CCLRL) in TCSRF.

When TCFH (TCFL) overflows from H'FF to H'00, the overflow flag OVFH (OVFL) in TCSRF is set to 1. If bit OVIEH (OVIEL) in TCSRF is set to 1 when an overflow occurs, bit IRRTFH (IRRTHL) in interrupt request register 2 (IRR2) will be set to 1; and if bit IENTFH (IENTFL) in interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt will be requested.

16-bit output compare register (OCRF)
 8-bit output compare register (OCRFH)
 8-bit output compare register (OCRFL)

OCRF is a 16-bit read/write output compare register consisting of two 8-bit read/write registers OCRFH and OCRFL. It can be used as a 16-bit output compare register, with OCRFH as the upper 8 bits and OCRFL as the lower 8 bits of the register, or OCRFH and OCRFL can be used as independent 8-bit registers.

OCRFH and OCRFL can be read and written by the CPU, but in 16-bit mode, data transfer with the CPU takes place via a temporary register (TEMP). For details see 9.5.3, Interface with the CPU.

Upon reset, OCRFH and OCRFL are each initialized to H'FF.

• 16-bit mode (OCRF)

16-bit mode is selected by clearing bit CKSH2 to 0 in timer control register F (TCRF). The OCRF contents are always compared with the 16-bit timer counter (TCF). When the contents match, the compare match flag (CMFH) in TCSRF is set to 1. Also, IRRTFH in interrupt request register 2 (IRR2) is set to 1. If bit IENTFH in interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt is requested.

Output for pin TMOFH can be toggled by compare match. The output level can also be set to high or low by bit TOLH of timer control register F (TCRF).

• 8-bit mode (OCRFH, OCRFL)

Setting bit CKSH2 in TCRF to 1 results in two independent output compare registers, OCRFH and OCRFL.

The OCRFH contents are always compared with TCFH, and the OCRFL contents are always compared with TCFL. When the contents match, the compare match flag (CMFH or CMFL) in TCSRF is set to 1. Also, bit IRRTFH (IRRTFL) in interrupt request register 2 (IRR2) set to 1. If bit IENTFH (IENTFL) in interrupt enable register 2 (IENR2) is set to 1 at this time, a CPU interrupt is requested.

The output at pin TMOFH (TMOFL) can be toggled by compare match. The output level can also be set to high or low by bit TOLH (TOLL) of the timer control register (TCRF).

3. Timer control register F (TCRF)

Bit	7	6	5	4	3	2	1	0
	TOLH	CKSH2	CKSH1	CKSH0	TOLL	CKSL2	CKSL1	CKSL0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

TCRF is an 8-bit write-only register. It is used to switch between 16-bit mode and 8-bit mode, to select among four internal clocks and an external clock, and to select the output level at pins TMOFH and TMOFL.

Upon reset, TCRF is initialized to H'00.

Bit 7: Toggle output level H (TOLH)

Bit 7 sets the output level at pin TMOFH. The setting goes into effect immediately after this bit is written.

Bit 7
TOLH Description

0 Low level (initial value)

1 High level

Bits 6 to 4: Clock select H (CKSH2 to CKSH0)

Bits 6 to 4 select the input to TCFH from four internal clock signals or the overflow of TCFL.

Bit 6 CKSH2	Bit 5 CKSH1	Bit 4 CKSH0	Description	
0	*	*	16-bit mode selected. TCFL overflow signals are counted.	(initial value)
1	0	0	Internal clock: ø/32	
1	0	1	Internal clock: ø/16	
1	1	0	Internal clock: ø/4	
1	1	1	Internal clock: ø/2	

Note: * Don't care

Bit 3: Toggle output level L (TOLL)

Bit 3 sets the output level at pin TMOFL. The setting goes into effect immediately after this bit is written.

Bit 3		
TOLL	Description	
0	Low level	(initial value)
1	High level	

Bits 2 to 0: Clock select L (CKSL2 to CKSL0)

Bits 2 to 0 select the input to TCFH from four internal clock signals or external event input.

Bit 2 CKSL2	Bit 1 CKSL1	Bit 0 CKSL0	Description	
0	*	*	External event (TMIF). Rising or falling edge is counted (see note).	(initial value)
1	0	0	Internal clock: ø/32	
1	0	1	Internal clock: ø/16	
1	1	0	Internal clock: ø/4	
1	1	1	Internal clock: ø/2	

^{*} Don't care

Note: The edge of the external event signal is selected by bit IEG3 in the IRQ edge select register (IEGR). See 3.3.2, Interrupt Control Registers, for details on the IRQ edge select register. Note that switching the TMIF pin function by changing bit IRQ3 in port mode register 1 (PMR1) from 0 to 1 or from 1 to 0 while the TMIF pin is at the low level may cause the timer F counter to be incremented.

4. Timer control/status register F (TCSRF)

Bit	7	6	5	4	3	2	1	0
	OVFH	CMFH	OVIEH	CCLRH	OVFL	CMFL	OVIEL	CCLRL
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W*	R/W*	R/W	R/W	R/W*	R/W*	R/W	R/W

Note: * Only 0 can be written, to clear flag.

TCSRF is an 8-bit read/write register. It is used for counter clear selection, overflow and compare match indication, and enabling of interrupts caused by timer overflow.

Upon reset, TCSRF is initialized to H'00.

Bit 7: Timer overflow flag H (OVFH)

Bit 7 is a status flag indicating TCFH overflow (H'FF to H'00). This flag is set by hardware and cleared by software. It cannot be set by software.

Bit 7
OVFH Description

Clearing conditions: (initial value)
After reading OVFH = 1, cleared by writing 0 to OVFH

Setting conditions: Set when the value of TCFH goes from H'FF to H'00

Bit 6: Compare match flag H (CMFH)

Bit 6 is a status flag indicating a compare match between TCFH and OCRFH. This flag is set by hardware and cleared by software. It cannot be set by software.

Bit 6 CMFH	Description	
0	Clearing conditions: After reading CMFH = 1, cleared by writing 0 to CMFH	(initial value)
1	Setting conditions: Set when the TCFH value matches OCRFH value	

Bit 5: Timer overflow interrupt enable H (OVIEH)

Bit 5 enables or disables TCFH overflow interrupts.

Bit 5 OVIEH	Description	
0	TCFH overflow interrupt disabled	(initial value)
1	TCFH overflow interrupt enabled	

Bit 4: Counter clear H (CCLRH)

In 16-bit mode, bit 4 selects whether or not TCF is cleared when a compare match occurs between TCF and OCRF.

In 8-bit mode, bit 4 selects whether or not TCFH is cleared when a compare match occurs between TCFH and OCRFH.

Bit 4
CCLRH Description

16-bit mode: TCF clearing by compare match disabled 8-bit mode: TCFH clearing by compare match disabled

1 16-bit mode: TCF clearing by compare match enabled 8-bit mode: TCFH clearing by compare match enabled

Bit 3: Timer overflow flag L (OVFL)

Bit 3 is a status flag indicating TCFL overflow (H'FF to H'00). This flag is set by hardware and cleared by software. It cannot be set by software.

Bit 3 OVFL	Description	
0	Clearing conditions: After reading OVFL = 1, cleared by writing 0 to OVFL	(initial value)
1	Setting conditions: Set when the value of TCFL goes from H'FF to H'00	

Bit 2: Compare match flag L (CMFL)

Bit 2 is a status flag indicating a compare match between TCFL and OCRFL. This flag is set by hardware and cleared by software. It cannot be set by software.

Bit 2 CMFL	Description	
0	Clearing conditions: After reading CMFL = 1, cleared by writing 0 to CMFL	(initial value)
1	Setting conditions: Set when the TCFL value matches the OCRFL value	

Bit 1: Timer overflow interrupt enable L (OVIEL)

Bit 1 enables or disables TCFL overflow interrupts.

Bit 1 OVIEL	Description	
0	TCFL overflow interrupt disabled	(initial value)
1	TCFL overflow interrupt enabled	

Bit 0: Counter clear L (CCLRL)

Bit 0 selects whether or not TCFL is cleared when a compare match occurs between TCFL and OCRFL.

Bit 0 CCLRL	Description	
0	TCFL clearing by compare match disabled	(initial value)
1	TCFL clearing by compare match enabled	

9.5.3 Interface with the CPU

TCF and OCRF are 16-bit read/write registers, whereas the data bus between the CPU and on-chip peripheral modules has an 8-bit width. For this reason, when the CPU accesses TCF or OCRF, it makes use of an 8-bit temporary register (TEMP).

In 16-bit mode, when reading or writing TCF or writing OCRF, always use two consecutive byte size MOV instructions, and always access the upper byte first. Data will not be transferred properly if only the upper byte or only the lower byte is accessed. In 8-bit mode there is no such restriction on the order of access.

Write access

When the upper byte is written, the upper-byte data is loaded into the TEMP register. Next when the lower byte is written, the data in TEMP goes to the upper byte of the register, and the lower-byte data goes directly to the lower byte of the register. Figure 9-5-2 shows a TCF write operation when H'AA55 is written to TCF.

· Read access

When the upper byte of TCF is read, the upper-byte data is sent directly to the CPU, and the lower byte is loaded into TEMP. Next when the lower byte is read, the lower byte in TEMP is sent to the CPU.

When the upper byte of OCRF is read, the upper-byte data is sent directly to the CPU. Next when the lower byte is read, the lower-byte data is sent directly to the CPU.

Figure 9-5-3 shows a TCF read operation when H'AAFF is read from TCF.

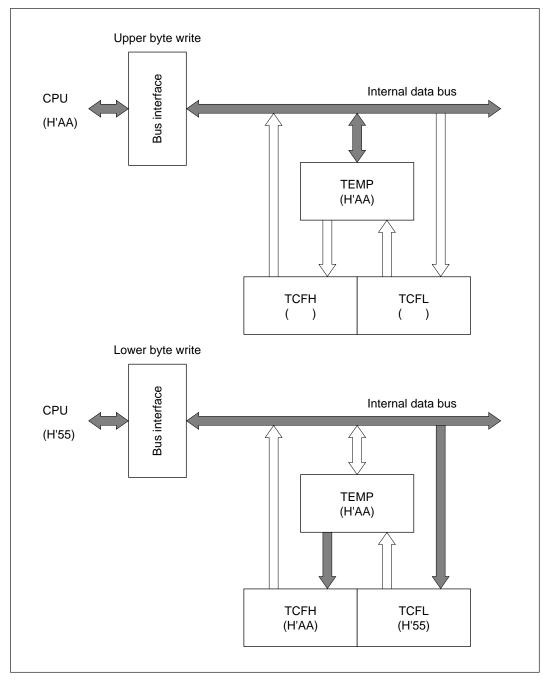


Figure 9-5-2 TCF Write Operation (CPU \rightarrow TCF)

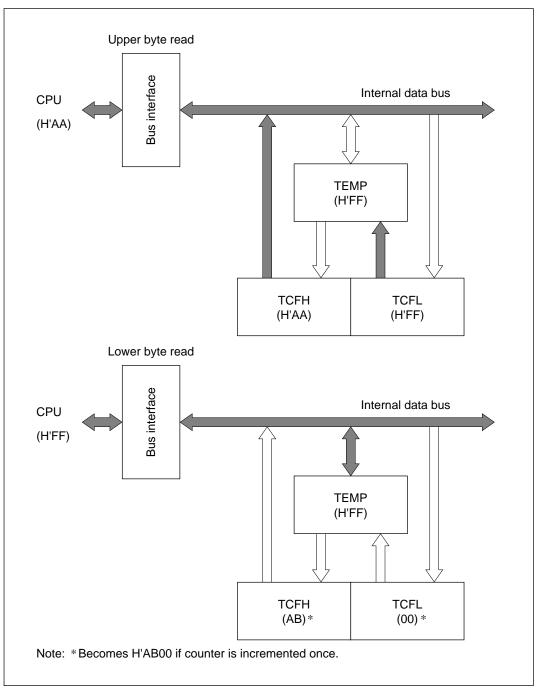


Figure 9-5-3 TCF Read Operation (TCF \rightarrow CPU)

9.5.4 Timer Operation

Timer F is a 16-bit timer/counter that increments with each input clock. When the value set in output compare register F matches the count in timer F, the timer can be cleared, an interrupt can be requested, and the port output can be toggled. Timer F can also be used as two independent 8-bit timers.

1. Timer F operation

Timer F can operate in either 16-bit timer mode or 8-bit timer mode. These modes are described below.

• 16-bit timer mode

Timer F operates in 16-bit timer mode when the CKSH2 bit in timer control register F (TCRF) is cleared to 0.

A reset initializes timer counter F (TCF) to H'0000, output compare register F (OCRF) to H'FFFF, and timer control register F (TCRF) and timer control status register F (TCSRF) to H'00. Timer F begins counting external event input signals (TMIF). The edge of the external event signal is selected by the IEG3 bit in the IRQ edge select register (IEGR).

Instead of counting external events, timer F can be switched by bits CKSL2 to CKSL0 in TCRF to count one of four internal clocks output by prescaler S.

TCF is continuously compared with the contents of OCRF. When these two values match, the CMFH bit in TCSRF is set to 1. At this time if IENTFH of IENR2 is 1, a CPU interrupt is requested and the output at pin TMOFH is toggled. If the CCLRH bit in TCSRF is 1, timer F is cleared. The output at pin TMOFH can also be set by the TOLH bit in TCRF.

If timer F overflows (from H'FFFF to H'0000), the OVFH bit in TCSRF is set to 1. At this time, if the OVIEH bit in TCSRF and the IENTFH bit in IENR2 are both 1, a CPU interrupt is requested.

• 8-bit timer mode

When the CKSH2 bit in TCRF is set to 1, timer F operates as two independent 8-bit timers, TCFH and TCFL. The input clock of TCFH/TCFL is selected by bits CKSH2 to CKSH0/CKSL2 to CKSL0 in TCRF.

When TCFH/TCFL and the contents of OCRFH/OCRFL match, the CMFH/CMFL bit in TCSRF is set to 1. If the IENTFH/IENTFL bit in IENR2 is 1, a CPU interrupt is requested and the output at pin TMOFH/TMOFL is toggled. If the CCLRH/CCLRL bit in TCRF is 1, TCFH/TCFL is cleared. The output at pin TMOFH/TMOFL can also be set by the TOLH/TOLL bit in TCRF.

When TCFH/TCFL overflows from H'FF to H'00, the OVFH/OVFL bit in TCSRF is set to 1. At this time, if the OVIEH/OVIEL bit in TCSRF and the IENTFH/IENTFL bit in IENR2 are both 1, a CPU interrupt is requested.

2. TCF count timing

TCF is incremented by each pulse of the input clock (internal or external clock).

Internal clock

The settings of bits CKSH2 to CKSH0 or bits CKSL2 to CKSL0 in TCRF select one of four internal clock signals divided from the system clock (ø), namely, ø/32, ø/16, ø/4, or ø/2.

External clock

External clock input is selected by clearing bit CKSL2 to 0 in TCRF. Either rising or falling edges of the clock input can be counted. The edge is selected by bit IEG3 in IEGR. An external clock pulse width of at least two system clock cycles (ø) is necessary; otherwise the counter will not operate properly.

3. TMOFH and TMOFL output timing

The outputs at pins TMOFH and TMOFL are the values set in bits TOLH and TOLL in TCRF. When a compare match occurs, the output value is inverted. Figure 9-5-4 shows the output timing.

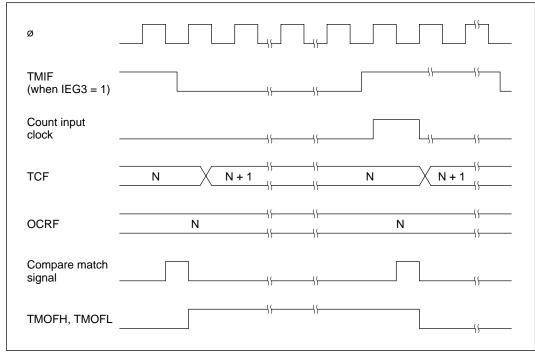


Figure 9-5-4 TMOFH, TMOFL Output Timing

4. TCF clear timing

TCF can be cleared at compare match with OCRF.

5. Timer overflow flag (OVF) set timing

OVF is set to 1 when TCF overflows (goes from H'FFFF to H'0000).

6. Compare match flag set timing

The compare match flags (CMFH or CMFL) are set to 1 when a compare match occurs between TCF and OCRF. A compare match signal is generated in the final state in which the values match (when TCF changes from the matching count value to the next value). When TCF and OCRF match, a compare match signal is not generated until the next counter clock pulse.

7. Timer F operation states

Table 9-5-3 summarizes the timer F operation states.

Table 9-5-3 Timer F Operation States

Operation Mode	Reset	Active	Sleep	Watch	Sub- active	Sub- sleep	Standby
TCF	Reset	Functions	Functions	Halted	Halted	Halted	Halted
OCRF	Reset	Functions	Retained	Retained	Retained	Retained	Retained
TCRF	Reset	Functions	Retained	Retained	Retained	Retained	Retained
TCSRF	Reset	Functions	Retained	Retained	Retained	Retained	Retained

9.5.5 Application Notes

The following conflicts can arise in timer F operation.

1. 16-bit timer mode

The output at pin TMOFH toggles when all 16 bits match and a compare match signal is generated. If the compare match signal occurs at the same time as new data is written in TCRF by a MOV instruction, however, the new value written in bit TOLH will be output at pin TMOFH. The TMOFL output in 16-bit mode is indeterminate, so this output should not be used. Use the pin as a general input or output port.

If an OCRFL write occurs at the same time as a compare match signal, the compare match signal is inhibited. If a compare match occurs between the written data and the counter value, however, a compare match signal will be generated at that point. The compare match signal is output in synchronization with the TCFL clock, so if this clock is stopped no compare match signal will be generated, even if a compare match occurs.

Compare match flag CMFH is set when all 16 bits match and a compare match signal is generated; bit CMFL is set when the setting conditions are met for the lower 8 bits.

The overflow flag (OVFH) is set when TCF overflows; bit OVFL is set if the setting conditions are met when the lower 8 bits overflow. If a write to TCFL occurs at the same time as an overflow signal, the overflow signal is not output.

2. 8-bit timer mode

TCFH and OCRFH

The output at pin TMOFH toggles when there is a compare match. If the compare match signal occurs at the same time as new data is written in TCRF by a MOV instruction, however, the new value written in bit TOLH will be output at pin TMOFH.

If an OCRFH write occurs at the same time as a compare match signal, the compare match signal is inhibited. If a compare match occurs between the written data and the counter value, however, a compare match signal will be generated at that point. The compare match signal is output in synchronization with the TCFH clock.

If a TCFH write occurs at the same time as an overflow signal, the overflow signal is not output.

TCFL and OCRFL

The output at pin TMOFL toggles when there is a compare match. If the compare match signal occurs at the same time as new data is written in TCRF by a MOV instruction, however, the new value written in bit TOLL will be output at pin TMOFL.

If an OCRFL write occurs at the same time as a compare match signal, the compare match signal is inhibited. If a compare match occurs between the written data and the counter value, however, a compare match signal will be generated at that point. The compare match signal is output in synchronization with the TCFL clock, so if this clock is stopped no compare match signal will be generated, even if a compare match occurs.

If a TCFL write occurs at the same time as an overflow signal, the overflow signal is not output.

9.6 Timer G

9.6.1 Overview

Timer G is an 8-bit timer, with input capture functions for separately capturing the rising edge and falling edge of pulses input at the input capture pin (input capture input signal). Timer G has a built-in noise canceller circuit that can eliminate high-frequency noise from the input capture signal, enabling accurate measurement of its duty cycle. When timer G is not used for input capture, it functions as an 8-bit interval timer.

Features

Features of timer G are given below.

- Choice of four internal clock sources ($\phi/64$, $\phi/32$, $\phi/2$, $\phi_W/2$)
- Input capture function

Separate input capture registers are provided for the rising and falling edges.

Counter overflow detection

Can detect whether overflow occurred when the input capture signal was high or low.

• Choice of counter clear triggers

The counter can be cleared at the rising edge, falling edge, or both edges of the input capture signal.

• Two interrupt sources

Interrupts can be requested by input capture and by overflow. For input capture, the rising or falling edge can be selected.

Built-in noise-canceller circuit

The noise canceller circuit can eliminate high-frequency noise in the input capture signal.

Operates in subactive and subsleep modes

When $\phi_W/2$ is selected as the internal clock source, timer G can operate in the subactive and subsleep modes.

2. Block diagram

Figure 9-6-1 shows a block diagram of timer G.

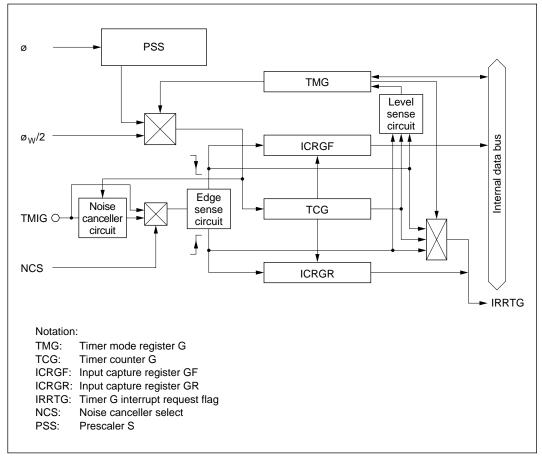


Figure 9-6-1 Block Diagram of Timer G

3. Pin configuration

Table 9-6-1 shows the timer \boldsymbol{G} pin configuration.

Table 9-6-1 Pin Configuration

Name	Abbrev.	I/O	Function
Timer G capture input	TMIG	Input	Timer G capture input

4. Register configuration

Table 9-6-2 shows the register configuration of timer G.

Table 9-6-2 Timer G Registers

Name	Abbrev.	R/W	Initial Value	Address
Timer mode register G	TMG	R/W	H'00	H'FFBC
Timer counter G	TCG	_	H'00	_
Input capture register GF	ICRGF	R	H'00	H'FFBD
Input capture register GR	ICRGR	R	H'00	H'FFBE

9.6.2 Register Descriptions

1. Timer counter G (TCG)

Bit	7	6	5	4	3	2	1	0
	TCG7	TCG6	TCG5	TCG4	TCG3	TCG2	TCG1	TCG0
Initial value	0	0	0	0	0	0	0	0
Read/Write	_	_	_	_	_	_	_	_

Timer counter G (TCG) is an 8-bit up-counter which is incremented by an input clock. The input clock signal is selected by bits CKS1 and CKS0 in timer mode register G (TMG).

To use TCG as an input capture timer, set bit TMIG to 1 in PMR1; to use TCG as an interval timer, clear bit TMIG to 0.* When TCG is used as an input capture timer, the TCG value can be cleared at the rising edge, falling edge, or both edges of the input capture signal, depending on settings in TMG.

When TCG overflows (goes from H'FF to H'00), if the timer overflow interrupt enable bit (OVIE) is set to 1 in TMG, bit IRRTG in interrupt request register 2 (IRR2) is set to 1. If in addition bit IENTG in interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt is requested. Details on interrupts are given in 3.3, Interrupts.

TCG cannot be read or written by the CPU.

Upon reset, TCG is initialized to H'00.

Note: * An input capture signal may be generated when TMIG is rewritten.

2. Input capture register GF (ICRGF)

Bit	7	6	5	4	3	2	1	0
	ICRGF7	ICRGF6	ICRGF5	ICRGF4	ICRGF3	ICRGF2	ICRGF1	ICRGF0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

ICRGF is an 8-bit read-only register. When the falling edge of the input capture signal is detected, the TCG value at that time is transferred to ICRGF. If the input capture interrupt select bit (IIEGS) is set to 1 in TMG, bit IRRTG in interrupt request register 2 (IRR2) is set to 1. If in addition bit IENTG in interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt is requested. Details on interrupts are given in 3.3, Interrupts.

To ensure proper input capture when the noise canceller is not used, the pulse width of the input capture signal should be at least 2ϕ or $2\phi_{SUB}$.

Upon reset, ICRGF is initialized to H'00.

3. Input capture register GR (ICRGR)

Bit	7	6	5	4	3	2	1	0
	ICRGR7	ICRGR6	ICRGR5	ICRGR4	ICRGR3	ICRGR2	ICRGR1	ICRGR0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

ICRGR is an 8-bit read-only register. When the rising edge of the input capture signal is detected, the TCG value at that time is sent to ICRGR. If the IIEGS bit is cleared to 0 in TMG, bit IRRTG in interrupt request register 2 (IRR2) is set to 1. If in addition bit IENTG in interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt is requested. Details on interrupts are given in 3.3, Interrupts.

To ensure proper input capture when the noise canceller is not used, the pulse width of the input capture signal should be at least $2\emptyset$ or $2\emptyset_{SUB}$.

Upon reset, ICRGR is initialized to H'00.

4. Timer mode register G (TMG)

Bit	7	6	5	4	3	2	1	0
	OVFH	OVFL	OVIE	IIEGS	CCLR1	CCLR0	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W*	R/W*	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Only 0 can be written, to clear flag.

TMG is an 8-bit read/write register. It controls the choice of four input clocks, counter clear selection, and edge selection for input capture interrupt requests. It also indicates overflow status and enables or disables overflow interrupt requests.

Upon reset, TMG is initialized to H'00.

Bit 7: Timer overflow flag H (OVFH)

Bit 7 is a status flag indicating that TCG overflowed (from H'FF to H'00) when the input capture signal was high. This flag is set by hardware and cleared by software. It cannot be set by software.

Bit 7 OVFH	Description	
0	Clearing conditions: After reading OVFH = 1, cleared by writing 0 to OVFH	(initial value)
1	Setting conditions: Set when the value of TCG overflows from H'FF to H'00	

Bit 6: Timer overflow flag L (OVFL)

Bit 6 is a status flag indicating that TCG overflowed (from H'FF to H'00) when the input capture signal was low, or in interval timer operation. This flag is set by hardware and cleared by software. It cannot be set by software.

Bit 6 OVFL	Description	
0	Clearing conditions: After reading OVFL = 1, cleared by writing 0 to OVFL	(initial value)
1	Setting conditions: Set when the value of TCG overflows from H'FF to H'00	

Bit 5: Timer overflow interrupt enable (OVIE)

Bit 5 enables or disables TCG overflow interrupts.

Bit 5 OVIE	Description	
0	TCG overflow interrupt disabled	(initial value)
1	TCG overflow interrupt enabled	

Bit 4: Input capture interrupt edge select (IIEGS)

Bit 4 selects the input signal edge at which input capture interrupts are requested.

Bit 4 IIEGS	Description	
0	Interrupts are requested at the rising edge of the input capture signal	(initial value)
1	Interrupts are requested at the falling edge of the input capture signal	

Bits 3, 2: Counter clear 1, 0 (CCLR1, CCLR0)

Bits 3 and 2 designate whether TCG is cleared at the rising, falling, or both edges of the input capture signal, or is not cleared.

Bit 3	Bit 2		
CCLR1	CCLR0	Description	
0	0	TCG is not cleared	(initial value)
0	1	TCG is cleared at the falling edge of the input capture signal	
1	0	TCG is cleared at the rising edge of the input capture signal	
1	1	TCG is cleared at both edges of the input capture signal	

Bits 1, 0: Clock select (CKS1, CKS0)

Bits 1 and 0 select the clock input to TCG from four internal clock signals.

Bit 1 CKS1	Bit 0 CKS0	Description	
0	0	Internal clock: ø/64	(initial value)
0	1	Internal clock: ø/32	
1	0	Internal clock: ø/2	
1	1	Internal clock: ø _W /2	

9.6.3 Noise Canceller Circuit

The noise canceller circuit built into the H8/3834 Series is a digital low-pass filter that rejects high-frequency pulse noise in the input at the input capture pin. The noise canceller circuit is enabled by the noise canceller select (NCS) bit in port mode register 2 (PMR2)*.

Figure 9-6-2 shows a block diagram of the noise canceller circuit.

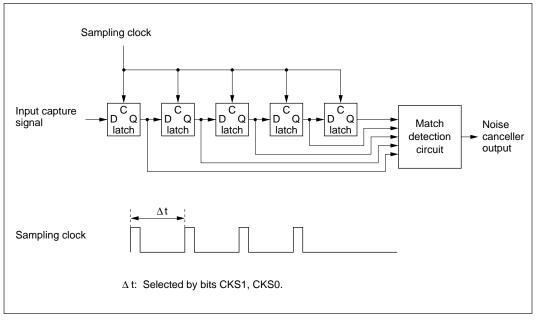


Figure 9-6-2 Block Diagram of Noise Canceller Circuit

The noise canceller consists of five latch circuits connected in series, and a match detection circuit. When the noise canceller function is disabled (NCS = 0), the system clock is selected as the sampling clock. When the noise canceller is enabled (NCS = 1), the internal clock selected by bits CKS1 and CKS0 in TMG becomes the sampling clock. The input signal is sampled at the rising edge of this clock pulse. Data is considered correct when the outputs of all five latch circuits match. If they do not match, the previous value is retained. Upon reset, the noise canceller output is initialized after the falling edge of the input capture signal has been sampled five times. Accordingly, after the noise canceller function is enabled, pulses that have a pulse width five times greater than the sampling clock will be recognized as input capture signals.

If the noise canceller circuit is not used, the input capture signal pulse width must be at least 2ϕ or $2\phi_{SUB}$ in order to ensure proper input capture operation.

Note: * Rewriting the NCS bit may cause an internal input capture signal to be generated.

Figure 9-6-3 shows a typical timing diagram for the noise canceller circuit. In this example, a high-level input at the input capture pin is rejected as noise because its pulse width is less than five sampling clock ø cycles.

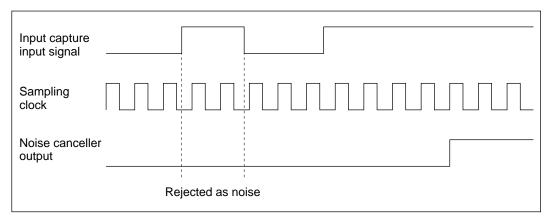


Figure 9-6-3 Noise Canceller Circuit Timing (Example)

9.6.4 Timer Operation

Timer G is an 8-bit timer with input capture and interval timer functions.

1. Timer G functions

Timer G is an 8-bit timer/counter that functions as an input capture timer or an interval timer. These two functions are described below.

• Input capture timer operation

Timer G functions as an input capture timer when bit TMIG of port mode register 1 (PMR1) is set to 1.*

At reset, timer mode register G (TMG), timer counter G (TCG), input capture register GF (ICRGF), and input capture register GR (ICRGR) are all initialized to H'00.

Immediately after reset, TCG begins counting an internal clock with a frequency of \emptyset divided by 64 (\emptyset /64). Three other internal clocks can be selected using bits CKS1 and CKS0 of TMG.

At the rising edge/falling edge of the input capture signal input to pin TMIG, the value of TCG is copied into ICRGR/ICRGF. If the input edge is the same as the edge selected by the IIEGS bit of TMG, then bit IRRTG is set to 1 in IRR2. If bit IENTG is also set to 1 in IENR2, a CPU interrupt is requested. For details on interrupts, see section 3.3, Interrupts.

TCG can be cleared to 0 at the rising edge, falling edge, or both edges of the input capture signal as determined with bits CCLR1 and CCLR0 of TMG. If TCG overflows while the input capture signal is high, bit OVFH of TMG is set. If TCG overflows while the input capture signal is low, bit OVFL of TMG is set. When either of these bits is set, if bit OVIE of TMG is currently set to 1, then bit IRRTG is set to 1 in IRR2. If bit IENTG is also set to 1 in IENR2, then timer G requests a CPU interrupt. For further details see 3.3, Interrupts.

Timer G has a noise canceller circuit that rejects high-frequency pulse noise in the input to pin TMIG. See 9.6.3, Noise Canceller Circuit, for details.

Note: * Rewriting the TMIG bit may cause an internal input capture signal to be generated.

Interval timer operation

Timer G functions as an interval timer when bit TMIG is cleared to 0 in PMR1. Following a reset, TCG starts counting cycles of the $\emptyset/64$ internal clock. This is one of four internal clock sources that can be selected by bits CKS1 and CKS0 of TMG. TCG counts up according to the selected clock source. When it overflows from H'FF to H'00, bit OVFL of TMG is set to 1. If bit OVIE of TMG is currently set to 1, then bit IRRTG is set to 1 in IRR2. If bit IENTG is also set to 1 in IENR2, then timer G requests a CPU interrupt. For further details see 3.3, Interrupts.

2. Count timing

TCG is incremented by input pulses from an internal clock. TMG bits CKS1 and CKS0 select one of four internal clocks ($\emptyset/64$, $\emptyset/32$, $\emptyset/2$, $\emptyset/2$, $\emptyset/2$) derived by dividing the system clock (\emptyset) or the watch clock (\emptyset _W).

- 3. Timing of internal input capture signals
- Timing with noise canceller function disabled

Separate internal input capture signals are generated from the rising and falling edges of the external input signal.

Figure 9-6-4 shows the timing of these signals.

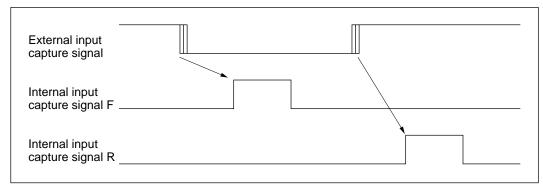


Figure 9-6-4 Input Capture Signal Timing (Noise Canceller Function Disabled)

• Timing with noise canceller function enabled

When input capture noise cancelling is enabled, the external input capture signal is routed via the noise canceller circuit, so the internal signals are delayed from the input edge by five sampling clock cycles. Figure 9-6-5 shows the timing.

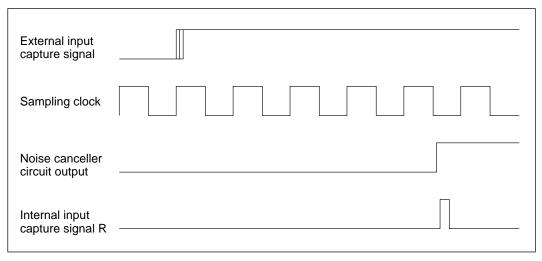


Figure 9-6-5 Input Capture Signal Timing (Noise Canceller Function Enabled)

4. Timing of input capture

Figure 9-6-6 shows the input capture timing in relation to the internal input capture signal.

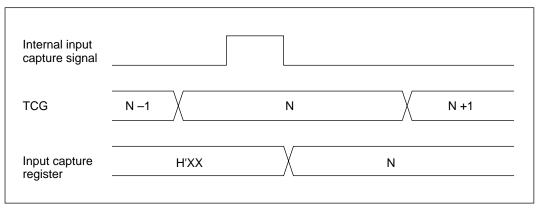


Figure 9-6-6 Input Capture Timing

5. TCG clear timing

TCG can be cleared at the rising edge, falling edge, or both edges of the external input capture signal. Figure 9-6-7 shows the timing for clearing at both edges.

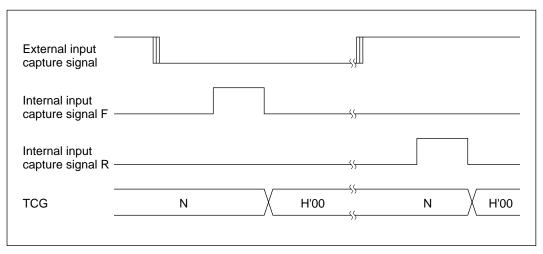


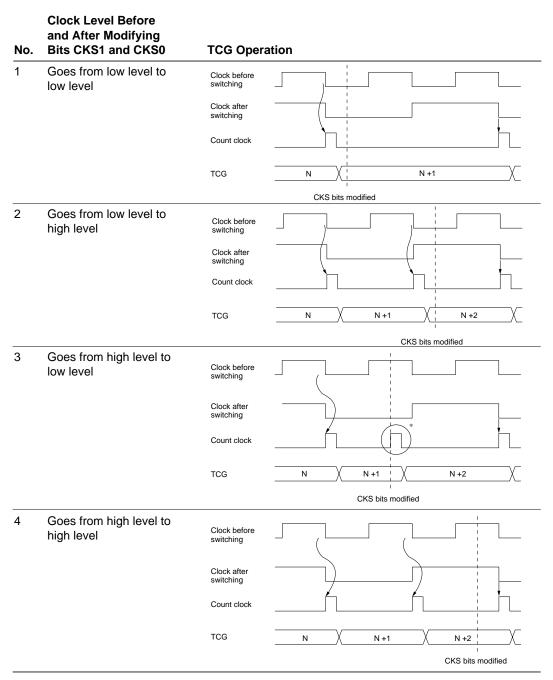
Figure 9-6-7 TCG Clear Timing

Timer G operation states

Table 9-6-3 summarizes the timer G operation states.

Table 9-6-3 Timer G Operation States

Operation Mode		Reset	Active	Sleep	Watch	Sub- active	Sub- sleep	Standby
TCG	Input capture	Reset	Functions*	Functions*	Halted	Functions/ Halted*	Functions/ Halted*	Halted
	Interval	Reset	Functions*	Functions*	Retained	Functions/ Halted*	Functions/ Halted*	Halted
ICRGF		Reset	Functions*	Functions*	Retained	Functions/ Halted*	Functions/ Halted*	Retained
ICRGR		Reset	Functions*	Functions*	Retained	Functions/ Halted*	Functions/ Halted*	Retained
TMG		Reset	Functions	Retained	Retained	Functions	Retained	Retained


Note: * In active mode and sleep mode, if $\phi_W/2$ is selected as the TCG internal clock, since the system clock and internal clock are not synchronized with each other, a synchronization circuit is used. This may result in a count cycle error of up to $1/\emptyset$ (s). In subactive mode and subsleep mode, if $\phi_W/2$ is selected as the TCG internal clock, regardless of the subclock ϕ_{SUB} ($\phi_W/2$, $\phi_W/4$, $\phi_W/8$) TCG and the noise canceller circuit run on an internal clock of $\phi_W/2$. If any other internal clock is chosen, TCG and the noise canceller circuit will not run, and the input capture function will not operate.

9.6.5 Application Notes

1. Input clock switching and TCG operation

Depending on when the input clock is switched, there will be cases in which TCG is incremented in the process. Table 9-6-4 shows the relation between internal clock switchover timing (selected in bits CKS1 and CKS0) and TCG operation. If an internal clock (derived from the system clock \emptyset or subclock \emptyset _{SUB}) is used, an increment pulse is generated when a falling edge of the internal clock is detected. For this reason, in a case like No. 3 in table 9-6-4, where the clock is switched at a time such that the clock signal goes from high level before switching to low level after switching, the switchover is seen as a falling edge of the clock pulse, causing TCG to be incremented.

Table 9-6-4 Internal Clock Switching and TCG Operation

Note: $\,^*$ The switchover is seen as a falling edge of the clock pulse, and TCG is incremented.

2. Note on rewriting port mode registers

When a port mode register setting is modified to enable or disable the input capture function or input capture noise canceling function, note the following points.

• Switching the function of the input capture pin

When the function of the input capture pin is switched by modifying the TMIG bit in port mode register 1 (PMR1) an input capture edge may be recognized even though no valid signal edge has been input. This occurs under the conditions listed in table 9-6-5.

Table 9-6-5 False Input Capture Edges Generating by Switching of Input Capture Pin Function

Input Capture Edge	Conditions			
Rising edge	TMIG pin level is high, and TMIG bit is changed from 0 to 1			
recognized	TMIG pin level is high and NCS bit is changed from 0 to 1, then TMIG bit is changed from 0 to 1 before noise canceller circuit completes five samples			
Falling edge	TMIG pin level is high, and TMIG bit is changed from 1 to 0			
recognized	TMIG pin level is low and NCS bit is changed from 0 to 1, then TMIG bit is changed from 0 to 1 before noise canceller circuit completes five samples			
	TMIG pin level is high and NCS bit is changed from 0 to 1, then TMIG bit is changed from 1 to 0 before noise canceller circuit completes five samples			

Note: When pin P1₃ is not used for input capture, the input capture signal input to timer G is low.

Switching the input capture noise canceling function

When modifying the NCS bit in port mode register 2 (PMR2) to enable or disable the input capture noise canceling function, first clear the TMIG bit to 0. Otherwise an input capture edge may be recognized even though no valid signal edge has been input. This occurs under the conditions listed in table 9-6-6.

Table 9-6-6 False Input Capture Edges Generating by Switching of Noise Canceling Function

Input Capture Edge	Conditions
Rising edge recognized	TMIG bit is set to 1 and TMIG pin level changes from low to high, then NCS bit is changed from 1 to 0 before noise canceller circuit completes five samples
Falling edge recognized	TMIG bit is set to 1 and TMIG pin level changes from high to low, then NCS bit is changed from 1 to 0 before noise canceller circuit completes five samples

If switching of the pin function generates a false input capture edge matching the edge selected by the input capture interrupt edge select bit (IIEGS), the interrupt request flag will be set to 1, making it necessary to clear this flag to 0 before using the interrupt function. Figure 9-6-8 shows the procedure for modifying port mode register settings and clearing the interrupt request flag. The first step is to mask interrupts before modifying the port mode register. After modifying the port mode register setting, wait long enough for an input capture edge to be recognized (at least two system clocks when noise canceling is disabled; at least five sampling clocks when noise canceling is enabled), then clear the interrupt request flag to 0 (assuming it has been set to 1). An alternative procedure is to avoid having the interrupt request flag set when the pin function is switched, either by controlling the level of the input capture pin so that it does not satisfy the conditions in tables 9-6-5 and 9-6-6, or by setting the IIEGS bit of TMG to select the edge opposite to the falsely generated edge.

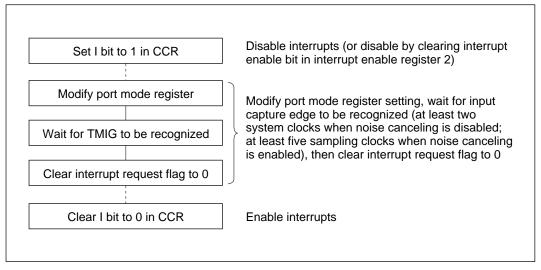


Figure 9-6-8 Procedure for Modifying Port Mode Register and Clearing Interrupt Request Flag

9.6.6 Sample Timer G Application

The absolute values of the high and low widths of the input capture signal can be measured by using timer G. The CCLR1 and CCLR0 bits of TMG should be set to 1. Figure 9-6-9 shows an example of this operation.

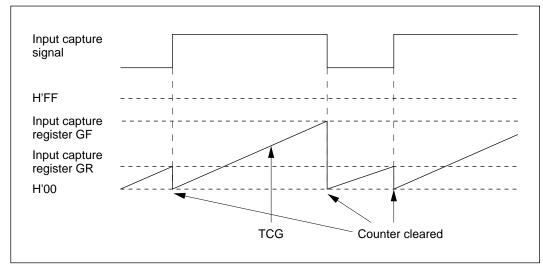


Figure 9-6-9 Sample Timer G Application

Section 10 Serial Communication Interface

10.1 Overview

The H8/3834 Series is provided with a three-channel serial communication interface (SCI). Table 10-1-1 summarizes the functions and features of the three SCI channels.

Table 10-1-1 Serial Communication Interface Functions

Channel	Functions	Features				
SCI1	Synchronous serial transfer	• Choice of 8 internal clocks (ø/1024 to ø/2) or				
	Choice of 8-bit or 16-bit data length	external clock				
	Continuous clock output	Open drain output possible				
	·	• Interrupt requested at completion of transfer				
SCI2	Synchronous serial transfer	• Choice of 7 internal clocks (ø/256 to ø/2) or				
	 Automatic transfer of up to 32 bytes 	external clock				
	of data (send, receive, or simultaneou	us• Open drain output possible				
	send/receive)	 Interrupt requested at completion of 				
	Chip select input	transfer or error				
	Strobe pulse output					
SCI3	Synchronous serial transfer	 Built-in baud rate generator 				
	8-bit data transfer	 Receive error detection 				
	 Send, receive, or simultaneous 	Break detection				
	send/receive	• Interrupt requested at completion of transfer				
	Asynchronous serial transfer	or error				
	Multiprocessor communication function	on				
	 Choice of 7-bit or 8-bit data length 					
	Choice of 1-bit or 2-bit stop bit length					
	 Odd or even parity 					

10.2 SCI1

10.2.1 Overview

Serial communication interface 1 (SCI1) performs synchronous serial transfer of 8-bit or 16-bit data.

- 1. Features
- Choice of 8-bit or 16-bit data length
- Choice of eight internal clock sources (ø/1024, ø/256, ø/64, ø/32, ø/16, ø/8, ø/4, ø/2) or an external clock
- Interrupt requested at completion of transfer

2. Block diagram

Figure 10-2-1 shows a block diagram of SCI1.

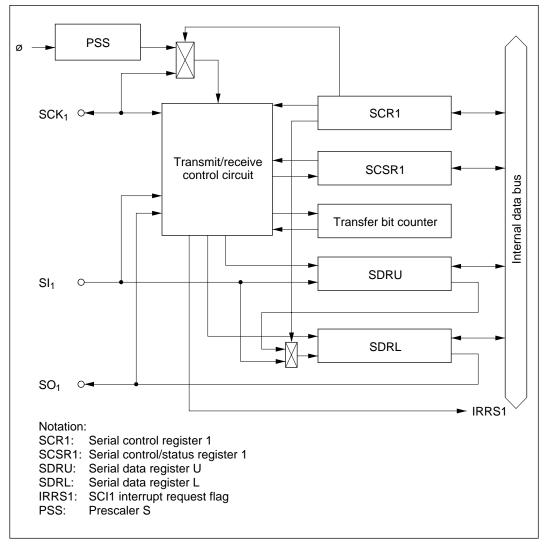


Figure 10-2-1 SCI1 Block Diagram

3. Pin configuration

Table 10-2-1 shows the SCI1 pin configuration.

Table 10-2-1 Pin Configuration

Name	Abbrev.	I/O	Function
SCI1 clock pin	SCK ₁	I/O	SCI1 clock input or output
SCI1 data input pin	SI ₁	Input	SCI1 receive data input
SCI1 data output pin	SO ₁	Output	SCI1 transmit data output

4. Register configuration

Table 10-2-2 shows the SCI1 register configuration.

Table 10-2-2 SCI1 Registers

Name	Abbrev.	R/W	Initial Value	Address
Serial control register 1	SCR1	R/W	H'00	H'FFA0
Serial control status register 1	SCSR1	R/W	H'80	H'FFA1
Serial data register U	SDRU	R/W	Not fixed	H'FFA2
Serial data register L	SDRL	R/W	Not fixed	H'FFA3

10.2.2 Register Descriptions

1. Serial control register 1 (SCR1)

Bit	7	6	5	4	3	2	1	0
	SNC1	SNC0	_	_	CKS3	CKS2	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SCR1 is an 8-bit read/write register for selecting the operation mode, the transfer clock source, and the prescaler division ratio.

Upon reset, SCR1 is initialized to H'00. Writing to this register during a transfer stops the transfer.

Bits 7 and 6: Operation mode select 1, 0 (SNC1, SNC0)

Bits 7 and 6 select the operation mode.

Bit 7 SNC1	Bit 6 SNC0	Description	
0	0	8-bit synchronous transfer mode	(initial value)
0	1	16-bit synchronous transfer mode	
1	0	Continuous clock output mode*1	
1	1	Reserved*2	

Notes: 1. Pins SI1 and SO1 should be used as general input or output ports.

2. Don't set bits SNC1 and SNC0 to 11.

Bits 5 and 4: Reserved bits

Bits 5 and 4 are reserved, but they can be written and read.

Bit 3: Clock source select (CKS3)

Bit 3 selects the clock source and sets pin SCK₁ as an input or output pin.

Bit 3 CKS3	Description	
0	Clock source is prescaler S, and pin SCK ₁ is output pin	(initial value)
1	Clock source is external clock, and pin SCK ₁ is input pin	

Bits 2 to 0: Clock select (CKS2 to CKS 0)

When CKS3 = 0, bits 2 to 0 select the prescaler division ratio and the serial clock cycle.

Bit 2	Bit 1	Bit 0		Serial	Clock Cycle
CKS2	CKS1	CKS0	Prescaler Division	ø = 5 MHz	ø = 2.5 MHz
0	0	0	ø/1024 (initial value)	204.8 μs	409.6 μs
0	0	1	ø/256	51.2 μs	102.4 μs
0	1	0	ø/64	12.8 µs	25.6 µs
0	1	1	ø/32	6.4 µs	12.8 µs
1	0	0	ø/16	3.2 µs	6.4 µs
1	0	1	ø/8	1.6 µs	3.2 µs
1	1	0	ø/4	0.8 µs	1.6 µs
1	1	1	ø/2	_	0.8 µs

2. Serial control/status register 1 (SCSR1)

Bit	7	6	5	4	3	2	1	0
	_	SOL	ORER	_	_	_	_	STF
Initial value	1	0	0	0	0	0	0	0
Read/Write	_	R/W	R/(W)*	_	_	_	R/W	R/W

Note: * Only a write of 0 for flag clearing is possible.

SCSR1 is an 8-bit read/write register indicating operation status and error status.

Upon reset, SCSR1 is initialized to H'80.

Bit 7: Reserved bit

Bit 7 is reserved; it is always read as 1, and cannot be modified.

Bit 6: Extended data bit (SOL)

Bit 6 sets the SO_1 output level. When read, SOL returns the output level at the SO_1 pin. After completion of a transmission, SO_1 continues to output the value of the last bit of transmitted data. The SO_1 output can be changed by writing to SOL before or after a transmission. The SOL bit setting remains valid only until the start of the next transmission. To control the level of the SO_1 pin after transmission ends, it is necessary to write to the SOL bit at the end of each transmission. Do not write to this register while transmission is in progress, because that may cause a malfunction.

Bit 6 SOL	Descrip	otion	
0	Read	SO ₁ pin output level is low	(initial value)
	Write	SO ₁ pin output level changes to low	
1	Read	SO ₁ pin output level is high	
	Write	SO ₁ pin output level changes to high	

Bit 5: Overrun error flag (ORER)

When an external clock is used, bit 5 indicates the occurrence of an overrun error. If a clock pulse is input after transfer completion, this bit is set to 1 indicating an overrun. If noise occurs during a transfer, causing an extraneous pulse to be superimposed on the normal serial clock, incorrect data may be transferred.

Bit 5 ORER	Description
0	Clearing conditions: (initial value) After reading ORER = 1, cleared by writing 0 to ORER
1	Setting conditions: Set if a clock pulse is input after transfer is complete, when an external clock is used

Bits 4 to 2: Reserved bits

Bits 4 to 2 are reserved; they are always read as 0, and cannot be modified.

Bit 1: Reserved bit

Bit 1 is reserved; it should always be cleared to 0.

