NVT2008; NVT2010

Bidirectional voltage-level translator for open-drain and push-pull applications

Rev. 2 — 3 September 2012

Product data sheet

1. General description

The NVT2008/NVT2010 are bidirectional voltage level translators operational from 1.0 V to 3.6 V ($V_{ref(A)}$) and 1.8 V to 5.5 V ($V_{ref(B)}$), which allow bidirectional voltage translations between 1.0 V and 5 V without the need for a direction pin in open-drain or push-pull applications. Bit widths of 8-bit to 10-bit are offered for level translation application with transmission speeds < 33 MHz for an open-drain system with a 50 pF capacitance and a pull-up of 197 Ω .

When the An or Bn port is LOW, the clamp is in the ON-state and a low resistance connection exists between the An and Bn ports. The low ON-state resistance (R_{on}) of the switch allows connections to be made with minimal propagation delay. Assuming the higher voltage is on the Bn port when the Bn port is HIGH, the voltage on the An port is limited to the voltage set by VREFA. When the An port is HIGH, the Bn port is pulled to the drain pull-up supply voltage ($V_{pu(D)}$) by the pull-up resistors. This functionality allows a seamless translation between higher and lower voltages selected by the user without the need for directional control.

When EN is HIGH, the translator switch is on, and the An I/O are connected to the Bn I/O, respectively, allowing bidirectional data flow between ports. When EN is LOW, the translator switch is off, and a high-impedance state exists between ports. The EN input circuit is designed to be supplied by V_{ref(B)}. To ensure the high-impedance state during power-up or power-down, EN must be LOW.

All channels have the same electrical characteristics and there is minimal deviation from one output to another in voltage or propagation delay. This is a benefit over discrete transistor voltage translation solutions, since the fabrication of the switch is symmetrical. The translator provides excellent ESD protection to lower voltage devices, and at the same time protects less ESD-resistant devices.

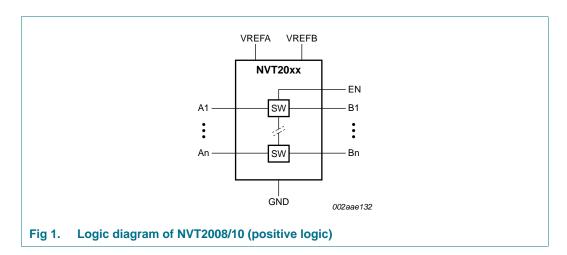
2. Features and benefits

- Provides bidirectional voltage translation with no direction pin
- Less than 1.5 ns maximum propagation delay
- Allows voltage level translation between:
 - 1.0 V V_{ref(A)} and 1.8 V, 2.5 V, 3.3 V or 5 V V_{ref(B)}
 - 1.2 V V_{ref(A)} and 1.8 V, 2.5 V, 3.3 V or 5 V V_{ref(B)}
 - ◆ 1.8 V V_{ref(A)} and 3.3 V or 5 V V_{ref(B)}
 - 2.5 V V_{ref(A)} and 5 V V_{ref(B)}
 - ◆ 3.3 V V_{ref(A)} and 5 V V_{ref(B)}

- \blacksquare Low 3.5 Ω ON-state connection between input and output ports provides less signal distortion
- 5 V tolerant I/O ports to support mixed-mode signal operation
- High-impedance An and Bn pins for EN = LOW
- Lock-up free operation
- Flow through pinout for ease of printed-circuit board trace routing
- ESD protection exceeds 4 kV HBM per JESD22-A114 and 1000 V CDM per JESD22-C101
- Packages offered: TSSOP20, DHVQFN20, TSSOP24, DHVQFN24, HVQFN24

