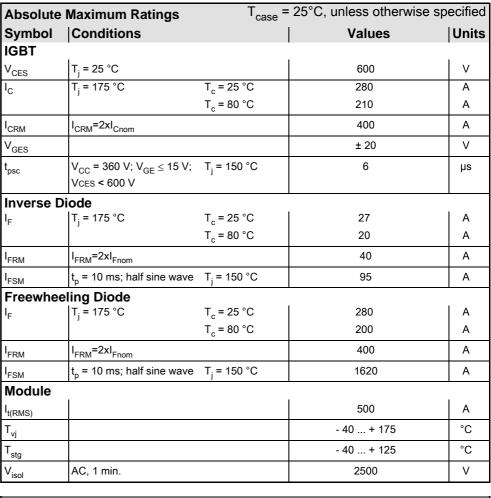
SKM 200 GARL 066 T

Trench IGBT Modules

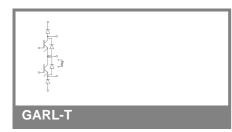
SKM 200 GARL 066 T

Target Data

Features


- · Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*


- UPS
- INVERTER

Remarks

 Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C

Characteristics		T_{case} = 25°C, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 3.2 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,01	mA	
I_{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}$	T _j = 25 °C			1200	nA	
V _{CE0}		T _j = 25 °C		0,9	1	V	
		T _j = 150 °C		0,7	0,8	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		2,7	4,5	mΩ	
		$T_{j} = 150^{\circ}C$		5	6,5	mΩ	
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V	$T_j = 25^{\circ}C_{\text{chiplev.}}$		1,45	1,9	V	
		$T_j = 150^{\circ}C_{chiplev}$		1,7	2,1	V	
C _{ies}				12,3		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,76		nF	
C _{res}				0,36		nF	
R_{Gint}	$T_j = {^{\circ}C}$			1		Ω	
$t_{d(on)}$						ns	
ţ,	$R_{Gon} = 2.4 \Omega$	V _{CC} = 300V				ns	
E _{on}	$R_{Goff} = 2.4 \Omega$	I _C = 200A T _i = 150 °C				mJ ns	
${f t}_{\sf d(off)} \ {f t}_{\sf f}$	Goff - 2,7 32	$V_{GF} = -8V/+15V$				ns	
E _{off}		GE ST, IGT				mJ	
R _{th(j-c)}	per IGBT	•		0,21		K/W	

SKM 200 GARL 066 T

Trench IGBT Modules

SKM 200 GARL 066 T

Target Data

Features

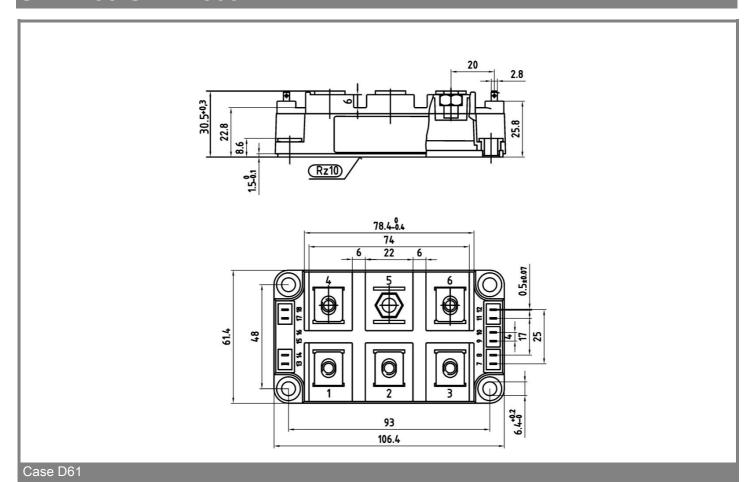
- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

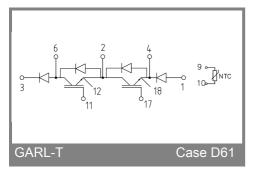
Typical Applications*

- UPS
- INVERTER

Remarks

 Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C


Characteristics										
Symbol	Conditions	I	min.	typ.	max.	Units				
Inverse Diode										
$V_F = V_{EC}$	I_{Fnom} = 20 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,45	1,7	V				
		$T_j = 150 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		1,45	1,7	V				
V_{F0}				1	1,1	V				
		T _j = 150 °C		0,9	1	V				
r _F		T _j = 25 °C		22,5	30	mΩ				
		$T_j = 150 ^{\circ}\text{C}$ $T_j = 150 ^{\circ}\text{C}$		27,5	35	mΩ				
I_{RRM} Q_{rr}	I _F = 20 A	T _j = 150 °C				Α μC				
E _{rr}	$V_{GE} = -8 \text{ V}; V_{CC} = 300 \text{ V}$					mJ				
R _{th(j-c)D}	per diode			3		K/W				
Free-whe	eling diode									
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,4	1,6	V				
		$T_j = 150 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		1,3	1,45	V				
V_{F0}		T _j = 25 °C		0,95	1	٧				
		T _j = 150 °C		0,85	0,9	V				
r _F		T _j = 25 °C		2,2	3	V				
		T _j = 150 °C		2,1	2,7	V				
I_{RRM} Q_{rr}	I _F = 200 A	T _j = 150 °C				Α μC				
E _{rr}	$V_{GE} = 0 \text{ V}; V_{CC} = 600 \text{ V}$					mJ				
R _{th(j-c)FD}	per diode			0,37		K/W				
R _{th(c-s)}	per module				0,038	K/W				
M _s	to heat sink M6		3		5	Nm				
M _t	to terminals M6		2,5		5	Nm				
w					310	g				
Tempera	ture sensor									
R ₁₀₀	T_s =100°C (R_{25} =5k Ω)			493±5%		Ω				
						K				


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

SKM 200 GARL 066 T

3 27-07-2010 DIL © by SEMIKRON