Bit 0: Start flag (STF)

Bit 0 controls the start of a transfer. Setting this bit to 1 causes SCI1 to start transferring data.

During the transfer or while waiting for the first clock pulse, this bit remains set to 1. It is cleared to 0 upon completion of the transfer. It can therefore be used as a busy flag.

STF	Description	
0	Read: Indicates that transfer is stopped	(initial value)
	Write: Invalid	
1	Read: Indicates transfer in progress	
	Write: Starts a transfer operation	

3. Serial data register U (SDRU)

Bit	7	6	5	4	3	2	1	0
	SDRU7	SDRU6	SDRU5	SDRU4	SDRU3	SDRU2	SDRU1	SDRU0
Initial value	Not fixed							
Read/Write	R/W							

SDRU is an 8-bit read/write register. It is used as the data register for the upper 8 bits in 16-bit transfer (SDRL is used for the lower 8 bits).

Data written to SDRU is output to SDRL starting from the least significant bit (LSB). This data is then replaced by LSB-first data input at pin SI1, which is shifted in the direction from the most significant bit (MSB) toward the LSB.

SDRU must be written or read only after data transmission or reception is complete. If this register is written or read while a data transfer is in progress, the data contents are not guaranteed.

The SDRU value upon reset is not fixed.

4. Serial data register L (SDRL)

Bit	7	6	5	4	3	2	1	0
	SDRL7	SDRL6	SDRL5	SDRL4	SDRL3	SDRL2	SDRL1	SDRL0
Initial value	Not fixed							
Read/Write	R/W							

SDRL is an 8-bit read/write register. It is used as the data register in 8-bit transfer, and as the data register for the lower 8 bits in 16-bit transfer (SDRU is used for the upper 8 bits).

In 8-bit transfer, data written to SDRL is output from pin SO_1 starting from the least significant bit (LSB). This data is than replaced by LSB-first data input at pin SI_1 , which is shifted in the direction from the most significant bit (MSB) toward the LSB.

In 16-bit transfer, operation is the same as for 8-bit transfer, except that input data is fed in via SDRU.

SDRL must be written or read only after data transmission or reception is complete. If this register is read or written while a data transfer is in progress, the data contents are not guaranteed.

The SDRL value upon reset is not fixed.

10.2.3 Operation

Data can be sent and received in an 8-bit or 16-bit format, synchronized to an internal or external serial clock. Overrun errors can be detected when an external clock is used.

Clock

The serial clock can be selected from a choice of eight internal clocks and an external clock. When an internal clock source is selected, pin SCK_1 becomes the clock output pin. When continuous clock output mode is selected (SCR1 bits SNC1 and SNC0 are set to 10), the clock signal ($\emptyset/1024$ to $\emptyset/2$) selected in bits CKS2 to CKS0 is output continuously from pin SCK_1 . When an external clock is used, pin SCK_1 is the clock input pin.

2. Data transfer format

Figure 10-2-2 shows the data transfer format. Data is sent and received starting from the least significant bit, in LSB-first format. Transmit data is output from one falling edge of the serial clock until the next falling edge. Receive data is latched at the rising edge of the serial clock.

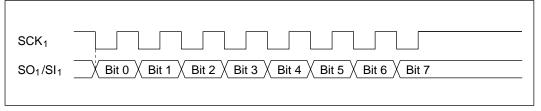


Figure 10-2-2 Transfer Format

- 3. Data transfer operations
- Transmitting

A transmit operation is carried out as follows.

- Set bit SO₁ in port mode register 3 (PMR3) to 1, making pin P3₂/SO₁ the SO₁ output pin. Also set bit SCK1 in PMR3 to 1, making pin P3₀/SCK₁ the SCK₁ I/O pin. If necessary, set bit POF1 in port mode register 2 (PMR2) for NMOS open drain output at pin SO₁.
- Clear bit SNC1 in SCR1 to 0, and set bit SNC0 to 1 or 0, designating 8- or 16-bit synchronous transfer mode. Select the serial clock in bits CKS3 to CKS0. Writing data to SCR1 initializes the internal state of SCI1.
- Write transmit data in SDRL and SDRU, as follows.

8-bit transfer mode: SDRL

16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL

- Set the SCSR1 start flag (STF) to 1. SCI1 starts operating and outputs transmit data at pin SO₁.
- After data transmission is complete, bit IRRS1 in interrupt request register 1 (IRR1) is set to 1.

When an internal clock is used, a serial clock is output from pin SCK_1 in synchronization with the transmit data. After data transmission is complete, the serial clock is not output until the next time the start flag is set to 1. During this time, pin SO_1 continues to output the value of the last bit transmitted.

When an external clock is used, data is transmitted in synchronization with the serial clock input at pin SCK₁. After data transmission is complete, an overrun occurs if the serial clock continues to be input; no data is transmitted and the SCSR1 overrun error flag (bit ORER) is set to 1.

While transmission is stopped, the output value of pin SO_1 can be changed by rewriting bit SOL in SCSR1.

Receiving

A receive operation is carried out as follows.

- Set bit SI1 in port mode register 3 (PMR3) to 1, making pin P3₁/SI₁ the SI₁ input pin. Also set bit SCK1 in PMR3 to 1, making pin P3₀/SCK₁ the SCK₁ I/O pin.
- Clear bit SNC1 in SCR1 to 0, and set bit SNC0 to 1 or 0, designating 8- or 16-bit synchronous transfer mode. Select the serial clock in bits CKS3 to CKS0. Writing data to SCR1 initializes the internal state of SCI1.
- Set the SCSR1 start flag (STF) to 1. SCI1 starts operating and receives data at pin SI₁.
- After data reception is complete, bit IRRS1 in interrupt request register 1 (IRR1) is set to 1.
- Read the received data from SDRL and SDRU, as follows.

8-bit transfer mode: SDRL

16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL

— After data reception is complete, an overrun occurs if the serial clock continues to be input; no data is received and the SCSR1 overrun error flag (bit ORER) is set to 1.

Simultaneous transmit/receive

A simultaneous transmit/receive operation is carried out as follows.

- Set bits SO₁, SI₁, and SCK1 in PMR3 to 1, making pin P3₂/SO₁ the SO₁ output pin, pin P3₁/SI₁ the SI₁ input pin, and pin P3₀/SCK₁ the SCK₁ I/O pin. If necessary, set bit POF1 in port mode register 2 (PMR2) for NMOS open drain output at pin SO₁.
- Clear bit SNC1 in SCR1 to 0, and set bit SNC0 to 1 or 0, designating 8- or 16-bit synchronous transfer mode. Select the serial clock in bits CKS3 to CKS0. Writing data to SCR1 initializes the internal state of SCI1.
- Write transmit data in SDRL and SDRU, as follows.

8-bit transfer mode: SDRL

16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL

- Set the SCSR1 start flag (STF) to 1. SCI1 starts operating. Transmit data is output at pin SO₁. Receive data is input at pin SI₁.
- After data transmission and reception are complete, bit IRRS1 in IRR1 is set to 1.
- Read the received data from SDRL and SDRU, as follows.

8-bit transfer mode: SDRL

16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL

When an internal clock is used, a serial clock is output from pin SCK_1 in synchronization with the transmit data. After data transmission is complete, the serial clock is not output until the next time the start flag is set to 1. During this time, pin SO_1 continues to output the value of the last bit transmitted.

When an external clock is used, data is transmitted and received in synchronization with the serial clock input at pin SCK₁. After data transmission and reception are complete, an overrun occurs if the serial clock continues to be input; no data is transmitted or received and the SCSR1 overrun error flag (bit ORER) is set to 1.

While transmission is stopped, the output value of pin SO₁ can be changed by rewriting bit SOL in SCSR1.

10.2.4 Interrupts

SCI1 can generate an interrupt at the end of a data transfer.

When an SCI1 transfer is complete, bit IRRS1 in interrupt request register 1 (IRR1) is set to 1. SCI1 interrupt requests can be enabled or disabled by bit IENS1 of interrupt enable register 1 (IENR1).

For further details, see 3.3, Interrupts.

10.2.5 Application Notes

When an external clock is input at pin SCK_1 , bit STF in SCSR1 must first be set to 1 to start data transfer before inputting the external clock.

10.3 SCI2

10.3.1 Overview

Serial communication interface 2 (SCI2) has a 32-bit data buffer for synchronous serial transfer of up to 32 bytes of data in one operation.

Features

Features of SCI are listed below.

- Automatic transfer of up to 32 bytes of data
- Choice of seven internal clock sources (ø/256, ø/64, ø/32, ø/16, ø/8, ø/4, ø/2) or an external clock
- Interrupts requested at completion of transfer or when an error occurs
- Gaps of 56, 24, or 8 internal clock cycles can be inserted between successive bytes of transferred data.
- Transfer can be started by chip select input.
- A strobe pulse can be output for each byte transferred.

2. Block diagram

Figure 10-3-1 shows a block diagram of SCI2.

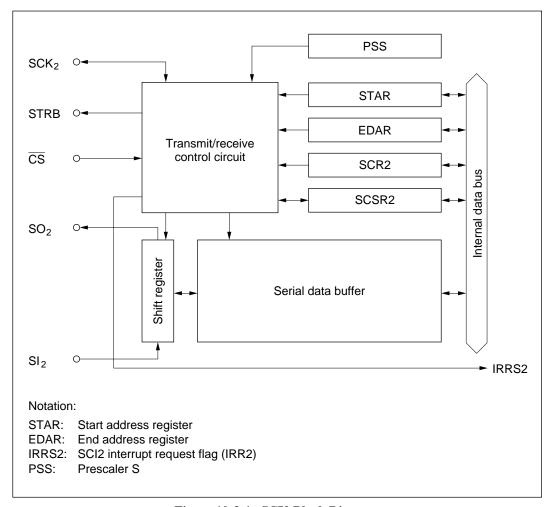


Figure 10-3-1 SCI2 Block Diagram

Pin configuration

Table 10-3-1 shows the SCI2 pin configuration.

Table 10-3-1 Pin Configuration

Name	Abbrev.	I/O	Function
SCI2 clock pin	SCK ₂	I/O	SCI2 clock input/output
SCI2 data input pin	SI ₂	Input	SCI2 receive data input
SCI2 data output pin	SO ₂	Output	SCI2 transmit data output
SCI2 strobe pin	STRB	Output	SCI2 strobe signal output
SCI2 chip select pin	CS	Input	SCI2 chip select input

4. Register configuration

Table 10-3-2 shows the SCI2 register configuration.

Table 10-3-2 SCI2 Registers

Name	Abbrev.	R/W	Initial Value	Address
Start address register	STAR	R/W	H'E0	H'FFA4
End address register	EDAR	R/W	H'E0	H'FFA5
Serial control register 2	SCR2	R/W	H'E0	H'FFA6
Serial control/status register 2	SCSR2	R/W	H'E0	H'FFA7
Serial data buffer (32 bytes)	_	R/W	Not fixed	H'FF80 to H'FF9F

10.3.2 Register Descriptions

1. Start address register (STAR)

Bit	7	6	5	4	3	2	1	0
	_	_	_	STA4	STA3	STA2	STA1	STA0
Initial value	1	1	1	0	0	0	0	0
Read/Write	_	_	_	R/W	R/W	R/W	R/W	R/W

STAR is an 8-bit read/write register, for designating a transfer start address in the address space (H'FF80 to H'FF9F) allocated to the 32-byte data buffer. The lower 5 bits of STAR correspond to the lower 5 bits of the address. The extent of continuous data transfer is defined in STAR and in the end address register (EDAR). If the same value is designated by STAR and EDAR, only 1 byte of data is transferred.

Bits 7 to 5 are reserved; they are always read as 1, and cannot be modified.

Upon reset, STAR is initialized to H'E0.

2. End address register (EDAR)

Bit	7	6	5	4	3	2	1	0
	_	_	_	EDA4	EDA3	EDA2	EDA1	EDA0
Initial value	1	1	1	0	0	0	0	0
Read/Write		_	_	R/W	R/W	R/W	R/W	R/W

EDAR is an 8-bit read/write register, for designating a transfer end address in the address space (H'FF80 to H'FF9F) allocated to the 32-byte data buffer. The lower 5 bits of EDAR correspond to the lower 5 bits of the address. The extent of continuous data transfer is defined in STAR and in EDAR. If the same value is designated by STAR and EDAR, only 1 byte of data is transferred.

Bits 7 to 5 are reserved; they are always read as 1, and cannot be modified.

Upon reset, EDAR is initialized to H'E0.

3. Serial control register 2 (SCR2)

Bit	7	6	5	4	3	2	1	0
	_	_	_	GAP1	GAP0	CKS2	CKS1	CKS0
Initial value	1	1	1	0	0	0	0	0
Read/Write				R/W	R/W	R/W	R/W	R/W

SCR2 is an 8-bit read/write register for selecting the serial clock, and for setting the gap inserted between data during continuous transfer when SCI2 uses an internal clock.

Upon reset, SCR2 is initialized to H'E0.

Bits 7 to 5: Reserved bits

Bits 7 to 5 are reserved; they are always read as 1, and cannot be modified.

Bits 4 and 3: Gap select (GAP1 to GAP0)

When SCI2 uses an internal clock, gaps can be inserted between successive data bytes. Bits 4 and 3 designate the length of these gaps. During a gap, pin SCK_2 remains at the high level. When no gap is inserted, the STRB signal stays at the low level.

Bit 4 GAP1	Bit 3 GAP0	Description	
0	0	No gaps between bytes	(initial value)
0	1	A gap of 8 clock cycles is inserted between bytes	
1	0	A gap of 24 clock cycles is inserted between bytes	
1	1	A gap of 56 clock cycles is inserted between bytes	

Bits 2 to 0: Clock select (CKS2 to CKS0)

Bits 2 to 0 select one of seven internal clock sources or an external clock.

Bit 2	Bit 1	Bit 0		Clock		Serial Clock Cycle		
CKS2	CKS1	CKS0	Pin SCK ₂	Source	Prescaler Division	ø = 5 MHz	ø= 2.5 MHz	
0	0	0	SCK ₂ output	Prescaler S	ø/256 (initial value)	51.2 µs	102.4 µs	
0	0	1			ø/64	12.8 µs	25.6 µs	
0	1	0			ø/32	6.4 µs	12.8 µs	
0	1	1			ø/16	3.2 µs	6.4 µs	
1	0	0			ø/8	1.6 µs	3.2 µs	
1	0	1			ø/4	0.8 µs	1.6 µs	
1	1	0			ø/2	_	0.8 µs	
1	1	1	SCK ₂ input	External clock	_	_	_	

4. Serial control/status register 2 (SCSR2)

Bit	7	6	5	4	3	2	1	0
	_	_	_	SOL	ORER	WT	ABT	STF
Initial value	1	1	1	0	0	0	0	0
Read/Write	_	_	_	R/W	R/(W)*	R/(W)*	R/(W)*	R/W

Note: * Only a write of 0 for flag clearing is possible.

SCSR2 is an 8-bit register indicating SCI2 operation status and error status.

Upon reset, SCSR2 is initialized to H'E0.

Bits 7 to 5: Reserved bits

Bits 7 to 5 are reserved; they are always read as 1, and cannot be modified.

Bit 4: Extended data bit (SOL)

Bit 4 sets the SO_2 output level. When read, SOL returns the transmitted data output at the SO_2 pin. After completion of a transmission, SO_2 continues to output the value of the last bit of transmitted data. The SO_2 output can be changed by writing to SOL before or after a transmission. The SOL bit setting remains valid only until the start of the next transmission. To control the level of the SO_2 pin after transmission ends, it is necessary to write to the SOL bit at the end of each transmission. Note that if the STF bit is cleared to 0 to terminate a transmission in progress, the transmitted data will be modified when the bit is cleared.

Bit 4 SOL Description

JUL	Descrip	ption	
0	Read	SO ₂ pin output level is low	(initial value)
	Write	SO ₂ pin output level changes to low	
1	Read	SO ₂ pin output level is high	
	Write	SO ₂ pin output level changes to high	

Bit 3: Overrun error flag (ORER)

When an external clock is used, bit 3 indicates the occurrence of an overrun error. If a clock pulse is input after transfer completion, this bit is set to 1 indicating an overrun. If noise occurs during a transfer, causing an extraneous pulse to be superimposed on the normal serial clock, incorrect data may be transferred. Overrun errors are not detected while pin \overline{CS} is at the high level.

Bit 3 ORER	Description	
0	Clearing conditions: After reading ORER = 1, cleared by writing 0 to ORER	(initial value)
1	Setting conditions: Set if a clock pulse is input after transfer is complete, when an extern	nal clock is used

Bit 2: Wait flag (WT)

Bit 2 indicates that an attempt was made to read or write the 32-byte serial data buffer while a transfer was in progress, or while waiting for \overline{CS} input. The read or write access is not carried out, and this bit is set to 1.

Bit 2 WT	Description	
0	Clearing conditions: After reading WT = 1, cleared by writing 0 to WT	(initial value)
1	Setting conditions: An attempt was made to read or write the (32-byte) serial data be transfer operation or while waiting for $\overline{\text{CS}}$ input	uffer during a

Bit 1: Abort flag (ABT)

Bit 1 indicates that \overline{CS} went to high during data transfer. When the \overline{CS} input function is selected, if a high-level signal is detected at pin \overline{CS} during a transfer, the transfer is immediately aborted and this bit is set to 1. At the same time bit IRRS2 in interrupt request register 2 (IRR2) is set to 1, and pins SCK_2 and SO_2 go to the high-impedance state. Data in the (32-byte) serial data buffer and values in the internal registers other than SCSR2 remain unchanged.

Transfer cannot take place while this bit is set to 1. It must be cleared to 0 before resuming the transfer.

Bit 1 ABT	Description	
0	Clearing conditions: After reading ABT = 1, cleared by writing 0 to ABT	(initial value)
1	Setting conditions: When pin CS goes high during a transfer	

Bit 0: Start/busy flag (STF)

Bit 0 controls the start of a transfer. If bit CS = 0 in PMR2, setting bit STF to 1 causes SCI2 to start transferring data. If bit CS = 1 in PMR2, then after STF is set to 1, SCI2 starts transferring data when \overline{CS} goes low. This bit stays at 1 during the transfer or while waiting for \overline{CS} input; it is cleared to 0 after the transfer is completed or when the transfer is aborted by \overline{CS} . It can therefore be used as a busy flag.

Clearing this bit to 0 during a transfer aborts the transfer. The contents of the (32-byte) serial data buffer and of internal registers other than SCSR2 remain unchanged.

Bit 0 STF	Explanation				
0	Read: Indicates that transfer is stopped	(initial value)			
	Write: Stops a transfer operation				
1	Read: Indicates transfer in progress or waiting for CS input				
	Write: Starts a transfer operation				

10.3.3 Operation

SCI2 has a 32-byte serial data buffer, making possible continuous transfer of up to 32 bytes of data with one operation. SCI2 transmits and receives data in synchronization with clock pulses. Depending on register settings, it can transmit, receive, or transmit and receive simultaneously. When it transmits but does not receive, the serial data buffer values are retained after the transmission is completed.

Either an internal clock or external clock may be selected as the serial clock. When an internal clock is selected, gaps may be inserted between the data bytes. It is also possible to output a strobe signal at pin STRB. When an external clock is selected, the overrun flag allows detection of erroneous operation due to unwanted clock input.

Transfers can be started or aborted by input at pin \overline{CS} . Abort is indicated by means of an abort flag.

1. Clock

The serial clock can be selected from a choice of six internal clock sources or an external clock. When an internal clock source is selected, pin SCK_2 becomes the clock output pin.

Data transfer format

Figure 10-3-2 and figure 10-3-3 show the SCI2 data transfer format. Data is sent and received starting from the least significant bit, in LSB-first format. Transmit data is output from one falling edge of the serial clock until the next falling edge. Receive data is latched at the rising edge of the serial clock.

When SCI2 operates on an internal clock, a gap can be inserted between each byte of transferred data and the next, as shown in figure 10-3-3. During this gap, pin SCK₂ outputs a high-level signal. Also, a strobe pulse can be output at pin STRB.

The length of the gap is designated in bits GAP1 and GAP0 in serial control register 2 (SCR2).

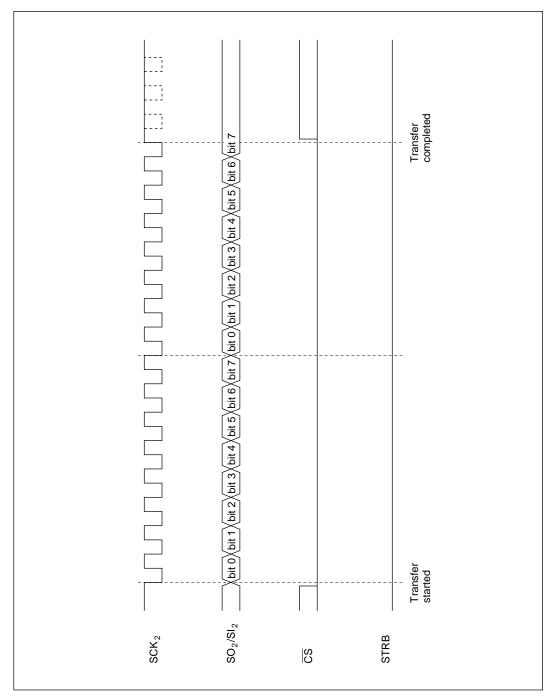


Figure 10-3-2 Data Transfer Format (No Gaps between Data)

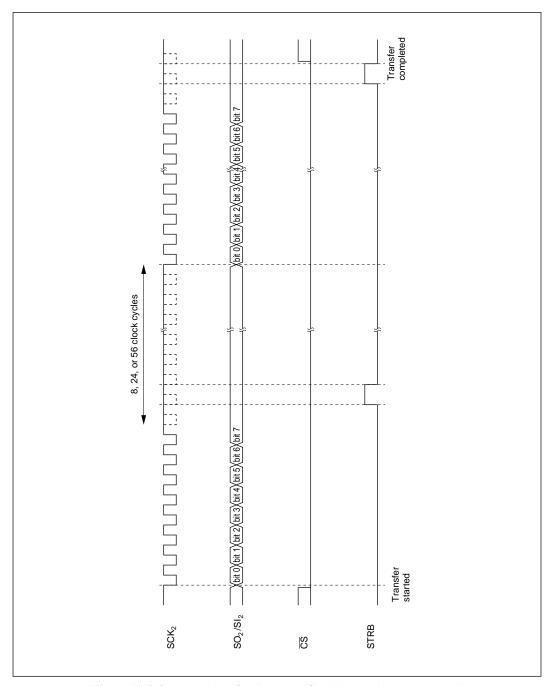


Figure 10-3-3 Data Transfer Format (Gap Inserted between Data)

- 3. Data transfer operations
- SCI2 initialization

Data transfer on SCI2 first of all requires that SCI2 be initialized by software as follows.

- With bit STF cleared to 0 in SCSR2, select pin functions and the transfer mode in registers PMR2, PMR3, STAR, EDAR, and SCR2.
- The SCI2 pins double as general input/output ports. Switching between port and SCI2 functions is controlled in PMR3. CMOS output or NMOS open drain output can be selected in PMR2. The serial clock and gaps between transferred bytes are set in SCR2.
- The start and end addresses of the transfer data area are set in STAR and EDAR. If the end address is set smaller than the start address, as shown in figure 10-3-4, the transfer wraps around from H'FF9F to H'FF80 and continues to the end address. If the start address and end address are the same, only one byte of data will be transferred.

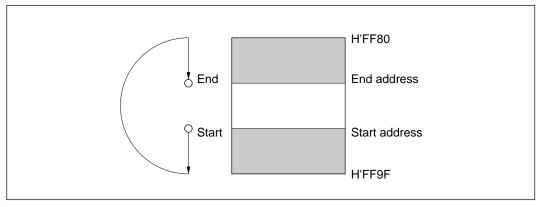


Figure 10-3-4 Operation When End Address is Smaller than Start Address

• Transmitting

A transmit operation is carried out as follows.

- Set bit SO2 in port mode register 3 (PMR3) to 1, making pin P3₅/SO₂ the SO₂ output pin. Also set bit SCK2 in PMR3 to 1, making pin P3₃/SCK₂ the SCK₂ I/O pin. If necessary, set bit POF2 in port mode register 2 (PMR2) for NMOS open-drain output at pin SO₂, and set bits CS and STRB in PMR3 to designate use of the CS and STRB pin functions.
- Select the serial clock and, in the case of internal clock operation, the data gap in SCR2.
- Write transmit data in the serial data buffer. This data will remain in the data buffer after completion of the transfer. It is not necessary to rewrite the buffer when the same data is retransmitted.
- Set the start address in the lower 5 bits of STAR, and the end address in the lower 5 bits of EDAR.
- Set the start/busy flag (STF) to 1. If bit CS = 0 in PMR3, transmission starts as soon as STF is set to 1. If CS = 1 in PMR3, transmission starts when \overline{CS} goes low.
- After data transmission is complete, bit IRRS2 in interrupt request register 2 (IRR2) is set to 1, and bit STF is cleared to 0.

When an internal clock is used, a serial clock is output from pin SCK₂ in synchronization with the transmit data. After data transmission is completed, the serial clock is not output until bit STF is set again. During this time, pin SO₂ continues to output the value of the last bit transmitted.

When an external clock is used, data is transmitted in synchronization with the serial clock input at pin SCK_2 . After data transmission is completed, an overrun occurs if the serial clock continues to be input; no data is transmitted and the SCSR2 overrun error flag (bit ORER) is set to 1. Pin SO_2 continues to output the value of the last preceding bit. Overrun errors are not detected when both pin \overline{CS} is at the high level and PMR3 bit CS = 1.

While transmission is stopped, the output value of pin SO₂ can be changed by rewriting bit SOL in SCSR2.

During a transmission or while waiting for \overline{CS} input, the CPU cannot read or write the data buffer. If a read instruction is executed, H'FF will be read; if a write instruction is executed, the buffer contents will not change. In either case the wait flag (bit WT) in SCSR2 will be set to 1.

If bit CS = 1 in PMR3 and during transmission a high-level signal is detected at pin \overline{CS} , the transmit operation will immediately be aborted, setting the abort flag (bit ABT) to 1. At the same time bit IRRS2 in interrupt request register 2 (IRR2) will be set to 1, and bit STF will be cleared to 0. Pins SCK_2 and SO_2 will go to the high-impedance state. Data transfer is not possible while bit ABT is set to 1. It must be cleared before resuming the transfer.

Receiving

A receive operation is carried out as follows.

- Set bits SI_2 and SCK_2 in port mode register 3 (PMR3) to 1, designating use of the SI_2 and SCK_2 pin functions. If necessary, set bit CS in PMR3 to select the \overline{CS} pin function.
- Select the serial clock and, in the case of internal clock operation, the data gap in SCR2.
- Allocate an area to hold the received data in the serial data buffer by designating the receive start address in the lower 5 bits of the start address register (STAR) and the receive end address in the lower 5 bits of the end address register (EDAR).
- Set the start/busy flag (bit STF) to 1. If bit CS = 0 in PMR3, receiving starts as soon as STF is set. If CS = 1 in PMR3, receiving starts when \overline{CS} goes low.
- After receiving is completed, bit IRRS2 in interrupt request register 2 (IRR2) is set to 1, and bit STF is cleared to 0.
- Read the received data from the serial data buffer.

If an internal clock is used, a serial clock is output from pin SCK_2 when the receive operation starts. After receiving is completed, the serial clock is not output until bit STF is set again. When an external clock source is used, data is received in synchronization with the clock input at pin SCK_2 . After receiving is completed, an overrun occurs if the serial clock continues to be input; no further data is received and the SCSR2 overrun error flag (bit ORER) is set to 1. Overrun errors are not detected when both pin \overline{CS} is high and bit CS = 1 in PMR3.

While receiving or while waiting for \overline{CS} input, the CPU cannot read or write the data buffer. If a read instruction is executed, H'FF will be read; if a write instruction is executed the buffer contents will not change. In either case the wait flag (bit WT) in SCSR2 will be set to 1.

If bit CS = 1 in PMR3 and a high-level signal is detected at pin \overline{CS} during receiving, the receive operation will immediately be aborted, setting the abort flag (bit ABT) to 1. At the same time bit IRRS2 in interrupt request register 2 (IRR2) will be set to 1, and bit STF will be cleared to 0. Pins SCK_2 and SO_2 will go to the high-impedance state. Data transfer is not possible while bit ABT is set to 1. It must be cleared before resuming the transfer.

Simultaneous transmit/receive

A simultaneous transmit/receive operation is carried out as follows.

- Set bits SO₂, SI₂, and SCK₂ in PMR3 to 1, designating use of the SO₂, SI₂, and SCK₂ pin functions. If necessary, set bit POF2 in port mode register 2 (PMR2) for NMOS open-drain output at pin SO₂, and set bits CS and STRB to designate use of the CS and STRB pin functions.
- Select the transfer clock and, in the case of internal clock operation, the data gap in SCR2.
- Write transmit data in the serial data buffer. In simultaneous transmit/receive, received data replaces transmitted data at the same buffer addresses.
- Set the transfer start address in the lower 5 bits of STAR, and the transfer end address in the lower 5 bits of EDAR.
- Set the start/busy flag (bit STF) to 1. If bit CS = 0 in PMR3, the transmit/receive transfer starts as soon as STF is set to 1. If CS = 1 in PMR3, transfer operations start when \overline{CS} goes low.

- After data transfer is completed, bit IRRS2 in interrupt request register 2 (IRR2) is set to 1, and bit STF is cleared to 0.
- Read the received data from the serial data buffer.

If an internal clock is used, a serial clock is output from pin SCK₂ when the transfer begins. After the transfer is completed, the serial clock is not output until bit STF is set again. During this time, pin SO₂ continues to output the value of the last bit transmitted.

When an external clock is used, data is transferred in synchronization with the serial clock input at pin SCK_2 . After the transfer is completed, an overrun occurs if the serial clock continues to be input; no transfer operation takes place and the SCSR2 overrun error flag (bit ORER) is set to 1. Pin SO_2 continues to output the value of the last transmitted bit. Overrun errors are not detected when both pin \overline{CS} is high and bit CS = 1 in PMR3.

While data transfer is stopped, the output value of pin SO₂ can be changed by rewriting bit SOL in SCSR2.

During a transfer or while waiting for \overline{CS} input, the CPU cannot read or write the data buffer. If a read instruction is executed, H'FF will be read; if a write instruction is executed the buffer contents will not change. In either case the wait flag (bit WT) in SCSR2 will be set to 1.

If bit CS = 1 in PMR3 and during the transfer a high-level signal is detected at pin CS, the transfer will immediately be aborted, setting the abort flag (bit ABT) to 1. At the same time bit IRRS2 in interrupt request register 2 (IRR2) will be set to 1, and bit STF will be cleared to 0. Pins SCK_2 and SO_2 will go to the high-impedance state. Data transfer is not possible while bit ABT is set to 1. It must be cleared before resuming the transfer.

10.3.4 Interrupts

SCI2 can generate interrupts when a transfer is completed or when a transfer is aborted by $\overline{\text{CS}}$. These interrupts have the same vector address.

When the above conditions occur, bit IRRS2 in interrupt request register 2 (IRR2) is set to 1. SCI2 interrupt requests can be enabled or disabled in bit IENS2 of interrupt enable register 2 (IENR2). For further details, see 3.3, Interrupts.

When a transfer is aborted by \overline{CS} , an overrun error occurs, or a read or write of the serial data buffer is attempted during a transfer or while waiting for \overline{CS} input, the ABT, ORER, or WT bit in SCSR2 is set to 1. These bits can be used to determine the cause of the error.

10.3.5 Application Notes

When an external clock is input at pin SCK₂, bit STF in SCSR2 must first be set to 1 to start data transfer before inputting the external clock.

10.4 SCI3

10.4.1 Overview

Serial communication interface 3 (SCI3) has both synchronous and asynchronous serial data communication capabilities. It also has a multiprocessor communication function for serial data communication among two or more processors.

1. Features

SCI3 features are listed below.

Selection of asynchronous or synchronous mode

Asynchronous mode

SCI3 can communicate with a UART (universal asynchronous receiver/transmitter), ACIA (asynchronous communication interface adapter), or other chip that employs standard asynchronous serial communication. It can also communicate with two or more other processors using the multiprocessor communication function. There are twelve selectable serial data communication formats.

- Data length: seven or eight bits
- Stop bit length: one or two bits
- Parity: even, odd, or none
- Multiprocessor bit: one or none
- Receive error detection: parity, overrun, and framing errors
- Break detection: by reading the RXD level directly when a framing error occurs

b. Synchronous mode

Serial data communication is synchronized with a clock signal. SCI3 can communicate with other chips having a clocked synchronous communication function.

- Data length: eight bits
- Receive error detection: overrun errors

• Full duplex communication

The transmitting and receiving sections are independent, so SCI3 can transmit and receive simultaneously. Both sections use double buffering, so continuous data transfer is possible in both the transmit and receive directions.

- Built-in baud rate generator with selectable bit rates.
- Internal or external clock may be selected as the transfer clock source.
- There are six interrupt sources: transmit end, transmit data empty, receive data full, overrun error, framing error, and parity error.

2. Block diagram

Figure 10-4-1 shows a block diagram of SCI3.

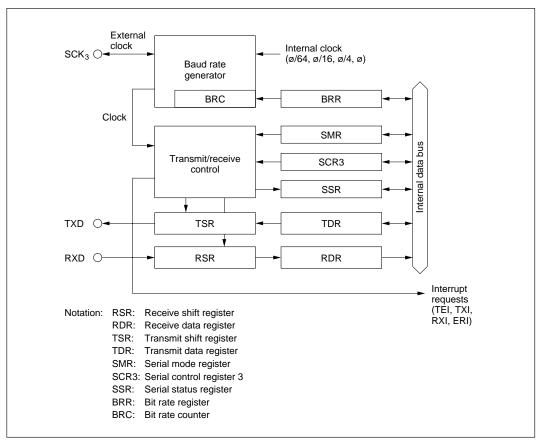


Figure 10-4-1 SCI3 Block Diagram

3. Pin configuration

Table 10-4-1 shows the SCI3 pin configuration.

Table 10-4-1 Pin Configuration

Name	Abbrev.	I/O	Function
SCI3 clock	SCK ₃	I/O	SCI3 clock input/output
SCI3 receive data input	RXD	Input	SCI3 receive data input
SCI3 transmit data output	TXD	Output	SCI3 transmit data output

4. Register configuration

Table 10-4-2 shows the SCI3 internal register configuration.

Table 10-4-2 SCI3 Registers

Name	Abbrev.	R/W	Initial Value	Address
Serial mode register	SMR	R/W	H'00	H'FFA8
Bit rate register	BRR	R/W	H'FF	H'FFA9
Serial control register 3	SCR3	R/W	H'00	H'FFAA
Transmit data register	TDR	R/W	H'FF	H'FFAB
Serial status register	SSR	R/W	H'84	H'FFAC
Receive data register	RDR	R	H'00	H'FFAD
Transmit shift register	TSR	_	_	_
Receive shift register	RSR	_	_	_
Bit rate counter	BRC	_	_	_

10.4.2 Register Descriptions

1. Receive shift register (RSR)

Bit	7	6	5	4	3	2	1	0
Read/Write	_	_	_	_		_	_	_

The receive shift register (RSR) is for receiving serial data.

Serial data is input in LSB-first order into RSR from pin RXD, converting it to parallel data. After each byte of data has been received, the byte is automatically transferred to the receive data register (RDR).

RSR cannot be read or written directly by the CPU.

2. Receive data register (RDR)

Bit	7	6	5	4	3	2	1	0
	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

The receive data register (RDR) is an 8-bit register for storing received serial data.

Each time a byte of data is received, the received data is transferred from the receive shift register (RSR) to RDR, completing a receive operation. Thereafter RSR again becomes ready to receive new data. RSR and RDR form a double buffer mechanism that allows data to be received continuously.

RDR is exclusively for receiving data and cannot be written by the CPU.

RDR is initialized to H'00 upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

3. Transmit shift register (TSR)

Bit	7	6	5	4	3	2	1	0
Read/Write	_			_		_	_	_

The transmit shift register (TSR) is for transmitting serial data.

Transmit data is first transferred from the transmit data register (TDR) to TSR, then is transmitted from pin TXD, starting from the LSB (bit 0).

After one byte of data has been sent, the next byte is automatically transferred from TDR to TSR, and the next transmission begins. If no data has been written to TDR (1 is set in TDRE), there is no data transfer from TDR to TSR.

TSR cannot be read or written directly by the CPU.

4. Transmit data register (TDR)

Bit	7	6	5	4	3	2	1	0
	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W							

The transmit data register (TDR) is an 8-bit register for holding transmit data.

When SCI3 detects that the transmit shift register (TSR) is empty, it shifts transmit data written in TDR to TSR and starts serial data transmission. While TSR is transmitting serial data, the next byte to be transmitted can be written to TDR, realizing continuous transmission.

TDR can be read or written by the CPU at all times.

TDR is initialized to H'FF upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

5. Serial mode register (SMR)

Bit	7	6	5	4	3	2	1	0
	COM	CHR	PE	PM	STOP	MP	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

The serial mode register (SMR) is an 8-bit register for setting the serial data communication format and for selecting the clock source of the baud rate generator. SMR can be read and written by the CPU at any time.

SMR is initialized to H'00 upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

Bit 7: Communication mode (COM)

Bit 7 selects asynchronous mode or synchronous mode as the serial data communication mode.

Bit 7
COM Description

0 Asynchronous mode (initial value)

1 Synchronous mode

Bit 6: Character length (CHR)

Bit 6 selects either 7 bits or 8 bits as the data length in asynchronous mode. In synchronous mode the data length is always 8 bits regardless of the setting here.

Bit 6		
CHR	Description	
0	8-bit data	(initial value)
1	7-bit data*	

Note: * When 7-bit data is selected as the character length in asynchronous mode, the MSB (bit 7) in the transmit data register is not transmitted.

Bit 5: Parity enable (PE)

In asynchronous mode, bit 5 selects whether or not a parity bit is to be added to transmitted data and checked in received data. In synchronous mode there is no adding or checking of parity regardless of the setting here.

Bit 5 PE	Description	
0	Parity bit adding and checking disabled	(initial value)
1	Parity bit adding and checking enabled*	

Note: * When PE is set to 1, then either odd or even parity is added to transmit data, depending on the setting of the parity mode bit (PM). When data is received, it is checked for odd or even parity as designated in bit PM.

Bit 4: Parity mode (PM)

In asynchronous mode, bit 4 selects whether odd or even parity is to be added to transmitted data and checked in received data. The setting here is valid only if parity adding/checking is enabled in bit PE. In synchronous mode, or if parity adding/checking is disabled in bit PE, bit PM is ignored.

Bit 4		
PM	Description	
0	Even parity*1	(initial value)
1	Odd parity*2	

Notes: 1. When even parity is designated, a parity bit is added to the transmitted data so that the sum of 1s in the resulting data is an even number. When data is received, the sum of 1s in the data plus parity bit is checked to see if the result is an even number.

2. When odd parity is designated, a parity bit is added to the transmitted data so that the sum of 1s in the resulting data is an odd number. When data is received, the sum of 1s in the data plus parity bit is checked to see if the result is an odd number.

Bit 3: Stop bit length (STOP)

Bit 3 selects 1 bit or 2 bits as the stop bit length in asynchronous mode. This setting is valid only in asynchronous mode. In synchronous mode a stop bit is not added, so this bit is ignored.

Bit 3 STOP	Description	
0	1 stop bit*1	(initial value)
1	2 stop bits*2	

Notes: 1. When data is transmitted, one 1 bit is added at the end of each transmitted character as the stop bit.

2. When data is transmitted, two 1 bits are added at the end of each transmitted character as the stop bits.

When data is received, only the first stop bit is checked regardless of the stop bit length. If the second stop bit value is 1 it is treated as a stop bit; if it is 0, it is treated as the start bit of the next character.

Bit 2: Multiprocessor mode (MP)

Bit 2 enables or disables the multiprocessor communication function. When the multiprocessor communication function is enabled, the parity enable (PE) and parity mode (PM) settings are ignored. The MP bit is valid only in asynchronous mode; it should be cleared to 0 in synchronous mode.

See 10.4.6, for details on the multiprocessor communication function.

Bit 2 MP	Description	
0	Multiprocessor communication function disabled	(initial value)
1	Multiprocessor communication function enabled	

Bits 1 and 0: Clock select 1, 0 (CKS1, CKS0)

Bits 1 and 0 select the clock source for the built-in band rate generator. A choice of $\emptyset/64$, $\emptyset/16$, $\emptyset/4$, or \emptyset is made in these bits.

See 8, Bit rate register, below for information on the clock source and bit rate register settings, and their relation to the baud rate.

Bit 1 CKS1	Bit 0 CKS0	Description	
0	0	ø clock	(initial value)
0	1	ø/4 clock	
1	0	ø/16 clock	
1	1	ø/64 clock	

6. Serial control register 3 (SCR3)

Bit	7	6	5	4	3	2	1	0
	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Serial control register 3 (SCR3) is an 8-bit register that controls SCI3 transmit and receive operations, enables or disables serial clock output in asynchronous mode, enables or disables interrupts, and selects the serial clock source. SCR3 can be read and written by the CPU at any time.

SCR3 is initialized to H'00 upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

Bit 7: Transmit interrupt enable (TIE)

Bit 7 enables or disables the transmit data empty interrupt (TXI) request when data is transferred from TDR to TSR and the transmit data register empty bit (TDRE) in the serial status register (SSR) is set to 1. The TXI interrupt can be cleared by clearing bit TDRE to 0, or by clearing bit TIE to 0.

Bit 7		
TIE	Description	
0	Transmit data empty interrupt request (TXI) disabled	(initial value)
1	Transmit data empty interrupt request (TXI) enabled	

Bit 6: Receive interrupt enable (RIE)

Bit 6 enables or disables the receive error interrupt (ERI), and the receive data full interrupt (RXI) requested when data is transferred from RSR to RDR and the receive data register full bit (RDRF) in the serial status register (SSR) is set to 1. RXI and ERI interrupts can be cleared by clearing SSR flag RDRF, or flags FER, PER, and OER to 0, or by clearing bit RIE to 0.

Bit 6 RIE	Description	
0	Receive data full interrupt request (RXI) and receive error interrupt request (ERI) disabled	(initial value)
1	Receive data full interrupt request (RXI) and receive error interrupt request (ERI) enabled	

Bit 5: Transmit enable (TE)

Bit 5 enables or disables the start of a transmit operation.

Bit 5 TE	Description	
0	Transmit operation disabled*1 (TXD is a general I/O port)	(initial value)
1	Transmit operation enabled*2 (TXD is the transmit data pin)	

Notes: 1. The transmit data register empty bit (TDRE) in the serial status register (SSR) is fixed at 1.

2. In this state, writing transmit data in TDR clears bit TDRE in SSR to 0 and starts serial data transmission.

Before setting TE to 1 it is necessary to set the transmit format in SMR.

Bit 4: Receive enable (RE)

Bit 4 enables or disables the start of a receive operation.

Bit 4 RE	Description	
0	Receive operation disabled*1 (RXD is a general I/O port)	(initial value)
1	Receive operation enabled*2 (RXD is the receive data pin)	
Notes:	1. When RE is cleared to 0, this has no effect on the SSR flags RDRF,	FER, PER, and

Notes: 1. When RE is cleared to 0, this has no effect on the SSR flags RDRF, FER, PER, and OER, which retain their states.

Serial data receiving begins when, in this state, a start bit is detected in asynchronous mode, or serial clock input is detected in synchronous mode.Before setting RE to 1 it is necessary to set the receive format in SMR.

Bit 3: Multiprocessor interrupt enable (MPIE)

Bit 3 enables or disables multiprocessor interrupt requests. This setting is valid only in asynchronous mode, and only when the multiprocessor mode bit (MP) in the serial mode register (SMR) is set to 1. It applies only to data receiving. This bit is ignored when COM is set to 1 or when bit MP is cleared to 0.

Bit 3 MPIE	Description	
0	Multiprocessor interrupt request disabled (ordinary receive operation)	(initial value)
	Clearing condition: Multiprocessor bit receives a data value of 1	
1	Multiprocessor interrupt request enabled*	

Note: * SCI3 does not transfer receive data from RSR to RDR, does not detect receive errors, and does not set status flags RDRF, FER, and OER in SSR. Until a multiprocessor bit value of 1 is received, the receive data full interrupt (RXI) and receive error interrupt (ERI) are disabled and serial status register (SSR) flags RDRF, FER, and OER are not set. When the multiprocessor bit receives a 1, the MPBR bit of SSR is set to 1, MPIE is automatically cleared to 0, RXI and ERI interrupts are enabled (provided bits TIE and RIE in SCR3 are set to 1), and setting of the RDRF, FER, and OER flags is enabled.

Bit 2: Transmit end interrupt enable (TEIE)

Bit 2 enables or disables the transmit end interrupt (TEI) requested if there is no valid transmit data in TDR when the MSB is transmitted.

Bit 2
TEIE Description

0 Transmit end interrupt (TEI) disabled (initial value)

1 Transmit end interrupt (TEI) enabled*

Note: * A TEI interrupt can be cleared by clearing the SSR bit TDRE to 0 and clearing the transmit end bit (TEND) to 0, or by clearing bit TEIE to 0.

Bits 1 and 0: Clock enable 1, 0 (CKE1, CKE0)

Bits 1 and 0 select the clock source and enable or disable clock output at pin SCK_3 . The combination of bits CKE1 and CKE0 determines whether pin SCK_3 is a general I/O port, a clock output pin, or a clock input pin.

Note that the CKE0 setting is valid only when operation is in asynchronous mode using an internal clock. This bit is invalid in synchronous mode or when using an external clock (CKE1 = 1). In synchronous mode and in external clock mode, clear CKE0 to 0. After setting bits CKE1 and CKE0, the operation mode must first be set in the serial mode register (SMR).

See table 10-4-9 in 10.4.3, Operation, for details on clock source selection.

Bit 1 CKE1	Bit 0 CKE0	Communication Mode	Clock Source	SCK ₃ Pin Function
0	0	Asynchronous	Internal clock	I/O port*1
		Synchronous	Internal clock	Serial clock output*1
0	1	Asynchronous	Internal clock	Clock output*2
		Synchronous	Reserved	Reserved
1	0	Asynchronous	External clock	Clock input*3
		Synchronous	External clock	Serial clock input
1	1	Asynchronous	Reserved	Reserved
		Synchronous	Reserved	Reserved

Notes: 1. Initial value

- 2. A clock is output with the same frequency as the bit rate.
- 3. Input a clock with a frequency 16 times the bit rate.

7. Serial status register (SSR)

Bit	7	6	5	4	3	2	1	0
	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT
Initial value	1	0	0	0	0	1	0	0
Read/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W

Note: *Only 0 can be written for flag clearing.

The serial status register (SSR) is an 8-bit register containing status flags for indicating SCI3 states, and containing the multiprocessor bits.

SSR can be read and written by the CPU at any time, but the CPU cannot write a 1 to the status flags TDRE, RDRF, OER, PER, and FER. To clear these flags to 0 it is first necessary to read a 1. Bit 2 (TEND) and bit 1 (MPBR) are read-only bits and cannot be modified.

SSR is initialized to H'84 upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

Bit 7: Transmit data register empty (TDRE)

Bit 7 is a status flag indicating that data has been transferred from TDR to TSR.

Bit 7 TDRE	Description				
0	Indicates that transmit data written to TDR has not been transferred to TSR				
	Clearing conditions: After reading TDRE = 1, cleared by writing 0 to TDRE. When data is written to TDR by an instruction.				
1	Indicates that no transmit data has been written to TDR, or the transmit data written to TDR has been transferred to TSR	(initial value)			
	Setting conditions: When bit TE in SCR3 is cleared to 0. When data is transferred from TDR to TSR.				

Bit 6: Receive data register full (RDRF)

Bit 6 is a status flag indicating whether there is receive data in RDR.

Bit 6 RDRF	Description				
0	Indicates there is no receive data in RDR (initial va				
	Clearing conditions: After reading RDRF = 1, cleared by writing 0 to RDRF. When data is read from RDR by an instruction.				
1	Indicates that there is receive data in RDR				
	Setting condition: When receiving ends normally, with receive data transferred from RSR to RDR				

Note: If a receive error is detected at the end of receiving, or if bit RE in serial control register 3 (SCR3) is cleared to 0, RDR and RDRF are unaffected and keep their previous states. An overrun error (OER) occurs if receiving of data is completed while bit RDRF remains set to 1. If this happens, receive data will be lost.

Bit 5: Overrun error (OER)

Bit 5 is a status flag indicating that an overrun error has occurred during data receiving.

Bit 5 OER	Description			
0	Indicates that data receiving is in progress or has been completed*1 (initial value)			
	Clearing condition: After reading OER = 1, cleared by writing 0 to OER			
1	Indicates that an overrun error occurred in data receiving*2			
	Setting condition: When data receiving is completed while RDRF is set to 1			
N				

- Notes: 1. When bit RE in serial control register 3 (SCR3) is cleared to 0, OER is unaffected and keeps its previous state.
 - RDR keeps the data received prior to the overrun; data received after that is lost. While OER is set to 1, data receiving cannot be continued. In synchronous mode, data transmitting cannot be continued either.

Bit 4: Framing error (FER)

Bit 4 is a status flag indicating that a framing error has occurred during asynchronous receiving.

Bit 4 FER		Description
0		Indicates that data receiving is in progress or has been completed*1 (initial value)
		Clearing condition: After reading FER = 1, cleared by writing 0 to FER
1		Indicates that a framing error occurred in data receiving
		Setting condition: The stop bit at the end of receive data is checked and found to be 0^{*2}
Notes:	1.	When bit RE in serial control register 3 (SCR3) is cleared to 0, FER is unaffected and keeps its previous state.
	2.	When two stop bits are used only the first stop bit is checked, not the second. When a framing error occurs, receive data is transferred to RDR but RDRF is not set. While FER is set to 1, data receiving cannot be continued. In synchronous mode, data transmitting cannot be continued either.

Bit 3: Parity error (PER)

Bit 3 is a status flag indicating that a parity error has occurred during asynchronous receiving.

Bit 3 PER	Description
0	Indicates that data receiving is in progress or has been completed*1 (initial value)
	Clearing condition: After reading PER = 1, cleared by writing 0 to PER
1	Indicates that a parity error occurred in data receiving*2
	Setting condition: When the sum of 1s in received data plus the parity bit does not match the parity mode bit (PM) setting in the serial mode register (SMR)
Notes:	When bit RE in serial control register 3 (SCR3) is cleared to 0, PER is unaffected and keeps its previous state.
	2. When a parity error occurs, receive data is transferred to RDR but RDRF is not set. While PER is set to 1, data receiving cannot be continued. In synchronous mode, data

transmitting cannot be continued either.