3. Ordering information

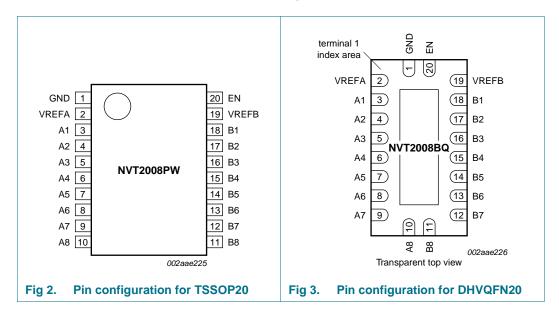
 Table 1.
 Ordering information

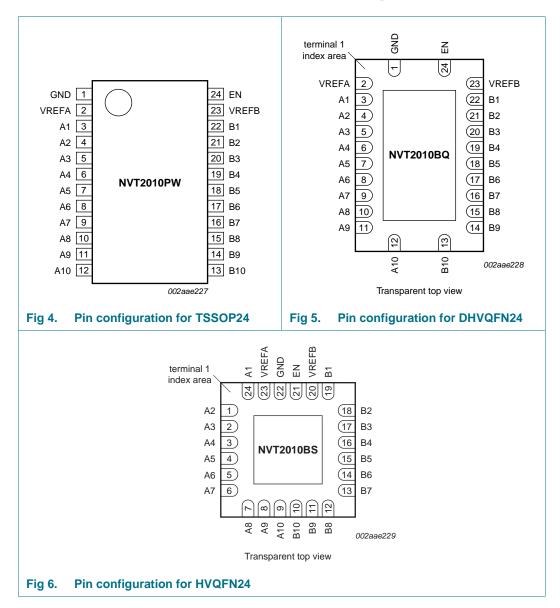

 $T_{amb} = -40 \, ^{\circ}\text{C} \text{ to } +85 \, ^{\circ}\text{C}.$

Type number	Topside	Number	Package		
	mark	of bits	Name	Description	Version
NVT2008BQ[1]	NVT2008	8	DHVQFN20	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm	SOT764-1
NVT2008PW[1]	NVT2008	8	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1
NVT2010BQ[2]	NVT2010	10	DHVQFN24	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5\times5.5\times0.85$ mm	SOT815-1
NVT2010BS[2]	N010	10	HVQFN24	plastic thermal enhanced very thin quad flat package; no leads; 24 terminals; body 4 \times 4 \times 0.85 mm	SOT616-1
NVT2010PW[2]	NVT2010	10	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1

^[1] GTL2003 = NVT2008.

^[2] GTL2010 = NVT2010.


4. Functional diagram


5. Pinning information

5.1 Pinning

5.1.1 8-bit in TSSOP20 and DHVQFN20 packages

5.1.2 10-bit in TSSOP24, DHVQFN24 and HVQFN24 packages

5.2 Pin description

Table 2. Pin description

Table 2.	Pin description	•													
Symbol	Pin			Description											
	NVT2008BQ, NVT2008PW[1]	NVT2010BQ, NVT2010PW[2]	NVT2010BS[2]												
GND	1	1	22	ground (0 V)											
VREFA	2	2	23	low-voltage side reference supply voltage for An											
A1	3	3	24	low-voltage side; connect to											
A2	4	4	1	VREFA through a pull-up resistor											
A3	5	5	2												
A4	6	6	3												
A5	7	7	4												
A6	8	8	5												
A7	9	9	6												
A8	10	10	7												
A9	-	11	8												
A10	-	12	9												
B1	18	22	19	high-voltage side; connect to											
B2	17	21	18	VREFB through a pull-up resistor											
B3	16	20	17												
B4	15	19	16												
B5	14	18	15												
B6	13	17	14												
B7	12	16	13												
B8	11	15	12												
B9	-	14	11												
B10	-	13	10												
VREFB	19	23	20	high-voltage side reference supply voltage for Bn											
EN	20	24	21	switch enable input; connect to VREFB and pull-up through a high resistor											

^{[1] 8-}bit NVT2008 available in TSSOP20, DHVQFN20 packages.

^{[2] 10-}bit NVT2010 available in TSSOP24, DHVQFN24, HVQFN24 packages.