Bit 2: Transmit end (TEND)

Bit 2 is a status flag indicating that TDRE was set to 1 when the last bit of a transmitted character was sent. TEND is a read-only bit and cannot be modified directly.

Bit 2
TEND Description

O Indicates that transmission is in progress
Clearing conditions:
After reading TDRE = 1, cleared by writing 0 to TDRE.
When data is written to TDR by an instruction.

Indicates that a transmission has ended
Setting conditions:
When bit TE in SCR3 is cleared to 0.
If TDRE is set to 1 when the last bit of a transmitted character is sent.

Bit 1: Multiprocessor bit receive (MPBR)

Bit 1 holds the multiprocessor bit in data received in asynchronous mode using a multiprocessor format. MPBR is a read-only bit and cannot be modified.

Bit 1 MPBR	Description	
0	Indicates reception of data in which the multiprocessor bit is 0*	(initial value)
1	Indicates reception of data in which the multiprocessor bit is 1	

Note: *If bit RE is cleared to 0 while a multiprocessor format is in use, MPBR retains its previous state.

Bit 0: Multiprocessor bit transmit (MPBT)

Bit 0 holds the multiprocessor bit to be added to transmitted data when a multiprocessor format is used in asynchronous mode. Bit MPBT is ignored when synchronous mode is chosen, when the multiprocessor communication function is disabled, or when data transmission is disabled.

Bit 0 MPBT	Description	
0	The multiprocessor bit in transmit data is 0	(initial value)
1	The multiprocessor bit in transmit data is 1	

8. Bit rate register (BRR)

Bit	7	6	5	4	3	2	1	0
	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W							

The bit rate register (BRR) is an 8-bit register which, together with the baud rate generator clock selected by bits CKS1 and CKS0 in the serial mode register (SMR), sets the transmit/receive bit rate.

BRR can be read or written by the CPU at any time.

BRR is initialized to H'FF upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

Table 10-4-3 gives examples of how BRR is set in asynchronous mode. The values in table 10-4-3 are for active (high-speed) mode.

Table 10-4-3 BRR Settings and Bit Rates in Asynchronous Mode (1)

OSC (MHz)

	2			2.4576			4			4.194304		
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	1	70	+0.03	1	86	+0.31	1	141	+0.03	1	148	-0.04
150	0	207	+0.16	0	255	0	1	103	+0.16	1	108	+0.21
300	0	103	+0.16	0	127	0	0	207	+0.16	0	217	+0.21
600	0	51	+0.16	0	63	0	0	103	+0.16	0	108	+0.21
1200	0	25	+0.16	0	31	0	0	51	+0.16	0	54	-0.70
2400	0	12	+0.16	0	15	0	0	25	+0.16	0	26	+1.14
4800	_	_	_	0	7	0	0	12	+0.16	0	13	-2.48
9600	_	_	_	0	3	0	_	_	_	0	6	-2.48
19200	_	_	_	0	1	0	_	_	_	_	_	_
31250	0	0	0	_	_	_	0	1	0	_	_	_
38400	_	_	_	0	0	0	_	_	_	_	_	_

Table 10-4-3 BRR Settings and Bit Rates in Asynchronous Mode (2)

OSC (MHz)

	4.9152			6			7.3728			8		
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	1	174	-0.26	1	212	+0.03	2	64	+0.70	2	70	+0.03
150	1	127	0	1	155	+0.16	1	191	0	1	207	+0.16
300	0	255	0	1	77	+0.16	1	95	0	1	103	+0.16
600	0	127	0	0	155	+0.16	0	191	0	0	207	+0.16
1200	0	63	0	0	77	+0.16	0	95	0	0	103	+0.16
2400	0	31	0	0	38	+0.16	0	47	0	0	51	+0.16
4800	0	15	0	0	19	-2.34	0	23	0	0	25	+0.16
9600	0	7	0	0	9	-2.34	0	11	0	0	12	+0.16
19200	0	3	0	0	4	-2.34	0	5	0	_	_	_
31250	_	_	_	0	2	0	_	_	_	0	3	0
38400	0	1	0	_	_	_	0	2	0	_	_	_

Table 10-4-3 BRR Settings and Bit Rates in Asynchronous Mode (3)

		9.830	04		10	
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)
110	2	86	+0.31	2	88	-0.25
150	1	255	0	2	64	+0.16
300	1	127	0	1	129	+0.16
600	0	255	0	1	64	+0.16
1200	0	127	0	0	129	+0.16
2400	0	63	0	0	64	+0.16
4800	0	31	0	0	32	-1.36
9600	0	15	0	0	15	+1.73
19200	0	7	0	0	7	+1.73
31250	0	4	-1.70	0	4	0
38400	0	3	0	0	3	+1.73

Notes: 1. Settings should be made so that error is within 1%.

2. BRR setting values are derived by the following equation.

$$N = \frac{OSC}{64 \times 2^{2n} \times B} \times 10^6 - 1$$

B: Bit rate (bits/s)

N: BRR baud rate generator setting $(0 \le N \le 255)$

OSC: Value of \emptyset_{OSC} (MHz)

n: Baud rate generator input clock number (n = 0, 1, 2, 3)

 The error values in table 10-4-3 were derived by performing the following calculation and rounding off to two decimal places.

Error (%) =
$$\frac{B-R}{R} \times 100$$

B: Bit rate found from n, N, and OSC

R: Bit rate listed in left column of table 10-4-3

The meaning of n is shown in table 10-4-4.

Table 10-4-4 Relation between n and Clock

SMR Setting Clock CKS1 CKS0 n 0 Ø 0 0 1 ø/4 0 1 2 1 ø/16 0 3 ø/64 1 1

Table 10-4-5 shows the maximum bit rate for selected frequencies in asynchronous mode. Values in table 10-4-5 are for active (high-speed) mode.

Table 10-4-5 Maximum Bit Rate at Selected Frequencies (Asynchronous Mode)

	S	etting
Maximum Bit Rate (bits/s)	n	N
31250	0	0
38400	0	0
62500	0	0
65536	0	0
76800	0	0
93750	0	0
115200	0	0
125000	0	0
153600	0	0
156250	0	0
	31250 38400 62500 65536 76800 93750 115200 125000 153600	Maximum Bit Rate (bits/s) n 31250 0 38400 0 62500 0 65536 0 76800 0 93750 0 115200 0 125000 0 153600 0

Table 10-4-6 shows typical BRR settings in synchronous mode. Values in table 10-4-6 are for active (high-speed) mode.

Table 10-4-6 Typical BRR Settings and Bit Rates (Synchronous Mode)

Bit Rate	2		4			8	10		
(bits/s)	n	N	n	N	n	N	n	N	
110	_	_	_	_	_	_	_	_	
250	1	249	2	124	2	249	_	_	
500	1	124	1	249	2	124	_	_	
1K	0	249	1	124	1	249	_	_	
2.5K	0	99	0	199	1	99	1	124	
5K	0	49	0	99	0	199	0	249	
10K	0	24	0	49	0	99	0	124	
25K	0	9	0	19	0	39	0	49	
50K	0	4	0	9	0	19	0	24	
100K	_	_	0	4	0	9	_	_	
250K	0	0*	0	1	0	3	0	4	
500K			0	0*	0	1	_	_	
1M					0	0*	<u> </u>	_	
2.5M									

Notes: Blank: Cannot be set

—: Can be set, but error will result

*: Continuous transfer not possible at this setting BRR setting values are derived by the following equation.

$$N = \frac{OSC}{8 \times 2^{2n} \times B} \times 10^6 - 1$$

B: Bit rate (bits/s)

N: BRR baud rate generator setting $(0 \le N \le 255)$

OSC: Value of $ø_{OSC}$ (MHz)

n: Baud rate generator input clock number (n = 0, 1, 2, 3)

The meaning of n is shown in table 10-4-7.

Table 10-4-7 Relation between n and Clock

0140	O
SMR	Setting

		SWIN Setting				
n	Clock	CKS1	CKS0			
0	Ø	0	0			
1	ø/4	0	1			
2	ø/16	1	0			
3	ø/64	1	1			

10.4.3 Operation

SCI3 supports serial data communication in both asynchronous mode, where each character transferred is synchronized separately, and synchronous mode, where transfer is synchronized by clock pulses.

The choice of asynchronous mode or synchronous mode, and the communication format, is made in the serial mode register (SMR), as shown in table 10-4-8. The SCI3 clock source is determined by bit COM in SMR and bits CKE1 and CKE0 in serial control register 3 (SCR3), as shown in table 10-4-9.

1. Asynchronous mode

- Data length: choice of 7 bits or 8 bits
- Transmit/receive format options include addition of parity bit, multiprocessor bit, and one or two stop bits (character length depends on this combination of options).
- Framing error (FER), parity error (PER), overrun error (OER), and line breaks can be detected when data is received.
- Clock source: Choice of internal clocks or an external clock

When an internal clock is selected: Operates on baud rate generator clock. A clock can be output with the same frequency as the bit rate.

When an external clock is selected: A clock input with a frequency 16 times the bit rate is required (internal baud rate generator is not used).

2. Synchronous mode

- Transfer format: 8 bits
- Overrun error can be detected when data is received.
- Clock source: Choice of internal clocks or an external clock

When an internal clock is selected: Operates on baud rate generator clock, and outputs a serial clock.

When an external clock is selected: The internal baud rate generator is not used.

Operation is synchronous with the input clock.

Table 10-4-8 SMR Settings and SCI3 Communication Format

SMR Setting					Communication Forma				
Bit7 COM	Bit6 CHR	Bit2 MP	Bit5 PE	Bit3 STOP	Mode	Data Length	Multipro- cessor Bit	Parity Bit	Stop Bit Length
0	0	0	0	0	Asynchronous	8-bit data	No	No	1 bit
				1	mode				2 bits
			1	0				Yes	1 bit
				1					2 bits
	1	-	0	0		7-bit data		No	1 bit
				1					2 bits
			1	0				Yes	1 bit
				1					2 bits
	0	1	*	0	Asynchronous	8-bit data	Yes	No	1 bit
			*	1	mode (multiprocessor				2 bits
	1	-	*	0	format)	7-bit data			1 bit
			*	1					2 bits
1	*	0	*	*	Synchronous mode	8-bit data	No		None

Note: * Don't care

Table 10-4-9 SMR and SCR3 Settings and Clock Source Selection

SMR	sc	R3		Transmit/Receive Clock		
Bit7 COM	Bit1 CKE1	Bit0 CKE0	Mode	Clock Source	Pin SCK ₃ Function	
0	0	0	Asynchronous	Internal	I/O port (SCK ₃ function not used)	
		1	mode		Outputs clock with same frequency as bit rate	
	1	0		External	Clock should be input with frequency 16 times the desired bit rate	
1	0	0	Synchronous	Internal	Outputs a serial clock	
	1	0	mode	External	Inputs a serial clock	
0	1	1	Reserved	(illegal settings)		
1	0	1				
1	1	1				

3. Continuous transmit/receive operation using interrupts

Continuous transmit and receive operations are possible with SCI3, using the RXI or TXI interrupts. Table 10-4-10 explains this use of these interrupts.

Table 10-4-10 Transmit/Receive Interrupts

Interrupt	Flag	Interrupt Conditions	Remarks
RXI	RDRF RIE	When serial data is received normally and receive data is transferred from RSR to RDR, RDRF is set to 1. If RIE is 1 at this time, RXI is enabled and an interrupt occurs. (See figure 10-4-2 (a).)	The RXI interrupt handler routine should read the receive data from RDR and clear RDRF to 0. Continuous receiving is possible if these operations are completed before the next data has been completely received in RSR.
TXI	TDRE TIE	When TSR empty (previous transmission complete) is detected and the transmit data set in TDR is transferred to TSR, TDRE is set to 1. If TIE is 1 at this time, TXI is enabled and an interrupt occurs. (See figure 10-4-2 (b).)	The TXI interrupt handler routine should write the next transmit data to TDR and clear TDRE to 0. Continuous transmission is possible if these operations are completed before the data transferred to TSR has been completely transmitted.
TEI	TEND TEIE	When the last bit of the TSR transmit character has been sent, if TDRE is 1, then 1 is set in TEND. If TEIE is 1 at this time, TEI is enabled and an interrupt occurs. (See figure 10-4-2 (c).)	TEI indicates that, when the last bit of the TSR transmit character was sent, the next transmit data had not been written to TDR.

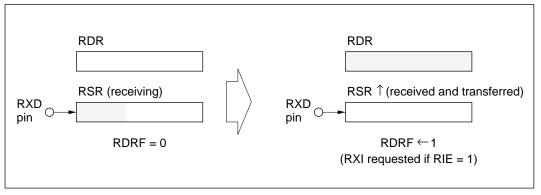


Figure 10-4-2 (a) RDRF Setting and RXI Interrupt

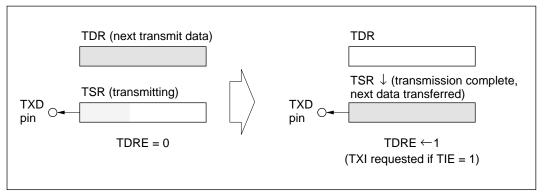


Figure 10-4-2 (b) TDRE Setting and TXI Interrupt

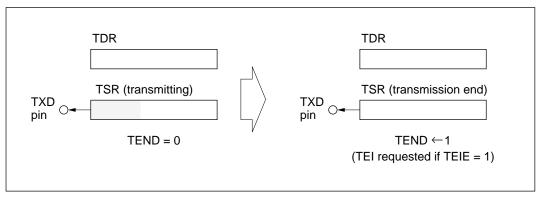


Figure 10-4-2 (c) $\,$ TEND Setting and TEI Interrupt

10.4.4 Operation in Asynchronous Mode

In asynchronous communication mode, a start bit indicating the start of communication and a stop bit (1 or 2 bits) indicating the end of communication are added to each character that is sent. In this way synchronization is achieved for each character as a self-contained unit.

SCI3 consists of independent transmit and receive modules, giving it the capability of full duplex communication. Both the transmit and receive modules have a double-buffer configuration, allowing data to be read or written during communication operations so that data can be transmitted and received continuously.

1. Transmit/receive formats

Figure 10-4-3 shows the general format for asynchronous serial communication.

The communication line in asynchronous communication mode normally stays at the high level, in the "mark" state. SCI3 monitors the communication line, and begins serial data communication when it detects a "space" (low-level signal), which is regarded as a start bit.

One character consists of a start bit (low level), transmit/receive data (in LSB-first order), a parity bit (high or low level), and finally a stop bit (high level), in this order.

In asynchronous data receiving, synchronization is with the falling edge of the start bit. SCI3 samples data on the 8th pulse of a clock that has 16 times the frequency of the bit rate, so each bit of data is latched at its center.

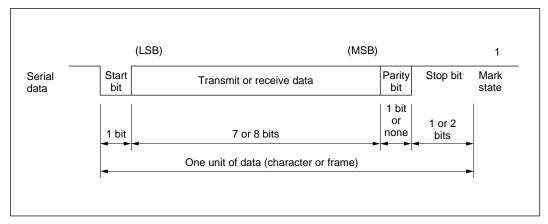


Figure 10-4-3 Data Format in Asynchronous Serial Communication Mode

Table 10-4-11 shows the 12 formats that can be selected in asynchronous mode. The format is selected in the serial mode register (SMR).

Table 10-4-11 Serial Communication Formats in Asynchronous Mode

;	SMR S	Setting	g	Serial Communication Format and Frame Length											
CHR	PE	MP	STOP	1	2	, 3	4	5	6	7	8	, 9	10	11	12
0	0	0	0	S				8-bit	data				STOP	-	
0	0	0	1	S				8-bit	data				STOP	STOP	
0	1	0	0	S				8-bit	data				Р	STOP	
0	1	0	1	S				8-bit	data				Р	STOP	STOP
1	0	0	0	S				7-bit	data			STOP	-		
1	0	0	1	S				7-bit	data			STOP	STOP	-	
1	1	0	0	S				7-bit	data			Р	STOP	-	
1	1	0	1	S				7-bit	data			Р	STOP	STOP	
0	*	1	0	S				8-bit	data				MPB	STOP	
0	*	1	1	S				8-bit	data				MPB	STOP	STOP
1	*	1	0	S				7-bit	data			MPB	STOP	-	
1	*	1	1	S				7-bit	data			MPB	STOP	STOP	

Notation: S: Start bit

STOP: Stop bit P: Parity bit

MPB: Multiprocessor bit

Note: * Don't care

Clock

The clock source is determined by bit COM in SMR and bits CKE1 and CKE0 in serial control register 3 (SCR3). See table 10-4-9 for the settings. Either an internal clock source can be used to run the built-in baud rate generator, or an external clock source can be input at pin SCK₃.

When an external clock source is input, it should have a frequency 16 times the desired bit rate.

When an internal clock source is used, SCK₃ is used as the clock output pin. The clock output has the same frequency as the serial bit rate, and is synchronized as in figure 10-4-4 so that the rising edge of the clock occurs in the center of each bit of transmit/receive data.

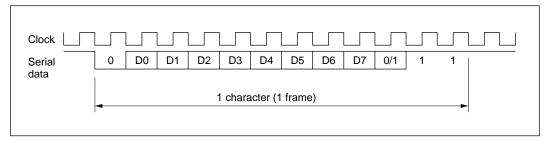


Figure 10-4-4 Phase Relation of Output Clock and Communication Data in Asynchronous Mode (8-Bit Data, Parity Bit Added, and 2 Stop Bits)

- 3. Data transmit/receive operations
- SCI3 initialization

Before data is sent or received, bits TE and RE in serial control register 3 (SCR3) must be cleared to 0, after which initialization can be performed using the procedure shown in figure 10-4-5.

Note:

When modifying the operation mode, transfer format or other settings, always be sure to clear bits TE and RE first. When TE is cleared to 0, bit TDRE will be set to 1. Clearing RE does not clear the status flags RDRF, PER, FER, or OER, or alter the contents of the receive data register (RDR).

When an external clock is used in asynchronous mode, do not stop the clock during operation, including during initialization. When an external clock is used in synchronous mode, do not supply the clock during initialization.

Figure 10-4-5 shows a typical flow chart for SCI3 initialization.

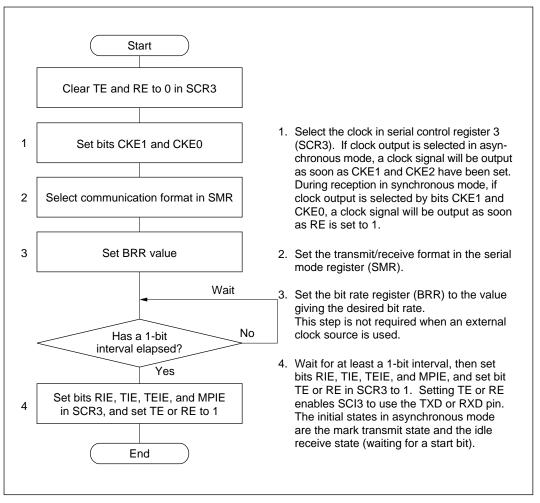


Figure 10-4-5 Typical Flow Chart when SCI3 Is Initialized

Transmitting

Figure 10-4-6 shows a typical flow chart for data transmission. After SCI3 initialization, follow the procedure below.

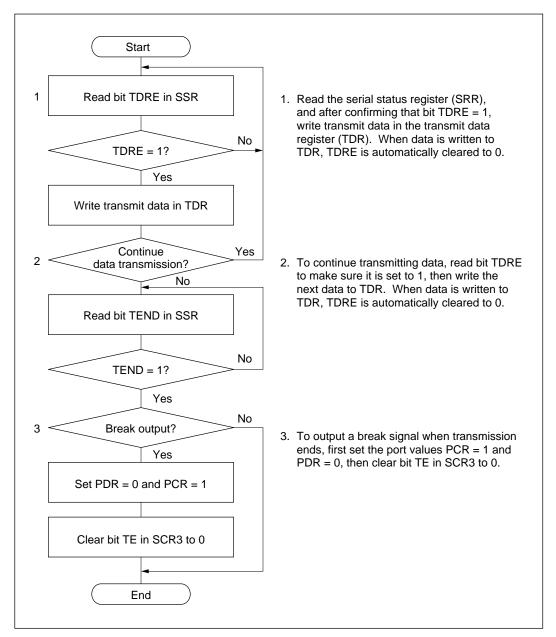


Figure 10-4-6 Typical Data Transmission Flow Chart (Asynchronous Mode)

SCI3 operates as follows during data transmission in asynchronous mode.

SCI3 monitors bit TDRE in SSR. When this bit is cleared to 0, SCI3 recognizes that there is data written in the transmit data register (TDR), which it transfers to the transmit shift register (TSR). Then TDRE is set to 1 and transmission starts. If bit TIE in SCR3 is set to 1, a TXI interrupt is requested.

Serial data is transmitted from pin TXD using the communication format outlined in table 10-4-11. Next, TDRE is checked as the stop bit is being transmitted.

If TDRE is 0, data is transferred from TDR to TSR, and after the stop bit is sent, transmission of the next frame starts. If TDRE is 1, the TEND bit in SSR is set to 1, and after the stop bit is sent the output remains at 1 (mark state). A TEI interrupt is requested in this state if bit TEIE in SCR3 is set to 1.

Figure 10-4-7 shows a typical operation in asynchronous transmission mode.

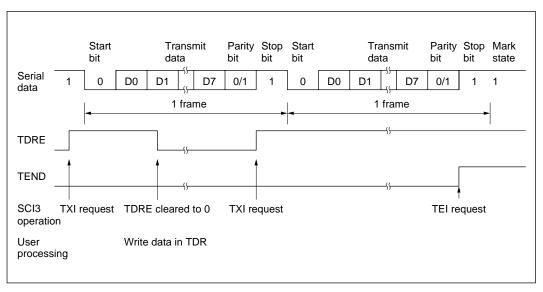


Figure 10-4-7 Typical Transmit Operation in Asynchronous Mode (8-Bit Data, Parity Bit Added, and 1 Stop Bit)

Receiving

Figure 10-4-8 shows a typical flow chart for receiving serial data. After SCI3 initialization, follow the procedure below.

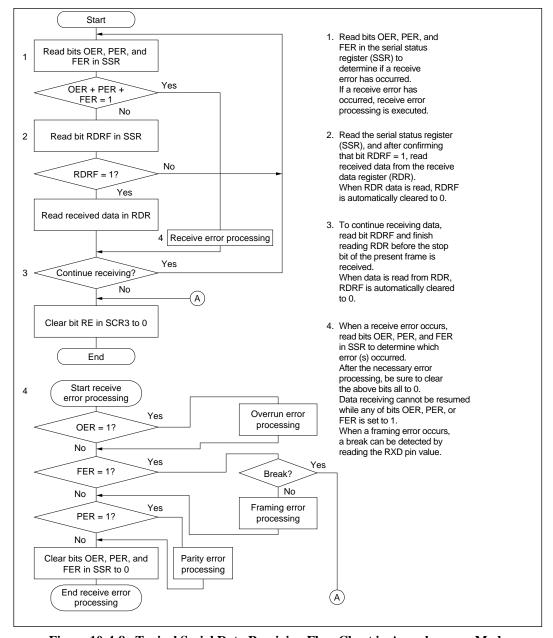


Figure 10-4-8 Typical Serial Data Receiving Flow Chart in Asynchronous Mode

SCI3 operates as follows when receiving serial data in asynchronous mode.

SCI3 monitors the communication line, and when a start bit (0) is detected it performs internal synchronization and starts receiving. The communication format for data receiving is as outlined in table 10-4-11. Received data is set in RSR from LSB to MSB, then the parity bit and stop bit(s) are received. After receiving the data, SCI3 performs the following checks:

- Parity check: The number of 1s received is checked to see if it matches the odd or even parity selected in bit PM of SMR.
- Stop bit check: The stop bit is checked for a value of 1. If there are two stop bits, only the first bit is checked.
- Status check: The RDRF bit is checked for a value of 0 to make sure received data can be transferred from RSR to RDR.

If no receive error is detected by the above checks, bit RDRF is set to 1 and the received data is stored in RDR. At that time, if bit RIE in SCR3 is set to 1, an RXI interrupt is requested. If the error check detects a receive error, the appropriate error flag (OER, PER, or FER) is set to 1. RDRF retains the same value as before the data was received. If at this time bit RIE in SCR3 is set to 1, an ERI interrupt is requested.

Table 10-4-12 gives the receive error detection conditions and the processing of received data in each case.

Note: Data receiving cannot be continued while a receive error flag is set. Before continuing the receive operation it is necessary to clear the OER, FER, PER, and RDRF flags to 0.

Table 10-4-12 Receive Error Conditions and Received Data Processing

Receive Error	Abbrev.	Detection Conditions	Received Data Processing
Overrun error	OER	Receiving of the next data ends while bit RDRF in SSR is still set to 1	Received data is not transferred from RSR to RDR
Framing error	FER	Stop bit is 0	Received data is transferred from RSR to RDR
Parity error	PER	Received data does not match the parity (odd/even) set in SMR	Received data is not transferred from RSR to RDR

Figure 10-4-9 shows a typical SCI3 data receive operation in asynchronous mode.

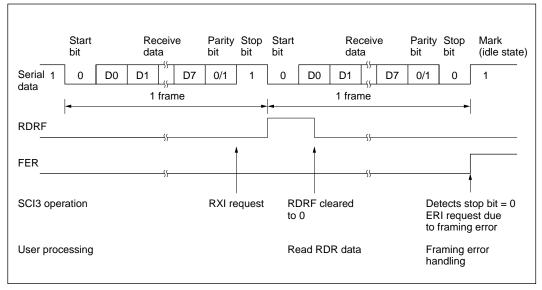


Figure 10-4-9 Typical Receive Operation in Asynchronous Mode (8-Bit Data, Parity Bit Added, and 1 Stop Bit)

10.4.5 Operation in Synchronous Mode

In synchronous mode, data is sent or received in synchronization with clock pulses. This mode is suited to high-speed serial communication.

SCI3 consists of independent transmit and receive modules, so full duplex communication is possible, sharing the same clock between both modules. Both the transmit and receive modules have a double-buffer configuration. This allows data to be written during a transmit operation so that data can be transmitted continuously, and enables data to be read during a receive operation so that data can be received continuously.

1. Transmit/receive format

Figure 10-4-10 shows the general communication data format for synchronous communication.

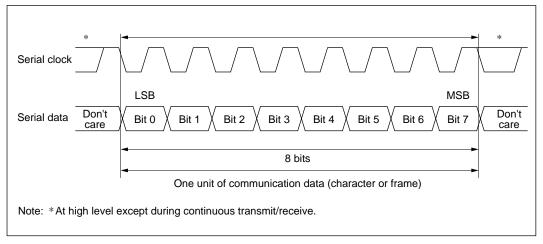


Figure 10-4-10 Data Format in Synchronous Communication Mode

In synchronous communication, data on the communication line is output from one falling edge of the serial clock until the next falling edge. Data is guaranteed valid at the rising edge of the serial clock.

One character of data starts from the LSB and ends with the MSB. The communication line retains the MSB state after the MSB is output.

In synchronous receive mode, SCI3 latches receive data in synchronization with the rising edge of the serial clock.

The transmit/receive format is fixed at 8-bit data. No parity bit or multiprocessor bit is added in this mode.

Clock

Either an internal clock from the built-in baud rate generator is used, or an external clock is input at pin SCK₃. The choice of clock sources is designated by bit COM in SMR and bits CKE1 and CKE0 in serial control register 3 (SCR3). See table 10-4-9 for details on selecting the clock source.

When operation is based on an internal clock, a serial clock is output at pin SCK₃. Eight clock pulses are output per character of transmit/receive data. When no transmit or receive operation is being performed, the pin is held at the high level.

- 3. Data transmit/receive operations
- SCI3 initialization

Before transmitting or receiving data, follow the SCI3 initialization procedure explained under 10.4.4, SCI3 Initialization, and illustrated in figure 10-4-5.

Transmitting

Figure 10-4-11 shows a typical flow chart for data transmission. After SCI3 initialization, follow the procedure below.

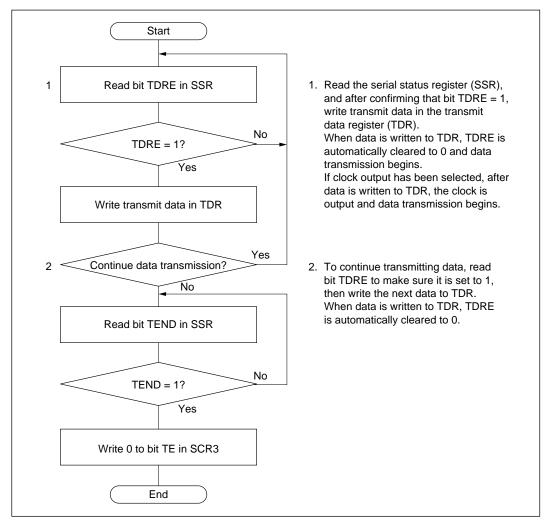


Figure 10-4-11 Typical Data Transmission Flow Chart in Synchronous Mode

SCI3 operates as follows during data transmission in synchronous mode.

SCI3 monitors bit TDRE in SSR. When this bit is cleared to 0, SCI3 recognizes that there is data written in the transmit data register (TDR), which it transfers to the transmit shift register (TSR). Then TDRE is set to 1 and transmission starts. If bit TIE in SCR3 is set to 1, a TXI interrupt is requested.

If clock output is selected, SCI3 outputs eight serial clock pulses. If an external clock is used, data is output in synchronization with the clock input.

Serial data is transmitted from pin TXD in order from LSB (bit 0) to MSB (bit 7).

Then TDRE is checked as the MSB (bit 7) is being transmitted. If TDRE is 0, data is transferred from TDR to TSR, and after the MSB (bit 7) is sent, transmission of the next frame starts. If TDRE is 1, the TEND bit in SSR is set to 1, and after the MSB (bit 7) has been sent, the MSB state is maintained. A TEI interrupt is requested in this state if bit TEIE in SCR3 is set to 1.

After data transmission ends, pin SCK₃ is held at the high level.

Note: Data transmission cannot take place while any of the receive error flags (OER, FER, PER) is set to 1. Be sure to confirm that these error flags are cleared to 0 before starting transmission.

Figure 10-4-12 shows a typical SCI3 transmit operation in synchronous mode.

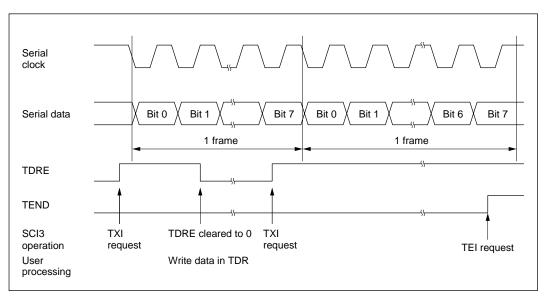


Figure 10-4-12 Typical SCI3 Transmit Operation in Synchronous Mode

Receiving

Figure 10-4-13 shows a typical flow chart for receiving data. After SCI3 initialization, follow the procedure below.

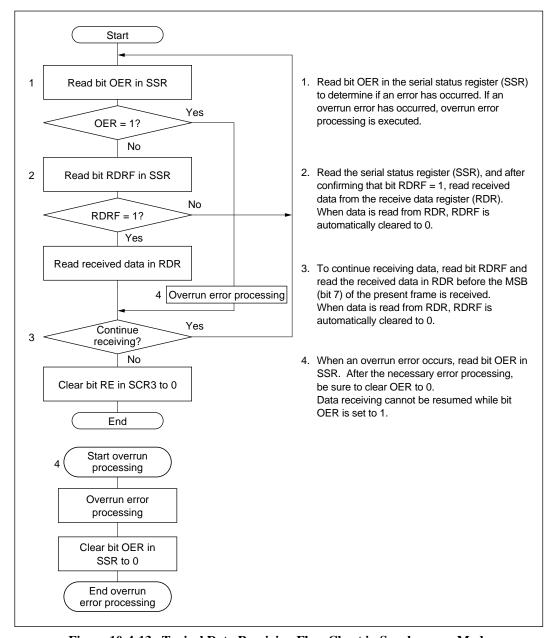


Figure 10-4-13 Typical Data Receiving Flow Chart in Synchronous Mode

SCI3 operates as follows when receiving serial data in synchronous mode.

SCI3 synchronizes internally with the input or output of the serial clock and starts receiving. Received data is set in RSR from LSB to MSB.

After data has been received, SCI3 checks to confirm that the value of bit RDRF is 0 indicating that received data can be transferred from RSR to RDR. If this check passes, RDRF is set to 1 and the received data is stored in RDR. At this time, if bit RIE in SCR3 is set to 1, an RXI interrupt is requested. If an overrun error is detected, OER is set to 1 and RDRF remains set to 1. Then if bit RIE in SCR3 is set to 1, an ERI interrupt is requested.

For the overrun error detection conditions and receive data processing, see table 10-4-12.

Note: Data receiving cannot be continued while a receive error flag is set. Before continuing the receive operation it is necessary to clear the OER, FER, PER, and RDRF flags to 0.

Figure 10-4-14 shows a typical receive operation in synchronous mode.

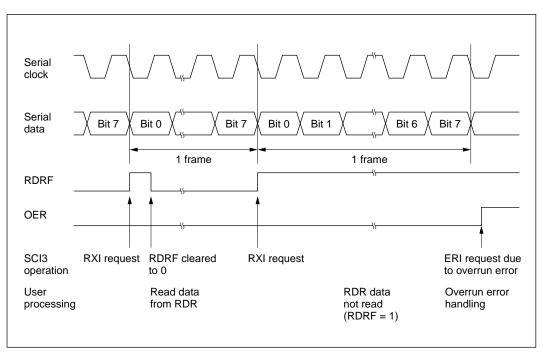


Figure 10-4-14 Typical Receive Operation in Synchronous Mode

Simultaneous transmit/receive

Figure 10-4-15 shows a typical flow chart for transmitting and receiving simultaneously. After SCI3 synchronization, follow the procedure below.

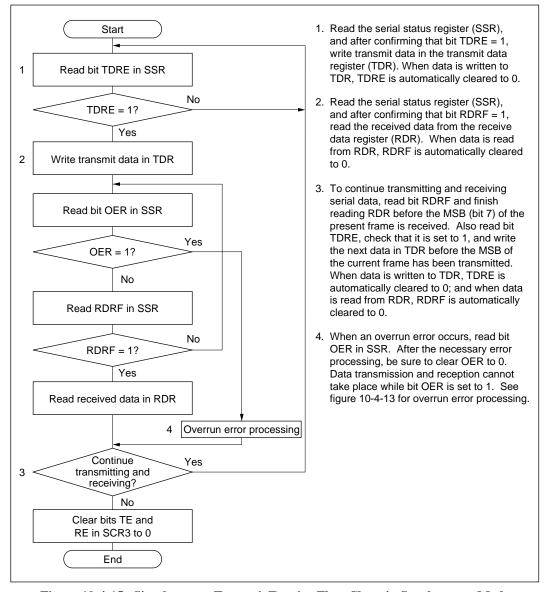


Figure 10-4-15 Simultaneous Transmit/Receive Flow Chart in Synchronous Mode

- Notes: 1. To switch from transmitting to simultaneous transmitting and receiving, use the following procedure.
 - First confirm that TDRE and TEND are both set to 1 and that SCI3 has finished transmitting. Next clear TE to 0. Then set both TE and RE to 1.
 - 2. To switch from receiving to simultaneous transmitting and receiving, use the following procedure.
 - After confirming that SCI3 has finished receiving, clear RE to 0. Next, after confirming that RDRF and the error flags (OER FER, PER) are all 0, set both TE and RE to 1.

10.4.6 Multiprocessor Communication Function

The multiprocessor communication function enables several processors to share a single serial communication line. The processors communicate in asynchronous mode using a format with an additional multiprocessor bit (multiprocessor format).

In multiprocessor communication, each receiving processor is addressed by an ID code. A serial communication cycle consists of two cycles: an ID-sending cycle that identifies the receiving processor, and a data-sending cycle. The multiprocessor bit is 1 in an ID-sending cycle, and 0 in a data-sending cycle.

The transmitting processor starts by sending the ID of the receiving processor with which it wants to communicate as data with the multiprocessor bit set to 1. Next the transmitting processor sends transmit data with the multiprocessor bit cleared to 0. When a receiving processor receives data with the multiprocessor bit set to 1, it compares the data with its own ID. If the data matches its ID, the receiving processor continues to receive incoming data. If the data does not match its ID, the receiving processor skips further incoming data until it again receives data with the multiprocessor bit set to 1. Multiple processors can send and receive data in this way.

Figure 10-4-16 shows an example of communication among different processors using a multiprocessor format.

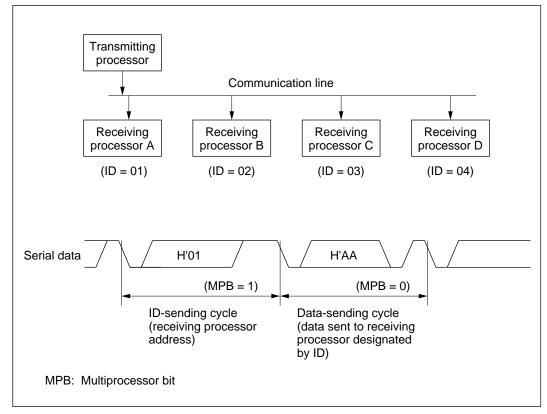


Figure 10-4-16 Example of Interprocessor Communication Using Multiprocessor Format (Data H'AA Sent to Receiving Processor A)

Four communication formats are available. Parity-bit settings are ignored when a multiprocessor format is selected. For details see table 10-4-11.

For a description of the clock used in multiprocessor communication, see 10.4.4, Operation in Asynchronous Mode.

Transmitting multiprocessor data

Figure 10-4-17 shows a typical flow chart for multiprocessor serial data transmission. After SCI3 initialization, follow the procedure below.

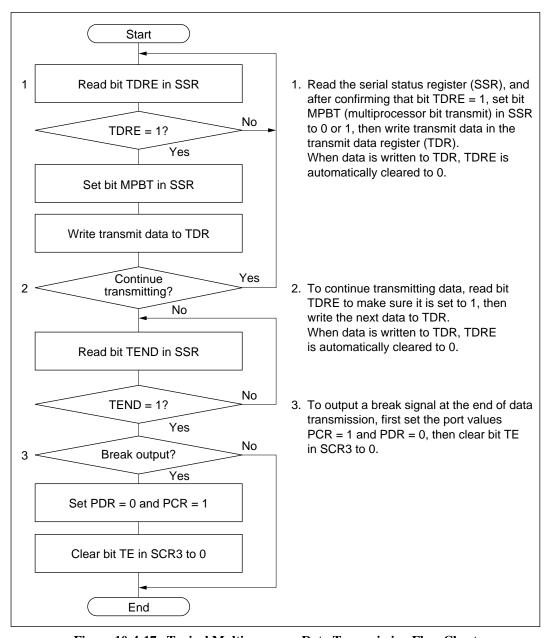


Figure 10-4-17 Typical Multiprocessor Data Transmission Flow Chart

SCI3 operates as follows during data transmission using a multiprocessor format.

SCI3 monitors bit TDRE in SSR. When this bit is cleared to 0, SCI3 recognizes that there is data written in the transmit data register (TDR), which it transfers to the transmit shift register (TSR). Then TDRE is set to 1 and transmission starts. If bit TIE in SCR3 is set to 1, a TXI interrupt is requested.

Serial data is transmitted from pin TXD using the communication format outlined in table 10-4-11.

Next, TDRE is checked as the stop bit is being transmitted. If TDRE is 0, data is transferred from TDR to TSR, and after the stop bit is sent, transmission of the next frame starts. If TDRE is 1, the TEND bit in SSR is set to 1, and after the stop bit is sent the output remains at 1 (mark state). A TEI interrupt is requested in this state if bit TEIE (transmit end interrupt enable) in SCR3 is set to 1.

Figure 10-4-18 shows a typical SCI3 operation in multiprocessor communication mode.

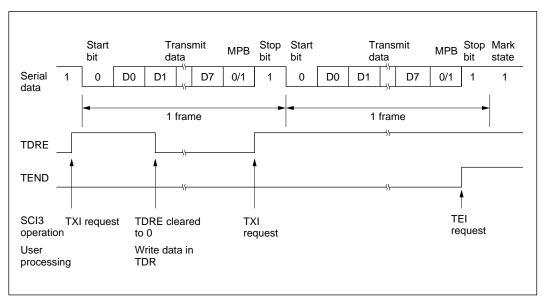


Figure 10-4-18 Typical Multiprocessor Format Transmit Operation (8-Bit Data, Multiprocessor Bit Added, and 1 Stop Bit)

Receiving multiprocessor data

Figure 10-4-19 shows a typical flow chart for receiving data using a multiprocessor format. After SCI3 initialization, follow the procedure below.

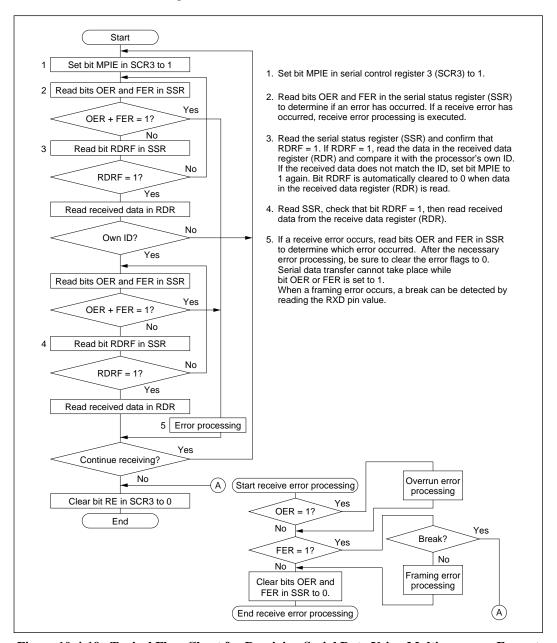


Figure 10-4-19 Typical Flow Chart for Receiving Serial Data Using Multiprocessor Format

Figure 10-4-20 gives an example of data reception using a multiprocessor format.

Figure 10-4-20 Example of Multiprocessor Format Receive Operation (8-Bit Data, Multiprocessor Bit Added, and 1 Stop Bit)

10.4.7 Interrupts

SCI3 has six interrupt sources: transmit end, transmit data empty, receive data full, and the three receive error interrupts (overrun error, framing error, and parity error). All share a common interrupt vector. Table 10-4-13 describes each interrupt.

Table 10-4-13 SCI3 Interrupts

Interrupt	Description	Vector Address
RXI	Interrupt request due to receive data register full (RDRF)	H'0024
TXI	Interrupt request due to transmit data register empty (TDRE)	
TEI	Interrupt request due to transmit end (TEND)	
ERI	Interrupt request due to receive error (OER, FER, or PER)	

The interrupt requests are enabled and disabled by bits TIE and RIE of SCR3.

When bit TDRE in SSR is set to 1, TXI is requested. When bit TEND in SSR is set to 1, TEI is requested. These two interrupt requests occur during data transmission.

The initial value of bit TDRE is 1. Accordingly, if the transmit data empty interrupt request (TXI) is enabled by setting bit TIE to 1 in SCR3 before placing transmit data in TDR, TXI will be requested even though no transmit data has been readied.

Likewise, the initial value of bit TEND is 1. Accordingly, if the transmit end interrupt request (TEI) is enabled by setting bit TEIE to 1 in SCR3 before placing transmit data in TDR, TEI will be requested even though no data has been transmitted.

These interrupt features can be used to advantage by programming the interrupt handler to move the transmit data into TDR. When this technique is not used, the interrupt enable bits (TIE and TEIE) should not be set to 1 until after TDR has been loaded with transmit data, to avoid unwanted TXI and TEI interrupts.

When bit RDRF in SSR is set to 1, RXI is requested. When any of SSR bits OER, FER, or PER is set to 1, ERI is requested. These two interrupt requests occur during the receiving of data.

Details on interrupts are given in 3.3, Interrupts.

10.4.8 Application Notes

When using SCI3, attention should be paid to the following matters.

1. Relation between bit TDRE and writing data to TDR

Bit TDRE in the serial status register (SSR) is a status flag indicating that TDR does not contain new transmit data. TDRE is automatically cleared to 0 when data is written to TDR. When SCI3 transfers data from TDR to TSR, bit TDRE is set to 1.

Data can be written to TDR regardless of the status of bit TDRE. However, if new data is written to TDR while TDRE is cleared to 0, assuming the data held in TDR has not yet been shifted to TSR, it will be lost. For this reason it is advisable to confirm that bit TDRE is set to 1 before each write to TDR and not write to TDR more than once without checking TDRE in between.

2. Operation when multiple receive errors occur at the same time

When two or more receive errors occur at the same time, the status flags in SSR are set as shown in table 10-4-14. If an overrun error occurs, data is not transferred from RSR to RDR, and receive data is lost.

Table 10-4-14 SSR Status Flag States and Transfer of Receive Data

SSR Status Flags			Receive Data Transfer				
RDRF*	OER	FER	PER	(RSR → RDR)	Receive Error Status		
1	1	0	0	×	Overrun error		
0	0	1	0	0	Framing error		
0	0	0	1	0	Parity error		
1	1	1	0	×	Overrun error + framing error		
1	1	0	1	×	Overrun error + parity error		
0	0	1	1	0	Framing error + parity error		
1	1	1	1	×	Overrun error + framing error + parity		
error							

Notation: O: Receive data transferred from RSR to RDR

×: Receive data not transferred from RSR to RDR

Note: *RDRF keeps the same state as before the data was received. However, if due to a late read of received data in one frame an overrun error occurs in the next frame, RDRF is cleared to 0 when RDR is read.

3. Break detection and processing

Break signals can be detected by reading the RXD pin directly when a framing error (FER) is detected. In the break state the input from the RXD pin consists of all 0s, so FER is set and the parity error flag (PER) may also be set. In the break state SCI3 continues to receive, so if the FER bit is cleared to 0 it will be set to 1 again.

4. Sending a mark or break signal

When TE is cleared to 0 the TXD pin becomes an I/O port, the level and direction (input or output) of which are determined by the PDR and PCR bits. This feature can be used to place the TXD pin in the mark state or send a break signal.

To place the serial communication line in the mark (1) state before TE is set to 1, set the PDR and PCR bits both to 1. Since TE is cleared to 0, TXD becomes a general output port outputting the value 1.

To send a break signal during data transmission, set the PCR bit to 1 and clear the PDR bit to 0, then clear TE to 0. When TE is cleared to 0 the transmitter is initialized, regardless of its current state, so the TXD pin becomes an output port outputting the value 0.

5. Receive error flags and transmit operation (sysnchronous mode only)

When a receive error flag (ORER, PER, or FER) is set to 1, SCI3 will not start transmitting even if TDRE is cleared to 0. Be sure to clear the receive error flags to 0 when starting to transmit. Note that clearing RE to 0 does not clear the receive error flags.

6. Receive data sampling timing and receive margin in asynchronous mode

In asynchronous mode SCI3 operates on a base clock with 16 times the bit rate frequency. In receiving, SCI3 synchronizes internally with the falling edge of the start bit, which it samples on the base clock. Receive data is latched at the rising edge of the eighth base clock pulse. See figure 10-4-21.

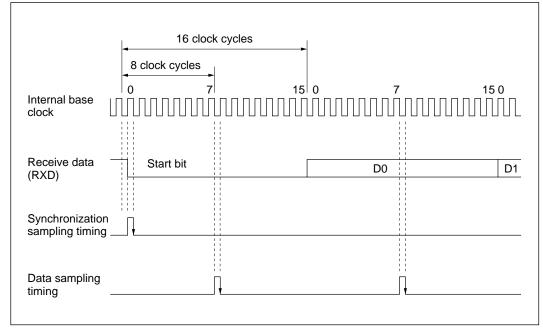


Figure 10-4-21 Receive Data Sampling Timing in Asynchronous Mode

The receive margin in asynchronous mode can therefore be derived from the following equation.

$$M = \{(0.5 - 1/2N) - (D - 0.5) \ / \ N - (L - 0.5) \ F\} \times 100\% \ Equation \ (1)$$

M: Receive margin (%)

N: Ratio of clock frequency to bit rate (N = 16)

D: Clock duty cycle (D = 0.5 to 1)

L: Frame length (L = 9 to 12)

F: Absolute value of clock frequency error

In equation (1), if F (absolute value of clock frequency error) = 0 and D (clock duty cycle) = 0.5, the receive margin is 46.875% as given by equation (2) below.

When D = 0.5 and F = 0,

$$M = \{0.5 - 1/(2 \times 16)\} \times 100\% = 46.875\%$$
 Equation (2)

This value is theoretical. In actual system designs a margin of from 20 to 30 percent should be allowed.

7. Relationship between bit RDRF and reading RDR

While SCI3 is receiving, it checks the RDRF flag. When a frame of data has been received, if the RDRF flag is cleared to 0, data receiving ends normally. If RDRF is set to 1, an overrun error occurs.

RDRF is automatically cleared to 0 when the contents of RDR are read. If RDR is read more than once, the second and later reads will be performed with RDRF cleared to 0. While RDRF is 0, if RDR is read when reception of the next frame is just ending, data from the next frame may be read. This is illustrated in figure 10-4-22.

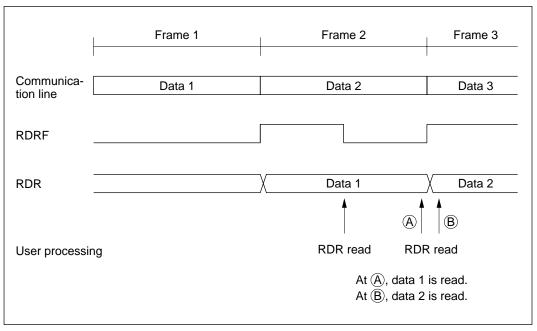


Figure 10-4-22 Relationship between Data and RDR Read Timing

To avoid the situation described above, after RDRF is confirmed to be 1, RDR should only be read once and should not be read twice or more.

When the same data must be read more than once, the data read the first time should be copied to RAM, for example, and the copied data should be used. An alternative is to read RDR but leave a safe margin of time before reception of the next frame is completed. In synchronous mode, all reads of RDR should be completed before bit 7 is received. In asynchronous mode, all reads of RDR should be completed before the stop bit is received.

8. Switching SCK₃ function

If pin SCK_3 is used as a clock output pin by SCI3 in synchronous mode and is then switched to a general input/output pin (a pin with a different function), the pin outputs a low level signal for half a system clock (ϕ) cycle immediately after it is switched.

This can be prevented by either of the following methods according to the situation.

a. When an SCK₃ function is switched from clock output to non clock-output

When stopping data transfer, issue one instruction to clear bits TE and RE to 0 and to set bits CKE1 and CKE0 in SCR3 to 1 and 0, respectively. In this case, bit COM in SMR should be left 1. The above prevents SCK₃ from being used as a general input/output pin. To avoid an intermediate level of voltage from being applied to SCK₃, the line connected to SCK₃ should be pulled up to the Vcc level via a resistor, or supplied with output from an external device.

b. When an SCK₃ function is switched from clock output to general input/output

When stopping data transfer,

- (i) Issue one instruction to clear bits TE and RE to 0 and to set bits CKE1 and CKE0 in SCR3 to 1 and 0, respectively.
- (ii) Clear bit COM in SCR3 to 0
- (iii) Clear bits CKE1 and CKE0 in SCR3 to 0

Note that special care is also needed here to avoid an intermediate level of voltage from being applied to SCK₃.

9. Switching TXD function

If pin TXD is used as a data output pin by SCI3 in synchronous mode and is then switched to a general input/output pin (a pin with a different function), the pin outputs a high level signal for one system clock (ϕ) cycle immediately after it is switched.

Section 11 14-Bit PWM

11.1 Overview

The H8/3834 Series is provided with a 14-bit PWM (pulse width modulator) on-chip, which can be used as a D/A converter by connecting a low-pass filter.

11.1.1 Features

Features of the 14-bit PWM are as follows.

• Choice of two conversion periods

A conversion period of $32,768/\emptyset$, with a minimum modulation width of $2/\emptyset$ (PWCR0 = 1), or a conversion period of $16,384/\emptyset$, with a minimum modulation width of $1/\emptyset$ (PWCR0 = 0), can be chosen.

• Pulse division method for less ripple

11.1.2 Block Diagram

Figure 11-1 shows a block diagram of the 14-bit PWM.

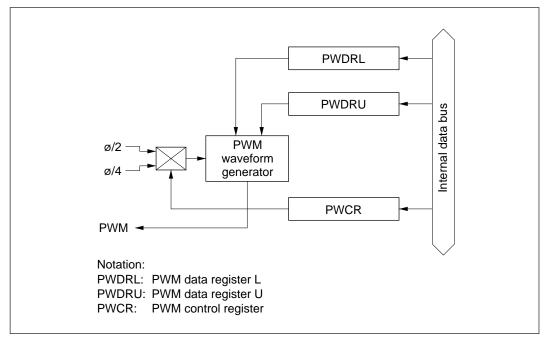


Figure 11-1 Block Diagram of the 14 bit PWM

11.1.3 Pin Configuration

Table 11-1 shows the output pin assigned to the 14-bit PWM.

Table 11-1 Pin Configuration

Name	Abbrev.	I/O	Function
PWM output pin	PWM	Output	Pulse-division PWM waveform output

11.1.4 Register Configuration

Table 11-2 shows the register configuration of the 14-bit PWM.

Table 11-2 Register Configuration

Name	Abbrev.	R/W	Initial Value	Address
PWM control register	PWCR	W	H'FE	H'FFD0
PWM data register U	PWDRU	W	H'C0	H'FFD1
PWM data register L	PWDRL	W	H'00	H'FFD2

11.2 Register Descriptions

11.2.1 PWM Control Register (PWCR)

Bit	7	6	5	4	3	2	1	0
	_	_	_	_		_	_	PWCR0
Initial value	1	1	1	1	1	1	1	0
Read/Write	_	_	_	_	_	_	_	W

PWCR is an 8-bit write-only register for input clock selection.

Upon reset, PWCR is initialized to H'FE.

Bits 7 to 1: Reserved bits

Bits 7 to 1 are reserved; they are always read as 1, and cannot be modified.

Bit 0: Clock select 0 (PWCR0)

Bit 0 selects the clock supplied to the 14-bit PWM. This bit is a write-only bit; it is always read as 1.

Bit 0 PWCR0 Description

0	The input clock is $\emptyset/2$ ($t_{\emptyset}=2/\emptyset$). The conversion period is 16,384/ \emptyset , with a minimum modulation width of 1/ \emptyset .	(initial value)
1	The input clock is $\emptyset/4$ ($t_{\emptyset}=4/\emptyset$). The conversion period is 32,768/ \emptyset , with modulation width of 2/ \emptyset .	n a minimum

Notation:

 t_{α} : Period of PWM input clock

11.2.2 PWM Data Registers U and L (PWDRU, PWDRL)

PWDRU								
Bit	7	6	5	4	3	2	1	0
	_	_	PWDRU5	PWDRU4	PWDRU3	PWDRU2	PWDRU1	PWDRU0
Initial value	1	1	0	0	0	0	0	0
Read/Write	_	_	W	W	W	W	W	W
PWDRL								
Bit	7	6	5	4	3	2	1	0
	PWDRL7	PWDRL6	PWDRL5	PWDRL4	PWDRL3	PWDRL2	PWDRL1	PWDRL0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PWDRU and PWDRL form a 14-bit write-only register, with the upper 6 bits assigned to PWDRU and the lower 8 bits to PWDRL. The value written to PWDRU and PWDRL gives the total high-level width of one PWM waveform cycle.

When 14-bit data is written to PWDRU and PWDRL, the register contents are latched in the PWM waveform generator, updating the PWM waveform generation data. The 14-bit data should always be written in the following sequence, first to PWDRL and then to PWDRU.

- 1. Write the lower 8 bits to PWDRL.
- 2. Write the upper 6 bits to PWDRU.

PWDRU and PWDRL are write-only registers. If they are read, all bits are read as 1.

Upon reset, PWDRU and PWDRL are initialized to H'C000.

11.3 Operation

When using the 14-bit PWM, set the registers in the following sequence.

- 1. Set bit PWM in port mode register 1 (PMR1) to 1 so that pin P1₄/PWM is designated for PWM output.
- 2. Set bit PWCR0 in the PWM control register (PWCR) to select a conversion period of either $32,768/\emptyset$ (PWCR0 = 1) or $16,384/\emptyset$ (PWCR0 = 0).
- 3. Set the output waveform data in PWM data registers U and L (PWDRU/L). Be sure to write in the correct sequence, first PWDRL then PWDRU. When data is written to PWDRU, the data in these registers will be latched in the PWM waveform generator, updating the PWM waveform generation in synchronization with internal signals.

One conversion period consists of 64 pulses, as shown in figure 11-2. The total of the high-level pulse widths during this period (T_H) corresponds to the data in PWDRU and PWDRL. This relation can be represented as follows.

 $T_H = (data \ value \ in \ PWDRU \ and \ PWDRL + 64) \times t_0/2$

where t_{\emptyset} is the PWM input clock period, either $2/\emptyset$ (bit PWCR0 = 0) or $4/\emptyset$ (bit PWCR0 = 1).

Example: Settings in order to obtain a conversion period of 8,192 µs:

When bit PWCR0 = 0, the conversion period is $16,384/\phi$, so ϕ must be 2 MHz. In this case $t_{\rm fn} = 128~\mu s$, with $1/\phi$ (resolution) = $0.5~\mu s$.

When bit PWCR0 = 1, the conversion period is $32,768/\emptyset$, so \emptyset must be 4 MHz. In this case $t_{fn}=128~\mu s$, with $2/\emptyset$ (resolution) = $0.5~\mu s$.

Accordingly, for a conversion period of $8,192~\mu s$, the system clock frequency (\emptyset) must be 2 MHz or 4 MHz.

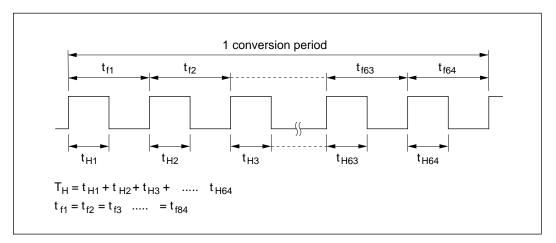


Figure 11-2 PWM Output Waveform

Section 12 A/D Converter

12.1 Overview

The H8/3834 Series includes on-chip a resistance-ladder-based successive-approximation analog-to-digital converter, and can convert up to 12 channels of analog input.

12.1.1 Features

The A/D converter has the following features.

- 8-bit resolution
- 12 input channels
- Conversion time: approx. 12.4 µs per channel (at 5 MHz operation)
- Built-in sample-and-hold function
- Interrupt requested on completion of A/D conversion
- A/D conversion can be started by external trigger input

12.1.2 Block Diagram

Figure 12-1 shows a block diagram of the A/D converter.

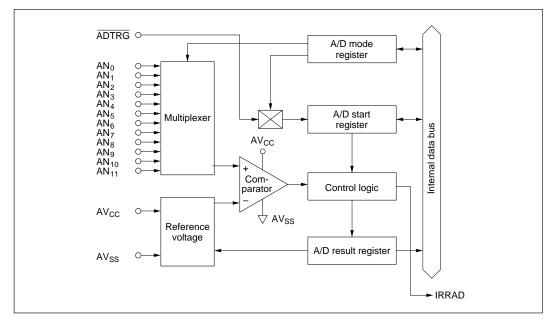


Figure 12-1 Block Diagram of the A/D Converter

12.1.3 Pin Configuration

Table 12-1 shows the A/D converter pin configuration.

Table 12-1 Pin Configuration

Name	Abbrev.	I/O	Function
Analog power supply pin	AV _{CC}	Input	Power supply and reference voltage of analog part
Analog ground pin	AV _{SS}	Input	Ground and reference voltage of analog part
Analog input pin 0	AN ₀	Input	Analog input channel 0
Analog input pin 1	AN ₁	Input	Analog input channel 1
Analog input pin 2	AN ₂	Input	Analog input channel 2
Analog input pin 3	AN ₃	Input	Analog input channel 3
Analog input pin 4	AN ₄	Input	Analog input channel 4
Analog input pin 5	AN ₅	Input	Analog input channel 5
Analog input pin 6	AN ₆	Input	Analog input channel 6
Analog input pin 7	AN ₇	Input	Analog input channel 7
Analog input pin 8	AN ₈	Input	Analog input channel 8
Analog input pin 9	AN ₉	Input	Analog input channel 9
Analog input pin 10	AN ₁₀	Input	Analog input channel 10
Analog input pin 11	AN ₁₁	Input	Analog input channel 11
External trigger input pin	ADTRG	Input	External trigger input for starting A/D conversion

12.1.4 Register Configuration

Table 12-2 shows the A/D converter register configuration.

Table 12-2 Register Configuration

Name	Abbrev.	R/W	Initial Value	Address
A/D mode register	AMR	R/W	H'30	H'FFC4
A/D start register	ADSR	R/W	H'7F	H'FFC6
A/D result register	ADRR	R	Not fixed	H'FFC5

12.2 Register Descriptions

12.2.1 A/D Result Register (ADRR)

Bit	7	6	5	4	3	2	1	0
	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0
Initial value	_	_	_	_	_	_	_	
Read/Write	R	R	R	R	R	R	R	R

The A/D result register (ADRR) is an 8-bit read-only register for holding the results of analog-to-digital conversion.

ADRR can be read by the CPU at any time, but the ADRR values during A/D conversion are not fixed.

After A/D conversion is complete, the conversion result is stored in ADRR as 8-bit data; this data is held in ADRR until the next conversion operation starts.

ADRR is not cleared on reset.

12.2.2 A/D Mode Register (AMR)

Bit	7	6	5	4	3	2	1	0
	CKS	TRGE	_	_	CH3	CH2	CH1	CH0
Initial value	0	0	1	1	0	0	0	0
Read/Write	R/W	R/W	_	_	R/W	R/W	R/W	R/W

AMR is an 8-bit read/write register for specifying the A/D conversion speed, external trigger option, and the analog input pins.

Upon reset, AMR is initialized to H'30.

Bit 7: Clock select (CKS)

Bit 7 sets the A/D conversion speed.

Bit 7		Conversion Time				
CKS	Conversion Period	ø = 2 MHz	ø = 5 MHz			
0	62/ø (initial value)	31 µs	12.4 µs	_		
1	31/ø	15.5 µs	*			

Note: * Operation is not guaranteed if the conversion time is less than 12.4 μs. Set bit 7 for a value of at least 12.4 μs.

Bit 6: External trigger select (TRGE)

Bit 6 enables or disables the start of A/D conversion by external trigger input.

Bit 6 TRGE	Description	
0	Disables start of A/D conversion by external trigger	(initial value)
1	Enables start of A/D conversion by rising or falling edge of external trig ADTRG*	ger at pin

Note: * The external trigger (ADTRG) edge is selected by bit IEG4 of the IRQ edge select register (IEGR). See 3.3.2 for details.

Bits 5 and 4: Reserved bits

Bits 5 and 4 are reserved; they are always read as 1, and cannot be modified.

Bits 3 to 0: Channel select (CH3 to CH0)

Bits 3 to 0 select the analog input channel.

The channel selection should be made while bit ADSF is cleared to 0.

Bit 3 CH3	Bit 2 CH2	Bit 1 CH1	Bit 0 CH0	Analog Input Channel	
0	0	*	*	No channel selected	(initial value)
0	1	0	0	AN ₀	
0	1	0	1	AN ₁	
0	1	1	0	AN ₂	
0	1	1	1	AN ₃	
1	0	0	0	AN ₄	
1	0	0	1	AN ₅	
1	0	1	0	AN ₆	
1	0	1	1	AN ₇	
1	1	0	0	AN ₈	
1	1	0	1	AN ₉	
1	1	1	0	AN ₁₀	
1	1	1	1	AN ₁₁	

Note: * Don't care

12.2.3 A/D Start Register (ADSR)

Bit	7	6	5	4	3	2	1	0
	ADSF	_		_	_	_		_
Initial value	0	1	1	1	1	1	1	1
Read/Write	R/W	_	_		_	_	_	_

The A/D start register (ADSR) is an 8-bit read/write register for starting and stopping A/D conversion.

A/D conversion is started by writing 1 to the A/D start flag (ADSF) or by input of the designated edge of the external trigger signal, which also sets ADSF to 1. When conversion is complete, the converted data is set in the A/D result register (ADRR), and at the same time ADSF is cleared to 0.

Bit 7: A/D start flag (ADSF)

Bit 7 controls and indicates the start and end of A/D conversion.

Bit 7

ADSF	Descrip	ption	
0	Read	Indicates the completion of A/D conversion	(initial value)
	Write	Stops A/D conversion	
1	Read	Indicates A/D conversion in progress	
	Write	Starts A/D conversion	

Bits 6 to 0: Reserved bits

Bits 6 to 0 are reserved; they are always read as 1, and cannot be modified.

12.3 Operation

12.3.1 A/D Conversion Operation

The A/D converter operates by successive approximations, and yields its conversion result as 8-bit data.

A/D conversion begins when software sets the A/D start flag (bit ADSF) to 1. Bit ADSF keeps a value of 1 during A/D conversion, and is cleared to 0 automatically when conversion is complete.

The completion of conversion also sets bit IRRAD in interrupt request register 2 (IRR2) to 1. An A/D conversion end interrupt is requested if bit IENAD in interrupt enable register 2 (IENR2) is set to 1.

If the conversion time or input channel needs to be changed in the A/D mode register (AMR) during A/D conversion, bit ADSF should first be cleared to 0, stopping the conversion operation, in order to avoid malfunction.

12.3.2 Start of A/D Conversion by External Trigger Input

The A/D converter can be made to start A/D conversion by input of an external trigger signal. External trigger input is enabled at pin \overline{ADTRG} when bit IRQ4 in port mode register 2 (PMR2) is set to 1, and bit TRGE in AMR is set to 1. Then when the input signal edge designated in bit IEG4 of the IRQ edge select register (IEGR) is detected at pin \overline{ADTRG} , bit ADSF in ADSR will be set to 1, starting A/D conversion.

Figure 12-2 shows the timing.

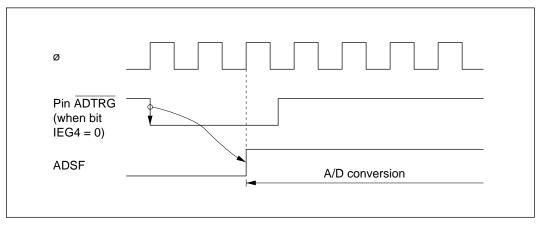


Figure 12-2 External Trigger Input Timing

12.4 Interrupts

When A/D conversion ends (ADSF changes from 1 to 0), bit IRRAD in interrupt request register 2 (IRR2) is set to 1.

A/D conversion end interrupts can be enabled or disabled by means of bit IENAD in interrupt enable register 2 (IENR2).

For further details see 3.3, Interrupts.

12.5 Typical Use

An example of how the A/D converter can be used is given below, using channel 1 (pin AN_1) as the analog input channel. Figure 12-3 shows the operation timing.

- Bits CH3 to CH0 of the A/D mode register (AMR) are set to 0101, making pin AN₁ the analog input channel. A/D interrupts are enabled by setting bit IENAD to 1, and A/D conversion is started by setting bit ADSF to 1.
- When A/D conversion is complete, bit IRRAD is set to 1, and the A/D conversion result is stored in the A/D result register (ADRR). At the same time ADSF is cleared to 0, and the A/D converter goes to the idle state.
- Bit IENAD = 1, so an A/D conversion end interrupt is requested.
- The A/D interrupt handling routine starts.
- The A/D conversion result is read and processed.
- The A/D interrupt handling routine ends.

If ADSF is set to 1 again afterward, A/D conversion starts and steps 2 through 6 take place.

Figures 12-4 and 12-5 show flow charts of procedures for using the A/D converter.

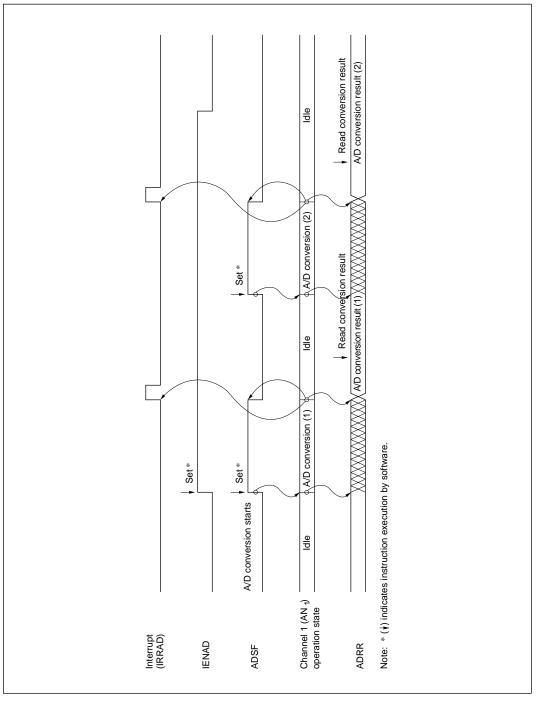


Figure 12-3 Typical A/D Converter Operation Timing

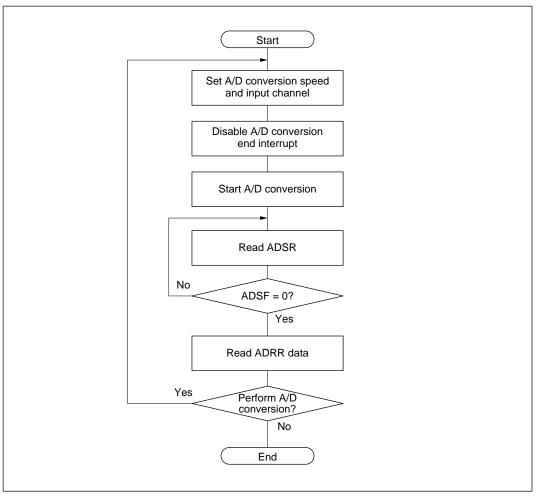


Figure 12-4 Flow Chart of Procedure for Using A/D Converter (1) (Polling by Software)

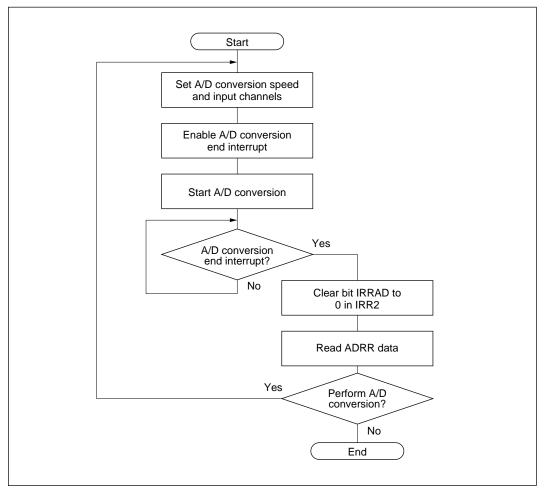


Figure 12-5 Flow Chart of Procedure for Using A/D Converter (2) (Interrupts Used)

12.6 Application Notes

- Data in the A/D result register (ADRR) should be read only when the A/D start flag (ADSF) in the A/D start register (ADSR) is cleared to 0.
- Changing the digital input signal at an adjacent pin during A/D conversion may adversely affect conversion accuracy.

Section 13 LCD Controller/Driver

13.1 Overview

The H8/3834 Series has an on-chip segment-type LCD controller circuit, LCD driver, and power supply circuit, for direct driving of an LCD panel.

13.1.1 Features

Features of the LCD controller/driver are as follows.

Display capacity

	Duty	Internal Driver	External Segment Expansion Driver
On-chip driver only	_	40 segments	0
Use with external segment	Static	36 segments	476 segments
expansion driver	1/2	36 segments	220 segments
	1/3	36 segments	92 segments
	1/4	36 segments	92 segments

The HD66100 can be used for external expansion of the number of segments.

• LCD RAM capacity

 $8 \text{ bits} \times 64 \text{ words } (512 \text{ bits})$

- Word access to LCD RAM
- Segment output pins can be switched to general-purpose ports in groups of 4
- Unused common output pins can be used either for boosting common output (by parallel connection) or as ports.
- Displays in all operation modes except standby mode.
- Choice of 11 frame frequencies
- Internal voltage divider for liquid crystal driver power supply

13.1.2 Block Diagram

Figure 13-1 shows a block diagram of the LCD controller/driver.

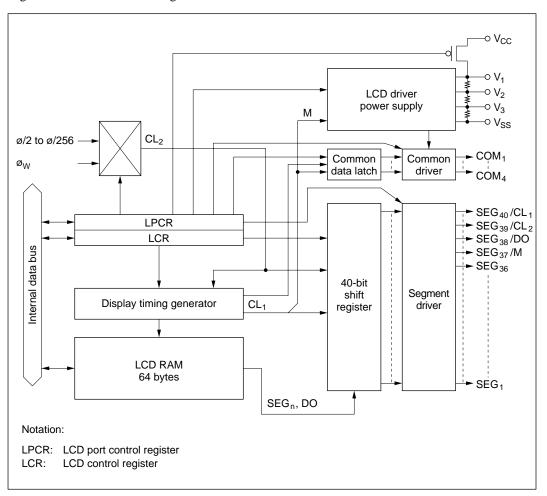


Figure 13-1 LCD Controller/Driver Block Diagram

13.1.3 Pin Configuration

Table 13-1 shows the output pins assigned to the LCD controller/driver.

Table 13-1 Pin Configuration

Name	Abbrev.	I/O	Function	
LCD segment output	SEG ₄₀ to SEG ₁	Output	Liquid crystal segment driver pins. All pins can be programmed also as ports.	
LCD common output	COM ₄ to COM ₁	Output	Liquid crystal common driver pins. Parallel connection is possible at static and 1/2 duty.	
External segment	CL ₁	Output	Display data latch clock; doubles as SEG ₄₀	
expansion signal	CL ₂	Output	Display data shift clock; doubles as SEG ₃₉	
	М	Output	LCD alternating signal; doubles as SEG ₃₇	
	DO	Output	Serial display data; doubles as SEG ₃₈	
LCD power supply	V ₁ , V ₂ , V ₃	Input	For external connection to bypass capacitor or for use of external power supply circuit	

13.1.4 Register Configuration

Table 13-2 shows the register configuration of the LCD controller/driver.

Table 13-2 Register Configuration

Name	Abbrev.	R/W	Initial Value	Address
LCD port control register	LPCR	R/W	H'00	H'FFC0
LCD control register	LCR	R/W	H'80	H'FFC1
LCD RAM	_	R/W	Not fixed	H'F740 to H'F77F*

Note: * Value after reset.

13.2 Register Descriptions

13.2.1 LCD Port Control Register (LPCR)

Bit	7	6	5	4	3	2	1	0
	DTS1	DTS0	CMX	SGX	SGS3	SGS2	SGS1	SGS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

The LCD port control register is an 8-bit read/write register, used for selecting the duty cycle and the LCD driver and pin functions, etc. Upon reset, LPCR is initialized to H'00.

Bits 7 to 5: Duty and common function select (DTS1, DTS0, CMX)

Bits 7 to 6 select a driver duty of static, 1/2, 1/3, or 1/4. Bit 5 determines whether the common pins not used at a given duty are to be used as ports or, in order to increase the common driving capacity, as multiple pins outputting the same waveform.

Bit 7 DTS1	Bit 6 DTS0	Bit 5 CMX	Duty	Common Driver*1	Other Uses
0	0	0	Static	COM ₁ (initial value)	COM ₃ , COM ₂ and COM ₁ usable as ports
		1		COM ₄ to COM ₁	COM ₄ , COM ₃ and COM ₂ output the same waveform as COM ₁
0	1	0	1/2 duty	COM ₂ to COM ₁	COM ₄ and COM ₃ usable as ports
		1		COM ₄ to COM ₁	COM ₄ outputs the same waveform as COM ₃ , and COM ₂ the same waveform as COM ₁
1	0	0	1/3 duty	COM ₃ to COM ₁	COM ₄ usable as port
		1		COM ₄ to COM ₁	COM ₄ outputs a non-select waveform*2
1	1	0	1/4 duty	COM ₄ to COM ₁	_
		1			

Notes: 1. Pins COM_4 to COM_1 become ports when bit SGX = 0 and bits SGS3 to SGS0 = 0000. Otherwise the common drivers are as indicated in the table above.

 A non-select waveform is always output at pin COM₄, which therefore should not be used.

Bit 4: Expansion signal select (SGX)

Bit 4 selects whether pins SEG_{40}/CL_1 , SEG_{39}/CL_2 , SEG_{38}/DO , and SEG_{37}/M are used as segment pins $(SEG_{40}$ to $SEG_{37})$ or as external segment expansion pins (CL_1, CL_2, DO, M) .

Bit 4
SGX Description

0 Pins SEG₄₀ to SEG₃₇* (initial value)

1 Pins CL₁, CL₂, DO, M

Note: * Selected as ports when bits SGS3 to SGS0 = 0000.

Bits 3 to 0: Segment driver select (SGS3 to SGS0)

Bits 3 to 0 select the pins to be used as segment drivers.

						Functions of Pins SEG ₄₀ to SEG ₁									
					SEG ₄₀ to SEG ₃₇	SEG ₃₆ to SEG ₃₃	SEG ₃₂ to SEG ₂₉	SEG ₂₈ to SEG ₂₅	SEG ₂₄ to SEG ₂₁	SEG ₂₀ to SEG ₁₇	SEG ₁₆ to SEG ₁₃	SEG ₁₂ to SEG ₉	SEG ₈ to SEG ₅	SEG ₄ to SEG ₁	Remarks
0	0	0	0	0	Port	Port	Port	Port	Port	Port	Port	Port	Port	Port	(initial value)
	0	0	0	1	SEG	SEG	Port	Port	Port	Port	Port	Port	Port	Port	
	0	0	1	0	SEG	SEG	SEG	Port	Port	Port	Port	Port	Port	Port	-
	0	0	1	1	SEG	SEG	SEG	SEG	Port	Port	Port	Port	Port	Port	-
	0	1	0	0	SEG	SEG	SEG	SEG	SEG	Port	Port	Port	Port	Port	-
	0	1	0	1	SEG	SEG	SEG	SEG	SEG	SEG	Port	Port	Port	Port	-
	0	1	1	0	SEG	SEG	SEG	SEG	SEG	SEG	SEG	Port	Port	Port	-
	0	1	1	1	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	Port	Port	-
	1	*	*	0	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	Port	-
	1	*	*	1	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	-
1	0	0	0	0	External segment expansion	Port	Port	Port	Port	Port	Port	Port	Port	Port	
	0	0	0	1	External segment expansion	SEG	Port	Port	Port	Port	Port	Port	Port	Port	-
	0	0	1	0	External segment expansion	SEG	SEG	Port	Port	Port	Port	Port	Port	Port	-
	0	0	1	1	External segment expansion	SEG	SEG	SEG	Port	Port	Port	Port	Port	Port	-
	0	1	0	0	External segment expansion	SEG	SEG	SEG	SEG	Port	Port	Port	Port	Port	-
	0	1	0	1	External segment expansion	SEG	SEG	SEG	SEG	SEG	Port	Port	Port	Port	
	0	1	1	0	External segment expansion	SEG	SEG	SEG	SEG	SEG	SEG	Port	Port	Port	-
	0	1	1	1	External segment expansion	SEG	SEG	SEG	SEG	SEG	SEG	SEG	Port	Port	-
	1	*	*	0	External segment expansion	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	Port	-
	1	*	*	1	External segment expansion	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	-

Note: * Don't care

13.2.2 LCD Control Register (LCR)

Bit	7	6	5	4	3	2	1	0
	_	PSW	ACT	DISP	CKS3	CKS2	CKS1	CKS0
Initial value	1	0	0	0	0	0	0	0
Read/Write	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W

The LCD control register is an 8-bit read/write register for on/off control of the resistive voltage divider used as the LCD driver power supply, for display data control, and for frame frequency selection. Upon reset, LCR is initialized to H'80.

Bit 7: Reserved bit

Bit 7 is reserved; it is always read as 1, and cannot be modified.

Bit 6: Power switch (PSW)

Bit 6 switches the resistive voltage divider provided to power the LCD driver on/off. In low-power modes when the LCD display is not used, or when an external power supply is used for the LCD, the resistive voltage divider can be switched off. When bit ACT = 0, or in standby mode, the resistive voltage divider is in the off state regardless of the bit 6 setting.

Bit 6 PSW	Description	
0	LCD power supply resistive voltage divider off	(initial value)
1	LCD power supply resistive voltage divider on	

Bit 5: Display active (ACT)

Bit 5 selects whether the LCD controller/driver is used or not. When this bit is cleared to 0, the LCD controller/driver module halts operation, and the resistive voltage divider provided for the LCD driver power supply goes to the off state regardless of the PSW setting. However, register contents are retained.

Bit 5		
ACT	Description	
0	LCD controller/driver operation stopped	(initial value)
1	LCD controller/driver operational	

Bit 4: Display data control (DISP)

Bit 4 selects whether the LCD RAM contents are displayed or blank data is displayed regardless of the LCD RAM contents. This bit is valid also when the HD66100 is used for external segment expansion.

Bit 4		
DISP	Description	
0	Blank data displayed	(initial value)
1	LCD RAM data displayed	

Bits 3 to 0: Frame frequency select (CKS3 to CKS0)

Bits 3 to 0 select the clock used by the LCD controller/driver, and the frame frequency. In subactive, watch, and subsleep modes the system clock (\emptyset) is stopped, so there will be no display in these modes if $\emptyset/2$ to $\emptyset/256$ is chosen as the clock source. For display in these modes, clock \emptyset_W or $\emptyset_W/2$ must be selected.

Bit 3	Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Clock	Frame Frequency*3				
CKS3					ø = 5 MHz	ø = 625 kHz*1			
0	*	0	0	ø _W	128 Hz*2		(initial value)		
0	*	0	1	ø _W	64 Hz				
0	*	1	*	ø _W /2	32 Hz				
1	0	0	0	ø/2	_	610 Hz			
1	0	0	1	ø/4	_	305 Hz			
1	0	1	0	ø/8	_	153 Hz			
1	0	1	1	ø/16	610 Hz	76.3 Hz			
1	1	0	0	ø/32	305 Hz	38.1 Hz			
1	1	0	1	ø/64	153 Hz	_			
1	1	1	0	ø/128	76.3 Hz	_			
1	1	1	1	ø/256	38.1 Hz	_			

Notes: * Don't care

- 1. Frame frequency in active (medium-speed) mode
- 2. Only the upper 32 bytes of the display RAM are used.
- 3. When a duty cycle of 1/3 is chosen, the frame frequency will be 4/3 times the frequencies shown in the above table.

13.3 Operation

13.3.1 Settings Prior to LCD Display

Various decisions related to hardware and software must be made before using the LCD controller/driver with an LCD display. The settings are described below.

- 1. Hardware settings
- Use at 1/2 duty

To use at 1/2 duty, connect pins V_2 and V_3 as shown in figure 13-2.

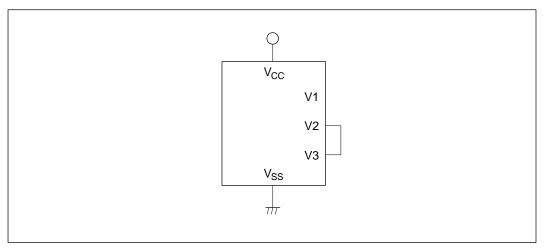


Figure 13-2 LCD Driver Power Supply Processing at 1/2 Duty

Large-panel display

Because of the large impedance of the built-in resistive voltage divider, the H8/3834 Series LCD controller/driver is not well suited to driving large-panel displays. If use of a large panel leads to an unclear display, refer to 13.3.5 on boosting the LCD driver power supply. At static and 1/2 duty it is possible to boost the common output driving capacity. Set bit CMX to 1 when selecting the duty cycle. In this mode, at static duty pins COM_4 to COM_1 output the same waveform, while at 1/2 duty pins COM_2 and COM_1 output the COM_1 waveform and pins COM_4 and COM_3 output the COM_2 waveform.

• Segment expansion

The HD66100 can be connected externally to expand the number of segments. See 13.3.3, Connection to HD66100.

- 2. Software settings
- Duty cycle selection

The duty cycle is selected in bits DTS1 and DTS0, with a choice of static, 1/2, 1/3, or 1/4 duty.

Segment driver selection

The segment drivers to be used are selected in bits SGS3 to SGS0.

Frame frequency selection

The frame frequency is selected in bits CKS3 to CKS0. The frame frequency should be selected depending on the specification of the LCD panel to be used. Refer to 13.3.4, Operation in Power-Down Modes, for information on clock selection in watch mode, subactive mode, and subsleep mode.

13.3.2 Relation of LCD RAM to Display

The relation of the LCD RAM to segments depends on the duty cycle. LCD RAM memory maps for each duty cycle when segments are not expanded externally are shown in figures 13-3 to 13-6. When segments are expanded externally, the LCD RAM memory maps for each duty cycle are as shown in figures 13-7 to 13-10. It is also possible to use only external segments and not use the segment pins on this chip, in which case the LCD RAM memory map is as shown in figure 13-11.

After setting the registers that control the LCD display, write data to the area corresponding to the duty cycle selected, using the same instructions as for the ordinary RAM. If the display is switched on, the data will be displayed automatically. Both word and byte access instructions can be used for writing to the LCD RAM.

13.3.3 Connection to HD66100

To expand the number of segments externally, connect the H8/3834 Series to the HD66100 segment chip. The HD66100 chip provides an additional 80 segments. When external segments are used, set bit SGX in LPCR for use of pins SEG_{40} to SEG_{37} as external segment expansion signal pins. Data will be output starting from LCD RAM pin SEG_{37} . When bits SGS3 to SGS0 in LPCR are set to 0000, data will be output starting from LCD RAM pin SEG_{1} .

Figure 13-12 shows typical connections to the HD66100. The output level is determined by the combination of data pins and pin M; but that combination differs between the H8/3834 Series and the HD66100. Table 13-3 shows the output level of the LCD driver power supply. Figure 13-13 shows the common and segment waveforms at each duty.

If bit ACT = 0, then if $CL_2 = 0$, $CL_1 = 0$ and M = 0, DO stops with the data output at that moment (1 or 0). In standby mode the expansion pins are in the high-impedance (floating) state.

External expansion increases the load on the LCD panel, as a result of which the internal power supply may not have sufficient capacity. In that case refer to 13.3.5 on boosting the LCD driver power supply.

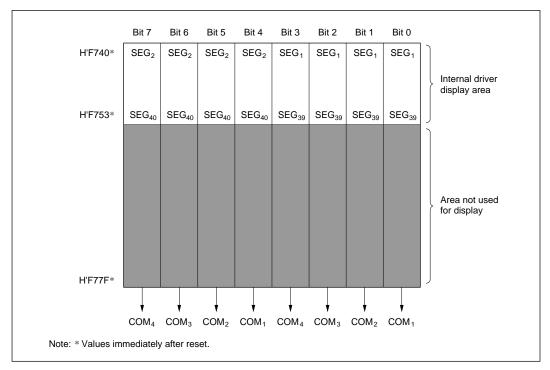


Figure 13-3 LCD RAM Map 1: No External Segment Expansion (1/4 Duty)

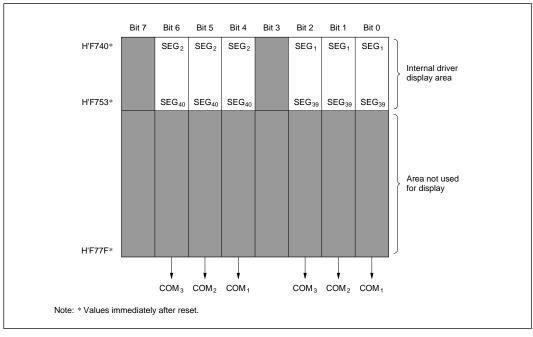


Figure 13-4 LCD RAM Map 2: No External Segment Expansion (1/3 Duty)



Figure 13-5 LCD RAM Map 3: No External Segment Expansion (1/2 Duty)

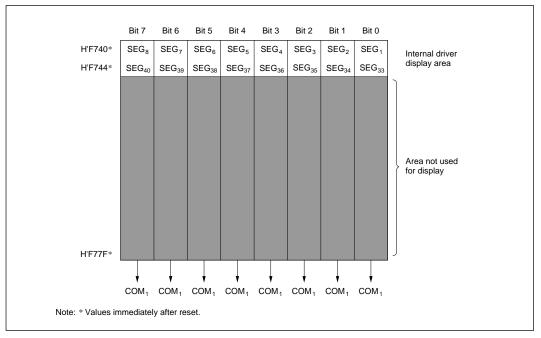


Figure 13-6 LCD RAM Map 4: No External Segment Expansion (Static Duty)

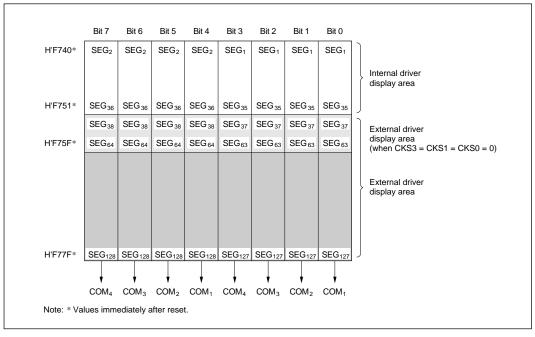


Figure 13-7 LCD RAM Map 1: External Segment Expansion (1/4 Duty)

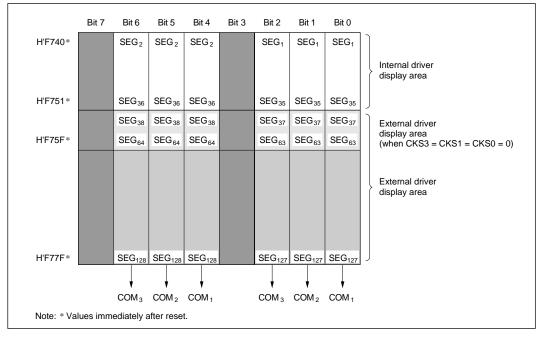


Figure 13-8 LCD RAM Map 2: External Segment Expansion (1/3 Duty)

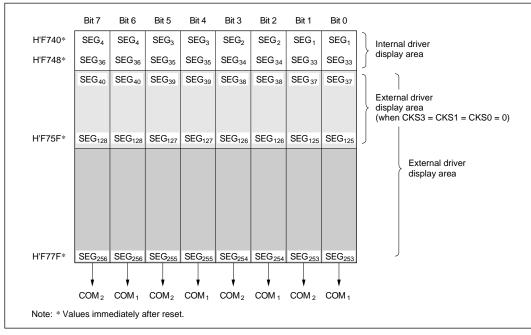


Figure 13-9 LCD RAM Map 3: External Segment Expansion (1/2 Duty)

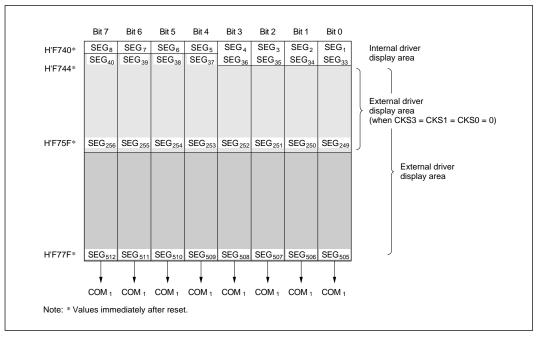


Figure 13-10 LCD RAM Map 4: External Segment Expansion (Static Duty)

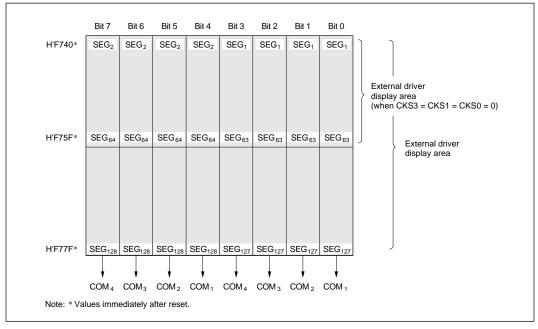


Figure 13-11 LCD RAM Map When All External Segments are Used (Example: SGX = 1, SGS3 to SGS0 = 0000, 1/4 Duty)

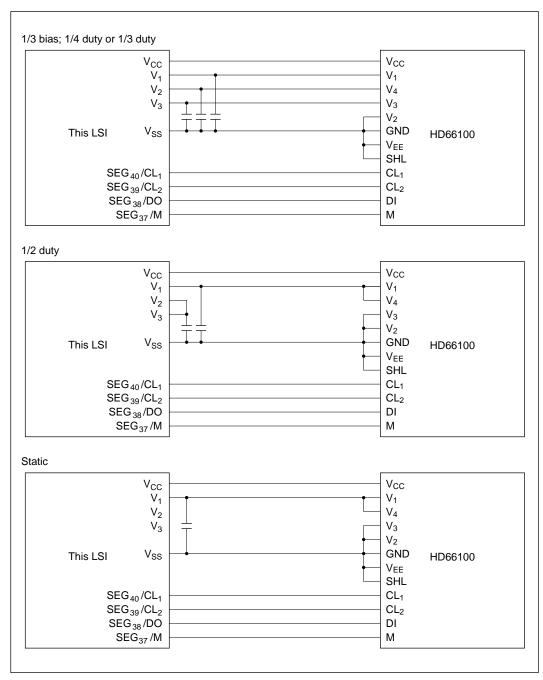


Figure 13-12 Connection to HD66100

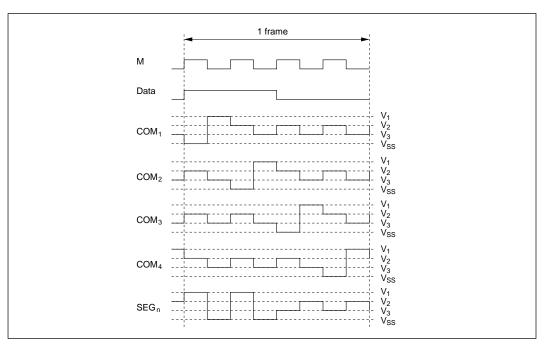


Figure 13-13 (a) Waveforms at 1/4 Duty

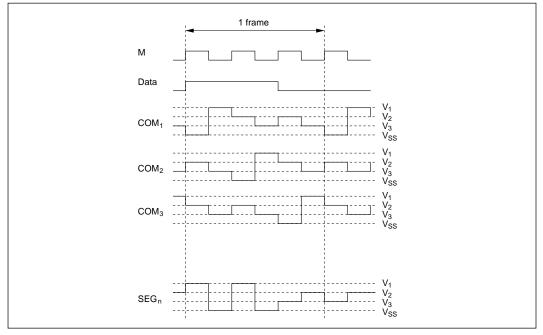


Figure 13-13 (b) Waveforms at 1/3 Duty

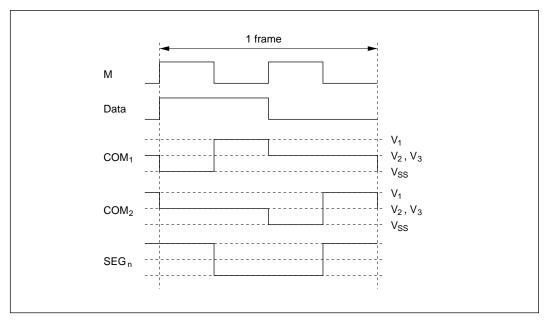


Figure 13-13 (c) Waveforms at 1/2 Duty

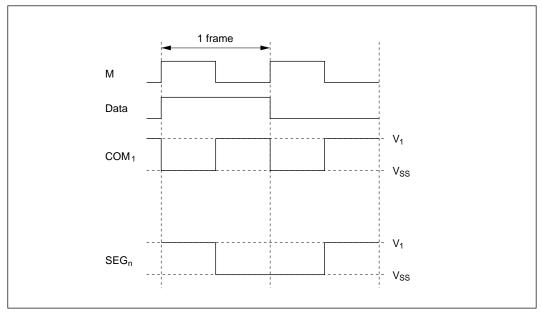


Figure 13-13 (d) Waveforms at Static Duty

Table 13-3 Output Levels

Data		0	0	1	1
М		0	1	0	1
Static	Common output	V ₁	V _{SS}	V ₁	V _{SS}
	Segment output	V ₁	V _{SS}	V _{SS}	V ₁
1/2 duty	Common output	V ₂ , V ₃	V ₂ , V ₃	V ₁	V _{SS}
	Segment output	V ₁	V _{SS}	V _{SS}	V ₁
1/3 duty	Common output	V ₃	V ₂	V ₁	V _{SS}
	Segment output	V ₂	V ₃	V _{SS}	V ₁
1/4 duty	Common output	V ₃	V ₂	V ₁	V _{SS}
	Segment output	V ₂	V ₃	V _{SS}	V ₁

13.3.4 Operation in Power-Down Modes

The LCD controller/driver can be operated in the low-power modes, as shown in table 13-4.

In the subactive, watch, and subsleep modes, the system clock pulse generator stops running, so no clock signal will be supplied and the display will be stopped, unless ϕ_W or $\phi_W/2$ was selected when setting bits CKS3 to CKS0 in LCR. Since this may result in a direct current being applied to the LCD panel, be sure to select ϕ_W or $\phi_W/2$ as the clock if these modes are used. In active (medium-speed) mode the system clock is changed, making it necessary to adjust the frame frequency setting (in bits CKS3 to CKS0) to avoid a change in frame frequency.

Table 13-4 LCD Controller/Driver Operation in Power-Down Modes

Mode		Reset	Active	Sleep	Watch	Subactive	Subsleep	Standby
Clock	Ø	Running	Running	Running	Stopped	Stopped	Stopped	Stopped
	ø _W	Running	Running	Running	Running	Running	Running	Stopped*1
Display	ACT = 0	Stopped	Stopped	Stopped	Stopped	Stopped	Stopped	Stopped*2
	ACT = 1	Stopped	On	On	On*3	On*3	On*3	Stopped*2

Notes: 1. The subclock pulse generator does not stop, but clock supply is stopped.

- 2. The LCD driver power supply resistive voltage divider is off regardless of bit PSW.
- 3. The display will not function unless ϕ_W or $\phi_W/2$ is selected as the clock.

13.3.5 Boosting the LCD Driver Power Supply

When a large LCD panel is driven, or if segments are expanded externally, the built-in power supply capacity may be insufficient, making it necessary to lower the power supply impedance. One method, shown in figure 13-12, is to connect a bypass capacitor of around 0.1 μF to 0.3 μF to pins V_1 , V_2 , and V_3 . Another approach, shown in figure 13-14 below, is to connect a resistive voltage divider externally.

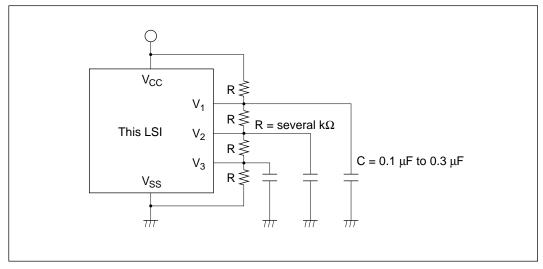


Figure 13-14 Connecting an External Resistive Voltage Divider

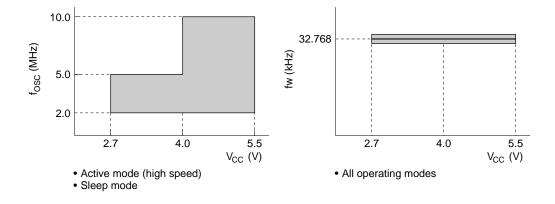
Section 14 Electrical Characteristics

14.1 H8/3834 Series Absolute Maximum Ratings

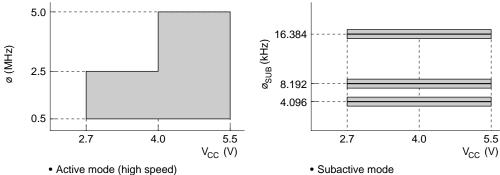
Table 14-1 lists the absolute maximum ratings.

Table 14-1 Absolute Maximum Ratings

Item		Symbol	Value	Unit
Power supply v	voltage	V _{CC}	-0.3 to +7.0	V
Analog power s	supply voltage	AV _{CC}	-0.3 to +7.0	V
Programming v	voltage	V _{PP}	-0.3 to +13.0	V
Input voltage	Ports other than ports B and C	V _{in}	-0.3 to V _{CC} + 0.3	V
	Ports B and C	AV _{in}	-0.3 to AV _{CC} + 0.3	V
Operating temp	perature	T _{opr}	–20 to +75	°C
Storage tempe	rature	T _{stg}	-55 to +125	°C

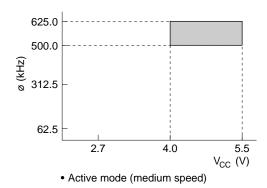

Note: Permanent damage may occur to the chip if maximum ratings are exceeded. Normal operation should be under the conditions specified in Electrical Characteristics. Exceeding these values can result in incorrect operation and reduced reliability.