6. Functional description

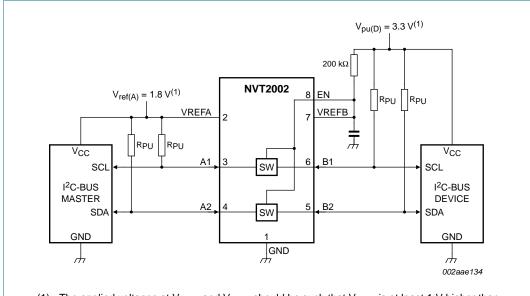
Refer to Figure 1 "Logic diagram of NVT2008/10 (positive logic)".

6.1 Function table

Table 3. Function selection (example)

H = HIGH level; L = LOW level.

Input EN[1]	Function
Н	An = Bn
L	disconnect


EN is controlled by the V_{ref(B)} logic levels and should be at least 1 V higher than V_{ref(A)} for best translator operation.

7. Application design-in information

The NVT2008/10 can be used in level translation applications for interfacing devices or systems operating at different interface voltages with one another. The NVT2008/10 is ideal for use in applications where an open-drain driver is connected to the data I/Os. The NVT2008/10 can also be used in applications where a push-pull driver is connected to the data I/Os.

7.1 Enable and disable

The NVT20xx has an EN input that is used to disable the device by setting EN LOW, which places all I/Os in the high-impedance state.

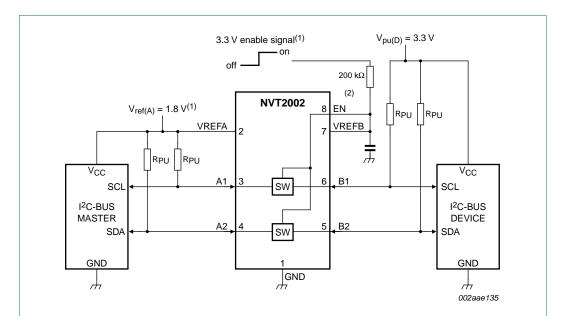
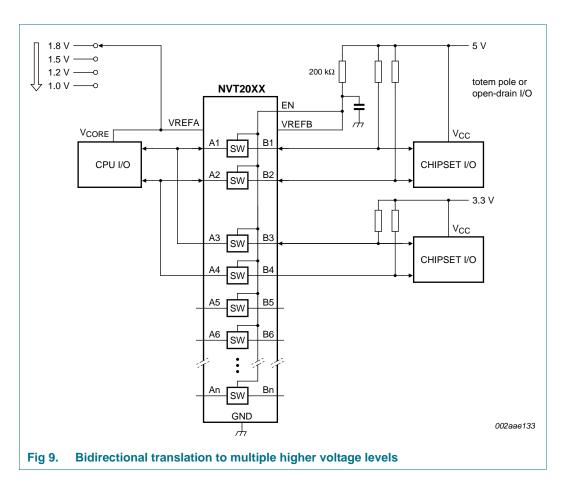

(1) The applied voltages at $V_{ref(A)}$ and $V_{pu(D)}$ should be such that $V_{ref(B)}$ is at least 1 V higher than $V_{ref(A)}$ for best translator operation.

Fig 7. Typical application circuit (switch always enabled)

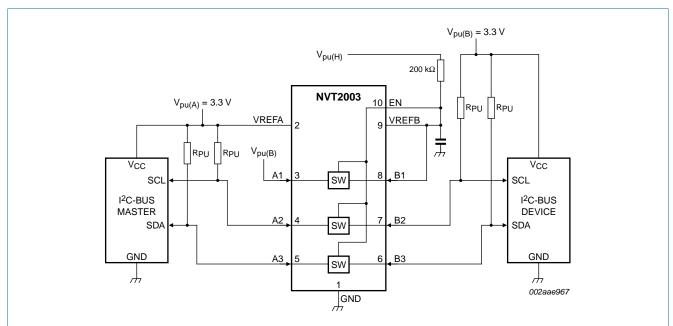
Table 4. Application operating conditions *Refer to Figure 7.*


Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
$V_{ref(B)}$	reference voltage (B)		$V_{ref(A)} + 0.6$	2.1	5	V
$V_{I(EN)}$	input voltage on pin EN		$V_{ref(A)} + 0.6$	2.1	5	V
$V_{ref(A)}$	reference voltage (A)		0	1.5	4.4	V
I _{sw(pass)}	pass switch current		-	14	-	mA
I _{ref}	reference current	transistor	-	5	-	μΑ
T _{amb}	ambient temperature	operating in free-air	-4 0	-	+85	°C

[1] All typical values are at $T_{amb} = 25$ °C.

- (1) In the Enabled mode, the applied enable voltage $V_{I(EN)}$ and the applied voltage at $V_{ref(A)}$ should be such that $V_{ref(B)}$ is at least 1 V higher than $V_{ref(A)}$ for best translator operation.
- (2) Note that the enable time and the disable time are essentially controlled by the RC time constant of the capacitor and the 200 k Ω resistor on the EN pin.

Fig 8. Typical application circuit (switch enable control)


7.2 Bidirectional translation

For the bidirectional clamping configuration (higher voltage to lower voltage or lower voltage to higher voltage), the EN input must be connected to VREFB and both pins pulled to HIGH side $V_{pu(D)}$ through a pull-up resistor (typically 200 k Ω). This allows VREFB to regulate the EN input. A filter capacitor on VREFB is recommended. The master output driver can be totem pole or open-drain (pull-up resistors may be required) and the slave device output can be totem pole or open-drain (pull-up resistors are required to pull the Bn outputs to $V_{pu(D)}$). However, if either output is totem-pole, data must be unidirectional or the outputs must be 3-stateable and be controlled by some direction-control mechanism to prevent HIGH-to-LOW contentions in either direction. If both outputs are open-drain, no direction control is needed.

The reference supply voltage $(V_{ref(A)})$ is connected to the processor core power supply voltage. When VREFB is connected through a 200 k Ω resistor to a 3.3 V to 5.5 V $V_{pu(D)}$ power supply, and $V_{ref(A)}$ is set between 1.0 V and $(V_{pu(D)}-1 \text{ V})$, the output of each An has a maximum output voltage equal to VREFA, and the output of each Bn has a maximum output voltage equal to $V_{pu(D)}$.

7.3 Bidirectional level shifting between two different power domains nominally at the same potential

The less obvious application for the NVT2008/NVT2010 is for level shifting between two different power domains that are nominally at the same potential, such as a 3.3 V system where the line crosses power supply domains that under normal operation would be at 3.3 V, but one could be at 3.0 V and the other at 3.6 V, or one could be experiencing a power failure while the other domain is trying to operate. One of the channel transistors is used as a second reference transistor with its B side connected to a voltage supply that is at least 1 V (and preferably 1.5 V) above the maximum possible for either $V_{pu(A)}$ or $V_{pu(B)}$. Then if either pull-up voltage is at 0 V, the channels are disabled, and otherwise the channels are biased such that they turn OFF at the lower pull-up voltage, and if the two pull-up voltages are equal, the channel is biased such that it just turns OFF at the common pull-up voltage.

The applied enable voltage $V_{pu(H)}$ and the applied voltage at $V_{ref(A)}$ and $V_{ref(B)}$ should be such that $V_{ref(H)}$ is at least 1 V higher than $V_{ref(A)}$ and $V_{ref(B)}$ for best translator operation.