14.2 H8/3833 and H8/3834 Electrical Characteristics

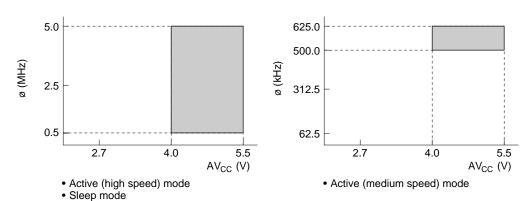

14.2.1 Power Supply Voltage and Operating Range

The power supply voltage and operating range of the H8/3833 and H8/3834 are indicated by the shaded region in the figures below.

1. Power supply voltage vs. oscillator frequency range of H8/3833 and H8/3834



Power supply voltage vs. clock frequency range of H8/3833 and H8/3834



- Sleep mode (except CPÚ)

- Subsleep mode (except CPU)
- Watch mode (except CPU)

Analog power supply voltage vs. A/D converter operating range of H8/3833 and H8/3834

14.2.2 DC Characteristics

Table 14-2 lists the DC characteristics of the H8/3833 and H8/3834.

Table 14-2 DC Characteristics of H8/3833 and H8/3834

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition Note
Input high voltage		$\overline{\text{RES}}$, MD0, $\overline{\text{WKP}_0}$ to $\overline{\text{WKP}_7}$, $\overline{\text{IRQ}_0}$ to $\overline{\text{IRQ}_4}$, TMIB, TMIC, TMIF	0.8 V _{CC}	_	V _{CC} + 0.3	V	V _{CC} = 4.0 V to 5.5 V
		CS, TMIG, SCK ₁ , SCK ₂ , SCK ₃ , ADTRG	0.9 V _{CC}	_	V _{CC} + 0.3		
		UD, SI ₁ , SI ₂ , RXD	0.7 V _{CC}	_	V _{CC} + 0.3	V	V _{CC} = 4.0 V to 5.5 V
			0.8 V _{CC}	_	V _{CC} + 0.3		
		OSC ₁	V _{CC} - 0.5	_	V _{CC} + 0.3	V	V _{CC} = 4.0 V to 5.5 V
			V _{CC} - 0.3	_	V _{CC} + 0.3		
		P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₃ P5 ₀ to P5 ₇	0.7 V _{CC}	_	V _{CC} + 0.3	V	V _{CC} = 4.0 V to 5.5 V
		P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	$0.8 V_{CC} - V_{CC} + 0.3$				
		PB ₀ to PB ₇	0.7 V _{CC}	_	AV _{CC} + 0.3	V	V _{CC} = 4.0 V to 5.5 V
		PC ₀ to PC ₃	0.8 V _{CC}	_	AV _{CC} + 0.3		
Input low voltage	V _{IL}	$\overline{\text{RES}}$, MD0, $\overline{\text{WKP}_0}$ to $\overline{\text{WKP}_7}$, $\overline{\text{IRQ}_0}$ to $\overline{\text{IRQ}_4}$, TMIB, TMIC, TMIF,	-0.3	_	0.2 V _{CC}	V	V _{CC} = 4.0 V to 5.5 V
		CS, TMIG, SCK ₁ , SCK ₂ , SCK ₃ , ADTRG	-0.3	_	0.1 V _{CC}		
		UD, SI ₁ , SI ₂ , RXD	-0.3		0.3 V _{CC}	V	V _{CC} = 4.0 V to 5.5 V
			-0.3	_	0.2 V _{CC}		
		OSC ₁	-0.3	_	0.5	V	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
			-0.3	_	0.3		

Note: Connect pin TEST to V_{SS} .

Table 14-2 DC Characteristics of H8/3833 and H8/3834 (cont)

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition Note
Input low voltage	V _{IL}	P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₃ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇	-0.3	_	0.3 V _{CC}	V	V _{CC} = 4.0 V to 5.5 V
		P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃ PB ₀ to PB ₇ PC ₀ to PC ₃	-0.3	_	0.2 V _{CC}		
Output high voltag	V _{OH} e	P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇	V _{CC} – 1.0	_	_	V	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$ $-I_{OH} = 1.0 \text{ mA}$
		P4 ₀ to P4 ₂ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇	V _{CC} - 0.5	_	_		V _{CC} = 4.0 V to 5.5 V -I _{OH} = 0.5 mA
	P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	V _{CC} - 0.5	_	_		-I _{OH} = 0.1 mA	
Output low voltage	V _{OL}	P1 ₀ to P1 ₇ P4 ₀ to P4 ₂	_	-	0.6	V	V _{CC} = 4.0 V to 5.5 V I _{OL} = 1.6 mA
			_	_	0.5		I _{OL} = 0.4 mA
		P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	_	_	0.5		I _{OL} = 0.4 mA
		P2 ₀ to P2 ₇ P3 ₀ to P3 ₇	_	_	1.5		V _{CC} = 4.0 V to 5.5 V I _{OL} = 10 mA
			_		0.6		V _{CC} = 4.0 V to 5.5 V I _{OL} = 1.6 mA
				_	0.5	_	I _{OL} = 0.4 mA

Note: Connect pin TEST to V_{SS}.

Table 14-2 DC Characteristics of H8/3833 and H8/3834 (cont)

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Input	I _{IL}	RES, P4 ₃	_	_	20	μΑ	V _{IN} = 0.5 V to	2
leakage current			_	_	1	_	$V_{CC} - 0.5 V$	1
Current		OSC ₁ , MD0 P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₂ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	_	_	1	μΑ	$V_{IN} = 0.5 \text{ V to}$ $V_{CC} - 0.5 \text{ V}$	
		PB ₀ to PB ₇ PC ₀ to PC ₃	_	_	1	_	$V_{IN} = 0.5 \text{ V to}$ $AV_{CC} - 0.5 \text{ V}$	
Pull-up MOS	-I _P	P1 ₀ to P1 ₇ P3 ₀ to P3 ₇	50	_	300	μΑ	$V_{CC} = 5 V$, $V_{IN} = 0 V$	
current		P5 ₀ to P5 ₇ P6 ₀ to P6 ₇	_	35	_	μΑ	$V_{CC} = 2.7 \text{ V},$ $V_{IN} = 0 \text{ V}$	Reference value
Input capacitano	C _{IN} ce	All input pins except power supply, RES, P4 ₃ pin	_	_	15	pF	f = 1 MHz, $V_{IN} = 0 \text{ V}$ $T_a = 25^{\circ}\text{C}$	
		RES	_	_	60	_		2
			_	_	15	-		1
		P4 ₃	_	_	30	_		2
			_	_	15	-		1

Notes: 1. Applies to HD6433833 and HD6433834.

2. Applies to HD6473834.

Table 14-2 DC Characteristics of H8/3833 and H8/3834 (cont)

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-20^{\circ}C$ to $+75^{\circ}C$, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Active mode current	I _{OPE1}	V _{CC}	_	12	24	mA	Active mode (high speed), V _{CC} = 5 V, f _{osc} = 10 MHz	1, 2
dissipation	I _{OPE2}	V _{CC}	_	2.5	5	mA	Active mode (medium speed), $V_{CC} = 5 \text{ V}, f_{osc} = 10 \text{ MHz}$	1, 2
Sleep mode current dissipation	I _{SLEEP}	V _{CC}	_	5	10	mA	$V_{CC} = 5 \text{ V}, f_{osc} = 10 \text{ MHz}$	1, 2
Subactive mode current dissipation	I _{SUB}	V _{CC}	_	50	130	μΑ	V_{CC} = 2.7 V, LCD on, 32-kHz crystal oscillator (\emptyset_{SUB} = \emptyset w/2)	1, 2
			_	40	_	μΑ	V_{CC} = 2.7 V, LCD on, 32-kHz crystal oscillator (\emptyset_{SUB} = \emptyset w/8)	Reference value 1, 2
Subsleep mode current dissipation	I _{SUBSP}	V _{CC}	_	40	90	μΑ	V_{CC} = 2.7 V, LCD on, 32-kHz crystal oscillator (\emptyset_{SUB} = \emptyset w/2)	1, 2
Watch mode current dissipation	I _{WATCH}	V _{CC}	_	_	6	μΑ	V_{CC} = 2.7 V, LCD not used, 32-kHz crystal oscillator (\emptyset_{SUB} = \emptyset w/8)	1, 2
Standby mode current dissipation	I _{STBY}	V _{CC}	_	_	5	μΑ	32-kHz crystal oscillator not used	1, 2
RAM data retaining voltage	V_{RAM}	V _{CC}	2	_	_	V		1, 2

Notes: 1. Pin states during current measurement

Mode	RES Pin	Internal State	Other Pins	LCD Power Supply	Oscillator Pins
Active mode (high and medium speed)	V _{CC}	Operates	V _{CC}	Open	System clock oscillator: Crystal Subclock oscillator: Pin $X_1 = V_{CC}$
Sleep mode	V_{CC}	Only timer operates	V _{CC}	Open	-
Subactive mode	V_{CC}	Operates	V _{CC}	Open	System clock oscillator: Crystal
Subsleep mode	V _{CC}	Only timer operates, CPU stops	V _{CC}	Open	Subclock oscillator: Crystal
Watch mode	V _{CC}	Only time-base clock operates, CPU stops	V _{CC}	Open	-
Standby mode	V _{CC}	CPU and timers all stop	V _{CC}	Open	System clock oscillator: Crystal Subclock oscillator: Pin $X_1 = V_{CC}$

^{2.} Excludes current in pull-up MOS transistors and output buffers.

Table 14-2 DC Characteristics of H8/3833 and H8/3834 (cont)

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition
Allowable output low current (per pin)	I _{OL}	Output pins except in ports 2 and 3	_	_	2	mA	V _{CC} = 4.0 V to 5.5 V
		Ports 2 and 3	_	_	10	_	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
		All output pins	_	_	0.5	_	
Allowable output low current (total)	ΣI_{OL}	Output pins except in ports 2 and 3	_	_	40	mA	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
		Ports 2 and 3	_	_	80	_	V _{CC} = 4.0 V to 5.5 V
		All output pins	_	_	20	_	
Allowable output	-I _{OH}	All output pins	_	_	2	mA	V _{CC} = 4.0 V to 5.5 V
high current (per pin)			_	_	0.2		
Allowable output	Σ-I _{OH}	All output pins	_	_	15	mA	V _{CC} = 4.0 V to 5.5 V
high current (total)			_	_	10	_	

14.2.3 AC Characteristics

Table 14-3 lists the control signal timing, and tables 14-4 and 14-5 list the serial interface timing of the H8/3833 and H8/3834.

Table 14-3 Control Signal Timing of H8/3833 and H8/3834

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
System clock	fosc	OSC ₁ , OSC ₂	2	_	10	MHz	V _{CC} = 4.0 V to 5.5 V	
oscillation frequency			2	_	5	-		
OSC clock (Ø _{OSC})	tosc	OSC ₁ , OSC ₂	100	_	1000	ns	V _{CC} = 4.0 V to 5.5 V	1
cycle time			200	_	1000	_		Figure 14-1
System clock (ø)	t _{cyc}		2	_	16	tosc		1
cycle time			_	_	2000	ns		
Subclock oscillation frequency	f_W	X ₁ , X ₂	_	32.768	_	kHz		
Watch clock cycle time	t_W	X ₁ , X ₂	_	30.5	_	μs		
Subclock (Ø _{SUB}) cycle time	t _{subcyc}		2	_	8	t _W		2
Instruction cycle time			2	_	_	t _{cyc}		
Oscillation stabilization	t _{rc}	OSC ₁ , OSC ₂	_	_	40	ms	V _{CC} = 4.0 V to 5.5 V	
time (crystal oscillator)			_	_	60	-		
Oscillation stabilization time	t _{rc}	X ₁ , X ₂	_	_	2	S		
External clock high	t _{CPH}	OSC ₁	40	_	_	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-1
width			80	_	_	-		
External clock low	t _{CPL}	OSC ₁	40	_	_	ns	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$	Figure 14-1
width			80	_	_	-		
External clock rise time	t _{CPr}		_	_	15	ns	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$	Figure 14-1
			_	_	20	=		
External clock fall time	t _{CPf}		_		15	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-1
			_	_	20	-		•
Pin RES low width	t _{REL}	RES	10	_	_	tcyc		Figure 14-2

Notes: 1. A frequency between 1 MHz to 10 MHz is required when an external clock is input.

^{2.} Selected with SA1 and SA0 of system clock control register 2 (SYSCR2).

Table 14-3 Control Signal Timing of H8/3833 and H8/3834 (cont)

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-20^{\circ}C$ to +75°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Input pin high width	t _{IH}	IRQ ₀ to IRQ ₄ WKP ₀ to WKP ADTRG TMIB, TMIC TMIF, TMIG	_	_	_	t _{cyc} t _{subcyc}		Figure 14-3
Input pin low width	t _{IL}	IRQ ₀ to IRQ ₄ WKP ₀ to WKP ADTRG TMIB, TMIC TMIF, TMIG		_	_	t _{cyc} t _{subcyc}		Figure 14-3
Pin UD minimum modulation width	t _{UDH} t _{UDL}	UD	4	_	_	t _{cyc}	:	Figure 14-4

Table 14-4 Serial Interface (SCI1, SCI2) Timing of H8/3833 and H8/3834

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-20^{\circ}C$ to +75°C, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Input serial clock cycle time	t _{scyc}	SCK ₁ , SCK ₂	2	_	_	t _{cyc}		Figure 14-5
Input serial clock high width	t _{SCKH}	SCK ₁ , SCK ₂	0.4	_	_	t _{scyc}		Figure 14-5
Input serial clock low width	t _{SCKL}	SCK ₁ , SCK ₂	0.4	_	_	t _{scyc}		Figure 14-5
Input serial clock rise	t _{SCKr}	SCK ₁ , SCK ₂	_	_	60	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-5
time			_	_	80			
Input serial clock fall	t _{SCKf}	SCK ₁ , SCK ₂	_	_	60	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-5
time			_	_	80	_		
Serial output data	t _{SOD}	SO ₁ , SO ₂	_	_	200	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-5
delay time			_	_	350	-		
Serial input data	t _{SIS}	SI ₁ , SI ₂	200	_	_	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-5
setup time			400	_	_	-		
Serial input data	t _{SIH}	SI ₁ , SI ₂	200	_	_	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-5
hold time			400	_	_	_		
CS setup time	t _{CSS}	CS	2			t _{cyc}		Figure 14-6
CS hold time	t _{CSH}	CS	2	_	_	t _{cyc}		Figure 14-6

Table 14-5 Serial Interface (SCI3) Timing of H8/3833 and H8/3834

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, unless otherwise specified.

Item		Symbol	Min	Тур	Max	Unit	Test Condition	Reference Figure
Input clock cycle	Asynchronous	t _{scyc}	4	_	_	t _{cyc}		Figure 14-7
	Synchronous		6	_	_	_		
Input clock pulse	width	t _{SCKW}	0.4	_	0.6	t _{scyc}		Figure 14-7
Transmit data delay time		t_{TXD}	_	_	1	t _{cyc}	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$	Figure 14-8
(synchronous mo	de)		_	_	1			
Receive data setu	ıp time	t _{RXS}	200	_	_	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-8
(synchronous mode)			400	_	_	_		_
Receive data hold	time	t _{RXH}	200	_	_	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-8
(synchronous mo	de)		400	_	_	_		-

14.2.4 A/D Converter Characteristics

Table 14-6 shows the A/D converter characteristics of the H8/3833 and H8/3834.

Table 14-6 A/D Converter Characteristics of H8/3833 and H8/3834

 V_{CC} = 2.7 V to 5.5 V, AV_{SS} = V_{SS} = 0.0 V, T_a = -20°C to +75°C, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Analog power supply voltage	AV_{CC}	AV _{CC}	4.0	_	5.5	V		1
Analog input voltage	AV _{IN}	AN ₀ to AN ₁₁	-0.3	_	AV _{CC} + 0.3	V		
Analog power	Al _{OPE}	AV _{CC}	_	_	1.5	mA	AV _{CC} = 5.0 V	
supply current	Al _{STOP1}	AV _{CC}	_	150	_	μΑ		2 Refere- nce value
	Al _{STOP2}	AV _{CC}	_	_	5	μΑ		3
Analog input capacitance	C _{AIN}	AN ₀ to AN ₁₁	_	_	30	pF		
Allowable signal source impedance	R _{AIN}		_	_	10	kΩ		
Resolution (data length)			_	_	8	bit		
Non-linearity error			_	_	±2.0	LSB		
Quantization error			_	_	±0.5	LSB		
Absolute accuracy			_	_	±2.5	LSB		
Conversion time			12.4	_	124	μs	AV _{CC} = 4.5 V to 5.5	V
			24.8	_	124	-		_

Notes: 1. Set $AV_{CC} = V_{CC}$ when the A/D converter is not used.

^{2.} Al_{STOP1} is the current in active and sleep modes while the A/D converter is idle.

AI_{STOP2} is the current at reset and in standby, watch, subactive, and subsleep modes while the A/D converter is idle.

14.2.5 LCD Characteristics

Table 14-7 lists the LCD characteristics, and table 14-8 lists the AC characteristics for external segment expansion of the H8/3833 and H8/3834.

Table 14-7 LCD Characteristics of H8/3833 and H8/3834

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Segment driver voltage drop	V_{DS}	SEG ₁ to SEG ₄₀	_	_	0.6	V	I _D = 2 μA	1
Common driver voltage drop	V _{DC}	COM ₁ to	_	_	0.3	V	I _D = 2 μA	1
LCD power supply voltage divider resistance	R _{LCD}		50	300	900	kΩ	Between V ₁ and V _{SS}	
LCD power supply voltage	V_{LCD}	V ₁	2.7	_	V _{CC}	V		2

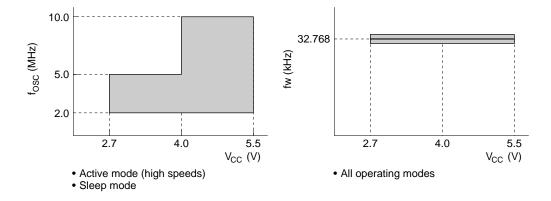
Notes: 1. These are the voltage drops between the voltage supply pins V₁, V₂, V₃, and Vss, and the segment pins or common pins.

2. When V_{LCD} is supplied from an external source, the following relation must hold: $V_{CC} \ge V_1 \ge V_2 \ge V_3 \ge V_{SS}$

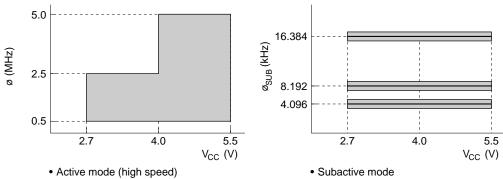
Table 14-8 AC Characteristics for External Segment Expansion of H8/3833 and H8/3834

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Clock high width	t _{CWH}	CL _{1,} CL ₂	800	_	_	ns	*	Figure 14-9
Clock low width	t _{CWL}	CL ₂	800	_	_	ns	*	Figure 14-9
Clock setup time	t _{CSU}	CL _{1,} CL ₂	500	_	_	ns	*	Figure 14-9
Data setup time	t _{SU}	DO	300	_	_	ns	*	Figure 14-9
Data hold time	t _{DH}	DO	300	_	_	ns	*	Figure 14-9
M delay time	t _{DM}	М	-100	0 —	1000	ns		Figure 14-9
Clock rise and fall times	t _{CT}	CL _{1,} CL ₂	_	_	100	ns		Figure 14-9

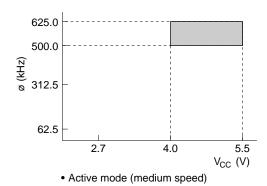

Note: * Value when the frame frequency is set to between 30.5 Hz and 488 Hz.

14.3 H8/3835, H8/3836, and H8/3837 Electrical Characteristics

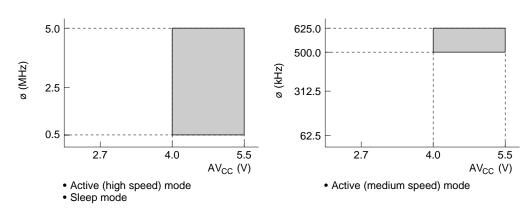

14.3.1 Power Supply Voltage and Operating Range

The power supply voltage and operating range of the H8/3835, H8/3836, and H8/3837 are indicated by the shaded region in the figures below.

1. Power supply voltage vs. oscillator frequency range of H8/3835, H8/3836, and H8/3837



2. Power supply voltage vs. clock frequency range of H8/3835, H8/3836, and H8/3837



• Sleep mode (except CPU)

- Subsleep mode (except CPU)
- Watch mode (except CPU)

3. Analog power supply voltage vs. A/D converter operating range of H8/3835, H8/3836, and H8/3837

14.3.2 DC Characteristics

Table 14-9 lists the DC characteristics of the H8/3835, H8/3836, and H8/3837.

Table 14-9 DC Characteristics of H8/3835, H8/3836, and H8/3837

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition Note
Input high voltage	V _{IH}	$\begin{array}{c} \overline{\text{RES}}, \text{MD0}, \\ \overline{\text{WKP}_0} \text{ to } \overline{\text{WKP}_7}, \\ \overline{\text{IRQ}_0} \text{ to } \overline{\text{IRQ}_4}, \\ \overline{\text{TMIB}}, \overline{\text{TMIC}}, \overline{\text{TMIF}} \end{array}$	0.8 V _{CC}	_	V _{CC} + 0.3	V	V _{CC} = 4.0 V to 5.5 V
		CS, TMIG, SCK ₁ , SCK ₂ , SCK ₃ , ADTRG	0.9 V _{CC}	_	V _{CC} + 0.3		
		UD, SI ₁ , SI ₂ , RXD	0.7 V _{CC}	_	V _{CC} + 0.3	V	V _{CC} = 4.0 V to 5.5 V
			0.8 V _{CC}	_	V _{CC} + 0.3		
		OSC ₁	$V_{\rm CC}-0.5$	_	$V_{CC} + 0.3$	V	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
			V _{CC} - 0.3	_	V _{CC} + 0.3		
		P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₃ P5 ₀ to P5 ₇	0.7 V _{CC}	_	V _{CC} + 0.3	V	$V_{CC} = 4.0 \text{ V} \text{ to } 5.5 \text{ V}$
		P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	0.8 V _{CC}	_	V _{CC} + 0.3		
		PB ₀ to PB ₇	0.7 V _{CC}	_	AV _{CC} + 0.3	V	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
		PC ₀ to PC ₃	0.8 V _{CC}	_	AV _{CC} + 0.3		
Input low voltage	V_{IL}	$\begin{array}{c} \overline{\text{RES}}, \text{MD0}, \\ \overline{\text{WKP}_0} \text{ to } \overline{\text{WKP}_7}, \\ \overline{\text{IRQ}_0} \text{ to } \overline{\text{IRQ}_4}, \\ \text{TMIB, TMIC, TMIF,} \end{array}$	-0.3	_	0.2 V _{CC}	V	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
		CS, TMIG, SCK ₁ , SCK ₂ , SCK ₃ , ADTRG	-0.3	_	0.1 V _{CC}		
		UD, SI ₁ , SI ₂ , RXD	-0.3	_	0.3 V _{CC}	V	V _{CC} = 4.0 V to 5.5 V
			-0.3		0.2 V _{CC}		
		OSC ₁	-0.3	_	0.5	V	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
			-0.3	_	0.3		

Note: Connect pin TEST to V_{SS} .

Table 14-9 DC Characteristics of H8/3835, H8/3836, and H8/3837 (cont)

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition Note
Input low voltage	V _{IL}	P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₃ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇	-0.3	_	0.3 V _{CC}	V	V _{CC} = 4.0 V to 5.5 V
		P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃ PB ₀ to PB ₇ PC ₀ to PC ₃	-0.3	_	0.2 V _{CC}		
Output high voltag	V _{OH} e	P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇	V _{CC} – 1.0	_	_	V	V _{CC} = 4.0 V to 5.5 V -I _{OH} = 1.0 mA
		P4 ₀ to P4 ₂ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇	V _{CC} - 0.5	_	_		$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$ $-I_{OH} = 0.5 \text{ mA}$
		P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	V _{CC} - 0.5	_	_		-I _{OH} = 0.1 mA
Output low voltage	V _{OL}	P1 ₀ to P1 ₇ P4 ₀ to P4 ₂	_	_	0.6	V	V _{CC} = 4.0 V to 5.5 V I _{OL} = 1.6 mA
			_	_	0.5		I _{OL} = 0.4 mA
		P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	_	_	0.5		I _{OL} = 0.4 mA
		P2 ₀ to P2 ₇ P3 ₀ to P3 ₇	_	_	1.5		$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$ $I_{OL} = 10 \text{ mA}$
			_	_	0.6		V _{CC} = 4.0 V to 5.5 V I _{OL} = 1.6 mA
			_	_	0.5		I _{OL} = 0.4 mA

Note: Connect pin TEST to V_{SS}.

Table 14-9 DC Characteristics of H8/3835, H8/3836, and H8/3837 (cont)

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Input	I _{IL}	RES, P4 ₃	_	_	20	μΑ	V _{IN} = 0.5 V to	2
leakage current			_	_	1	_	$V_{CC} - 0.5 V$	1
Current		OSC ₁ , MD0 P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₂ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	_	_	1	μА	$V_{IN} = 0.5 \text{ V to}$ $V_{CC} - 0.5 \text{ V}$	
		PB ₀ to PB ₇ PC ₀ to PC ₃	_	_	1	_	$V_{IN} = 0.5 \text{ V to}$ $AV_{CC} - 0.5 \text{ V}$	-
Pull-up MOS	-I _P	P1 ₀ to P1 ₇ P3 ₀ to P3 ₇	50	_	300	μΑ	$V_{CC} = 5 \text{ V},$ $V_{IN} = 0 \text{ V}$	
current		P5 ₀ to P5 ₇ P6 ₀ to P6 ₇	_	35	_	μΑ	$V_{CC} = 2.7 \text{ V},$ $V_{IN} = 0 \text{ V}$	Reference value
Input capacitano	C _{IN}	All input pins except power supply, RES P4 ₃ pin		_	15	pF	f = 1 MHz, $V_{IN} = 0 \text{ V}$ $T_a = 25^{\circ}\text{C}$	
		RES	_	_	60	_		2
			_	_	15	_		1
		P4 ₃	_	_	30	_		2
			_	_	15			1

Notes: 1. Applies to HD6433835, HD6433836, and HD6433837.

^{2.} Applies to HD6473837.

Table 14-9 DC Characteristics of H8/3835, H8/3836, and H8/3837 (cont)

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-20^{\circ}C$ to $+75^{\circ}C$, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Active mode current	I _{OPE1}	V _{CC}	_	13.5	24.0	mA	Active mode (high speed), V _{CC} = 5 V, f _{osc} = 10 MHz	1, 2
dissipation	I _{OPE2}	V _{CC}	_	2.5	5.0	mA	Active mode (medium speed), $V_{CC} = 5 \text{ V}, f_{osc} = 10 \text{ MHz}$	1, 2
Sleep mode current dissipation	I _{SLEEP}	V _{CC}	_	5.0	10.0	mA	$V_{CC} = 5 \text{ V}, f_{osc} = 10 \text{ MHz}$	1, 2
Subactive mode current dissipation	I _{SUB}	V _{CC}	_	50.0	130.0	μΑ	V_{CC} = 2.7 V, LCD on, 32-kHz crystal oscillator (\emptyset_{SUB} = \emptyset w/2)	1, 2
			_	40.0	_	μΑ	V_{CC} = 2.7 V, LCD on, 32-kHz crystal oscillator (\emptyset_{SUB} = \emptyset w/8)	Reference value 1, 2
Subsleep mode current dissipation	I _{SUBSP}	V _{CC}	_	40.0	90.0	μΑ	V_{CC} = 2.7 V, LCD on, 32-kHz crystal oscillator (\emptyset_{SUB} = \emptyset w/2)	1, 2
Watch mode current dissipation	I _{WATCH}	V _{CC}	_	_	6	μΑ	V_{CC} = 2.7 V, LCD not used, 32-kHz crystal oscillator (\emptyset_{SUB} = \emptyset w/8)	1, 2
Standby mode current dissipation	I _{STBY}	V _{CC}	_	_	5	μΑ	32-kHz crystal oscillator not used	1, 2
RAM data retaining voltage	V_{RAM}	V _{CC}	2	_	_	V		1, 2

Notes: 1. Pin states during current measurement

Mode	RES Pin	Internal State	Other Pins	LCD Power Supply	Oscillator Pins
Active mode (high and medium speed)	V _{CC}	Operates	V _{CC}	Open	System clock oscillator: Crystal Subclock oscillator: Pin $X_1 = V_{CC}$
Sleep mode	V_{CC}	Only timer operates	V_{CC}	Open	-
Subactive mode	V _{CC}	Operates	V _{CC}	Open	System clock oscillator: Crystal
Subsleep mode	V _{CC}	Only timer operates, CPU stops	V _{CC}	Open	Subclock oscillator: Crystal
Watch mode	V _{CC}	Only time-base clock operates, CPU stops	V _{CC}	Open	-
Standby mode	V _{CC}	CPU and timers all stop	V _{CC}	Open	System clock oscillator: Crystal Subclock oscillator: Pin $X_1 = V_{CC}$

^{2.} Excludes current in pull-up MOS transistors and output buffers.

Table 14-9 DC Characteristics of H8/3835, H8/3836, and H8/3837 (cont)

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition
Allowable output low current (per pin)	I _{OL}	Output pins except in ports 2 and 3	_	_	2	mA	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
		Ports 2 and 3	_	_	10	_	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
		All output pins	_	_	0.5	_	
Allowable output ΣI_{OL} Output pins except in low current (total) ports 2 and 3		Output pins except in ports 2 and 3	-	_	40	mA	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
		Ports 2 and 3	_	_	80	-	V _{CC} = 4.0 V to 5.5 V
		All output pins	_	_	20	_	
Allowable output	-I _{OH}	All output pins	_	_	2	mA	V _{CC} = 4.0 V to 5.5 V
high current (per pin)			_	_	0.2	_	
Allowable output	Σ-I _{OH}	All output pins	_	_	15	mA	V _{CC} = 4.0 V to 5.5 V
high current (total)			_	_	10	-	

14.3.3 AC Characteristics

Table 14-10 lists the control signal timing, and tables 14-11 and 14-12 list the serial interface timing of the H8/3835, H8/3836, and H8/3837.

Table 14-10 Control Signal Timing of H8/3835, H8/3836, and H8/3837

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
System clock	fosc	OSC ₁ , OSC ₂	2	_	10	MHz	V _{CC} = 4.0 V to 5.5 V	
oscillation frequency			2	_	5	=		
OSC clock (Ø _{OSC})	tosc	OSC ₁ , OSC ₂	100	_	1000	ns	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$	1
cycle time			200	_	1000	-		Figure 14-1
System clock (ø)	t _{cyc}		2	_	16	tosc		1
cycle time			_	_	2000	ns		
Subclock oscillation frequency	f _W	X ₁ , X ₂	_	32.768	_	kHz		
Watch clock (Ø _W) cycle time	t _W	X ₁ , X ₂	_	30.5	_	μs		
Subclock (Ø _{SUB}) cycle time	t _{subcyc}		2	_	8	t _W		2
Instruction cycle time			2	_	_	t _{cyc}		
Oscillation stabilization	t _{rc}	OSC ₁ , OSC ₂	_	_	40	ms	V _{CC} = 4.0 V to 5.5 V	
time (crystal oscillator)			_	_	60	_		
Oscillation stabilization time	t _{rc}	X ₁ , X ₂	_	_	2	S		
External clock high	t _{CPH}	OSC ₁	40	_	_	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-1
width			80	_	_	-		
External clock low	t _{CPL}	OSC ₁	40	_	_	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-1
width			80	_	_	-		
External clock rise time	t _{CPr}		_	_	15	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-1
			_	_	20	-		
External clock fall time	t _{CPf}		_		15	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-1
			_	_	20			
Pin RES low width	t _{REL}	RES	10			tcyc		Figure 14-2

Notes: 1. A frequency between 1 MHz to 10 MHz is required when an external clock is input.

^{2.} Selected with SA1 and SA0 of system clock control register 2 (SYSCR2).

Table 14-10 Control Signal Timing of H8/3835, H8/3836, and H8/3837 (cont)

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-20^{\circ}C$ to +75°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Input pin high width	t _{IH}	IRQ ₀ to IRQ ₄ WKP ₀ to WKP ADTRG TMIB, TMIC TMIF, TMIG		_	_	t _{cyc} t _{subcyc}		Figure 14-3
Input pin low width	t _{IL}	IRQ ₀ to IRQ ₄ WKP ₀ to WKP ADTRG TMIB, TMIC TMIF, TMIG		_	_	t _{cyc} t _{subcyc}		Figure 14-3
Pin UD minimum modulation width	t _{UDH} t _{UDL}	UD	4	_	_	t _{cyc}		Figure 14-4

Table 14-11 Serial Interface (SCI1, SCI2) Timing of H8/3835, H8/3836, and H8/3837

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-20^{\circ}C$ to +75°C, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Input serial clock cycle time	t _{scyc}	SCK ₁ , SCK ₂	2	_	_	t _{cyc}		Figure 14-5
Input serial clock high width	t _{SCKH}	SCK ₁ , SCK ₂	0.4	_	_	t _{scyc}		Figure 14-5
Input serial clock low width	t _{SCKL}	SCK ₁ , SCK ₂	0.4	_	_	t _{scyc}		Figure 14-5
Input serial clock rise	t _{SCKr}	SCK ₁ , SCK ₂	_	_	60	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-5
time			_	_	80	_		
Input serial clock fall	t _{SCKf}	SCK ₁ , SCK ₂	_	_	60	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-5
time			_	_	80	-		
Serial output data	t _{SOD}	SO ₁ , SO ₂	_	_	200	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-5
delay time			_	_	350	-		
Serial input data	t _{SIS}	SI ₁ , SI ₂	200	_	_	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-5
setup time			400	_	_	_		
Serial input data	t _{SIH}	SI ₁ , SI ₂	200	_	_	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-5
hold time			400	_	_	_		
CS setup time	t _{CSS}	CS	2	Ė	_	t _{cyc}		Figure 14-6
CS hold time	t _{CSH}	CS	2	_	_	t _{cyc}		Figure 14-6

Table 14-12 Serial Interface (SCI3) Timing of H8/3835, H8/3836, and H8/3837

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, unless otherwise specified.

Item		Symbol	Min	Тур	Max	Unit	Test Condition	Reference Figure
Input clock cycle	Asynchronous	t _{scyc}	4	_	_	t _{cyc}		Figure 14-7
	Synchronous		6	_	_			
Input clock pulse	width	t _{SCKW}	0.4	_	0.6	t _{scyc}		Figure 14-7
Transmit data delay time		t_{TXD}	_	_	1	t _{cyc}	V _{CC} = 4.0 V to 5.5 V	Figure 14-8
(synchronous mod	de)		_	_	1			
Receive data setu	•	t _{RXS}	200	_	_	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-8
(synchronous mode)			400	_	_	_		-
Receive data hold	d time	t _{RXH}	200	_	_	ns	V _{CC} = 4.0 V to 5.5 V	Figure 14-8
(synchronous mod	de)		400	_	_	_		-

14.3.4 A/D Converter Characteristics

Table 14-13 shows the A/D converter characteristics of the H8/3835, H8/3836, and H8/3837.

Table 14-13 A/D Converter Characteristics of H8/3835, H8/3836, and H8/3837

 $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $AV_{SS} = V_{SS} = 0.0 \text{ V}$, $T_a = -20 ^{\circ}\text{C}$ to $+75 ^{\circ}\text{C}$, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Analog power supply voltage	AV _{CC}	AV _{CC}	4.0	_	5.5	V		1
Analog input voltage	AV _{IN}	AN ₀ to AN ₁₁	AV _{SS} - 0.3	_	AV _{CC} + 0.3	V		
Analog power	Al _{OPE}	AV _{CC}	_	_	1.5	mA	AV _{CC} = 5.0 V	
supply current	Al _{STOP1}	AV _{CC}	_	150	_	μΑ		2 Refere- nce value
	Al _{STOP2}	AV_{CC}	_	_	5	μΑ		3
Analog input capacitance	C _{AIN}	AN ₀ to AN ₁₁	_	_	30	pF		
Allowable signal source impedance	R _{AIN}		_	_	10	kΩ		
Resolution (data length)			_	_	8	bit		
Non-linearity error			_	_	±2.0	LSB		
Quantization error			_	_	±0.5	LSB		
Absolute accuracy			_	_	±2.5	LSB		
Conversion time			12.4	_	124	μs	$AV_{CC} = 4.5 \text{ V to } 5.5$	V
			24.8	_	124	-		

Notes: 1. Set $AV_{CC} = V_{CC}$ when the A/D converter is not used.

^{2.} Al_{STOP1} is the current in active and sleep modes while the A/D converter is idle.

Al_{STOP2} is the current at reset and in standby, watch, subactive, and subsleep modes while the A/D converter is idle.

14.3.5 LCD Characteristics

Table 14-14 lists the LCD characteristics, and table 14-15 lists the AC characteristics for external segment expansion of the H8/3835, H8/3836, and H8/3837.

Table 14-14 LCD Characteristics of H8/3835, H8/3836, and H8/3837

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Segment driver voltage drop	V _{DS}	SEG ₁ to SEG ₄₀	_	_	0.6	V	I _D = 2 μA	1
Common driver voltage drop	V _{DC}	COM ₁ to	_	_	0.3	V	I _D = 2 μA	1
LCD power supply voltage divider resistance	R _{LCD}		50	300	900	kΩ	Between V ₁ and V _{SS}	
LCD power supply voltage	V _{LCD}	V ₁	2.7	_	V _{CC}	V		2

Notes: 1. These are the voltage drops between the voltage supply pins V₁, V₂, V₃, and Vss, and the segment pins or common pins.

2. When V_{LCD} is supplied from an external source, the following relation must hold: $V_{CC} \ge V_1 \ge V_2 \ge V_3 \ge V_{SS}$

Table 14-15 AC Characteristics for External Segment Expansion of H8/3835, H8/3836, and H8/3837

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -20°C to +75°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Clock high width	t _{CWH}	CL _{1,} CL ₂	800	_	_	ns	*	Figure 14-9
Clock low width	t _{CWL}	CL ₂	800	_	_	ns	*	Figure 14-9
Clock setup time	t _{CSU}	CL _{1,} CL ₂	500	_	_	ns	*	Figure 14-9
Data setup time	t _{SU}	DO	300	_	_	ns	*	Figure 14-9
Data hold time	t _{DH}	DO	300	_	_	ns	*	Figure 14-9
M delay time	t _{DM}	M	-100	0 —	1000	ns		Figure 14-9
Clock rise and fall times	t _{CT}	CL _{1,} CL ₂	_	_	100	ns		Figure 14-9

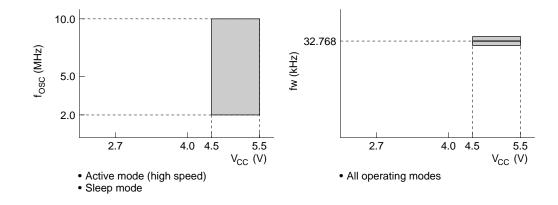
Note: * Value when the frame frequency is set to between 30.5 Hz and 488 Hz.

14.4 H8/3834 Series Absolute Maximum Ratings (Wide Temperature Range (I-Spec) Version)

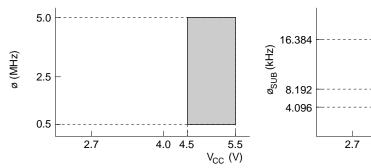
Table 14-16 lists the absolute maximum ratings.

Table 14-16 Absolute Maximum Ratings

Item		Symbol	Value	Unit
Power supply v	voltage	V _{CC}	-0.3 to +7.0	V
Analog power s	supply voltage	AV _{CC}	-0.3 to +7.0	V
Programming v	voltage	V _{PP}	-0.3 to + 13.0	V
Input voltage	Ports other than ports B and C	V _{in}	-0.3 to V _{CC} + 0.3	V
	Ports B and C	AV _{in}	-0.3 to AV _{CC} + 0.3	V
Operating temp	perature	T _{opr}	-40 to +85	°C
Storage tempe	rature	T _{stg}	-55 to +125	°C


Note: Permanent damage may occur to the chip if maximum ratings are exceeded. Normal operation should be under the conditions specified in Electrical Characteristics. Exceeding these values can result in incorrect operation and reduced reliability.

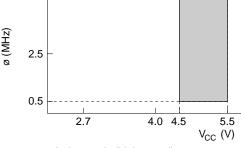
14.5 H8/3833 and H8/3834 Electrical Characteristics (Wide Temperature Range (I-Spec) Version)


14.5.1 Power Supply Voltage and Operating Range

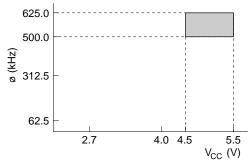
The power supply voltage and operating range of the H8/3833 and H8/3834 (wide temperature range (I-spec) version) are indicated by the shaded region in the figures below.

1. Power supply voltage vs. oscillator frequency range of H8/3833 and H8/3834 (wide temperature range (I-spec) version)

Power supply voltage vs. clock frequency range of H8/3833 and H8/3834 (wide temperature 2. range (I-spec) version)

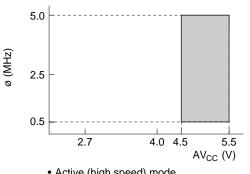


- Subactive mode
- Subsleep mode (except CPU)

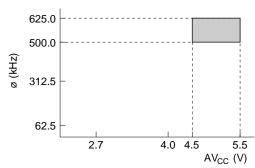

4.0 4.5 5.5

 V_{CC} (V)

Watch mode (except CPU)



- Active mode (high speed)
- Sleep mode (except CPU)



· Active mode (medium speed)

Analog power supply voltage vs. A/D converter operating range of H8/3833 and H8/3834 (wide temperature range (I-spec) version)

- · Active (high speed) mode
- Sleep mode

· Active (medium speed) mode

14.5.2 DC Characteristics

Table 14-17 lists the DC characteristics of the H8/3833 and H8/3834 (wide temperature range (Ispec) version).

Table 14-17 DC Characteristics of H8/3833 and H8/3834 (Wide Temperature Range (I-Spec) Version)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -40°C to + 85°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Input high voltage	V _{IH}	$\begin{array}{c} \overline{\text{RES}}, \text{MD0}, \\ \overline{\text{WKP}_0} \text{ to } \overline{\text{WKP}_7}, \\ \overline{\text{IRQ}_0} \text{ to } \overline{\text{IRQ}_4}, \\ \overline{\text{TMIB}}, \overline{\text{TMIC}}, \overline{\text{TMIF}} \\ \overline{\text{CS}}, \overline{\text{TMIG}}, \\ \text{SCK}_1, \underline{\text{SCK}_2}, \\ \overline{\text{SCK}_3}, \overline{\text{ADTRG}} \end{array}$	0.8 V _{CC}	_	V _{CC} + 0.3	V		
		UD, SI ₁ , SI ₂ , RXD	0.7 V _{CC}	_	$V_{CC} + 0.3$	V		
		OSC ₁	$V_{CC} - 0.5$	_	$V_{CC} + 0.3$	V		
		P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₃ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	0.7 V _{CC}	_	V _{CC} + 0.3	V		
		PB ₀ to PB ₇ PC ₀ to PC ₃	0.7 V _{CC}	_	AV _{CC} + 0.3	V		
Input low voltage	V _{IL}	$\begin{array}{c} \overline{\text{RES}}, \text{MD0}, \\ \overline{\text{WKP}_0} \text{ to } \overline{\text{WKP}_7}, \\ \overline{\text{IRQ}_0} \text{ to } \overline{\text{IRQ}_4}, \\ \overline{\text{TMIB}}, \overline{\text{TMIC}}, \overline{\text{TMIF}}, \\ \overline{\text{CS}}, \overline{\text{TMIG}}, \\ \text{SCK}_1, \overline{\text{SCK}_2}, \\ \overline{\text{SCK}_3}, \overline{\text{ADTRG}} \end{array}$	-0.3	_	0.2 V _{CC}	V		
		UD, SI ₁ , SI ₂ , RXD	-0.3	_	0.3 V _{CC}	V		
		OSC ₁	-0.3		0.5	V		

Note: Connect pin TEST to V_{SS}.

Table 14-17 DC Characteristics of H8/3833 and H8/3834 (Wide Temperature Range (I-Spec) Version) (cont)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -40°C to + 85°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Input low voltage	V _{IL}	P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₃ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃ PB ₀ to PB ₇ PC ₀ to PC ₃	-0.3		0.3 V _{CC}	V		
Output high voltage	V _{OH}	P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇	V _{CC} - 1.0	_	_	V	-I _{OH} = 1.0 mA	
		P4 ₀ to P4 ₂ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	V _{CC} - 0.5	_	_		-I _{OH} = 0.5 mA	
Output low voltage	V _{OL}	P1 ₀ to P1 ₇ P4 ₀ to P4 ₂	_	_	0.6	V	I _{OL} = 1.6 mA	
		P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	_	_	0.5		I _{OL} = 0.4 mA	
		P2 ₀ to P2 ₇		_	1.5		I _{OL} = 10 mA	
		P3 ₀ to P3 ₇	_	_	0.6	_	I _{OL} = 1.6 mA	

Note: Connect pin TEST to V_{SS} .

Table 14-17 DC Characteristics of H8/3833 and H8/3834 (Wide Temperature Range (I-Spec) Version) (cont)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-40^{\circ}C$ to + $85^{\circ}C$, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Input	I _{IL}	RES, P4 ₃	_	_	24	μΑ	$V_{IN} = 0.5 V to$	2
leakage current			_	_	2	_	$V_{CC} - 0.5 V$	1
Current		OSC ₁ , MD0 P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₂ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	_	_	2	μ A $V_{IN} = 0.5 \text{ V to}$ $V_{CC} - 0.5 \text{ V}$		
		PB ₀ to PB ₇ PC ₀ to PC ₃	_	_	2	-	$V_{IN} = 0.5 \text{ V to}$ $AV_{CC} - 0.5 \text{ V}$	
Pull-up MOS current	–l _P	P1 ₀ to P1 ₇ P3 ₀ to P3 ₇ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇	20	_	330	μΑ	$V_{CC} = 5 \text{ V},$ $V_{IN} = 0 \text{ V}$	
Input capacitano	C _{IN} e	All input pins except power supply, RES, P4 ₃ pin	_	_	15	pF	f = 1 MHz, $V_{IN} = 0 \text{ V}$ $T_a = 25^{\circ}\text{C}$	
		RES	_	_	60	=		2
				_	15	_		1
		P4 ₃	_	_	30	-		2
			_	_	15			1

Notes: 1. Applies to HD6433833 and HD6433834 (wide temperature range version).

^{2.} Applies to HD6473834 (wide temperature range version).

Table 14-17 DC Characteristics of H8/3833 and H8/3834 (Wide Temperature Range (I-Spec) Version) (cont)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-40^{\circ}C$ to + $85^{\circ}C$, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Active mode current	I _{OPE1}	V _{CC}	_	12	30	mA	Active mode (high speed), V _{CC} = 5 V, f _{osc} = 10 MHz	1, 2
dissipation	I _{OPE2}	V _{CC}	_	2.5	6	mA	Active mode (medium speed), $V_{CC} = 5 \text{ V}, f_{osc} = 10 \text{ MHz}$	1, 2
Sleep mode current dissipation	I _{SLEEP}	V _{CC}	_	5	12	mA	$V_{CC} = 5 \text{ V}, f_{osc} = 10 \text{ MHz}$	1, 2
Subactive mode current dissipation	I _{SUB}	V _{CC}	_	100	_	μΑ	V_{CC} = 5 V, LCD on, 32-kHz crystal oscillator (\emptyset_{SUB} = \emptyset w/2)	Reference value 1, 2
			_	70	_	μΑ	V _{CC} = 5 V, LCD on, 32-kHz crystal oscillator (Ø _{SUB} = Øw/8)	Reference value 1, 2
Subsleep mode current dissipation	I _{SUBSP}	V _{CC}	_	60	_	μΑ	V_{CC} = 5 V, LCD on, 32-kHz crystal oscillator (\emptyset_{SUB} = \emptyset w/2)	Reference value 1, 2
Watch mode current dissipation	I _{WATCH}	V _{CC}	_	6	_	μΑ	$V_{CC} = 5 \text{ V, LCD not used,}$ 32-kHz crystal oscillator ($\emptyset_{SUB} = \emptyset \text{w/8}$)	Reference value 1, 2
Standby mode current dissipation	I _{STBY}	V _{CC}	_	_	10	μΑ	32-kHz crystal oscillator not used	1, 2
RAM data retaining voltage	V_{RAM}	V _{CC}	2	_	_	V		1, 2

Notes: 1. Pin states during current measurement

Mode	RES Pin	Internal State	Other Pins	LCD Power Supply	Oscillator Pins
Active mode (high and medium speed)	V _{CC}	Operates	V _{CC}	Open	System clock oscillator: Crystal Subclock oscillator: $Pin X_1 = V_{CC}$
Sleep mode	V_{CC}	Only timer operates	V_{CC}	Open	-
Subactive mode	V _{CC}	Operates	V _{CC}	Open	System clock oscillator: Crystal
Subsleep mode	V _{CC}	Only timer operates, CPU stops	V _{CC}	Open	Subclock oscillator: Crystal
Watch mode	V_{CC}	Only time-base clock operates, CPU stops	V_{CC}	Open	
Standby mode	V _{CC}	CPU and timers all stop	V _{CC}	Open	System clock oscillator: Crystal Subclock oscillator: Pin $X_1 = V_{CC}$

^{2.} Excludes current in pull-up MOS transistors and output buffers.

Table 14-17 DC Characteristics of H8/3833 and H8/3834 (Wide Temperature Range (I-Spec) Version) (cont)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-40^{\circ}C$ to + $85^{\circ}C$, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition
Allowable output low current (per pin)	I _{OL}	Output pins except in ports 2 and 3	<u> </u>		2	mA	
		Ports 2 and 3	_	_	10	_	
Allowable output low current (total)	ΣI_{OL}	Output pins except in ports 2 and 3	_	_	40	mA	
		Ports 2 and 3	_	_	80		
Allowable output high current (per pin)	-I _{OH}	All output pins	_	_	2	mA	
Allowable output high current (per pin)	Σ-I _{OH}	All output pins	_	_	15	mA	

14.5.3 AC Characteristics

Table 14-18 lists the control signal timing, and tables 14-19 and 14-20 list the serial interface timing of the H8/3833 and H8/3834 (wide temperature range (I-spec) version).

Table 14-18 Control Signal Timing of H8/3833 and H8/3834 (Wide Temperature Range (I-Spec) Version)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -40°C to + 85°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
System clock oscillation frequency	f _{OSC}	OSC ₁ , OSC ₂	2	_	10	MHz		-
OSC clock (Ø _{OSC}) cycle time	tosc	OSC ₁ , OSC ₂	100	_	1000	ns		1 Figure 14-1
System clock (ø)	t _{cyc}		2	_	16	tosc		1
cycle time			_	_	2000	ns		
Subclock oscillation frequency	f_W	X ₁ , X ₂	_	32.768	_	kHz		
Watch clock (Ø _W) cycle time	t_W	X ₁ , X ₂	_	30.5	_	μs		
Subclock (Ø _{SUB}) cycle time	t _{subcyc}		2	_	8	t_{W}		2
Instruction cycle time			2	_	_	t _{cyc} t _{subcyc}		
Oscillation stabilization time (crystal oscillator)	t _{rc}	OSC ₁ , OSC ₂	_	_	40	ms		
Oscillation stabilization time	t _{rc}	X ₁ , X ₂	_	_	2	S		
External clock high width	t _{CPH}	OSC ₁	40	_	_	ns		Figure 14-1
External clock low width	t _{CPL}	OSC ₁	40	_	_	ns		Figure 14-1
External clock rise time	t _{CPr}	<u> </u>	_		15	ns		Figure 14-1
External clock fall time	t _{CPf}		_	_	15	ns		Figure 14-1
Pin RES low width	t _{REL}	RES	10	_		tcyc		Figure 14-2
		·						

Notes: 1. A frequency between 1 MHz to 10 MHz is required when an external clock is input.

^{2.} Selected with SA1 and SA0 of system clock control register 2 (SYSCR2).

Table 14-18 Control Signal Timing of H8/3833 and H8/3834 (Wide Temperature Range (I-Spec) Version) (cont)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-40^{\circ}C$ to +85°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Input pin high width	t _{IH}	IRQ ₀ to IRQ ₄ WKP ₀ to WKP ADTRG TMIB, TMIC TMIF, TMIG	_	_	_	t _{cyc} t _{subcyc}		Figure 14-3
Input pin low width	t _{IL}	IRQ ₀ to IRQ ₄ WKP ₀ to WKP ADTRG TMIB, TMIC TMIF, TMIG	_	_	_	t _{cyc} t _{subcyc}	:	Figure 14-3
Pin UD minimum modulation width	t _{UDH} t _{UDL}	UD	4	_	_	t _{cyc}	:	Figure 14-4

Table 14-19 Serial Interface (SCI1, SCI2) Timing

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-40^{\circ}C$ to +85°C, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Input serial clock cycle time	t _{scyc}	SCK ₁ , SCK ₂	2	_	_	t _{cyc}		Figure 14-5
Input serial clock high width	t _{SCKH}	SCK ₁ , SCK ₂	0.4	_	_	t _{scyc}		Figure 14-5
Input serial clock low width	t _{SCKL}	SCK ₁ , SCK ₂	0.4	_	_	t _{scyc}		Figure 14-5
Input serial clock rise time	t _{SCKr}	SCK ₁ , SCK ₂	_	_	60	ns		Figure 14-5
Input serial clock fall time	t _{SCKf}	SCK ₁ , SCK ₂	_	_	60	ns		Figure 14-5
Serial output data delay time	t _{SOD}	SO ₁ , SO ₂	_	_	200	ns		Figure 14-5
Serial input data setup time	t _{SIS}	SI ₁ , SI ₂	200	_	_	ns		Figure 14-5
Serial input data hold time	t _{SIH}	SI ₁ , SI ₂	200	_	_	ns		Figure 14-5
CS setup time	t _{CSS}	CS	2	_	_	t _{cyc}		Figure 14-6
CS hold time	t _{CSH}	CS	2	_	_	t _{cyc}		Figure 14-6

Table 14-20 Serial Interface (SCI3) Timing of H8/3833 and H8/3834 (Wide Temperature Range (I-Spec) Version)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -40°C to +85°C, unless otherwise specified.

Item			Min	Тур	Max	Unit	Test Condition	Reference Figure
Input clock cycle	Asynchronous	t _{scyc}	4	_	_	t _{cyc}		Figure 14-7
	Synchronous		6	_	_	_		
Input clock pulse width		t _{SCKW}	0.4	_	0.6	t _{scyc}		Figure 14-7
Transmit data delay time (synchronous mode)		t _{TXD}	_	_	1	$t_{\rm cyc}$		Figure 14-8
Receive data setu (synchronous mod	•	t _{RXS}	200	_	_	ns		Figure 14-8
Receive data hold (synchronous mod		t _{RXH}	200	_	_	ns		Figure 14-8

14.5.4 A/D Converter Characteristics

Table 14-21 shows the A/D converter characteristics of the H8/3833 and H8/3834 (wide temperature range (I-spec) version).

Table 14-21 A/D Converter Characteristics of H8/3833 and H8/3834 (Wide Temperature Range (I-Spec) Version)

 $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{SS} = V_{SS} = 0.0 \text{ V}$, $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Analog power supply voltage	AV _{CC}	AV _{CC}	4.5	_	5.5	V		1
Analog input voltage	AV _{IN}	AN ₀ to AN ₁₁	-0.3	_	AV _{CC} + 0.3	V		
Analog power	Al _{OPE}	AV _{CC}	_	_	1.7	mA	AV _{CC} = 5.0 V	
supply current	AI _{STOP1}	AV _{CC}	_	150	_	μΑ		2 Reference value
	Al _{STOP2}	AV _{CC}	_	_	7	μΑ		3
Analog input capacitance	C _{AIN}	AN ₀ to AN ₁₁	_	_	30	pF		
Allowable signal source impedance	R _{AIN}		_	_	10	kΩ		
Resolution (data length)			_	_	8	bit		
Non-linearity error			_	_	±2.0	LSB		
Quantization error			_	_	±0.5	LSB		
Absolute accuracy			_	_	±2.5	LSB		
Conversion time			12.4	_	124	μs		

Notes: 1. Set $AV_{CC} = V_{CC}$ when the A/D converter is not used.

^{2.} Al_{STOP1} is the current in active and sleep modes while the A/D converter is idle.

AI_{STOP2} is the current at reset and in standby, watch, subactive, and subsleep modes while the A/D converter is idle.

14.5.5 LCD Characteristics

Table 14-22 lists the LCD characteristics, and table 14-23 lists the AC characteristics for external segment expansion of the H8/3833 and H8/3834 (wide temperature range (I-spec) version).

Table 14-22 LCD Characteristics of H8/3833 and H8/3834 (Wide Temperature Range (I-Spec) Version)

 $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{SS} = AV_{SS} = 0.0 \text{ V}$, $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Segment driver voltage drop	V_{DS}	SEG ₁ to SEG ₄₀	_	_	0.6	V	$I_D = 2 \mu A$	1
Common driver voltage drop	V _{DC}	COM ₁ to	_	_	0.3	V	I _D = 2 μA	1
LCD power supply voltage divider resistance	R _{LCD}		40	300	1000	kΩ	Between V ₁ and V _{SS}	
LCD power supply voltage	V _{LCD}	V ₁	4.5	_	V _{CC}	V		2

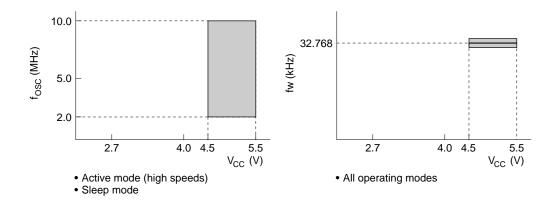
Notes: 1. These are the voltage drops between the voltage supply pins V₁, V₂, V₃, and Vss, and the segment pins or common pins.

2. When V_{LCD} is supplied from an external source, the following relation must hold: $V_{CC} \ge V_1 \ge V_2 \ge V_3 \ge V_{SS}$

Table 14-23 AC Characteristics for External Segment Expansion of H8/3833 and H8/3834 (Wide Temperature Range (I-Spec) Version)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -40°C to +85°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Clock high width	t _{CWH}	CL _{1,} CL ₂	800	_	_	ns	*	Figure 14-9
Clock low width	t _{CWL}	CL ₂	800	_	_	ns	*	Figure 14-9
Clock setup time	t _{CSU}	CL _{1,} CL ₂	500	_	_	ns	*	Figure 14-9
Data setup time	t _{SU}	DO	300	_	_	ns	*	Figure 14-9
Data hold time	t _{DH}	DO	300	_	_	ns	*	Figure 14-9
M delay time	t_{DM}	М	-100	0 —	1000	ns		Figure 14-9
Clock rise and fall times	t _{CT}	CL _{1,} CL ₂	_	_	100	ns		Figure 14-9

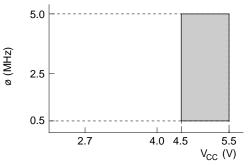

Note: * Value when the frame frequency is set to between 30.5 Hz and 488 Hz.

14.6 H8/3835, H8/3836, and H8/3837 Electrical Characteristics (Wide Temperature Range (I-Spec) Version)

14.6.1 Power Supply Voltage and Operating Range

The power supply voltage and operating range of the H8/3835, H8/3836, and H8/3837 (wide temperature range (I-spec) version) are indicated by the shaded region in the figures below.

1. Power supply voltage vs. oscillator frequency range of H8/3835, H8/3836, and H8/3837 (wide temperature range (I-spec) version)

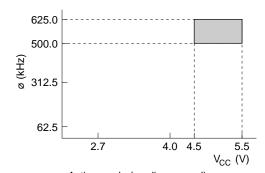


2. Power supply voltage vs. clock frequency range of H8/3835, H8/3836, and H8/3837 (wide temperature range (I-spec) version)

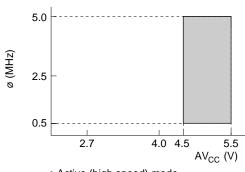
16.384

8.192 4.096

ø_{SUB} (kHz)



- Subactive modeSubsleep mode (except CPU)
- Watch mode (except CPU)


4.0 4.5

5.5 V_{CC} (V)

- Active mode (high speed)
- Sleep mode (except CPU)

- Active mode (medium speed)
- 3. Analog power supply voltage vs. A/D converter operating range of H8/3835, H8/3836, and H8/3837 (wide temperature range (I-spec) version)

- 625.0 500.0 312.5 62.5 2.7 4.0 4.5 5.5 AV_{CC} (V)
- Active (high speed) mode
- Sleep mode

• Active (medium speed) mode

14.6.2 DC Characteristics

Table 14-24 lists the DC characteristics of the H8/3835, H8/3836, and H8/3837 (wide temperature range (I-spec) version).

Table 14-24 DC Characteristics of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -40°C to +85°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition N	lote
Input high voltage	V _{IH}	$\begin{array}{l} \overline{\text{RES}}, \text{MD0}, \\ \overline{\text{WKP}_0} \text{ to } \overline{\text{WKP}_7}, \\ \overline{\text{IRQ}_0} \text{ to } \overline{\text{IRQ}_4}, \\ \overline{\text{TMIB}}, \text{TMIC}, \text{TMIF} \\ \overline{\text{CS}}, \text{TMIG}, \\ \text{SCK}_1, \underline{\text{SCK}_2}, \\ \text{SCK}_3, \overline{\text{ADTRG}} \end{array}$	0.8 V _{CC}	_	V _{CC} + 0.3	V	V_{CC} = 4.0 V to 5.5 V	
		UD, SI ₁ , SI ₂ , RXD	0.7 V _{CC}	_	$V_{CC} + 0.3$	V		
		OSC ₁	$V_{\rm CC}-0.5$	_	V _{CC} + 0.3	V		
		P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₃ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	0.7 V _{CC}	_	V _{CC} + 0.3	V		
		PB ₀ to PB ₇ PC ₀ to PC ₃	0.7 V _{CC}	_	AV _{CC} + 0.3	V		
Input low voltage	V_{IL}	$\begin{array}{l} \overline{\text{RES}}, \text{MD0}, \\ \overline{\text{WKP}_0} \text{ to } \overline{\text{WKP}_7}, \\ \overline{\text{IRQ}_0} \text{ to } \overline{\text{IRQ}_4}, \\ \overline{\text{TMIB}}, \overline{\text{TMIC}}, \overline{\text{TMIF}}, \\ \overline{\text{CS}}, \overline{\text{TMIG}}, \\ \text{SCK}_1, \underline{\text{SCK}_2}, \\ \overline{\text{SCK}_3}, \overline{\text{ADTRG}} \end{array}$	-0.3	_	0.2 V _{CC}	V		
		UD, SI ₁ , SI ₂ , RXD	-0.3	_	0.3 V _{CC}	V		
		OSC ₁	-0.3	_	0.5	V		

Note: Connect pin TEST to V_{SS}.

Table 14-24 DC Characteristics of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version) (cont)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = –40°C to +85°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Input low voltage	V _{IL}	P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₃ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃ PB ₀ to PB ₇ PC ₀ to PC ₃	-0.3	_	0.3 V _{CC}	V		
Output high voltage	V _{OH}	P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇	V _{CC} - 1.0	_	_	V	-I _{OH} = 1.0 mA	
		P4 ₀ to P4 ₂ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	V _{CC} - 0.5	_	_		-I _{OH} = 0.5 mA	
Output low voltage	V _{OL}	P1 ₀ to P1 ₇ P4 ₀ to P4 ₂	_	_	0.6	V	I _{OL} = 1.6 mA	
		P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	_	_	0.5		I _{OL} = 0.4 mA	
		P2 ₀ to P2 ₇ P3 ₀ to P3 ₇		_	1.5 0.6		I _{OL} = 10 mA I _{OL} = 1.6 mA	

Note: Connect pin TEST to V_{SS} .

Table 14-24 DC Characteristics of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version) (cont)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -40°C to +85°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Input	I _{IL}	RES, P4 ₃	_	_	24	μΑ	V _{IN} = 0.5 V to	2
leakage current			_	$-$ 2 V_{CC} - 0.5 V V_{IN} = 0.5 V to V_{CC} - 0.5 V V_{IN} = 0.5 V to V_{CC} - 0.5 V V_{IN} = 0.5 V to	1			
Current		OSC ₁ , MD0 P1 ₀ to P1 ₇ P2 ₀ to P2 ₇ P3 ₀ to P3 ₇ P4 ₀ to P4 ₂ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇ P7 ₀ to P7 ₇ P8 ₀ to P8 ₇ P9 ₀ to P9 ₇ PA ₀ to PA ₃	_	_	2	μΑ		
		PB ₀ to PB ₇ PC ₀ to PC ₃	_	_	2		$V_{IN} = 0.5 \text{ V to}$ $AV_{CC} - 0.5 \text{ V}$	
Pull-up MOS current	-I _P	P1 ₀ to P1 ₇ P3 ₀ to P3 ₇ P5 ₀ to P5 ₇ P6 ₀ to P6 ₇	20	_	330	μΑ	$V_{CC} = 5 \text{ V},$ $V_{IN} = 0 \text{ V}$	
Input capacitano	C _{IN}	All input pins except power supply, RES P4 ₃ pin	_	_	15	pF	f = 1 MHz, $V_{IN} = 0 \text{ V}$ $T_a = 25^{\circ}\text{C}$	
		RES	_	_	60	_		2
			_	_	15	-		1
		P4 ₃	_	_	30	-		2
			_	_	15	-		1

Notes: 1. Applies to HD6433835, HD6433836, and HD6433837 (wide temperature range version).

^{2.} Applies to HD6473837 (wide temperature range version).

Table 14-24 DC Characteristics of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version) (cont)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-40^{\circ}C$ to +85°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Active mode current	I _{OPE1}	V _{CC}	_	13.5	30.0	mA	Active mode (high speed), V _{CC} = 5 V, f _{osc} = 10 MHz	1, 2
dissipation	I _{OPE2}	V _{CC}	_	2.5	6.0	mA	Active mode (medium speed), $V_{CC} = 5 \text{ V, } f_{osc} = 10 \text{ MHz}$	1, 2
Sleep mode current dissipation	I _{SLEEP}	V _{cc}	_	5.0	12.0	mA	$V_{CC} = 5 \text{ V}, f_{osc} = 10 \text{ MHz}$	1, 2
Subactive mode current dissipation	I _{SUB}	V _{CC}	_	100.0)—	μA	V _{CC} = 5 V, LCD on, 32-kHz crystal oscillator (Ø _{SUB} = Øw/2)	Reference value 1, 2
			_	70.0	_	μA	V_{CC} = 5 V, LCD on, 32-kHz crystal oscillator (\emptyset_{SUB} = \emptyset w/8)	Reference value 1, 2
Subsleep mode current dissipation	I _{SUBSP}	V _{CC}	_	60.0	_	μA	$V_{CC} = 5 \text{ V, LCD on,}$ 32-kHz crystal oscillator $(\emptyset_{SUB} = \emptyset \text{w/2})$	Reference value 1, 2
Watch mode current dissipation	I _{WATCH}	V _{CC}	_	6.0	_	μA	V _{CC} = 5 V, LCD not used, 32-kHz crystal oscillator (Ø _{SUB} = Øw/8)	Reference value 1, 2
Standby mode current dissipation	I _{STBY}	V _{CC}	_	_	10.0	μA	32-kHz crystal oscillator not used	1, 2
RAM data retaining voltage	V_{RAM}	V _{CC}	2	_	_	V		1, 2

Notes: 1. Pin states during current measurement

Mode	RES Pin	Internal State	Other Pins	LCD Power Supply	Oscillator Pins
Active mode (high and medium speed)	V _{CC}	Operates	V _{CC}	Open	System clock oscillator: Crystal Subclock oscillator: Pin $X_1 = V_{CC}$
Sleep mode	V_{CC}	Only timer operates	V_{CC}	Open	-
Subactive mode	V _{CC}	Operates	V _{CC}	Open	System clock oscillator: Crystal
Subsleep mode	V _{CC}	Only timer operates, CPU stops	V _{CC}	Open	Subclock oscillator: Crystal
Watch mode	V_{CC}	Only time-base clock operates, CPU stops	V_{CC}	Open	
Standby mode	V _{CC}	CPU and timers all stop	V _{CC}	Open	System clock oscillator: Crystal Subclock oscillator: Pin $X_1 = V_{CC}$

^{2.} Excludes current in pull-up MOS transistors and output buffers.

Table 14-24 DC Characteristics of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version) (cont)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = –40°C to +85°C, including subactive mode, unless otherwise indicated.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition
Allowable output low current (per pin)	I _{OL}	Output pins except in ports 2 and 3	_	_	2	mA	
		Ports 2 and 3	_	_	10		
Allowable output low current (total)	ΣI_{OL}	Output pins except in ports 2 and 3	_	_	40	mA	
		Ports 2 and 3	_	_	80		
Allowable output high current (per pin)	-I _{OH}	All output pins	_	_	2	mA	
Allowable output high current (total)	Σ–I _{OH}	All output pins	_	_	15	mA	

14.6.3 AC Characteristics

Table 14-25 lists the control signal timing, and tables 14-26 and 14-27 list the serial interface timing of the H8/3835, H8/3836, and H8/3837 (wide temperature range (I-spec) version).

Table 14-25 Control Signal Timing of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -40°C to +85°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
System clock oscillation frequency	f _{OSC}	OSC ₁ , OSC ₂	2	_	10	MHz		
OSC clock (Ø _{OSC}) cycle time	t _{OSC}	OSC ₁ , OSC ₂	100	_	1000	ns		1 Figure 14-1
System clock (ø)	$t_{\rm cyc}$		2	_	16	tosc		1
cycle time			_	_	2000	ns		
Subclock oscillation frequency	f_W	X ₁ , X ₂	_	32.768	_	kHz		
Watch clock (ø _W) cycle time	t_{W}	X ₁ , X ₂	_	30.5	_	μs		
Subclock (Ø _{SUB}) cycle time	t _{subcyc}		2	_	8	t_{W}		2
Instruction cycle time			2	_	_	t _{cyc} t _{subcyc}		
Oscillation stabilization time (crystal oscillator)	t _{rc}	OSC ₁ , OSC ₂	_	_	40	ms		
Oscillation stabilization time	t _{rc}	X ₁ , X ₂	_	_	2	S		
External clock high width	t _{CPH}	OSC ₁	40	_	_	ns		Figure 14-1
External clock low width	t _{CPL}	OSC ₁	40	_	_	ns		Figure 14-1
External clock rise time	t _{CPr}		_	_	15	ns		Figure 14-1
External clock fall time	t _{CPf}		_	_	15	ns		Figure 14-1
Pin RES low width	t _{REL}	RES	10	_	_	tcyc		Figure 14-2

Notes: 1. A frequency between 1 MHz to 10 MHz is required when an external clock is input.

^{2.} Selected with SA1 and SA0 of system clock control register 2 (SYSCR2).

Table 14-25 Control Signal Timing of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version) (cont)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = $-40^{\circ}C$ to +85°C, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Input pin high width	t _{IH}	IRQ ₀ to IRQ ₄ WKP ₀ to WKP ADTRG TMIB, TMIC TMIF, TMIG	_	_	_	t _{cyc} t _{subcyc}	:	Figure 14-3
Input pin low width	t _{IL}	IRQ ₀ to IRQ ₄ WKP ₀ to WKP ADTRG TMIB, TMIC TMIF, TMIG		_	_	t _{cyc} t _{subcyc}	:	Figure 14-3
Pin UD minimum modulation width	t _{UDH} t _{UDL}	UD	4	_	_	t _{cyc} t _{subcyc}	;	Figure 14-4

Table 14-26 Serial Interface (SCI1, SCI2) Timing of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -40°C to +85°C, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Input serial clock cycle time	t _{scyc}	SCK ₁ , SCK ₂	2	_	_	t _{cyc}		Figure 14-5
Input serial clock high width	t _{SCKH}	SCK ₁ , SCK ₂	0.4	_	_	t _{scyc}		Figure 14-5
Input serial clock low width	t _{SCKL}	SCK ₁ , SCK ₂	0.4	_	_	t _{scyc}		Figure 14-5
Input serial clock rise time	t _{SCKr}	SCK ₁ , SCK ₂	-	_	60	ns		Figure 14-5
Input serial clock fall time	t _{SCKf}	SCK ₁ , SCK ₂	_	_	60	ns		Figure 14-5
Serial output data delay time	t _{SOD}	SO ₁ , SO ₂	_	_	200	ns		Figure 14-5
Serial input data setup time	t _{SIS}	SI ₁ , SI ₂	200	_	_	ns		Figure 14-5
Serial input data hold time	t _{SIH}	SI ₁ , SI ₂	200	_	_	ns		Figure 14-5
CS setup time	t _{CSS}	CS	2	_	_	t _{cyc}		Figure 14-6
CS hold time	t _{CSH}	CS	2	_	_	t _{cyc}		Figure 14-6

Table 14-27 Serial Interface (SCI3) Timing of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -40°C to +85°C, unless otherwise specified.

Item		Symbol	Min	Тур	Max	Unit	Test Condition	Reference Figure
Input clock cycle	Asynchronous	t _{scyc}	4		_	_t _{cyc}		Figure 14-7
	Synchronous		6	_	_			
Input clock pulse width		t _{SCKW}	0.4		0.6	t _{scyc}		Figure 14-7
Transmit data delay time (synchronous mode)		t_{TXD}	_	_	1	$t_{\rm cyc}$		Figure 14-8
Receive data setu (synchronous mod	•	t _{RXS}	200	_	_	ns		Figure 14-8
Receive data hold (synchronous mod		t _{RXH}	200	_	_	ns		Figure 14-8

14.6.4 A/D Converter Characteristics

Table 14-28 shows the A/D converter characteristics of the H8/3835, H8/3836, and H8/3837 (wide temperature range (I-spec) version).

Table 14-28 A/D Converter Characteristics of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version)

 $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{SS} = V_{SS} = 0.0 \text{ V}$, $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Note
Analog power supply voltage	AV _{CC}	AV _{CC}	4.5	_	5.5	V		1
Analog input voltage	AV_IN	AN ₀ to AN ₁₁	$AV_{SS} - 0.3$	_	AV _{CC} + 0.3	V		
Analog power	Al _{OPE}	AV _{CC}	_	_	1.7	mA	$AV_{CC} = 5.0 V$	
supply current	AI _{STOP1}	AV _{CC}	_	150	_	μΑ		2 Reference value
	Al _{STOP2}	AV _{CC}	_	_	7	μΑ		3
Analog input capacitance	C _{AIN}	AN ₀ to AN ₁₁	_	_	30	pF		
Allowable signal source impedance	R _{AIN}		_	_	10	kΩ		
Resolution (data length)			_	_	8	bit		
Non-linearity error			_	_	±2.0	LSB		
Quantization error			_	_	±0.5	LSB		
Absolute accuracy			_	_	±2.5	LSB		
Conversion time			12.4	_	124	μs		

Notes: 1. Set $AV_{CC} = V_{CC}$ when the A/D converter is not used.

^{2.} AlsTOP1 is the current in active and sleep modes while the A/D converter is idle.

AI_{STOP2} is the current at reset and in standby, watch, subactive, and subsleep modes while the A/D converter is idle.

14.6.5 LCD Characteristics

Table 14-29 lists the LCD characteristics, and table 14-30 lists the AC characteristics for external segment expansion of the H8/3835, H8/3836, and H8/3837 (wide temperature range (I-spec) version).

Table 14-29 LCD Characteristics of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version)

 V_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_a = -40°C to +85°C, including subactive mode, unless otherwise specified.

		Applicable						
Item	Symbol	Pins	Min	Тур	Max	Unit	Test Condition	Note
Segment driver voltage drop	V_{DS}	SEG ₁ to SEG ₄₀	_	_	0.6	V	$I_D = 2 \mu A$	1
Common driver voltage drop	V _{DC}	COM ₁ to	_	_	0.3	V	I _D = 2 μA	1
LCD power supply voltage divider resistance	R _{LCD}		40	300	1000	kΩ	Between V_1 and V_{SS}	
LCD power supply voltage	V_{LCD}	V ₁	4.5	_	V _{CC}	V		2

Notes: 1. These are the voltage drops between the voltage supply pins V1, V2, V3, and Vss, and the segment pins or common pins.

2. When V_{LCD} is supplied from an external source, the following relation must hold: $V_{CC} \ge V_1 \ge V_2 \ge V_3 \ge V_{SS}$

Table 14-30 AC Characteristics for External Segment Expansion of H8/3835, H8/3836, and H8/3837 (Wide Temperature Range (I-Spec) Version)

 $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{SS} = AV_{SS} = 0.0 \text{ V}$, $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Reference Figure
Clock high width	t _{CWH}	CL _{1,} CL ₂	800	_	_	ns	*	Figure 14-9
Clock low width	t_{CWL}	CL ₂	800	_	_	ns	*	Figure 14-9
Clock setup time	t _{CSU}	CL _{1,} CL ₂	500	_	_	ns	*	Figure 14-9
Data setup time	t_{SU}	DO	300	_	_	ns	*	Figure 14-9
Data hold time	t _{DH}	DO	300	_	_	ns	*	Figure 14-9
M delay time	t_{DM}	M	-1000	o —	1000	ns		Figure 14-9
Clock rise and fall times	t _{CT}	CL _{1,} CL ₂	_	_	100	ns		Figure 14-9

Note: * Value when the frame frequency is set to between 30.5 Hz and 488 Hz.

14.7 Operation Timing

Figures 14-1 to 14-10 show timing diagrams.

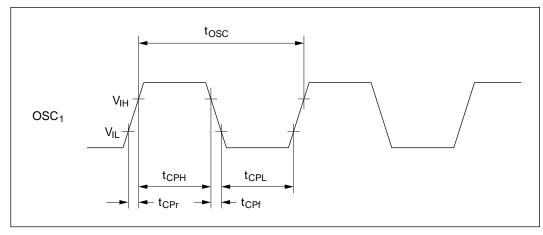


Figure 14-1 System Clock Input Timing

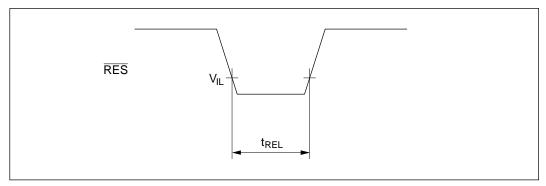


Figure 14-2 RES Low Width

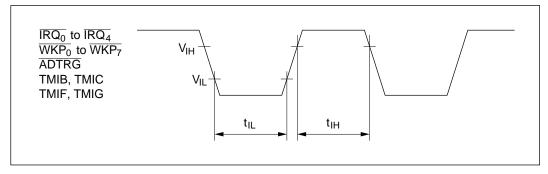


Figure 14-3 Input Timing

Figure 14-4 Minimum UD High and Low Width

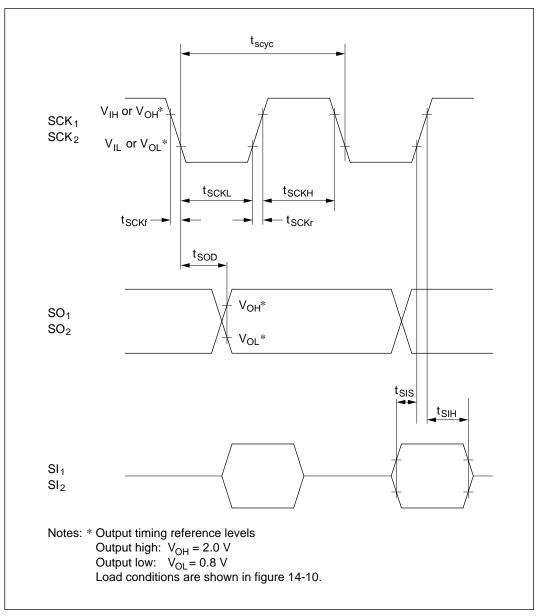


Figure 14-5 Serial Interface 1 and 2 Input/Output Timing

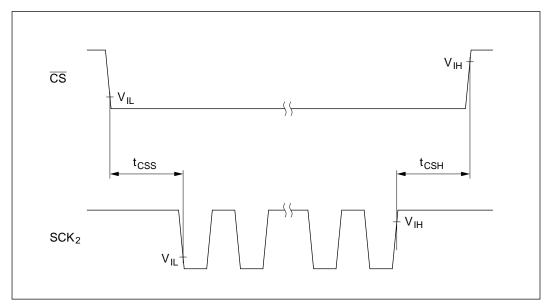


Figure 14-6 Serial Interface 2 Chip Select Timing

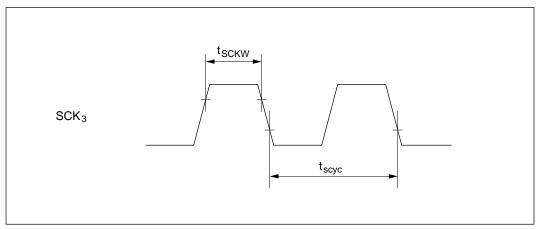


Figure 14-7 SCK₃ Input Clock Timing

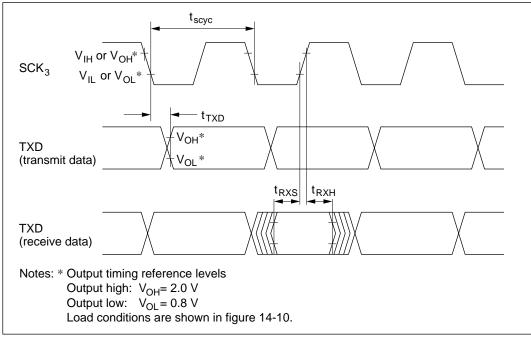


Figure 14-8 Input/Output Timing of Serial Interface 3 in Synchronous Mode

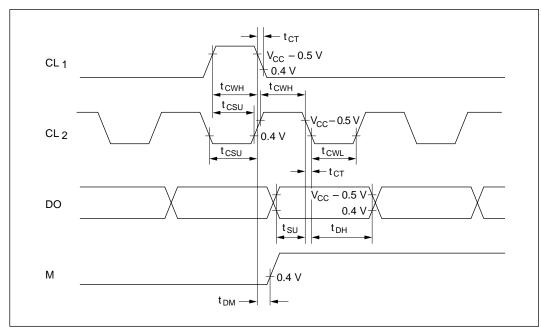


Figure 14-9 Segment Expansion Signal Timing

14.8 Output Load Circuit

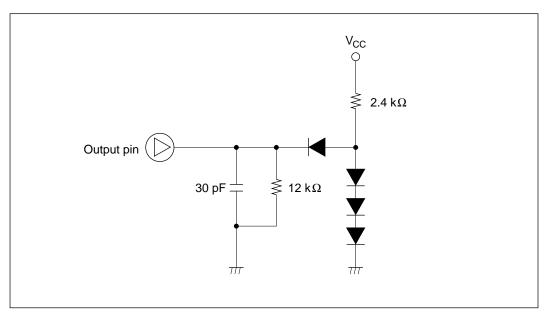


Figure 14-10 Output Load Condition

Appendix A CPU Instruction Set

A.1 Instructions

Operation Notation

Rd8/16	General register (destination) (8 or 16 bits)
Rs8/16	General register (source) (8 or 16 bits)
Rn8/16	General register (8 or 16 bits)
CCR	Condition code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#xx: 3/8/16	Immediate data (3, 8, or 16 bits)
d: 8/16	Displacement (8 or 16 bits)
@aa: 8/16	Absolute address (8 or 16 bits)
+	Addition
_	Subtraction
×	Multiplication
÷	Division
٨	Logical AND
<u> </u>	Logical OR
\oplus	Exclusive logical OR
\rightarrow	Move
_	Logical complement

Condition Code Notation

Symbol

‡	Modified according to the instruction result
*	Not fixed (value not guaranteed)
0	Always cleared to 0
_	Not affected by the instruction execution result

Table A-1 Instruction Set

		Addressing Mode/ Instruction Length (bytes)								s)								
	Operand Size		x: 8/16		@Rn	@(d:16, Rn)	-Rn/@Rn+	aa: 8/16	@(d:8, PC)	@aa	Implied	С	ono	ditic	on (Cod	le	of States
Mnemonic	ō	Operation	:xx#	조	<u>@</u>	0	9	0	0	0	<u> </u>	ı	Н	N	Z	٧	С	Š.
MOV.B #xx:8, Rd	В	#xx:8 → Rd8	2									_	_	‡	‡	0		2
MOV.B Rs, Rd	В	Rs8 → Rd8		2								_	_	‡	‡	0	_	2
MOV.B @Rs, Rd	В	@Rs16 → Rd8			2							_	_	‡	‡	0	_	4
MOV.B @(d:16, Rs), Rd	В	@(d:16, Rs16)→ Rd8				4						_	_	‡	‡	0	_	6
MOV.B @Rs+, Rd	В	@Rs16 \rightarrow Rd8 Rs16+1 \rightarrow Rs16					2						_	‡	‡	0	-	6
MOV.B @aa:8, Rd	В	@aa:8 → Rd8						2				_	_	‡	‡	0	_	4
MOV.B @aa:16, Rd	В	@aa:16 → Rd8						4				_	_	‡	‡	0	_	6
MOV.B Rs, @Rd	В	Rs8 → @Rd16			2							_	_	‡	‡	0	_	4
MOV.B Rs, @(d:16, Rd)	В	Rs8 → @(d:16, Rd16)				4						_	_	‡	‡	0	_	6
MOV.B Rs, @-Rd	В	Rd16–1 → Rd16 Rs8 → @Rd16					2					_	_	‡	‡	0	_	6
MOV.B Rs, @aa:8	В	Rs8 → @aa:8						2				_	_	‡	‡	0	_	4
MOV.B Rs, @aa:16	В	Rs8 → @aa:16						4				_	_	‡	‡	0	_	6
MOV.W #xx:16, Rd	W	#xx:16 → Rd	4									_	_	‡	‡	0	_	4
MOV.W Rs, Rd	W	Rs16 → Rd16		2								_	_	‡	‡	0	_	2
MOV.W @Rs, Rd	W	@Rs16 → Rd16			2							_	_	‡	‡	0	_	4
MOV.W @(d:16, Rs), Rd	W	@(d:16, Rs16) → Rd16				4						_	_	‡	‡	0	_	6
MOV.W @Rs+, Rd	W	@Rs16 \rightarrow Rd16 Rs16+2 \rightarrow Rs16					2					_	_	‡	‡	0	_	6
MOV.W @aa:16, Rd	W	@aa:16 → Rd16						4				_	_	‡	‡	0	_	6
MOV.W Rs, @Rd	W	Rs16 → @Rd16			2							_	_	‡	‡	0	_	4
MOV.W Rs, @(d:16, Rd)	W	Rs16 → @(d:16, Rd16)				4						_	_	‡	‡	0	_	6
MOV.W Rs, @-Rd	W	$ \begin{array}{c} Rd162 \to Rd16 \\ Rs16 \to @Rd16 \end{array} $					2					_	_	‡	‡	0	_	6
MOV.W Rs, @aa:16	W	Rs16 → @aa:16						4						‡	‡	0		6
POP Rd	W						2					_	_	‡	‡	0		6
PUSH Rs	W	$\begin{array}{c} SP-2 \to SP \\ Rs16 \to @SP \end{array}$					2					_	_	‡	‡	0	_	6

Table A-1 Instruction Set (cont)

			Addressing Mode/ Instruction Length (byte								s)							
	Operand Size		c: 8/16		@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@@aa	mplied	С	one	ditio	on (Coc	le	of States
Mnemonic	ŏ	Operation	:xx#	Ru	@	<u>@</u>	9	<u>@</u>	<u>@</u>) (e)	Ш	ı	Н	N	Z	٧	С	۶
EEPMOV		if R4L \neq 0 then Repeat @R5 \rightarrow @R6 R5+1 \rightarrow R5 R6+1 \rightarrow R6 R4L-1 \rightarrow R4L Until R4L=0 else next;									4							4
ADD.B #xx:8, Rd	В	Rd8+#xx:8 \rightarrow Rd8	2									_	‡	‡	‡	‡	‡	2
ADD.B Rs, Rd	В	$Rd8+Rs8 \rightarrow Rd8$		2								_	‡	‡	‡	‡	‡	2
ADD.W Rs, Rd	W	Rd16+Rs16 → Rd16		2								_	1	‡	‡	‡	‡	2
ADDX.B #xx:8, Rd	В	Rd8+#xx:8 +C \rightarrow Rd8	2									_	‡	‡	2	‡	‡	2
ADDX.B Rs, Rd	В	$Rd8\text{+}Rs8\;\text{+}C\toRd8$		2								_	‡	‡	2	‡	‡	2
ADDS.W #1, Rd	w	$Rd16\text{+}1 \rightarrow Rd16$		2								_	_	_	_	_	_	2
ADDS.W #2, Rd	W	$Rd16+2 \rightarrow Rd16$		2								_	_	_	_	_	_	2
INC.B Rd	В	$Rd8\text{+}1 \rightarrow Rd8$		2								_	_	‡	‡	‡	_	2
DAA.B Rd	В	Rd8 decimal adjust \rightarrow Rd8		2								_	*	‡	‡	*	3	2
SUB.B Rs, Rd	В	$Rd8Rs8 \to Rd8$		2								_	‡	‡	‡	‡	‡	2
SUB.W Rs, Rd	W	Rd16–Rs16 → Rd16		2								_	1	‡	‡	‡	‡	2
SUBX.B #xx:8, Rd	В	Rd8-#xx:8 -C \rightarrow Rd8	2									_	‡	‡	2	‡	‡	2
SUBX.B Rs, Rd	В	$Rd8Rs8C\to Rd8$		2								_	‡	‡	2	‡	‡	2
SUBS.W #1, Rd	w	$Rd161 \to Rd16$		2								_	_	_	_	_	_	2
SUBS.W #2, Rd	W	Rd16–2 → Rd16		2								_	_	_	_	_	_	2
DEC.B Rd	В	$Rd81 \to Rd8$		2								_	_	‡	‡	‡	_	2
DAS.B Rd	В	Rd8 decimal adjust → Rd8		2								_	*	‡	‡	*	_	2
NEG.B Rd	В	$0-Rd \rightarrow Rd$		2								_	‡	‡	‡	‡	‡	2
CMP.B #xx:8, Rd	В	Rd8-#xx:8	2									_	‡	‡	‡	‡	‡	2
CMP.B Rs, Rd	В	Rd8-Rs8		2								_	‡	‡	‡	‡	‡	2
CMP.W Rs, Rd	W	Rd16-Rs16		2								_	1	‡	‡	‡	‡	2

Table A-1 Instruction Set (cont)

			In			res: on				e/ yte	s)							
	Operand Size		: 8/16		L.	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@ @ aa	Implied	С	one	ditio	on (Coc	le	of States
Mnemonic	o	Operation	:xx#	몺	@Rn	<u>@</u>	9	@	@	0	<u> </u>	ı	н	N	z	٧	С	Š
MULXU.B Rs, Rd	В	$Rd8 \times Rs8 \rightarrow Rd16$		2								_	_	_	_	_	_	14
DIVXU.B Rs, Rd	В	Rd16÷Rs8 → Rd16 (RdH: remainder, RdL: quotient)		2								_	_	(5)	6		_	14
AND.B #xx:8, Rd	В	Rd8∧#xx:8 → Rd8	2									_	_	‡	‡	0	_	2
AND.B Rs, Rd	В	Rd8∧Rs8 → Rd8		2								_	_	‡	‡	0		2
OR.B #xx:8, Rd	В	Rd8∨#xx:8 → Rd8	2									_	_	‡	‡	0	_	2
OR.B Rs, Rd	В	Rd8∨Rs8 → Rd8		2								_	_	‡	‡	0	_	2
XOR.B #xx:8, Rd	В	Rd8⊕#xx:8 → Rd8	2									_	_	‡	‡	0	_	2
XOR.B Rs, Rd	В	Rd8⊕Rs8 → Rd8		2								_	_	‡	‡	0	_	2
NOT.B Rd	В	$\overline{\text{Rd}} o \text{Rd}$		2								_	_	‡	‡	0	_	2
SHAL.B Rd	В	C 0		2									_	‡	‡	‡	‡	2
SHAR.B Rd	В	b ₇ b ₀		2									_	‡	\$	0	‡	2
SHLL.B Rd	В	C - 0		2										‡	‡	0	‡	2
SHLR.B Rd	В	0 - C		2									_	0	\$	0	\$	2
ROTXL.B Rd	В	b ₇ b ₀		2										‡	\$	0	‡	2
ROTXR.B Rd	В	b ₇ b ₀ C		2										‡	\$	0	\$	2

Table A-1 Instruction Set (cont)

			In				sing Ler	_			s)							
	Operand Size		: 8/16		, u	@(d:16, Rn)	@-Rn/@Rn+	aa: 8/16	@(d:8, PC)	@ @ aa	Implied	C	one	ditic	on (Coc	le	of States
Mnemonic	o	Operation	:xx#	Rn	@Rn	0	@	@ 9	@(0	<u>m</u>	ı	Н	N	Z	٧	С	Š.
ROTL.B Rd	В	C		2										‡	‡	0	\$	2
ROTR.B Rd	В	b ₇ b ₀		2										‡	\$	0	\$	2
BSET #xx:3, Rd	В	(#xx:3 of Rd8) ← 1		2								_	_	_	_	_	_	2
BSET #xx:3, @Rd	В	(#xx:3 of @Rd16) ← 1			4							_	_	_	_	_	_	8
BSET #xx:3, @aa:8	В	(#xx:3 of @aa:8) ← 1						4				_	_	_	_	_	_	8
BSET Rn, Rd	В	(Rn8 of Rd8) ← 1		2								_	_	_	_	_	_	2
BSET Rn, @Rd	В	(Rn8 of @Rd16) ← 1			4							_	_	_	_	_	_	8
BSET Rn, @aa:8	В	(Rn8 of @aa:8) ← 1						4				_	_	_	_	_	_	8
BCLR #xx:3, Rd	В	(#xx:3 of Rd8) ← 0		2								_	_	_	_	_	_	2
BCLR #xx:3, @Rd	В	(#xx:3 of @Rd16) ← 0			4							_	_	_	_	_	_	8
BCLR #xx:3, @aa:8	В	(#xx:3 of @aa:8) ← 0						4				_	_	_	_	_	_	8
BCLR Rn, Rd	В	(Rn8 of Rd8) ← 0		2								_	_	_	_	_	_	2
BCLR Rn, @Rd	В	(Rn8 of @Rd16) ← 0			4							_	_	_	_	_	_	8
BCLR Rn, @aa:8	В	(Rn8 of @aa:8) ← 0						4				_	_	_	_	_	_	8
BNOT #xx:3, Rd	В	(#xx:3 of Rd8) ← (#xx:3 of Rd8)		2								_	_	_	_	_	_	2
BNOT #xx:3, @Rd	В	(#xx:3 of @Rd16) ← (#xx:3 of @Rd16)			4							_	_	_	_	_	_	8
BNOT #xx:3, @aa:8	В	(#xx:3 of @aa:8) ← (#xx:3 of @aa:8)						4				_	_	_	_	_	_	8
BNOT Rn, Rd	В	(Rn8 of Rd8) ← (Rn8 of Rd8)		2								_	_	_	_	_	_	2
BNOT Rn, @Rd	В	(Rn8 of @Rd16) ← (Rn8 of @Rd16)			4							_	_	_	_	_	_	8
BNOT Rn, @aa:8	В	(Rn8 of @aa:8) ← (Rn8 of @aa:8)						4				_	_	_	_	_	_	8

Table A-1 Instruction Set (cont)

	Addressing Mode/ Instruction Length (byt								s)									
	Operand Size		: 8/16		ln.	@(d:16, Rn)	@-Rn/@Rn+	a: 8/16	@(d:8, PC)	@ @ aa	Implied	С	one	ditio	on (Coc	le	of States
Mnemonic	o	Operation	:xx#	Rn	@Rn	<u>@</u>	@	@aa:	@	00	lmp	ı	Н	N	Z	٧	С	No.
BTST #xx:3, Rd	В	$(\overline{\#xx:3 \text{ of } Rd8}) \rightarrow Z$		2								_	_	_	‡	_	_	2
BTST #xx:3, @Rd	В	$(\overline{\#xx:3 \text{ of } @Rd16}) \rightarrow Z$			4							_	_	_	‡	_	_	6
BTST #xx:3, @aa:8	В	$(\overline{\#xx:3 \text{ of } @aa:8}) \rightarrow Z$						4				_	_	_	‡	_	_	6
BTST Rn, Rd	В	$(\overline{Rn8 \text{ of } Rd8}) \to Z$		2								_	_	—	‡	_	_	2
BTST Rn, @Rd	В	(Rn8 of @Rd16) \rightarrow Z			4							_	_	_	‡	_	_	6
BTST Rn, @aa:8	В	$(Rn8 of @aa:8) \rightarrow Z$						4				_	_	_	‡	_	_	6
BLD #xx:3, Rd	В	$(\#xx:3 \text{ of Rd8}) \to C$		2								_	_	—	—	_	‡	2
BLD #xx:3, @Rd	В	(#xx:3 of @Rd16) \rightarrow C			4							_	_	_	_	_	‡	6
BLD #xx:3, @aa:8	В	(#xx:3 of @aa:8) \rightarrow C						4				_	_	_	_	_	‡	6
BILD #xx:3, Rd	В	$(\overline{\#xx:3 \text{ of } Rd8}) \rightarrow C$		2								_	_	_	_	_	‡	2
BILD #xx:3, @Rd	В	$(\overline{\#xx:3} \text{ of } @Rd16) \rightarrow C$			4							_	_	_	_	_	‡	6
BILD #xx:3, @aa:8	В	$(\overline{\#xx:3 \text{ of } @aa:8}) \rightarrow C$						4				_	_	_	_	_	‡	6
BST #xx:3, Rd	В	$C \rightarrow (\#xx:3 \text{ of Rd8})$		2								_	_	_	_	_	_	2
BST #xx:3, @Rd	В	$C \rightarrow (\#xx:3 \text{ of } @Rd16)$			4							_	_	_	_	_	_	8
BST #xx:3, @aa:8	В	$C \rightarrow (\#xx:3 \text{ of } @aa:8)$						4				_	_	_	_	_	_	8
BIST #xx:3, Rd	В	$\overline{C} \rightarrow (\text{\#xx:3 of Rd8})$		2								_	_	_	_	_	_	2
BIST #xx:3, @Rd	В	$\overline{C} \rightarrow (\text{\#xx:3 of @Rd16})$			4							_	_	_	_	_	_	8
BIST #xx:3, @aa:8	В	$\overline{C} \rightarrow (\text{\#xx:3 of @aa:8})$						4				_	_	_	_	_	_	8
BAND #xx:3, Rd	В	$C_{\wedge}(\#xx{:}3\text{ of Rd8})\to C$		2								_	_	_	_	_	‡	2
BAND #xx:3, @Rd	В	$C_{\wedge}(\#xx:3 \text{ of } @Rd16) \rightarrow C$			4							_	_	_	_	_	‡	6
BAND #xx:3, @aa:8	В	$C \land (\#xx:3 \text{ of } @aa:8) \rightarrow C$						4				_	_	_	_	_	‡	6
BIAND #xx:3, Rd	В	$C {\scriptstyle \wedge} (\overline{\#xx:3 \text{ of } Rd8}) \to C$		2								_	_	_	_	_	‡	2
BIAND #xx:3, @Rd	В	$C \land (\overline{\#xx:3 \text{ of } @Rd16}) \rightarrow C$			4							_	_	_	_	_	‡	6
BIAND #xx:3, @aa:8	В	$C \land (\overline{\#xx:3 \text{ of } @aa:8}) \rightarrow C$						4				_	_	_	_	_	‡	6
BOR #xx:3, Rd	В	$C\lor(\#xx:3 \text{ of } Rd8)\to C$		2													‡	2
BOR #xx:3, @Rd	В	$C\lor(\#xx:3 \text{ of } @Rd16) \rightarrow C$			4							_	_	_	_	_	‡	6
BOR #xx:3, @aa:8	В	$C\lor(\#xx:3 \text{ of } @aa:8) \rightarrow C$						4									‡	6
BIOR #xx:3, Rd	В	$C\lor(\overline{\#xx:3 \text{ of } Rd8})\to C$		2								_		_	_		‡	2
BIOR #xx:3, @Rd	В	$C\lor(\overline{\#xx:3 \text{ of } @Rd16})\to C$			4												‡	6

Table A-1 Instruction Set (cont)

		Addressing Mode/ Instruction Length (bytes)																	
	Operand Size		Branching	: 8/16 n 1:16, Rn)		@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@ @ aa	Implied	С	Condition Code					of States	
Mnemonic	o	Operation	Condition	:xx#	묎	@Rn	@	@	@	@ (c	0	Imp	ı	Н	N	Z	v	С	Š.
BIOR #xx:3, @aa:8	В	C√(#xx:3 of	@aa:8) → C						4				_	_	_	_	_	‡	6
BXOR #xx:3, Rd	В	C⊕(#xx:3 of	f Rd8) → C		2								_	_	_	_	_	‡	2
BXOR #xx:3, @Rd	В	C⊕(#xx:3 of	f @Rd16) → C			4							_	_	_	_	_	‡	6
BXOR #xx:3, @aa:8	В	C⊕(#xx:3 of	f @aa:8) → C						4				_	_	_	_	_	‡	6
BIXOR #xx:3, Rd	В	C⊕(#xx:3 of	FRd8) → C		2								_	_	_	_	_	‡	2
BIXOR #xx:3, @Rd	В	C⊕(#xx:3 o	f @Rd16) → C			4							_	_	_	_	_	‡	6
BIXOR #xx:3, @aa:8	В	C⊕(#xx:3 o	C⊕(#xx:3 of @aa:8) → C						4				_	_	_	_	_	‡	6
BRA d:8 (BT d:8)	_	PC ← PC+c	PC ← PC+d:8							2			_	_	_	_	_	_	4
BRN d:8 (BF d:8)	_	PC ← PC+2							2			_	_	_	_	_	_	4	
BHI d:8	_	If	C ∨ Z = 0							2			_	_	_	_	_	_	4
BLS d:8	_	condition	C ∨ Z = 1							2			_	_	_	_	_	_	4
BCC d:8 (BHS d:8)	_	is true then	C = 0							2			_	_	_	_	_	_	4
BCS d:8 (BLO d:8)	_	PC ←	C = 1							2			_	_	_	_	_	_	4
BNE d:8	_	PC+d:8 else next;	Z = 0							2			_	_	_	_	_	_	4
BEQ d:8	_	CIGO HOXI,	Z = 1							2				_		_	_	_	4
BVC d:8	_		V = 0							2			_	_	_	_	_	_	4
BVS d:8	_		V = 1							2			_	_	_	_	_	_	4
BPL d:8	_		N = 0							2				_		_	_	_	4
BMI d:8	_		N = 1							2			_	_	_	_	_	_	4
BGE d:8	_		N⊕V = 0							2			_	_	_	_	_	_	4
BLT d:8	_		N⊕V = 1							2			_	_	_	_	_	_	4
BGT d:8	_		Z ∨ (N⊕V) = 0							2			_	_	_	_	_	_	4
BLE d:8	_		Z ∨ (N⊕V) = 1							2			_	_	_	_	_	_	4
JMP @Rn	_	PC ← Rn16	5			2								_		_	_	_	4
JMP @aa:16	_	PC ← aa:16	3						4				_	_	_	_	_	_	6
JMP @@aa:8	_	PC ← @aa	:8								2		_	_	_	_	_	_	8
BSR d:8		$SP-2 \rightarrow SP$ $PC \rightarrow @SP$ $PC \leftarrow PC+c$	1							2						_			6

Table A-1 Instruction Set (cont)

				Addressing Mode/ Instruction Length (bytes)														
		Operation			u	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@ @ aa	Implied	Condition Code					le	of States
Mnemonic	o	Operation	#XX	몺	@Rn	@	(a)	@ a	@(0	0	ᆵ	ı	Н	N	z	٧	С	Š.
JSR @Rn	_	$SP-2 \rightarrow SP$ $PC \rightarrow @SP$ $PC \leftarrow Rn16$			2							_	_	_	_	_	_	6
JSR @aa:16	_	$SP-2 \rightarrow SP$ PC \rightarrow @SP PC \leftarrow aa:16						4				_		_				8
JSR @@aa:8		$SP-2 \rightarrow SP$ $PC \rightarrow @SP$ $PC \leftarrow @aa:8$								2		_	_	_	_	_	_	8
RTS	_	$\begin{array}{c} PC \leftarrow @SP \\ SP+2 \rightarrow SP \end{array}$									2		_		_	_		8
RTE	_	$\begin{array}{l} CCR \leftarrow @SP \\ SP+2 \to SP \\ PC \leftarrow @SP \\ SP+2 \to SP \end{array}$									2	‡	\$	‡	\$	\$	‡	10
SLEEP	_	Transit to sleep mode.									2	_	_	_	_	_	_	2
LDC #xx:8, CCR	В	#xx:8 → CCR	2									‡	‡	‡	‡	‡	‡	2
LDC Rs, CCR	В	Rs8 → CCR		2								\$	‡	\$	‡	‡	‡	2
STC CCR, Rd	В	CCR o Rd8		2								_	_	_	_	_	_	2
ANDC #xx:8, CCR	В	CCR∧#xx:8 → CCR	2									‡	‡	‡	‡	‡	‡	2
ORC #xx:8, CCR	В	CCR√#xx:8 → CCR	2									\$	‡	\$	‡	‡	\$	2
XORC #xx:8, CCR	В	CCR⊕#xx:8 → CCR	2									‡	‡	‡	‡	‡	‡	2
NOP	<u> -</u>	PC ← PC+2									2	_	_	_	_	_	_	2

- Notes: * The number of execution states given here assumes the opcode and operand data are in on-chip memory. For other cases see Appendix A.3 below.
 - ① Set to 1 when there is a carry or borrow from bit 11; otherwise cleared to 0.
 - ② If the result is zero, the previous value of the flag is retained; otherwise the flag is cleared to 0.
 - Set to 1 if decimal adjustment produces a carry; otherwise retains value prior to arithmetic operation.
 - 4 The number of states required for execution is 4n + 9 (n = value of R4L).
 - ⑤ Set to 1 if the divisor is negative; otherwise cleared to 0.
 - 6 Set to 1 if the divisor is zero: otherwise cleared to 0.