Fig 10. Bidirectional level shifting between two different power domains

7.4 Sizing pull-up resistor

The pull-up resistor value needs to limit the current through the pass transistor when it is in the ON state to about 15 mA. This ensures a pass voltage of 260 mV to 350 mV. If the current through the pass transistor is higher than 15 mA, the pass voltage also is higher in the ON state. To set the current through each pass transistor at 15 mA, the pull-up resistor value is calculated as:

$$R_{PU} = \frac{V_{pu(D)} - 0.35 \ V}{0.015 \ A}$$

<u>Table 5</u> summarizes resistor reference voltages and currents at 15 mA, 10 mA, and 3 mA. The resistor values shown in the +10 % column or a larger value should be used to ensure that the pass voltage of the transistor would be 350 mV or less. The external driver

NVT2008_NVT2010

must be able to sink the total current from the resistors on both sides of the NVT20xx device at 0.175 V, although the 15 mA only applies to current flowing through the NVT20xx device.

Table 5. Pull-up resistor values

Calculated for $V_{OL} = 0.35 \text{ V}$; assumes output driver $V_{OL} = 0.175 \text{ V}$ at stated current.

$V_{pu(D)}$				Pul	II-up resisto	or value (Ω	2)			
	64	mA	32	mA	15 mA		10 r	nA	3 mA	
	Nominal	+10 % <mark>[1]</mark>	Nominal	+10 % <mark>11</mark>	Nominal	+10 %[1]	Nominal +10 %[1]		Nominal	+10 %[1]
5 V			'		310	341	465	512	1550	1705
3.3 V					197	217	295	325	983	1082
2.5 V					143	158	215	237	717	788
1.8 V					97	106	145	160	483	532
1.5 V					77	85	115	127	383	422
1.2 V					57	63	85	94	283	312

^{[1] +10 %} to compensate for V_{CC} range and resistor tolerance.

7.4.1 Maximum frequency calculation

The maximum frequency is totally dependent upon the specifics of the application and the device can operate > 33 MHz. Basically, the NVT20xx behaves like a wire with the additional characteristics of transistor device physics and should be capable of performing at higher frequencies if used correctly.

Here are some guidelines to follow that will help maximize the performance of the device:

- Keep trace length to a minimum by placing the NVT20xx close to the processor.
- The trace length should have a time of flight less than half of the transition time to reduce ringing and reflections.
- The faster the edge of the signal, the higher the chance for ringing.
- The higher the drive strength (up to 15 mA), the higher the frequency the device can use.

In a 3.3 V to 1.8 V direction level shift, if the 3.3 V side is being driven by a totem pole type driver no pull-up resistor is needed on the 3.3 V side. The capacitance and line length of concern is on the 1.8 V side since it is driven through the ON resistance of the NVT20xx. If the line length on the 1.8 V side is long enough there can be a reflection at the chip/terminating end of the wire when the transition time is shorter than the time of flight of the wire because the NVT20xx looks like a high-impedance compared to the wire. If the wire is not too long and the lumped capacitance is not excessive the signal will only be slightly degraded by the series resistance added by passing through the NVT20xx. If the lumped capacitance is large the rise time will deteriorate, the fall time is much less affected and if the rise time is slowed down too much the duty cycle of the clock will be degraded and at some point the clock will no longer be useful. So the principle design consideration is to minimize the wire length and the capacitance on the 1.8 V side for the clock path. A pull-up resistor on the 1.8 V side can also be used to trade a slower fall time for a faster rise time and can also reduce the overshoot in some cases.

7.4.1.1 Example maximum frequency

Question — We need to make the PLL area of a new line card backwards compatible and need to convert one GTL signal to LVTTL, invert it, and convert it back to GTL. The signal we want to convert is random in nature but will mostly be around 19 MHz with very long periods of inactivity where either a HIGH or LOW state will be maintained. The traces are 1 or 2 inches long with trace capacitance of about 2 pF per inch.

Answer — The frequency of the NVT20xx is limited by the capacitance of the part, the capacitance of the traces and the pull-up resistors used. The limiting case is probably the LOW-to-HIGH transition in the GTL to LVTTL direction, and there the use of the lowest acceptable resistor values will minimize the rise time delay. Assuming 50 pF capacitance and 220 Ω resistance, the RC time constant is 11 ns (50 pF × 220 Ω). With 19 MHz corresponding to 50 ns period the NVT20xx will support this application.

8. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Over operating free-air temperature range.

	<u> </u>				
Symbol	Parameter	Conditions	Min	Max	Unit
$V_{ref(A)}$	reference voltage (A)		-0.5	+6	V
$V_{ref(B)}$	reference voltage (B)		-0.5	+6	V
VI	input voltage		-0.5 ^[1]	+6	V
$V_{I/O}$	voltage on an input/output pin		-0.5 ^[1]	+6	V
I _{ch}	channel current (DC)		-	128	mA
I _{IK}	input clamping current	$V_I < 0 V$	-50	-	mA
I _{OK}	output clamping current[2]		-50	+50	mA
T _{stg}	storage temperature		-65	+150	°C

^[1] The input and input/output negative voltage ratings may be exceeded if the input and input/output clamp current ratings are observed.

9. Recommended operating conditions

Table 7. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{I/O}$	voltage on an input/output pin	An, Bn	0	5.5	V
V _{ref(A)} [1]	reference voltage (A)	VREFA	0	5.4	V
$V_{ref(B)}^{\underline{[1]}}$	reference voltage (B)	VREFB	0	5.5	V
$V_{I(EN)}$	input voltage on pin EN		0	5.5	V
I _{sw(pass)}	pass switch current		-	64	mA
T _{amb}	ambient temperature	operating in free-air	-40	+85	°C

^[1] $V_{ref(A)} \le V_{ref(B)} - 1 \ V$ for best results in level shifting applications.

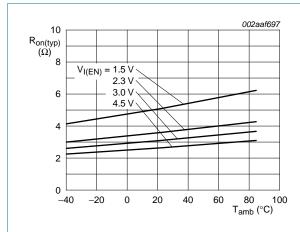
^[2] Low duty cycle pulses, not DC because of heating.

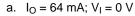
10. Static characteristics

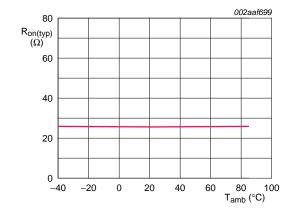
Table 8. Static characteristics

 $T_{amb} = -40$ °C to +85 °C, unless otherwise specified.

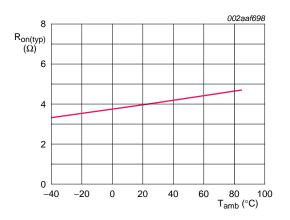
Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
V_{IK}	input clamping voltage	$I_I = -18 \text{ mA}; \ V_{I(EN)} = 0 \text{ V}$	-	-	-1.2	V
I _{IH}	HIGH-level input current	$V_{I} = 5 \text{ V}; V_{I(EN)} = 0 \text{ V}$	-	-	5	μΑ
$C_{i(EN)}$	input capacitance on pin EN	$V_I = 3 V \text{ or } 0 V$	-	17	-	pF
$C_{\text{io(off)}}$	off-state input/output capacitance	An, Bn; $V_O = 3 \text{ V or } 0 \text{ V}$; $V_{I(EN)} = 0 \text{ V}$	-	5	6	pF
C _{io(on)}	on-state input/output capacitance	An, Bn; $V_O = 3 \text{ V or } 0 \text{ V};$ $V_{I(EN)} = 3 \text{ V}$	-	11.5	13[2]	pF
R _{on}	ON-state resistance[3][4]	An, Bn; $V_I = 0 \text{ V}$; $I_O = 64 \text{ mA}$; $V_{I(EN)} = 4.5 \text{ V}$	^[5] 1	2.7	5.0	Ω
		V _I = 2.4 V; I _O = 15 mA; V _{I(EN)} = 4.5 V	-	4.8	7.5	Ω

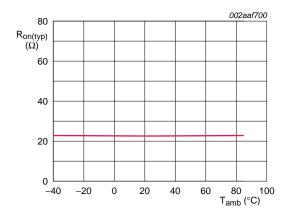

^[1] All typical values are at T_{amb} = 25 °C.