A.2 Operation Code Map

Table A-2 is an operation code map. It shows the operation codes contained in the first byte of the instruction code (bits 15 to 8 of the first instruction word).

Instruction when first bit of byte 2 (bit 7 of first instruction word) is 0.

Instruction when first bit of byte 2 (bit 7 of first instruction word) is 1.

Table A-2 Operation Code Map

Low High	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
0	NOP	SLEEP	STC	LDC	ORC	XORC	ANDC	LDC	AI	OD	INC	C ADDS MOV			ADDX	DAA
1	SHLL	SHLR SHAR		ROTXR ROTR	OR	XOR	AND	NOT NEG	SI	JB	DEC	SUBS	CI	MP	SUBX	DAS
2	MOV															
3	WOV															
4	BRA	BRN	ВНІ	BLS	всс	BCS	BNE	BEQ	BVC	BVS	BPL	ВМІ	BGE	BLT	BGT	BLE
5	MULXU	DIVXU			RTS	BSR	RTE				JMP				JSR	
6	BSET BNOT BCLR BTST POD BLAND BLD															
7	BSET	ВМОТ	BCLR	БІЗІ	BOR	BXOR	BAND	BLD BILD		MOV Bit-manipulation instructions						
8								ΑI	DD							
9								AD	DX							
А								CI	MP							
В								SU	ВХ							
С								O	R							
D								х	OR							
Е								1A	ND							
F								М	OV							

Note: * The PUSH and POP instructions are identical in machine language to MOV instructions.

A.3 Number of Execution States

The tables here can be used to calculate the number of states required for instruction execution. Table A-3 indicates the number of states required for each cycle (instruction fetch, branch address read, stack operation, byte data access, word data access, internal operation).

Table A-4 indicates the number of cycles of each type occurring in each instruction. The total number of states required for execution of an instruction can be calculated from these two tables as follows:

Execution states =
$$I \times S_I + J \times S_J + K \times S_K + L \times S_L + M \times S_M + N \times S_N$$

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is accessed.

BSET #0, @FF00

From table A-4:

$$I = L = 2$$
, $J = K = M = N = 0$

From table A-3:

$$S_{I} = 2$$
, $S_{L} = 2$

Number of states required for execution = $2 \times 2 + 2 \times 2 = 8$

When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM, and on-chip RAM is used for stack area.

JSR @@ 30

From table A-4:

$$I = 2$$
, $J = K = 1$, $L = M = N = 0$

From table A-3:

$$S_I=S_J=S_K=2\,$$

Number of states required for execution = $2 \times 2 + 1 \times 2 + 1 \times 2 = 8$

Table A-3 Number of Cycles in Each Instruction

Execution Status		Access Location								
(instruction cycle)		On-Chip Memory	On-Chip Peripheral Module							
Instruction fetch	S _I	2	_							
Branch address read	SJ									
Stack operation	S _K									
Byte data access	S _L		2 or 3*							
Word data access	S _M		_							
Internal operation	S _N	1								

Note: * Depends on which on-chip module is accessed. See 2.9.1, Notes on Data Access for details.

Table A-4 Number of Cycles in Each Instruction

In atmostices	Marania	Instruction Fetch	Addr. Read	•		Word Data Access	Operation
	Mnemonic	1	J	K	L	М	N
ADD	ADD.B #xx:8, Rd	1					
	ADD.B Rs, Rd	1					
	ADD.W Rs, Rd	1					
ADDS	ADDS.W #1, Rd	1					
	ADDS.W #2, Rd	1					
ADDX	ADDX.B #xx:8, Rd	1					
	ADDX.B Rs, Rd	1					
AND	AND.B #xx:8, Rd	1					
	AND.B Rs, Rd	1					
ANDC	ANDC #xx:8, CCR	1					
BAND	BAND #xx:3, Rd	1					
	BAND #xx:3, @Rd	2			1		
	BAND #xx:3, @aa:8	2			1		
Всс	BRA d:8 (BT d:8)	2					
	BRN d:8 (BF d:8)	2					
	BHI d:8	2					
	BLS d:8	2					
	BCC d:8 (BHS d:8)	2					
	BCS d:8 (BLO d:8)	2					
	BNE d:8	2					
	BEQ d:8	2					
	BVC d:8	2					
	BVS d:8	2					
	BPL d:8	2					
	BMI d:8	2					
	BGE d:8	2					
	BLT d:8	2					
	BGT d:8	2					
	BLE d:8	2					
BCLR	BCLR #xx:3, Rd	1					
· · •	BCLR #xx:3, @Rd	2			2		
	BCLR #xx:3, @aa:8				2		
	BCLR Rn, Rd	1					

Table A-4 Number of Cycles in Each Instruction (cont)

Instruction	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
BCLR	BCLR Rn, @Rd	2			2		
	BCLR Rn, @aa:8	2			2		
BIAND	BIAND #xx:3, Rd	1					
	BIAND #xx:3, @Rd	2			1		
	BIAND #xx:3, @aa:8	2			1		
BILD	BILD #xx:3, Rd	1					
	BILD #xx:3, @Rd	2			1		
	BILD #xx:3, @aa:8	2			1		
BIOR	BIOR #xx:3, Rd	1					
	BIOR #xx:3, @Rd	2			1		
	BIOR #xx:3, @aa:8	2			1		
BIST	BIST #xx:3, Rd	1					
	BIST #xx:3, @Rd	2			2		
	BIST #xx:3, @aa:8	2			2		
BIXOR	BIXOR #xx:3, Rd	1					
	BIXOR #xx:3, @Rd	2			1		
	BIXOR #xx:3, @aa:8	2			1		
BLD	BLD #xx:3, Rd	1					
	BLD #xx:3, @Rd	2			1		
	BLD #xx:3, @aa:8	2			1		
BNOT	BNOT #xx:3, Rd	1					
	BNOT #xx:3, @Rd	2			2		
	BNOT #xx:3, @aa:8	2			2		
	BNOT Rn, Rd	1					
	BNOT Rn, @Rd	2			2		
	BNOT Rn, @aa:8	2			2		
BOR	BOR #xx:3, Rd	1					
	BOR #xx:3, @Rd	2			1		
	BOR #xx:3, @aa:8	2			1		
BSET	BSET #xx:3, Rd	1					
	BSET #xx:3, @Rd	2			2		
	BSET #xx:3, @aa:8	2			2		
	BSET Rn, Rd	1					
	BSET Rn, @Rd	2			2		

Table A-4 Number of Cycles in Each Instruction (cont)

Inotruction	Maamania	Instruction Fetch	Addr. Read	Stack Operation		Access	Operation
Instruction		1	J	K	L	М	N
BSET	BSET Rn, @aa:8	2		4	2		
BSR	BSR d:8	2		1			
BST	BST #xx:3, Rd	1					
	BST #xx:3, @Rd	2			2		
	BST #xx:3, @aa:8	2			2		
BTST	BTST #xx:3, Rd	1					
	BTST #xx:3, @Rd	2			1		
	BTST #xx:3, @aa:8	2			1		
	BTST Rn, Rd	1					
	BTST Rn, @Rd	2			1		
	BTST Rn, @aa:8	2			1		
BXOR	BXOR #xx:3, Rd	1					
	BXOR #xx:3, @Rd	2			1		
	BXOR #xx:3, @aa:8	2			1		
CMP	CMP. B #xx:8, Rd	1					
	CMP. B Rs, Rd	1					
	CMP.W Rs, Rd	1					
DAA	DAA.B Rd	1					
DAS	DAS.B Rd	1					
DEC	DEC.B Rd	1					
DIVXU	DIVXU.B Rs, Rd	1					12
EEPMOV	EEPMOV	2			2n+2*		1
INC	INC.B Rd	1					
JMP	JMP @Rn	2					
	JMP @aa:16	2					2
	JMP @@aa:8	2	1				2
JSR	JSR @Rn	2		1			
	JSR @aa:16	2		1			2
	JSR @@aa:8	2	1	1			
LDC	LDC #xx:8, CCR	1					
	LDC Rs, CCR	1					
MOV	MOV.B #xx:8, Rd	1					
	MOV.B Rs, Rd	1					
	MOV.B @Rs, Rd	1			1		

Note: n: Initial value in R4L. The source and destination operands are accessed n + 1 times each.

Table A-4 Number of Cycles in Each Instruction (cont)

Instruction	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K	-	Word Data Access M	Internal Operation N
MOV	MOV.B @(d:16, Rs), Rd	2			1		
	MOV.B @Rs+, Rd	1			1		2
	MOV.B @aa:8, Rd	1			1		
	MOV.B @aa:16, Rd	2			1		
	MOV.B Rs, @Rd	1			1		
	MOV.B Rs, @(d:16, Rd)	2			1		
	MOV.B Rs, @-Rd	1			1		2
	MOV.B Rs, @aa:8	1			1		
	MOV.B Rs, @aa:16	2			1		
	MOV.W #xx:16, Rd	2					
	MOV.W Rs, Rd	1					
	MOV.W @Rs, Rd	1				1	
	MOV.W @(d:16, Rs), Rd	2				1	
	MOV.W @Rs+, Rd	1				1	2
	MOV.W @aa:16, Rd	2				1	
	MOV.W Rs, @Rd	1				1	
	MOV.W Rs, @(d:16, Rd)	2				1	
	MOV.W Rs, @-Rd	1				1	2
	MOV.W Rs, @aa:16	2				1	
MULXU	MULXU.B Rs, Rd	1					12
NEG	NEG.B Rd	1					
NOP	NOP	1					
NOT	NOT.B Rd	1					
OR	OR.B #xx:8, Rd	1					
	OR.B Rs, Rd	1					
ORC	ORC #xx:8, CCR	1					
POP	POP Rd	1		1			2
PUSH	PUSH Rs	1		1			2
ROTL	ROTL.B Rd	1					
ROTR	ROTR.B Rd	1					
ROTXL	ROTXL.B Rd	1					
ROTXR	ROTXR.B Rd	1					
RTE	RTE	2		2			2
RTS	RTS	2		1			2

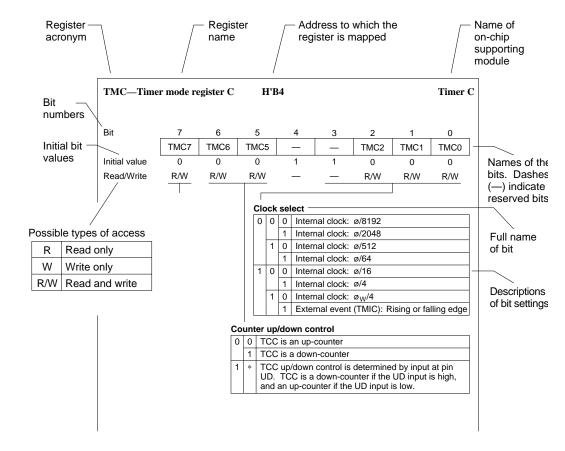
Table A-4 Number of Cycles in Each Instruction (cont)

Instruction	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
SHLL	SHLL.B Rd	1					
SHAL	SHAL.B Rd	1					
SHAR	SHAR.B Rd	1					
SHLR	SHLR.B Rd	1					
SLEEP	SLEEP	1					
STC	STC CCR, Rd	1					
SUB	SUB.B Rs, Rd	1					
	SUB.W Rs, Rd	1					
SUBS	SUBS.W #1, Rd	1					
	SUBS.W #2, Rd	1					
SUBX	SUBX.B #xx:8, Rd	1					
	SUBX.B Rs, Rd	1					
XOR	XOR.B #xx:8, Rd	1					
	XOR.B Rs, Rd	1					
XORC	XORC #xx:8, CCR	1					

Appendix B On-Chip Registers

B.1 I/O Registers (1)

Address	Register				Bit Na	mes				Module
(low)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'A0	SCR1	SNC1	SNC0	_	_	CKS3	CKS2	CKS1	CKS0	SCI1
H'A1	SCSR1	_	SOL	ORER	_	_	_	_	STF	
H'A2	SDRU	SDRU7	SDRU6	SDRU5	SDRU4	SDRU3	SDRU2	SDRU1	SDRU0	
H'A3	SDRL	SDRL7	SDRL6	SDRL5	SDRL4	SDRL3	SDRL2	SDRL1	SDRL0	
H'A4	STAR	_	_	_	STA4	STA3	STA2	STA1	STA0	SCI2
H'A5	EDAR	_	_	_	EDA4	EDA3	EDA2	EDA1	EDA0	
H'A6	SCR2	_	_	_	GAP1	GAP0	CKS2	CKS1	CKS0	
H'A7	SCSR2	_	_	_	SOL	ORER	WT	ABT	STF	
H'A8	SMR	COM	CHR	PE	PM	STOP	MP	CKS1	CKS0	SCI3
H'A9	BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0	
H'AA	SCR3	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	
H'AB	TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0	
H'AC	SSR	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT	
H'AD	RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0	
H'AE										
H'AF										
H'B0	TMA	TMA7	TMA6	TMA5	_	TMA3	TMA2	TMA1	TMA0	Timer A
H'B1	TCA	TCA7	TCA6	TCA5	TCA4	TCA3	TCA2	TCA1	TCA0	
H'B2	TMB	TMB7	_	_	_	_	TMB2	TMB1	TMB0	Timer B
H'B3	TCB/TLB	TCB7/ TLB7	TCB6/ TLB6	TCB5/ TLB5	TCB4/ TLB4	TCB3/ TLB3	TCB2/ TLB2	TCB1/ TLB1	TCB0/ TLB0	
H'B4	TMC	TMC7	TMC6	TMC5	_	_	TMC2	TMC1	TMC0	Timer C
H'B5	TCC/TLC	TCC7/ TLC7	TCC6/ TLC6	TCC5/ TLC5	TCC4/ TLC4	TCC3/ TLC3	TCC2/ TLC2	TCC1/ TLC1	TCC0/ TLC0	
H'B6	TCRF	TOLH	CKSH2	CKSH1	CKSH0	TOLL	CKSL2	CKSL1	CKSL0	Timer F
H'B7	TCSRF	OVFH	CMFH	OVIEH	CCLRH	OVFL	CMFL	OVIEL	CCLRL	
H'B8	TCFH	TCFH7	TCFH6	TCFH5	TCFH4	TCFH3	TCFH2	TCFH1	TCFH0	
H'B9	TCFL	TCFL7	TCFL6	TCFL5	TCFL4	TCFL3	TCFL2	TCFL1	TCFL0	
H'BA	OCRFH	OCRFH7	OCRFH6	OCRFH5	OCRFH4	OCRFH3	OCRFH2	OCRFH1	OCRFH0	


Notation:

SCI1: Serial communication interface 1 SCI2: Serial communication interface 2 SCI3: Serial communication interface 3

Address	Register				Bit Na	nes				Module
(low)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'BB	OCRFL	OCRFL7	OCRFL6	OCRFL5	OCRFL4	OCRFL3	OCRFL2	OCRFL1	OCRFL0	Timer F
H'BC	TMG	OVFH	OVFL	OVIE	IIEGS	CCLR1	CCLR0	CKS1	CKS0	Timer G
H'BD	ICRGF	ICRGF7	ICRGF6	ICRGF5	ICRGF4	ICRGF3	ICRGF2	ICRGF1	ICRGF0	
H'BE	ICRGR	ICRGR7	ICRGR6	ICRGR5	ICRGR4	ICRGR3	ICRGR2	ICRGR1	ICRGR0	
H'BF										
H'C0	LPCR	DTS1	DTS0	CMX	SGX	SGS3	SGS2	SGS1	SGS0	LCD con-
H'C1	LCR	_	PSW	ACT	DISP	CKS3	CKS2	CKS1	CKS0	troller/ driver
H'C2										
H'C3										
H'C4	AMR	CKS	TRGE	_	_	СНЗ	CH2	CH1	CH0	A/D
H'C5	ADRR	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	convert- er
H'C6	ADSR	ADSF	_	_	_	_	_	_	_	Ci
H'C7										
H'C8	PMR1	IRQ3	IRQ2	IRQ1	PWM	TMIG	TMOFH	TMOFL	TMOW	I/O
H'C9	PMR2	_	_	POF2	NCS	IRQ0	POF1	UD	IRQ4	ports
H'CA	PMR3	CS	STRB	SO2	SI2	SCK2	SO1	SI1	SCK1	
H'CB	PMR4	NMOD7	NMOD6	NMOD5	NMOD4	NMOD3	NMOD2	NMOD1	NMOD0	
H'CC	PMR5	WKP7	WKP6	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0	
H'CD										
H'CE										
H'CF	RLCTR	_	_	_	_	_	_	RLCT1	RLCT0	
H'D0	PWCR	_	_	_	_	_	_	_	PWCR0	14-bit
H'D1	PWDRU	_	_	PWDRU5	PWDRU4	PWDRU3	PWDRU2	PWDRU1	PWDRU0	PWM
H'D2	PWDRL	PWDRL7	PWDRL6							
H'D3										
H'D4	PDR1	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀	I/O
H'D5	PDR2	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀	ports
H'D6	PDR3	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀	
H'D7	PDR4	_	_	_	_	P4 ₃	P4 ₂	P4 ₁	P4 ₀	
H'D8	PDR5	P5 ₇	P5 ₆	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀	
H'D9	PDR6	P6 ₇	P6 ₆	P6 ₅	P6 ₄	P6 ₃	P6 ₂	P6 ₁	P6 ₀	
H'DA	PDR7	P7 ₇	P7 ₆	P7 ₅	P7 ₄	P7 ₃	P7 ₂	P7 ₁	P7 ₀	
H'DB	PDR8	P8 ₇	P8 ₆	P8 ₅	P8 ₄	P8 ₃	P8 ₂	P8 ₁	P8 ₀	
H'DC	PDR9	P9 ₇	P9 ₆	P9 ₅	P9 ₄	P9 ₃	P9 ₂	P9 ₁	P9 ₀	
H'DD	PDRA	_	_	_	_	PA ₃	PA ₂	PA ₁	PA ₀	

Δddress	s Register				Bit Na	mes				Module
(low)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'DE	PDRB	PB ₇	PB ₆	PB ₅	PB ₄	PB ₃	PB ₂	PB ₁	PB ₀	I/O
H'DF	PDRC	_	_	_	_	PC ₃	PC ₂	PC ₁	PC ₀	ports
H'E0	PUCR1	PUCR1 ₇	PUCR1 ₆	PUCR1 ₅	PUCR1 ₄	PUCR1 ₃	PUCR1 ₂	PUCR1 ₁	PUCR1 ₀	-
H'E1	PUCR3	PUCR3 ₇	PUCR3 ₆	PUCR3 ₅	PUCR3 ₄	PUCR3 ₃	PUCR3 ₂	PUCR3 ₁	PUCR3 ₀	-
H'E2	PUCR5	PUCR5 ₇	PUCR5 ₆	PUCR5 ₅	PUCR5 ₄	PUCR5 ₃	PUCR5 ₂	PUCR5 ₁	PUCR5 ₀	-
H'E3	PUCR6	PUCR6 ₇	PUCR6 ₆	PUCR6 ₅	PUCR6 ₄	PUCR6 ₃	PUCR6 ₂	PUCR6 ₁	PUCR6 ₀	-
H'E4	PCR1	PCR1 ₇	PCR1 ₆	PCR1 ₅	PCR1 ₄	PCR1 ₃	PCR1 ₂	PCR1 ₁	PCR1 ₀	_
H'E5	PCR2	PCR2 ₇	PCR2 ₆	PCR2 ₅	PCR2 ₄	PCR2 ₃	PCR2 ₂	PCR2 ₁	PCR2 ₀	-
H'E6	PCR3	PCR3 ₇	PCR3 ₆	PCR3 ₅	PCR3 ₄	PCR3 ₃	PCR3 ₂	PCR3 ₁	PCR3 ₀	-
H'E7	PCR4	_	_	_	_	_	PCR4 ₂	PCR4 ₁	PCR4 ₀	_
H'E8	PCR5	PCR5 ₇	PCR5 ₆	PCR5 ₅	PCR5 ₄	PCR5 ₃	PCR5 ₂	PCR5 ₁	PCR5 ₀	-
H'E9	PCR6	PCR6 ₇	PCR6 ₆	PCR6 ₅	PCR6 ₄	PCR6 ₃	PCR6 ₂	PCR6 ₁	PCR6 ₀	-
H'EA	PCR7	PCR7 ₇	PCR7 ₆	PCR7 ₅	PCR7 ₄	PCR7 ₃	PCR7 ₂	PCR7 ₁	PCR7 ₀	-
H'EB	PCR8	PCR8 ₇	PCR8 ₆	PCR8 ₅	PCR8 ₄	PCR8 ₃	PCR8 ₂	PCR8 ₁	PCR8 ₀	-
H'EC	PCR9	PCR9 ₇	PCR9 ₆	PCR9 ₅	PCR9 ₄	PCR9 ₃	PCR9 ₂	PCR9 ₁	PCR9 ₀	-
H'ED	PCRA	_	_	_	_	PCRA ₃	PCRA ₂	PCRA ₁	PCRA ₀	-
H'EE										
H'EF										
H'F0	SYSCR1	SSBY	STS2	STS1	STS0	LSON	_	_	_	System
H'F1	SYSCR2	_	_	_	NESEL	DTON	MSON	SA1	SA0	control
H'F2	IEGR	_	_	_	IEG4	IEG3	IEG2	IEG1	IEG0	
H'F3	IENR1	IENTA	IENS1	IENWP	IEN4	IEN3	IEN2	IEN1	IEN0	-
H'F4	IENR2	IENDT	IENAD	IENS2	IENTG	IENTFH	IENTFL	IENTC	IENTB	
H'F5										
H'F6	IRR1	IRRTA	IRRS1	_	IRRI4	IRRI3	IRRI2	IRRI1	IRRI0	System
H'F7	IRR2	IRRDT	IRRAD	IRRS2	IRRTG	IRRTFH	IRRTFL	IRRTC	IRRTB	control
H'F8										
H'F9	IWPR	IWPF7	IWPF6	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0	System control
H'FA										
H'FB										-
H'FC										-
H'FD										-
H'FE										-
H'FF										-
H'FF										_

B.2 I/O Registers (2)

H'A0

SCI1

Bit	7	6	5	4	3	2	1	0
	SNC1	SNC0	_	_	CKS3	CKS2	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Clock Select (CKS2 to CKS0)

0.00.0	block beleet (block to block)											
				Serial Clock Cycle								
Bit 2	Bit 1	Bit 0	Prescaler	Synch	ronous							
CKS2	CKS1	CKS0	Division	ø = 5 MHz	ø = 2.5 MHz							
0	0	0	ø/1024	204.8 µs	409.6 µs							
		1	ø/256	51.2 µs	102.4 µs							
	1	0	ø/64	12.8 µs	25.6 µs							
		1	ø/32	6.4 µs	12.8 µs							
1	0	0	ø/16	3.2 µs	6.4 µs							
		1	ø/8	1.6 µs	3.2 µs							
	1	0	ø/4	0.8 µs	1.6 µs							
		1	ø/2	_	0.8 µs							

Clock source select

	Clock source is prescaler S, and pin SCK ₁ is output pin
1	Clock source is external clock, and pin SCK ₁ is input pin

Operation mode select

_		
0	0	8-bit synchronous transfer mode
	1	16-bit synchronous transfer mode
1	0	Continuous clock output mode
	1	Reserved

Bit	7	6		5		4	3	2	1	0
	_	sc	L C	RER	-	_	_	_	_	STF
Initial value	1	0		0		0	0	0	0	0
Read/Write	_	R/\	N F	R/(W)*	-	_	_	_	_	R/W
					Sta	art flag				
					0	Read	Indica	tes that tra	nsfer is st	opped
						Write	Invalid			
					1	Read	Indica	tes transfe	r in progre	ess
						Write	Starts	a transfer	operation	
				∣ Overr	un er	ror flag				
				-		g cond	_		_	
				A.	ter re	ading 1	, cleared	d by writing	g 0	
				1 [S	etting	conditi	on]			
				S	et if a	clock p	ulse is ir	nput after t	ransfer	
				is	comp	lete, wl	nen an e	external clo	ck is used	t
		_ '								
			tended	_					_	
		0	Read	SO ₁	pin o	utput le	vel is lo	W		
			Write	SO ₁	pin o	utput le	vel char	nges to low	<i>i</i>	
		1	Read	SO ₁	pin o	utput le	vel is hi	gh		

Write SO₁ pin output level changes to high

Note: * Only a write of 0 for flag clearing is possible.

H'A2

SCI1

Bit	7	6	5	4	3	2	1	0
	SDRU7	SDRU6	SDRU5	SDRU4	SDRU3	SDRU2	SDRU1	SDRU0
Initial value	Not fixed							
Read/Write	R/W							

Stores transmit and receive data 8-bit transfer mode: Not used

16-bit transfer mode: Upper 8 bits of data

SDRL—Serial	data regis	ter L	H	SCI1				
Bit	7	6	5	4	3	2	1	0
	SDRL7	SDRL6	SDRL5	SDRL4	SDRL3	SDRL2	SDRL1	SDRL0
Initial value	Not fixed	Not fixed	Not fixed	Not fixed	Not fixed	Not fixed	Not fixed	Not fixed
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Stores transmit and receive data 8-bit transfer mode: 8-bit data

16-bit transfer mode: Lower 8 bits of data

STAR—Start a		H'A4							
Bit	7	6	5	4	3	2	1	0	_
	_	_	_	STA4	STA3	STA2	STA1	STA0	
Initial value	1	1	1	0	0	0	0	0	_
Read/Write	_	_	_	R/W	R/W	R/W	R/W	R/W	
	1 —	1 —	1 —	0	0	0	0	C)

Transfer start address in range from H'FF80 to H'FF9F

H'A5

SCI2

Bit	7	6	5	4	3	2	1	0
	_	_	_	EDA4	EDA3	EDA2	EDA1	EDA0
Initial value	1	1	1	0	0	0	0	0
Read/Write	_	_	_	R/W	R/W	R/W	R/W	R/W

Transfer end address in range from H'FF80 to H'FF9F

H'A6

SCI2

Bit	7	6	5	4	3	2	1	0
	_	_	_	GAP1	GAP0	CKS2	CKS1	CKS0
Initial value	1	1	1	0	0	0	0	0
Read/Write	_	_	_	R/W	R/W	R/W	R/W	R/W

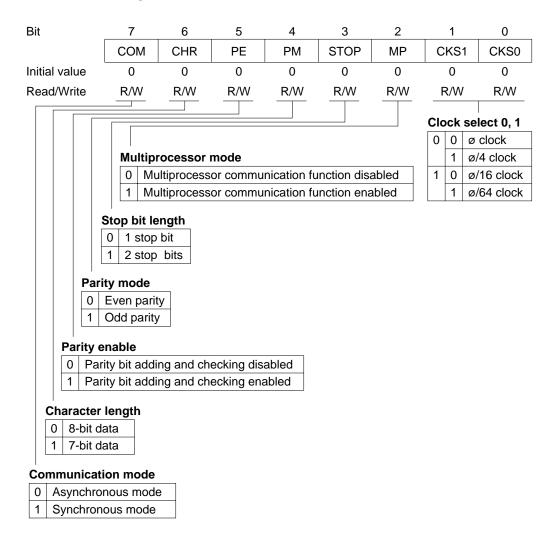
Clock Select (CKS2 to CKS0)

Bit 2	Bit 1	Bit 0	-		Prescaler	Serial Clo	ock Cycle
CKS2	CKS1	CKS0	Pin SCK ₂	Clock Source	Division	ø = 5 MHz	ø = 2.5 MHz
0	0	0	SCK ₂ output	Prescaler S	ø/256	51.2 µs	102.4 µs
		1			ø/64	12.8 µs	25.6 µs
	1	0			ø/32	6.4 µs	12.8 µs
		1			ø/16	3.2 µs	6.4 µs
1	0	0			ø/8	1.6 µs	3.2 µs
		1			ø/4	0.8 µs	1.6 µs
	1	0			ø/2	_	0.8 µs
		1	SCK ₂ input	External clock	_	_	_

Gap select

0	0	No gaps between bytes
	1	A gap of 8 clock cycles is inserted between bytes
1		A gap of 24 clock cycles is inserted between bytes
	1	A gap of 56 clock cycles is inserted between bytes

Bit	7	6	5	4	3	2	1	0
	_	_	_	SOL	ORER	WT	ABT	STF
Initial value	1	1	1	0	0	0	0	0
Read/Write	_	_	_	R/W	R/(W)*	R/(W)*	R/(W)*	R/W
	Start flag							
				dicates tha	t transfer is	s stopped		
				tops a trans				
		1	Read In	dicates trai	nsfer in pro	gress or v	vaiting for	CS input
			Write Starts a transfer operation					
		Abort flag	g					
		0 [Clea	ring condi	ition]				
				, cleared by	/ writing 0			
		-	ng conditi	•				
		Wher	n CS goes	high durin	g a transfe	r		
	Wait fla							
	1 1 -	earing con	-		•			
				by writing	U			
	. [00	tting cond	-	n read or w	rite the (33	2-hvte) ser	ial data bi	ıffer
	An attempt was made to read or write the (32-byte) serial data buffer during a transfer or while waiting for $\overline{\text{CS}}$ input							
Overrun error flag								
	Clearing o							
1 1 -	•	ng 1, clea	ed by wri	tina 0				
	Setting co			· y ·				


Extended data bit

0	Read	SO ₂ pin output level is low
	Write	SO ₂ pin output level changes to low
1	Read	SO ₂ pin output level is high
	Write	SO ₂ pin output level changes to high

external clock is used

Note: *Only a write of 0 for flag clearing is possible.

Set if a clock pulse is input after transfer is complete, when an

H'A9 **BRR**—Bit rate register SCI3 Bit 7 6 5 4 3 2 1 0 BRR7 BRR6 BRR5 BRR4 BRR3 BRR2 BRR1 BRR0 1 1 Initial value 1 1 1 1 1 1 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Bit	7	6	5	4	3	2	1	0
	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Clock enable

Bit 1	Bit 0			
CKE1	CKE0	Communication Mode	Clock Source	SCK ₃ Pin Function
0	0	Asynchronous	Internal clock	I/O port
		Synchronous	Internal clock	Serial clock output
	1	Asynchronous	Internal clock	Clock output
		Synchronous	Reserved	Reserved
1	0	Asynchronous	External clock	Clock input
		Synchronous	External clock	Serial clock input
	1	Asynchronous	Reserved	Reserved
		Synchronous	Reserved	Reserved

Transmit end interrupt enable

- Transmit end interrupt (TEI) disabledTransmit end interrupt (TEI) enabled
- Multiprocessor interrupt enable
- 0 Multiprocessor interrupt request disabled (ordinary receive operation) [Clearing condition]

Multiprocessor bit receives a data value of 1

1 Multiprocessor interrupt request enabled

Until a multiprocessor bit value of 1 is received, the receive data full interrupt (RXI) and receive error interrupt (ERI) are disabled, and serial status register (SSR) flags RDRF, FER, and OER are not set.

Receive enable

- 0 Receive operation disabled (RXD is a general I/O port)
- 1 Receive operation enabled (RXD is the receive data pin)

Transmit enable

- 0 Transmit operation disabled (TXD is a general I/O port)
- 1 Transmit operation enabled (TXD is the transmit data pin)

Receive interrupt enable

- 0 Receive data full interrupt request (RXI) and receive error interrupt request (ERI) disabled
 - | Receive data full interrupt request (RXI) and receive error interrupt request (ERI) enabled

Transmit interrupt enable (TIE)

- 0 Transmit data empty interrupt request (TXI) disabled
- 1 Transmit data empty interrupt request (TXI) enabled

Bit	7	6	5	4	3	2	1	0
	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W							

Data to be transferred to TSR

[Setting conditions] When receiving ends normally, with receive data transferred from RSR to RDR

Transmit data register empty

• • •		
0	ndicates that transmit data written to TDR has not been transferred to TSR	
	Clearing conditions] After reading TDRE = 1, cleared by writing 0.	
	When data is written to TDR by an instruction.	
1	ndicates that no transmit data has been written to TDR, or the transmit data written to TDR has been transferred to TSR	₹
	Setting conditions] When bit TE in serial control register 3 (SCR3) is 0.	
	When data is transferred from TDR to TSR.	

Note: *Only a write of 0 for flag clearing is possible.

Bit	7	6	5	4	3	2	1	0
	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

TMA—Timer mode register A

H'B0

Timer A

Bit	7	6	5	4	3	2	1	0
	TMA7	TMA6	TMA5	_	TMA3	TMA2	TMA1	TMA0
Initial value	0	0	0	1	0	0	0	0
Read/Write	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W

Clock output select

Internal clock select

0	0	ø/32
	1	ø/16
1	0	ø/8
	1	ø/4
0	0	ø _W /32
	1	ø _W /16
1	0	ø _W /8
	1	ø _W /4
	1	1 1 0 1 0 0 1

TMA3	TMA2	TMA1	TMA0		r and Divider Ratio ow Period	Function
0	0	0	0	PSS	ø/8192	Interval
			1	PSS	ø/4096	timer
		1	0	PSS	ø/2048	
			1	PSS	ø/512	
	1	0	0	PSS	ø/256	
			1	PSS	ø/128	
		1	0	PSS	ø/32	
			1	PSS	ø/8	
1	0	0	0	PSW	1 s	Time
			1	PSW	0.5 s	base
		1	0	PSW	0.25 s	
			1	PSW	0.03125 s	
	1	0	0	PSW and	TCA are reset	
			1			
		1	0			
			1			

H'B1

Timer A

Bit	7	6	5	4	3	2	1	0
	TCA7	TCA6	TCA5	TCA4	TCA3	TCA2	TCA1	TCA0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

Count value

TMB—Timer mode register B

H'B2

Timer B

Bit	7	6	5	4	3	2	1	0
	TMB7	_	_	_	_	TMB2	TMB1	TMB0
Initial value	0	1	1	1	1	0	0	0
Read/Write	R/W	_	_	_	_	R/W	R/W	R/W

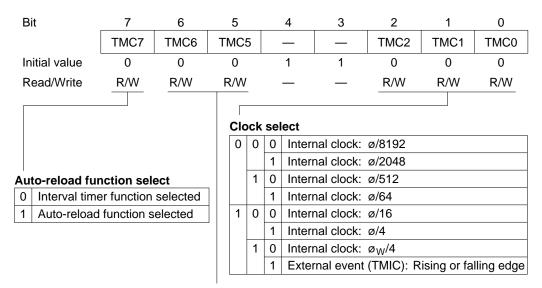
Auto-reload function select

		Interval timer function selected
Г	1	Auto-reload function selected

Clock select

0	0	0	Internal clock: ø/8192
		1	Internal clock: ø/2048
	1	0	Internal clock: ø/512
		1	Internal clock: ø/256
1	0	0	Internal clock: ø/64
		1	Internal clock: ø/16
	1	0	Internal clock: ø/4
		1	External event (TMIB): Rising or falling edge

Bit	7	6	5	4	3	2	1	0
	TCB7	TCB6	TCB5	TCB4	TCB3	TCB2	TCB1	TCB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R


TCB—Timer counter B

Count value	Count va	lue
-------------	----------	-----

H'B3

Timer B

TLB—Timer lo	oad registe	er B			H	I'B3		Timer B
Bit	7	6	5	4	3	2	1	0
	TLB7	TLB6	TLB5	TLB4	TLB3	TLB2	TLB1	TLB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
				Reloa	d value			

Counter up/down control

0	0	TCC is an up-counter
	1	TCC is a down-counter
1	*	TCC up/down control is determined by input at pin UD. TCC is a down-counter if the UD input is high, and an up-counter if the UD input is low.

Note: * Don't care

TCC—Timer c	ounter C			H	Timer (
Bit	7	6	5	4	3	2	1	0
	TCC7	TCC6	TCC5	TCC4	тсс3	TCC2	TCC1	TCC0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R
				Coun	value			

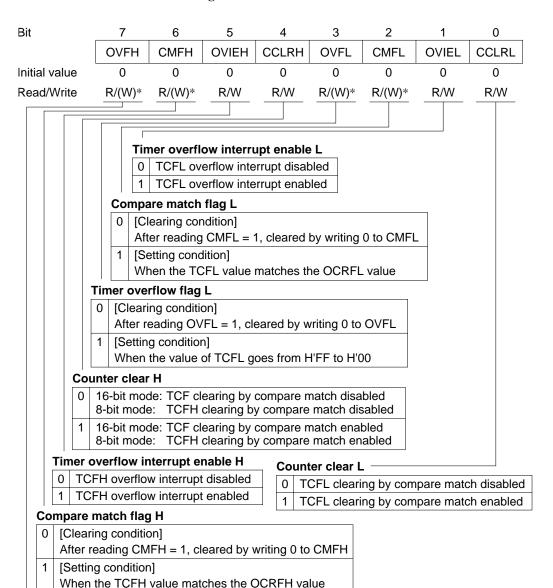
TLC—Timer lo	ad registe	er C		Н'В5				Timer C
Bit	7	6	5	4	3	2	1	0
	TLC7	TLC6	TLC5	TLC4	TLC3	TLC2	TLC1	TLC0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
				 Reload	value			
TCRF—Timer	control re	gister F			Н	'B6		Timer F
Bit	7	6	5	4	3	2	1	0
	TOLH	CKSH2	CKSH1	CKSH0	TOLL	CKSL2	CKSL1	CKSL0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Toggle output level H

0	Low level
1	High level

Clock select L

0	*	*	External event (TMIF): Rising or falling edge
1	0	0	Internal clock: ø/32
		1	Internal clock: ø/16
	1	0	Internal clock: ø/4
		1	Internal clock: ø/2


Toggle output level L

0	Low level
1	High level

Clock select H

0	*	*	16-bit mode selected. TCFL overflow signals are counted.							
1	0	0	Internal clock: ø/32							
		1	nternal clock: ø/16							
	1	0	Internal clock: ø/4							
		1	Internal clock: ø/2							

Note: * Don't care

Timer overflow flag H

0 [Clearing condition]
After reading OVFH = 1, cleared by writing 0 to OVFH
1 [Setting condition]
When the value of TCFH goes from H'FF to H'00

Note: * Only a write of 0 for flag clearing is possible.

TCFH—8-bit ti	imer coun	ter FH		H	Timer F			
Bit	7	6	5	4	3	2	1	0
	TCFH7	TCFH6	TCFH5	TCFH4	TCFH3	TCFH2	TCFH1	TCFH0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				Coun	t value			
TCFL—8-bit ti	mer coun	ter FL			H	I'B9		Timer F
Bit	7	6	5	4	3	2	1	0
	TCFL7	TCFL6	TCFL5	TCFL4	TCFL3	TCFL2	TCFL1	TCFL0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				Coun	t value			
OCRFH—Out	put compa	are registe	er FH		Н	Timer F		
Bit	7	6	5	4	3	2	1	0
	OCRFH7	OCRFH6	OCRFH5	OCRFH4	OCRFH3	OCRFH2	OCRFH1	OCRFH0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
OCRFL—Output compare register FL H'BB							Timer F	
Bit	7	6	5	4	3	2	1	0
	OCRFL7	OCRFL6	OCRFL5	OCRFL4	OCRFL3	OCRFL2	OCRFL1	OCRFL0
Initial value	1	1	1	1	1	1	1	1

R/W

R/W

R/W

R/W

R/W

Read/Write

R/W

R/W

R/W

Bit		_	7	6	5	4	3	2	1	0	
			OVF	H OVFL	OVIE	IIEGS	CCLR1	CCLR0	CKS1	CKS0	
Initial valu	ıe		0	0	0	0	0	0	0	0	
Read/Writ	te	F	R/(W	/)* R/(W)*	R/W	R/W	R/W	R/W	R/W	R/W	
						Clock s	elect —				
										1 /0.4	
									Internal cl		
								1 1	Internal cl	ock: ø/32	
								1 0	Internal cl	ock: ø/2	
) O-		1				1	Internal cl	ock: ø _W /2	
		Co	unte	er clear						• • • • • • • • • • • • • • • • • • • •	
		0	0	TCG is not of	cleared						
			1 TCG is cleared at the falling edge of the input capture signal								
		1	0	0 TCG is cleared at the rising edge of the input capture signal							
			1	TCG is clea	red at both	edges of	dges of the input capture signal				
	Inni	ıt c	ant	ure interrup	t edne sel	ect					
	0			pts are reque			ae of the i	nput captu	re signal]	
	1			·						1	
	1 Interrupts are requested at the falling edge of the input capture signal									_	
Tin	Timer overflow interrupt enable										
0	0 TCG overflow interrupt disabled										
1											
Timer											
0 [Clearing condition]											

	[Clearing condition] After reading OVFL = 1, cleared by writing 0 to OVFL
	[Setting condition]
	When the value of TCG goes from H'FF to H'00

Timer overflow flag H

0	[Clearing condition]
	After reading OVFH = 1, cleared by writing 0 to OVFH
1	[Setting condition]
	When the value of TCG goes from H'FF to H'00

Note: * Only a write of 0 for flag clearing is possible.

Bit	7	6	5	4	3	2	1	0			
	ICRGF7	ICRGF6	ICRGF5	ICRGF4	ICRGF3	ICRGF2	ICRGF1	ICRGF0			
Initial value	0	0	0	0	0	0	0	0			
Read/Write	R	R	R	R	R	R	R	R			
ICRGR—Input capture register GR H'BE Timer G											
Bit	7	6	5	4	3	2	1	0			
						ICRGR2					

R R R R

H'BD

Timer G

R

ICRGF—Input capture register GF

R

R

Initial value Read/Write

Bit	7	6	5	4	3	2	1	0
	DTS1	DTS0	CMX	SGX	SGS3	SGS2	SGS1	SGS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		1					l .	

Segment driver select -

segr	nent	drive	r sele	ect —																
Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			F	unctions of	Pins SEG	40 to SEG	1									
					SEG ₄₀ to				SEG ₂₄ to											
SGX	SGS3	SGS2	SGS1	SGS0	SEG ₃₇	SEG ₃₃	SEG ₂₉	SEG ₂₅	SEG ₂₁	SEG ₁₇	SEG ₁₃	SEG ₉	SEG ₅	SEG ₁	Remarks					
0	0	0	0	0	Port	Port	Port	Port	Port	Port	Port	Port	Port	Port	(initial valu					
				1	SEG	SEG	Port	Port	Port	Port	Port	Port	Port	Port						
			1	0	SEG	SEG	SEG	Port	Port	Port	Port	Port	Port	Port						
				1	SEG	SEG	SEG	SEG	Port	Port	Port	Port	Port	Port						
		1	0	0	SEG	SEG	SEG	SEG	SEG	Port	Port	Port	Port	Port						
				1	SEG	SEG	SEG	SEG	SEG	SEG	Port	Port	Port	Port						
			1	0	SEG	SEG	SEG	SEG	SEG	SEG	SEG	Port	Port	Port						
				1	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	Port	Port						
	1	*	*	0	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	Port						
				1	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG						
1	0	0	0	0	External segment expansion	Port	Port	Port	Port	Port	Port	Port	Port	Port						
				1	External segment expansion	SEG	Port	Port	Port	Port	Port	Port	Port	Port						
			1	0	External segment expansion	SEG	SEG	Port	Port	Port	Port	Port	Port	Port						
				1	External segment expansion	SEG	SEG	SEG	Port	Port	Port	Port	Port	Port						
		1	1	1	1	1	1	0	0	External segment expansion	SEG	SEG	SEG	SEG	Port	Port	Port	Port	Port	
				1	External segment expansion	SEG	SEG	SEG	SEG	SEG	Port	Port	Port	Port						
			1	0	External segment expansion	SEG	SEG	SEG	SEG	SEG	SEG	Port	Port	Port						
							1	External segment expansion	SEG	SEG	SEG	SEG	SEG	SEG	SEG	Port	Port			
	1	*	*	0	External segment expansion	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	Port						
				1	External segment expansion	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG						

Expansion signal select

0 Pins SEG₄₀ to SEG₃₇
1 Pins CL₁, CL₂, DO, and M

Duty and common function select

Bit 7	Bit 6	Bit 5			
DTS1	DTS0	CMX	Duty	Common Driver	Other Uses
0	0	0	Static	COM ₁	COM ₃ , COM ₂ , and COM ₁ usable as ports
		1		COM ₄ to COM ₁	COM ₄ , COM ₃ , and COM ₂ output the same waveform as COM ₁
0	1	0	1/2 duty	COM ₂ , COM ₁	COM ₄ and COM ₃ usable as ports
		1		COM ₄ to COM ₁	COM ₄ outputs the same waveform as COM ₃ , and COM ₂ the same waveform as COM ₁
1	0	0	1/3 duty	COM ₃ to COM ₁	COM ₄ usable as port
		1		COM ₄ to COM ₁	COM ₄ outputs a non-select waveform
1	1	0	1/4 duty	COM ₄ to COM ₁	_
		1			

Bit	7	6	5	4	3	2	1	0
	_	PSW	ACT	DISP	CKS3	CKS2	CKS1	CKS0
Initial value	1	0	0	0	0	0	0	0
Read/Write	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Frame frequency select

	rume nequency coloci										
Bit 3	Bit 2	Bit 1	Bit 0		Frame Frequency						
CKS3	CKS2	CKS1	CKS0	Clock	ø = 5 MHz						
0	*	0	0	øw	128 Hz (initial value)						
			1	øw	64 Hz						
		1	*	ø _W /2	32 Hz						
1	0	0	0	ø/2	— 610 Hz						
			1	ø/4	_	305 Hz					
		1	0	ø/8	_	153 Hz					
			1	ø/16	610 Hz	76.3 Hz					
	1	0	0	ø/32	305 Hz	38.1 Hz					
			1	ø/64	153 Hz	_					
		1	0	ø/128	76.3 Hz —						
			1	ø/256	38.1 Hz	_					

Display data control

	Blank data displayed
1	LCD RAM data displayed

Display active

	LCD controller/driver operation stopped
1	LCD controller/driver operational

Power switch

	LCD power supply resistive voltage divider off
1	LCD power supply resistive voltage divider on

Note: *Don't care

Bit	7	6	5	4	3	2	1	0
	CKS	TRGE	_	_	СНЗ	CH2	CH1	CH0
Initial value	0	0	1	1	0	0	0	0
Read/Write	R/W	R/W	_	_	R/W	R/W	R/W	R/W

Channel select

Channel select									
Bit 3	Bit 2	Bit 1	Bit 0						
CH3	CH2	CH1	CH0	Analog input channel					
0	0	*	*	No channel selected					
	1	0	0	AN ₀					
			1	AN ₁					
		1	0	AN ₂					
			1	AN ₃					
1	0	0	0	AN ₄					
			1	AN ₅					
		1	0	AN ₆					
			1	AN ₇					
	1	0	0	AN ₈					
			1	AN ₉					
		1	0	AN ₁₀					
			1	AN ₁₁					

External trigger select

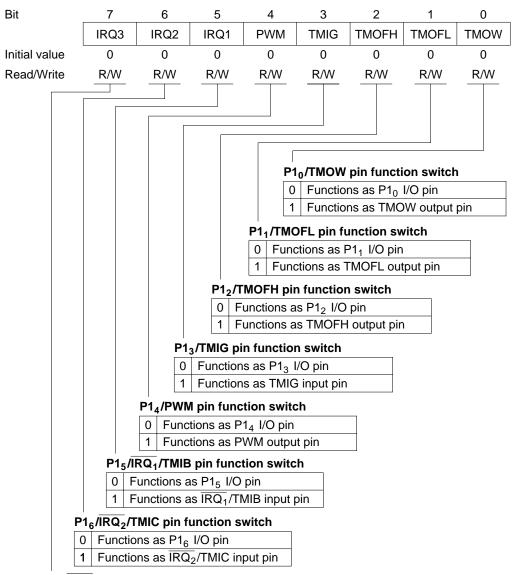
0	Disables start of A/D conversion by external trigger
1	Enables start of A/D conversion by rising or falling edge of external trigger at pin ADTRG

Clock select

Bit 7		Convers	ion Time
CKS	Conversion Period	ø = 2 MHz	ø = 5 MHz
0	62/ø	31 µs	12.4 µs
1	31/ø	15.5 µs	*1

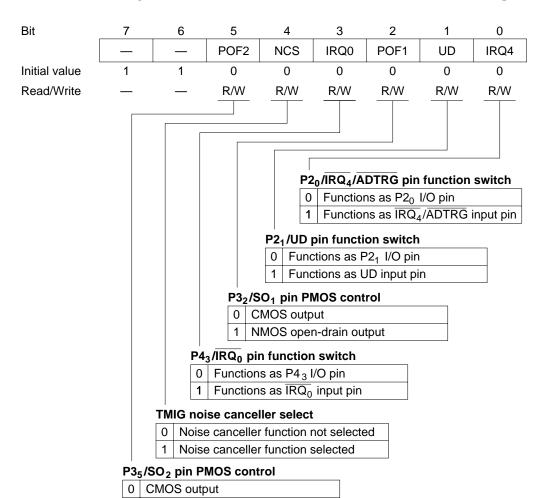
Notes: * Don't care

1. Operation is not guaranteed if the conversion time is less than 12.4 μ s. Set bit 7 for a value of at least 12.4 μ s.

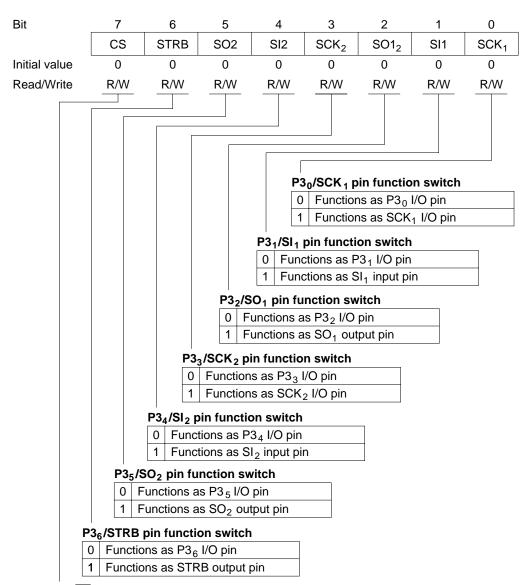

ADRR—A/D result register

H'C5

A/D converter


Bit	7	6	5	4	3	2	1	0		
	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0		
Initial value	Not fixed	Not fixed	Not fixed	Not fixed	Not fixed	Not fixed	Not fixed	Not fixed		
Read/Write	R	R	R	R	R	R	R	R		
	A/D conversion result									

ADSR—A/D sta	art regis	ster	Н	'C6	A/D converter				
Bit	7		6	5	4	3	2	1	0
	ADS	F -	_	_	_	_	_	_	_
Initial value	0	'	1	1	1	1	1	1	1
Read/Write	R/W		_	_	_	_	_	_	_
	A/E) status	flag						
	0	Read	Indic	cates the	completion	of A/D co	nversion		
		Write	Stop	s A/D cor					
	1								
		Write	Star	ts A/D cor	nversion				



P1₇/IRQ₃/TMIF pin function switch

0	Functions as P1 ₇ I/O pin
1	Functions as IRQ ₃ /TMIF input pin

NMOS open-drain output

P3₇/CS pin function switch

0	Functions as P3 ₇ I/O pin
1	Functions as CS input pin

PMR4—Port mode register 4

H'CB

I/O ports

Bit	7	6	5	4	3	2	1	0
	NMOD7	NMOD6	NMOD5	NMOD4	NMOD3	NMOD2	NMOD1	NMOD0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			0 P2 _n	has CMC	S output			
			1 P2 _n	has NMC	S open-d	rain output	t	

PMR5—Port r	node regis	ster 5	F	I/O ports				
Bit	7	6	5	4	3	2	1	0
	WKP7	WKP6	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						n functio	n switch	
			0	Functions	s as P5 _n I/	O pin		
			1	Functions	s as WKP _r	input pin		

RLCTR—LCD	RAM rel	ocation r	egister						
Bit	7	6	5	4	3	2	1	0	
	_	_	_	_	_	_	RLCT1	RLCT0	
Initial value	1	1	1	1	1	1	0	0	
Read/Write	_	_	_	_	_	_	R/W	R/W	

Bit	7	6	5	4	3	2	1	0			
	_	_	_	_	_	_	_	PWCR0			
Initial value	1	1	1	1	1	1	1	0			
Read/Write	_	_	_	_	_	_	_	W			
	Clock	select —									
	The input clock is $\emptyset/2$ (tø* = 2/ \emptyset). The conversion period is 16,384/ \emptyset , with a minimum modulation width of 1/ \emptyset										
	1 Th	e input clo h a minim	ck is ø/4 (um modula	tø* = 4/ø). ation width	The conv of 2/ø	ersion per	riod is 32,7	768/ø,			

Note: *tø: Period of PWM input clock

PWDRU—PWI	M data re	gister U	H'D1 14			-bit PWM		
Bit	7	6	5	4	3	2	1	0
	_	_	PWDRU5	PWDRU4	PWDRU3	PWDRU2	PWDUR1	PWDRU0
Initial value	1	1	0	0	0	0	0	0
Read/Write	_	_	W	W	W	W	W	W

Upper 6 bits of data for generating PWM waveform

PWDRL—PWI	M data re	gister L	H'D2 14			-bit PWM		
Bit	7	6	5	4	3	2	1	0
	PWDRL7	PWDRL6	PWDRL5	PWDRL4	PWDRL3	PWDRL2	PWDRL1	PWDRL0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Lower 8 bits of data for generating PWM waveform

PDR1—Port da	ıta registe	r 1			H	I/O ports			
Bit	7	6	5	4	3	2	1	0	
	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W								
PDR2—Port data register 2 H'D5									
Bit	7	6	5	4	3	2	1	0	
	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W								
PDR3—Port data register 3 H'D6									
Bit	7	6	5	4	3	2	1	0	
	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W								
PDR4—Port da	ıta registe	r 4			H	I/O ports			
Bit	7	6	5	4	3	2	1	0	
	_	_	_	_	P4 ₃	P4 ₂	P4 ₁	P4 ₀	
Initial value	1	1	1	1	1	0	0	0	
Read/Write	_	_	_	_	R	R/W	R/W	R/W	
PDR5—Port da	nta registe	r 5			H	I'D8		I/O ports	
Bit	7	6	5	4	3	2	1	0	
	P5 ₇	P5 ₆	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W								

PDR6—Port da	PDR6—Port data register 6 H'D9								
Bit	7	6	5	4	3	2	1	0	
	P6 ₇	P6 ₆	P6 ₅	P6 ₄	P6 ₃	P6 ₂	P6 ₁	P6 ₀	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PDR7—Port da	nta registe	r 7			H'DA				
Bit	7	6	5	4	3	2	1	0	
	P7 ₇	P7 ₆	P7 ₅	P7 ₄	P7 ₃	P7 ₂	P7 ₁	P7 ₀	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PDR8—Port da			H	I'DB		I/O ports			
Bit	7	6	5	4	3	2	1	0	
	P8 ₇	P8 ₆	P8 ₅	P8 ₄	P8 ₃	P8 ₂	P8 ₁	P8 ₀	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PDR9—Port da	nta registe	r 9			H'DC			I/O ports	
Bit	7	6	5	4	3	2	1	0	
	P9 ₇	P9 ₆	P9 ₅	P9 ₄	P9 ₃	P9 ₂	P9 ₁	P9 ₀	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PDRA—Port d	ata registo	er A			H	I'DD		I/O ports	
Bit	7	6	5	4	3	2	1	0	
					PA ₃	PA ₂	PA ₁	PA ₀	
Initial value	1	1	1	1	0	0	0	0	
Read/Write	_	_	_	_	R/W	R/W	R/W	R/W	

PDRB—Port d	ata registe	er B		Н	I/O ports			
Bit	7	6	5	4	3	2	1	0
	PB ₇	PB ₆	PB ₅	PB ₄	PB ₃	PB ₂	PB ₁	PB ₀
Initial value				I	1			
Read/Write	R	R	R	R	R	R	R	R
PDRC—Port d	ata registe	er C		Н	I/O ports			
Bit	7	6	5	4	3	2	1	0
	_	_	_	_	PC ₃	PC ₂	PC ₁	PC ₀
Initial value				I				
Read/Write	_	_	_	_	R	R	R	R
PUCR1—Port	pull-up co	ntrol regi		Н	l'E0		I/O ports	
Bit	7	6	5	4	3	2	1	0
	PUCR1 ₇	PUCR1 ₆	PUCR1 ₅	PUCR1 ₄	PUCR1 ₃	PUCR1 ₂	PUCR1 ₁	PUCR1 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							
PUCR3—Port	pull-up co	ntrol regi	ster 3		H	Ι' Ε 1		I/O ports
Bit	7	6	5	4	3	2	1	0
	PUCR3 ₇	PUCR3 ₆	PUCR3 ₅	PUCR3 ₄	PUCR3 ₃	PUCR3 ₂	PUCR3 ₁	PUCR3 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							
PUCR5—Port	pull-up co	ntrol regi	ster 5		H	I'E2		I/O ports
Bit	7	6	5	4	3	2	1	0
	PUCR5 ₇	PUCR5 ₆	PUCR5 ₅	PUCR5 ₄	PUCR5 ₃	PUCR5 ₂	PUCR5 ₁	PUCR5 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PUCR6—	-Port	null-un	control	register	6
I CCIO	-I OI t	pun-up	COLLEGE	I CEISCI	v

H'E3

I/O ports

Bit	7	6	5	4	3	2	1	0
	PUCR6 ₇	PUCR6 ₆	PUCR6 ₅	PUCR6 ₄	PUCR6 ₃	PUCR6 ₂	PUCR6 ₁	PUCR6 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PCR1—Port	control	register 1

H'E4

I/O ports

Bit	7	6	5	4	3	2	1	0
	PCR1 ₇	PCR1 ₆	PCR1 ₅	PCR1 ₄	PCR1 ₃	PCR1 ₂	PCR1 ₁	PCR1 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Port 1 input/output select

0	Input pin
1	Output pin

PCR2—Port control register 2

H'E5

I/O ports

Bit	7	6	5	4	3	2	1	0
	PCR2 ₇	PCR2 ₆	PCR2 ₅	PCR2 ₄	PCR2 ₃	PCR2 ₂	PCR2 ₁	PCR2 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Port 2 input/output select

0	Input pin
1	Output pin

PCR3—Port control register 3

H'E6

I/O ports

Bit	7	6	5	4	3	2	1	0
	PCR3 ₇	PCR3 ₆	PCR3 ₅	PCR3 ₄	PCR3 ₃	PCR3 ₂	PCR3 ₁	PCR3 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Port 3 input/output select

	• •
0	Input pin
1	Output pin

PCR4—Port co	ntrol regi	ster 4			H	I'E7		I/O port	S
Bit	7	6	5	4	3	2	1	0	
	_	_	_	_	_	PCR4 ₂	PCR4 ₁	PCR4 ₀	
Initial value	1	1	1	1	1	0	0	0	
Read/Write	_	_	_	_	_	W	W	W	

Port 4 input/output select

_	
0	Input pin
1	Output pin

PCR5—Port control register 5

H'E8

I/O ports

Bit	7	6	5	4	3	2	1	0
	PCR5 ₇	PCR5 ₆	PCR5 ₅	PCR5 ₄	PCR5 ₃	PCR5 ₂	PCR5 ₁	PCR5 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Port 5 input/output select

0	Input pin
1	Output pin

PCR6—Port control register 6

H'E9

I/O ports

Bit	7	6	5	4	3	2	1	0
	PCR6 ₇	PCR6 ₆	PCR6 ₅	PCR6 ₄	PCR6 ₃	PCR6 ₂	PCR6 ₁	PCR6 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Port 6 input/output select

0	Input pin
1	Output pin

PCR7—Port control register 7

H'EA

I/O ports

Initial v	/alue
Read/\	Vrite

Bit

7	6	5	4	3	2	1	0
PCR7 ₇	PCR7 ₆	PCR7 ₅	PCR7 ₄	PCR7 ₃	PCR7 ₂	PCR7 ₁	PCR7 ₀
0	0	0	0	0	0	0	0
W	W	W	W	W	W	W	W

Port 7 input/output select

0	Input pin
1	Output pin

PCR8—Port control register 8

H'EB

I/O ports

Initial	value
Read/	Write

Bit

_	7	6	5	4	3	2	1	0
	PCR8 ₇	PCR8 ₆	PCR8 ₅	PCR8 ₄	PCR8 ₃	PCR8 ₂	PCR8 ₁	PCR8 ₀
	0	0	0	0	0	0	0	0
	W	W	W	W	W	W	W	W

Port 8 input/output select

0	Input pin
1	Output pin

PCR9—Port control register 9

H'EC

I/O ports

Bit	7	6	5	4	3	2	1	0
	PCR9 ₇	PCR9 ₆	PCR9 ₅	PCR9 ₄	PCR9 ₃	PCR9 ₂	PCR9 ₁	PCR9 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Port 9 input/output select

0	Input pin
1	Output pin

PCRA—Port c	Н	I/O ports						
Bit	7	6	5	4	3	2	1	0
	_	_	_	_	PCRA ₃	PCRA ₂	PCRA ₁	PCRA ₀
Initial value	1	1	1	1	0	0	0	0
Read/Write	_	_	_	_	W	W	W	W

Port A input/output select

0	Input pin
1	Output pin

Bit	7	6	5	4	3	2	1	0		
	SSBY	STS2	STS1	STS0	LSON	_	_	_		
Initial value	0	0	0	0	0	1	1	1		
Read/Write	R/W	R/W	R/W	R/W	R/W	_	_	_		
				Low s	peed on fla	ag				
				0 Th	e CPU ope	rates on tl	ne system	clock (ø)		
				1 The CPU operates on the subcloo						
			Stand	by timer	y timer select 2 to 0					
			0 0	0 Wait	time = 8,19	92 states				
				1 Wait	time = 16,3	384 states				
			1	0 Wait	time = 32,7	768 states				
				1 Wait	time = 65,5	536 states				
			1 *	* Wait	time = 131	,072 state	s			

Software standby

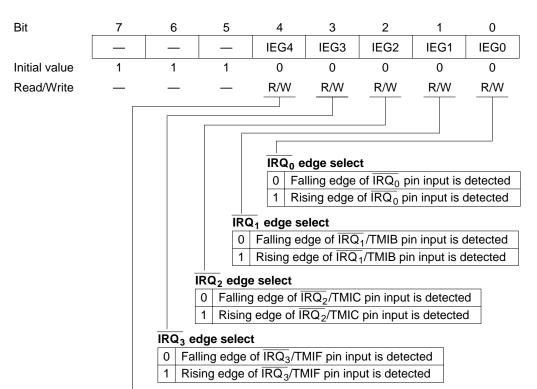
- When a SLEEP instruction is executed in active mode, a transition is made to sleep mode.
 - When a SLEEP instruction is executed in subactive mode, a transition is made to subsleep mode.
- When a SLEEP instruction is executed in active mode, a transition is made to standby mode or watch mode.

When a SLEEP instruction is executed in subactive mode, a transition is made to watch mode.

Note: * Don't care

Bit 7 6 5 4 3 2 1										
	— — NESEL DTON							SA1	SA0	
Initial value	1	1	1	0	0		0	0	0	
Read/Write	_	_	_	R/W	R/W	R	/W	R/W	R/W	
Medium speed on flag Subactive									ck select	
0	Operates	in active (h		0 0	ø _W /	/8				
1	peed) mod	е	1	ø _W /	/4					
					1 *	ø _W /	/2			
Direct	Direct transfer on flag									
 When a SLEEP instruction is executed in active mode, a transition is made to standby mode, watch mode, or sleep mode. When a SLEEP instruction is executed in subactive mode, a transition is made to watch mode or subsleep mode. When a SLEEP instruction is executed in active (high-speed) mode, a direct transition is made to active (medium-speed) mode if SSBY = 0, MSON = 1, ar LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1. 										
									and	
	en a SLEE									
	nsition is ma	aue io acin	ve (nign-s	peeu) mou	E II OOD I	_= U,	IVISO	viv = 0, and	J	

LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1. When a SLEEP instruction is executed in subactive mode, a direct

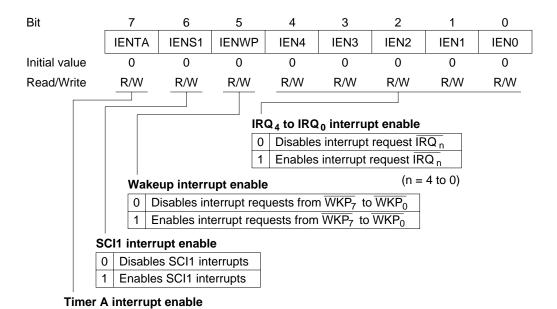

transition is made to active (high-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0, and MSON = 0, or to active (medium-speed) mode if SSBY = 1, TMA3 = 1,

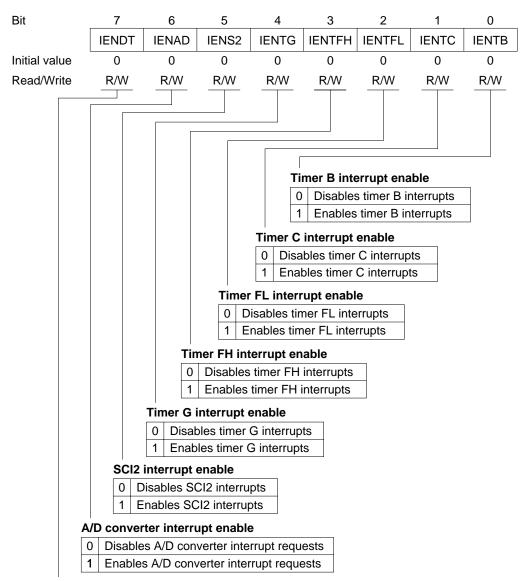
Noise elimination sampling frequency select

LSON = 0, and MSON = 1.

(0	Sampling rate is Ø _{OSC} /16
	1	Sampling rate is Ø _{OSC} /4

Note: * Don't care


IRQ₄ edge select


Falling edge of IRQ₄/ADTRG pin input is detected
 Rising edge of IRQ₄/ADTRG pin input is detected

Disables timer A interrupts

Enables timer A interrupts

1

Direct transfer interrupt enable

	0	Disables direct transfer interrupt requests Enables direct transfer interrupt requests
ſ	1	Enables direct transfer interrupt requests

Bit 7 6 5 4 3 2 1 0											
Bit	/	2	1	0							
	IRRTA	IRRS1	_	IRRI4	IRRI3	IRRI2	IRRI1	IRRI0			
Initial value	0	0	1	0	0	0	0	0			
Read/Write	R/W*	R/W*	_	R/W*	R/W*	R/W*	R/W*	R/W*			
IRQ ₄ to IRQ ₀ interrupt request flag											
0	0 [Clearing condition]										
When IRRIn = 1, it is cleared by writing 0											
1 [Setting condition]											
When pin $\overline{\mbox{IRQ}_{\mbox{\scriptsize n}}}$ is set to interrupt input and the designated signal edge is detected											
SCI1 interrupt request flag (n = 4											
0 [Clea	0 [Clearing condition]										
Whe	When IRRS1 = 1, it is cleared by writing 0										
1 [Sett	1 [Setting condition]										
When an SCI1 transfer is completed											
Timer A interrupt request flag											
0 [Clearing											
When IRF	When IRRTA = 1, it is cleared by writing 0										
1 [Setting co											

Note: * Only a write of 0 for flag clearing is possible.

When the timer A counter overflows from H'FF to H'00

3it	7	6	5	4	3	2	1	0		
	IRRDT	IRRAD	IRRS2	IRRTG	IRRTFH	IRRTFL	IRRTC	IRRTB		
nitial value	0	0	0	0	0	0	0	0		
Read/Write	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*		
		er B interr			DTD 4 ''					
		Clearing o			RTB = 1, it					
1 [Setting condition] When the timer B counter overflows from H'FF to H'00										
	Timer C interrupt request flag									
	0 [Cl	earing con	dition] W	hen IRRT	C = 1, it is	cleared by	writing 0			
	1 [Se	tting cond			mer C cour s from H'0		ows from I	H'FF to H'		
	Timer FL	interrupt	request fla	ag						
	0 [Clear	ing conditi	ion] Whe	n IRRTFL	= 1, it is cl	eared by w	writing 0			
	1 [Setting condition] When counter FL matches output compare register Fl in 8-bit mode									
Tir	ner FH int	errupt red	quest flag							
0	[Clearing	condition] When If	RRTFH =	1, it is clea	red by wri	ting 0			
1 [Setting condition] When counter FH matches output compare register FH in 8-bit mode, or when 16-bit counter F (TCFL, TCFH) matches 16-bit output compare register F (OCRFL, OCRFH) in 16-bit mode Timer G interrupt request flag										
									0 [0	
1 [5	1 [Setting condition] When pin TMIG is set to TMIG input and the designated signal edge is detected									
SCI2 interrupt request flag										
0 [Clearing condition] When IRRS2 = 1, it is cleared by writing 0										
1 [Set	ting condit	ion] Wh	en an SCI	2 transfer	is complet	ted or abo	rted			
A/D conve	rter interr	upt reque	st flag							
0 [Cleari	ng conditio	n] When	IRRAD =	1, it is clea	ared by wr	iting 0				
1 [Setting	g condition] When	A/D conv	ersion is c	ompleted a	and ADSF	is reset			
Direct transfe	er interru	ot request	flag							
0 [Clearing	condition]	When IR	RDT = 1,	it is cleare	d by writin	g 0				
1 [Setting o	ondition]	A SLEET	instruction	on is execu	uted when	DTON = 1	and a dir	ect		

Note: * Only a write of 0 for flag clearing is possible.

transfer is made

	IWPR-	-Wakeup	interrupt	request	register
--	-------	---------	-----------	---------	----------

System control

Bit	7	6	5	4	3	2	1	0	
	IWPF7	IWPF6	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	
Wak	oun interru	int regues							
Wakeup interrupt request flag 0 [Clearing condition]									
1 1 -	- [
\	When IWPFn = 1, it is cleared by writing 0								

When pin $\overline{WKP_n}$ is set to interrupt input and a falling signal edge is detected

(n = 7 to 0)

Note: * Only a write of 0 for flag clearing is possible.

1 [Setting condition]

Appendix C I/O Port Block Diagrams

C.1 Schematic Diagram of Port 1

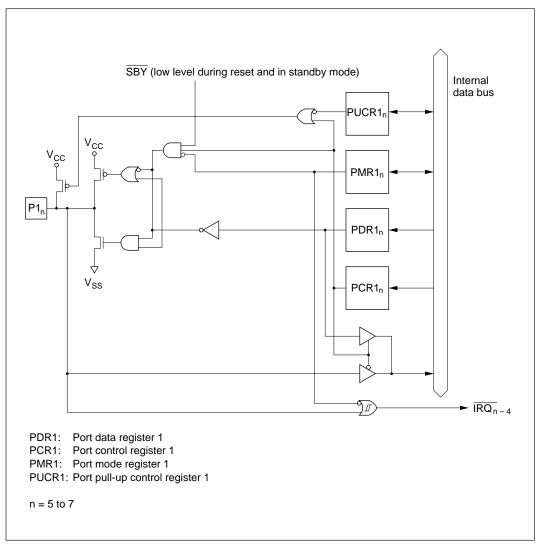


Figure C-1 (a) Port 1 Block Diagram (Pins P1₇ to P1₅)

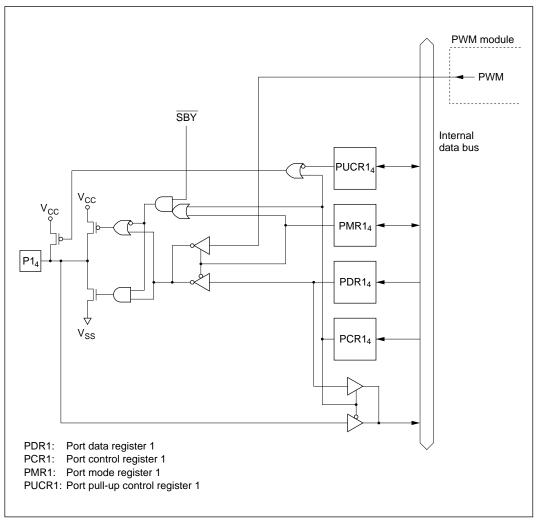
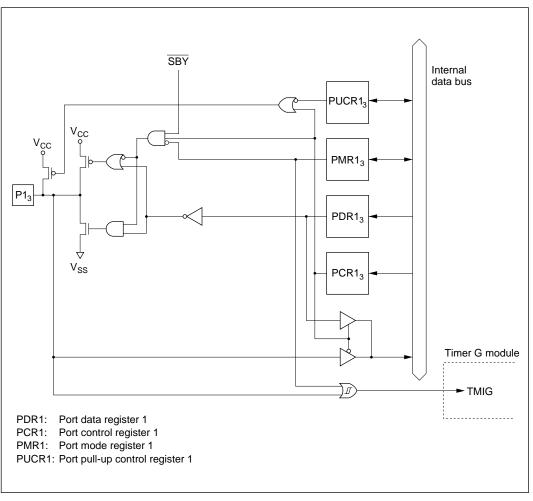



Figure C-1 (b) Port 1 Block Diagram (Pin P1₄)

 $Figure~C\text{-}1~(c)~~Port~1~Block~Diagram~(Pin~P1_3)$

Figure C-1 (d) Port 1 Block Diagram (Pins P1₂ and P1₁)



Figure C-1 (e) Port 1 Block Diagram (Pin P1₀)

C.2 Schematic Diagram of Port 2

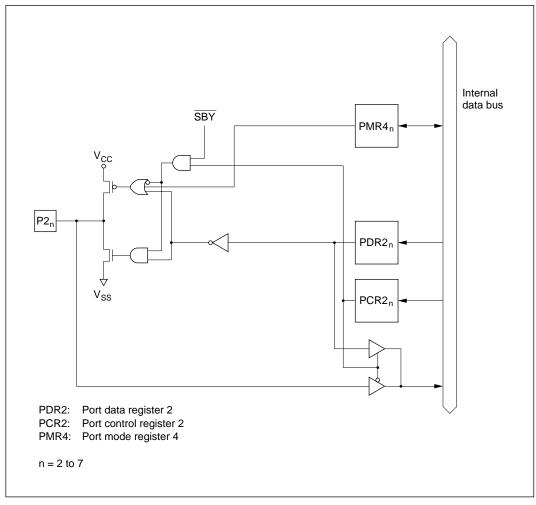


Figure C-2 (a) Port 2 Block Diagram (Pins $P2_7$ to $P2_2$)

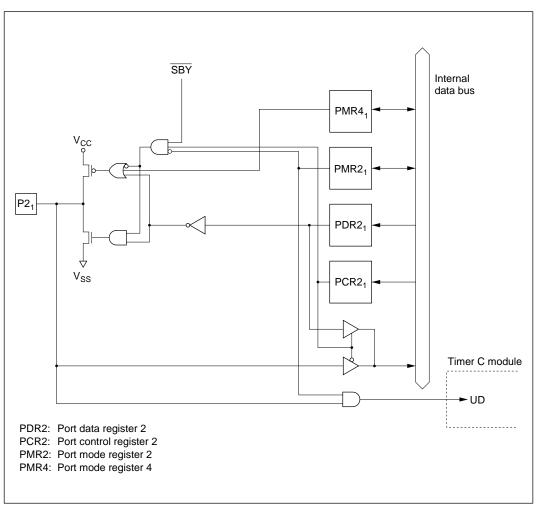


Figure C-2 (b) Port 2 Block Diagram (Pin P2₁)

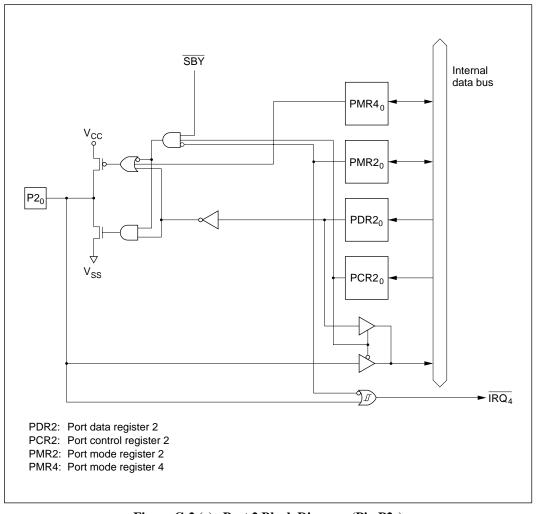


Figure C-2 (c) Port 2 Block Diagram (Pin P2₀)

C.3 Schematic Diagram of Port 3

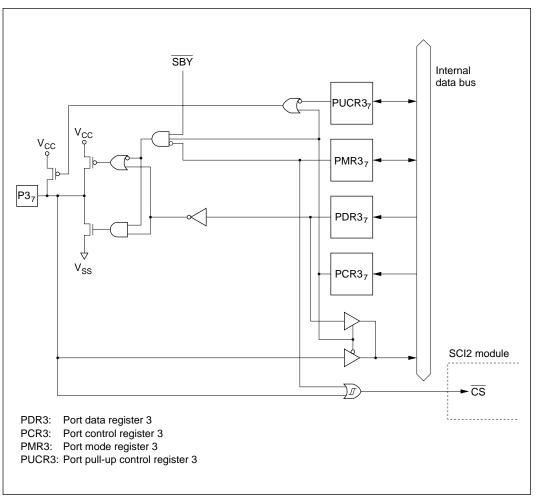


Figure C-3 (a) Port 3 Block Diagram (Pin P37)

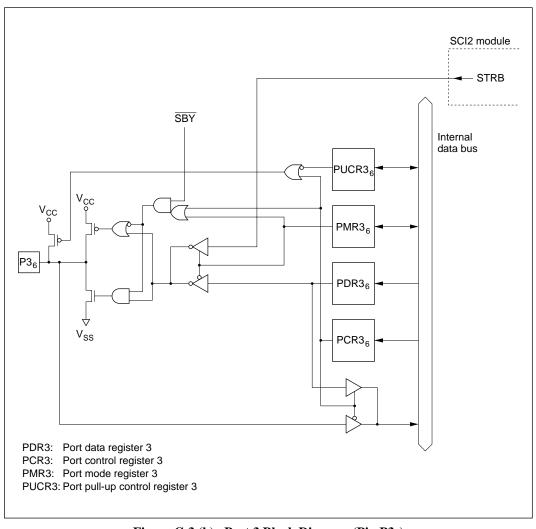
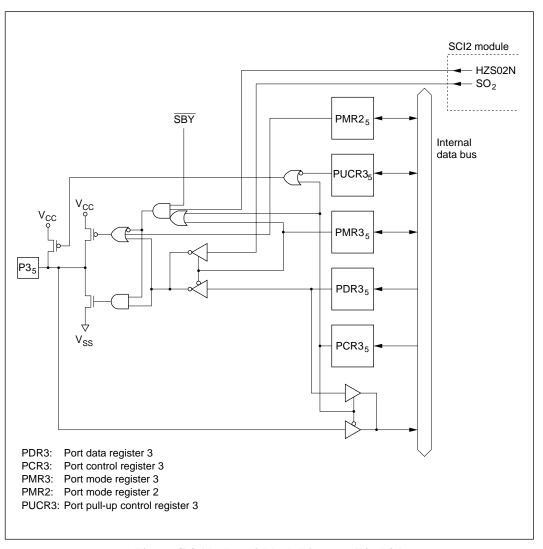
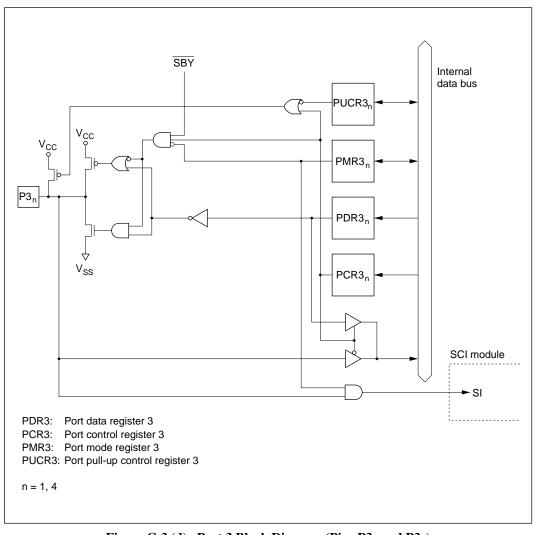




Figure C-3 (b) Port 3 Block Diagram (Pin P3₆)

 $Figure~C-3~(c)~~Port~3~Block~Diagram~(Pin~P3_5)\\$

 $Figure~C-3~(d)~~Port~3~Block~Diagram~(Pins~P3_4~and~P3_1)\\$

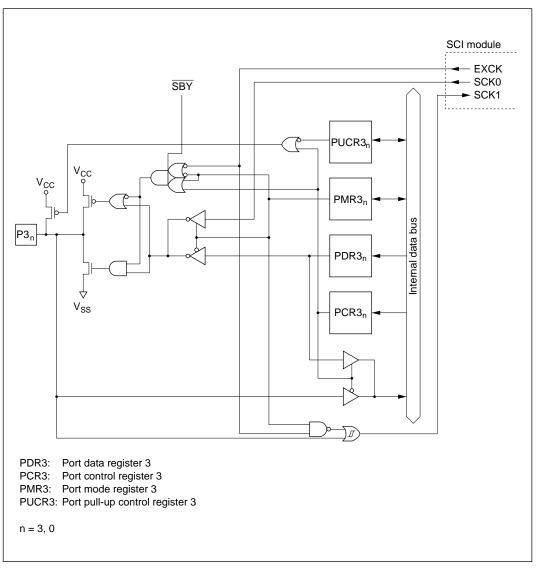
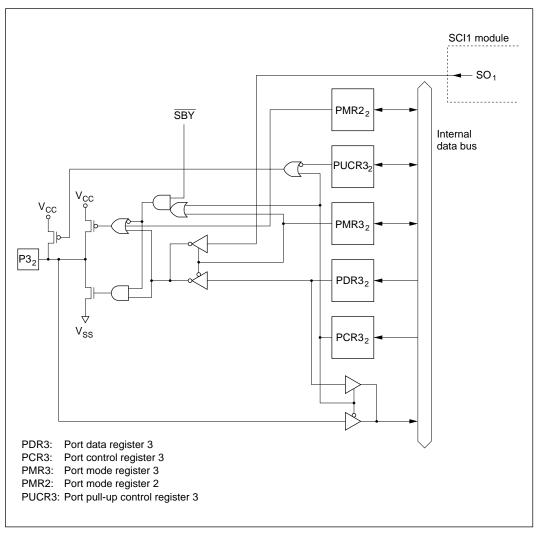



Figure C-3 (e) Port 3 Block Diagram (Pins P3₃ and P3₀)

 $Figure \ C-3 \ (f) \quad Port \ 3 \ Block \ Diagram \ (Pin \ P3_2)$

C.4 Schematic Diagram of Port 4

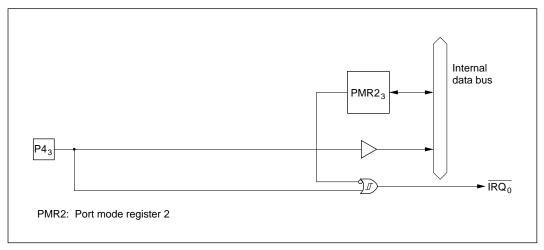


Figure C-4 (a) Port 4 Block Diagram (Pin P43)

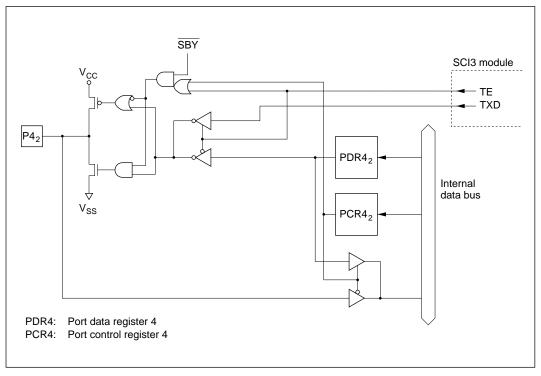


Figure C-4 (b) Port 4 Block Diagram (Pin P4₂)

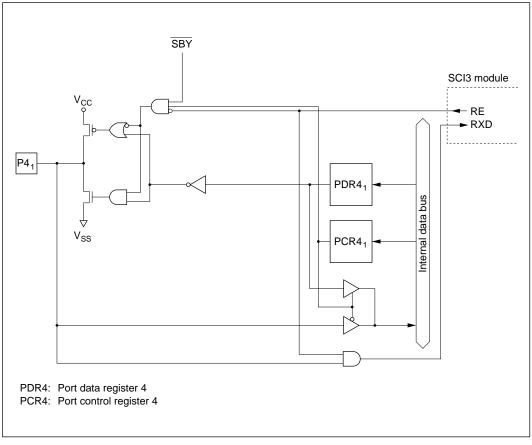
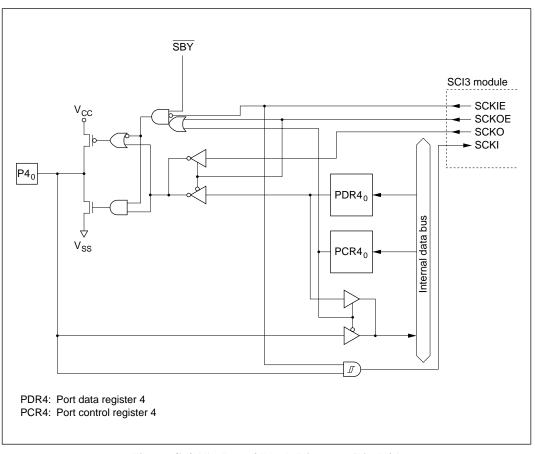



Figure C-4 (c) Port 4 Block Diagram (Pin P4₁)

 $Figure~C\text{--}4~(d)~~Port~4~Block~Diagram~(Pin~P4_0)$

C.5 Schematic Diagram of Port 5

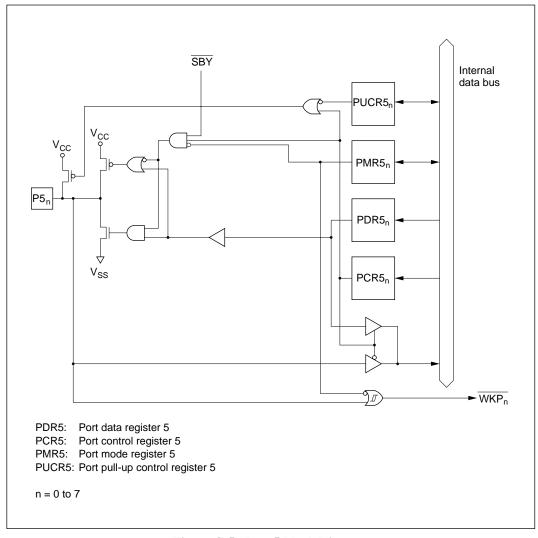


Figure C-5 Port 5 Block Diagram

C.6 Schematic Diagram of Port 6

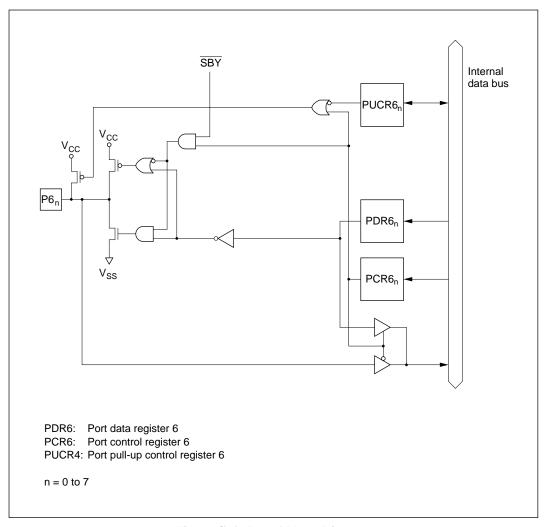


Figure C-6 Port 6 Block Diagram

C.7 Schematic Diagram of Port 7

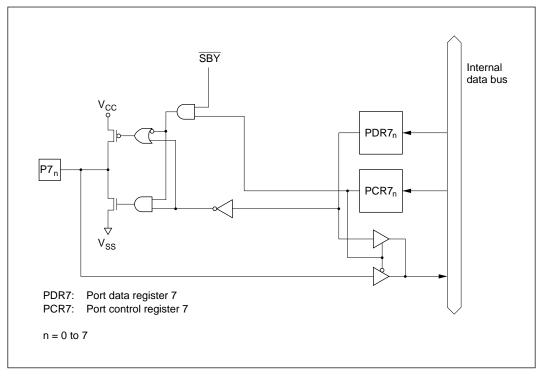


Figure C-7 Port 7 Block Diagram

C.8 Schematic Diagram of Port 8

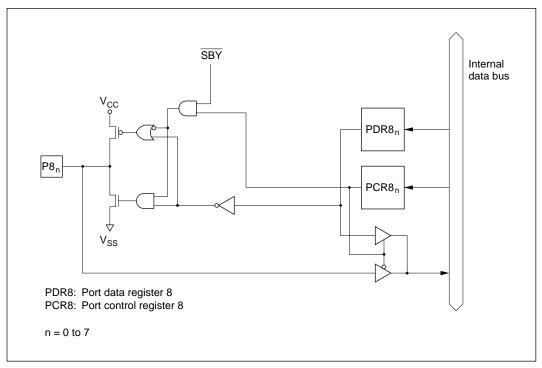


Figure C-8 Port 8 Block Diagram

C.9 Schematic Diagram of Port 9

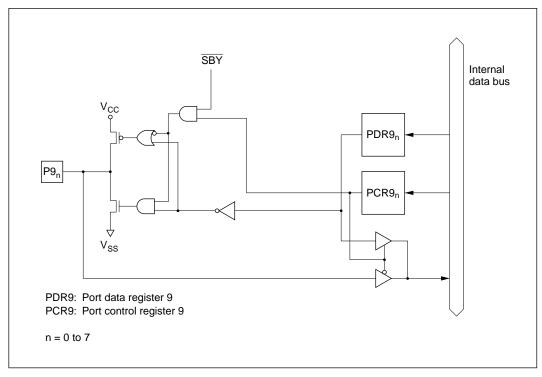


Figure C-9 Port 9 Block Diagram

C.10 Schematic Diagram of Port A

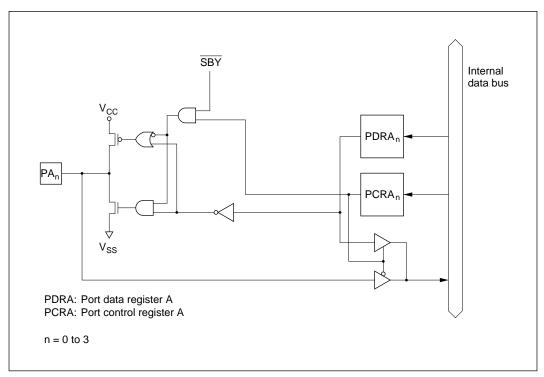


Figure C-10 Port A Block Diagram

C.11 Schematic Diagram of Port B

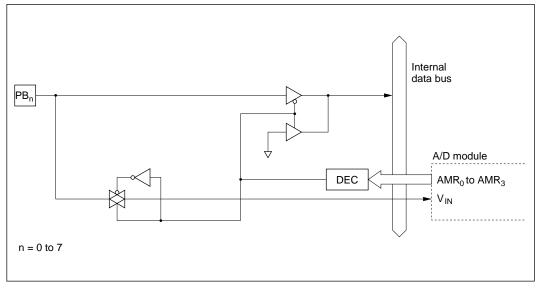


Figure C-11 Port B Block Diagram

C.12 Schematic Diagram of Port C

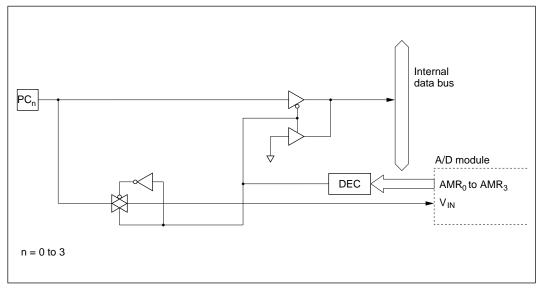


Figure C-12 Port C Block Diagram

Appendix D Port States in the Different Processing States

Table D-1 Port States Overview

Port	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P1 ₇ to P1 ₀	High impedance	Retained	Retained	High impedance*		Functions	Functions
P2 ₇ to P2 ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
P3 ₇ to P3 ₀	High impedance	Retained	Retained	High impedance*		Functions	Functions
P4 ₃ to P4 ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
P5 ₇ to P5 ₀	High impedance	Retained	Retained	High impedance*		Functions	Functions
P6 ₇ to P6 ₀	High impedance	Retained	Retained	High impedance*		Functions	Functions
P7 ₇ to P7 ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
P8 ₇ to P8 ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
P9 ₇ to P9 ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
PA ₃ to PA ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
PB ₇ to PB ₀	High impedance	J	High impedance	High impedance	•	High impedance	High impedance
PC ₃ to PC ₀	High impedance	•	J	High impedance	High impedance	High impedance	High impedance

Note: * High level output when MOS pull-up is in on state.

Appendix E Package Dimensions

Dimensional drawings of H8/3834 Series packages FP-100B, FP-100A, and TFP-100B are shown in figures E-1, E-2, and E-3 below.

unit: mm

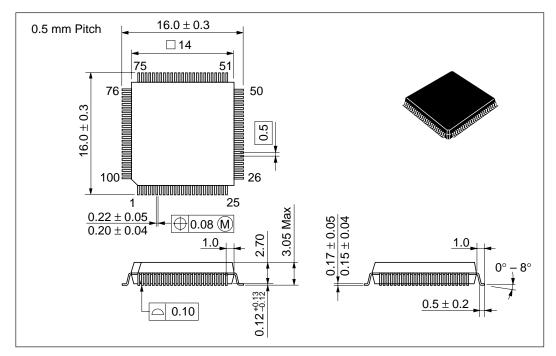


Figure E-1 FP-100B Package Dimensions

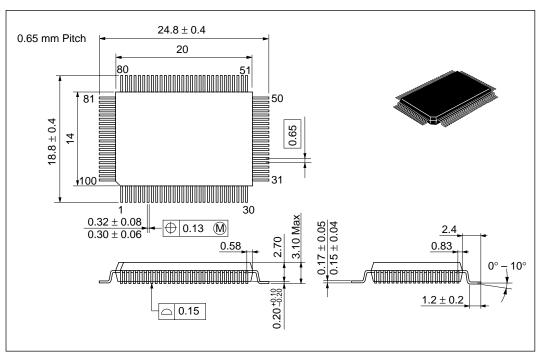


Figure E-2 FP-100A Package Dimensions

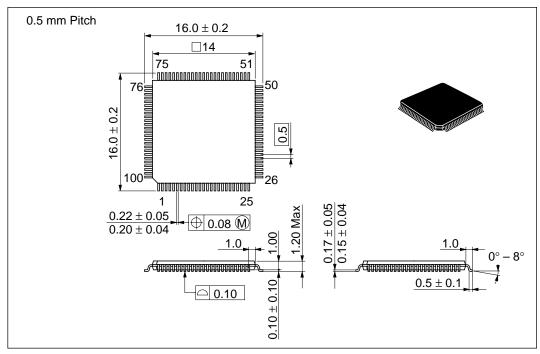


Figure E-3 TFP-100B Package Dimensions

Note: In case of inconsistencies arising within figures, dimensional drawings listed in the Hitachi Semiconductor Packages Manual take precedence and are considered correct.

H8/3834 Series Hardware Manual

Publication Date: 1st Edition, March 1993

3rd Edition, September 1994

Published by: Semiconductor and IC Div.

Hitachi, Ltd.

Edited by: Technical Document Center

Hitachi Microcomputer System Ltd.

Copyright © Hitachi, Ltd., 1993. All rights reserved. Printed in Japan.