^[2] Not production tested, maximum value based on characterization data of typical parts.


^[3] Measured by the voltage drop between the An and Bn terminals at the indicated current through the switch. ON-state resistance is determined by the lowest voltage of the two terminals.

^[4] See curves in Figure 11 for typical temperature and $V_{I(EN)}$ behavior.


^[5] Guaranteed by design.



c. $I_O = 15 \text{ mA}$; $V_I = 2.4 \text{ V}$; $V_{I(EN)} = 3.0 \text{ V}$

b. $I_O = 15 \text{ mA}$; $V_I = 2.4 \text{ V}$; $V_{I(EN)} = 4.5 \text{ V}$

d. $I_O = 15 \text{ mA}$; $V_I = 1.7 \text{ V}$; $V_{I(EN)} = 2.3 \text{ V}$

Fig 11. Typical ON-state resistance versus ambient temperature

11. Dynamic characteristics

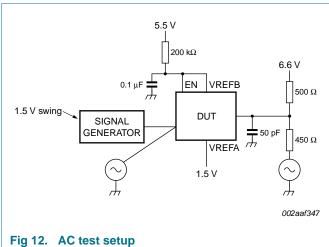

11.1 Open-drain drivers

Table 9. Dynamic characteristics for open-drain drivers

 $T_{amb} = -40$ °C to +85 °C; $V_{I(EN)} = V_{ref(B)}$; $R_{bias(ext)} = 200$ k Ω ; $C_{VREFB} = 0.1$ μF ; unless otherwise specified.

Symbol	Parameter	Conditions	N	/lin	Тур	Max	Unit
Refer to	Figure 14						
t _{PLH}	LOW to HIGH propagation delay	from (input) Bn to (output) An	<u>[1]</u>	R _{on}	× (C _L +	C _{io(on)})	ns
t _{PHL}	HIGH to LOW propagation delay	from (input) Bn to (output) An		R _{on}	× (C _L +	C _{io(on)})	ns

[1] See graphs based on R_{on} typical and $C_{io(on)}$ + C_L = 50 pF.

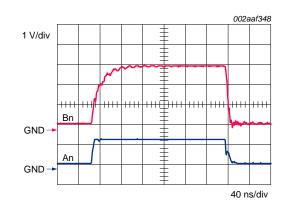
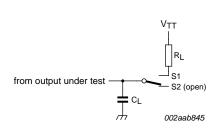
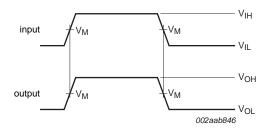




Fig 13. Example of typical AC waveform

a. Load circuit

Timing diagram; high-impedance scope probe used

S2 = translating down, and same voltage.

C_L includes probe and jig capacitance.

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z_0 = 50 Ω ; $t_f \leq$ 2 ns; $t_f \leq$ 2 ns. The outputs are measured one at a time, with one transition per measurement.

Fig 14. Load circuit for outputs

NVT2008_NVT2010

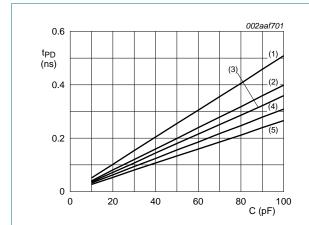
All information provided in this document is subject to legal disclaimers.

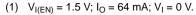
© NXP B.V. 2012. All rights reserved

12. Performance curves

 t_{PLH} up-translation is typically dominated by the RC time constant, i.e., $C_{L(tot)} \times R_{PU} = 50 \text{ pF} \times 197 \ \Omega = 9.85 \text{ ns}$, but the $R_{on} \times C_{L(tot)} = 50 \text{ pF} \times 5 \ \Omega = 0.250 \text{ ns}$.

 t_{PHL} is typically dominated by the external pull-down driver + R_{on} , which is typically small compared to the t_{PLH} in an up-translation case.

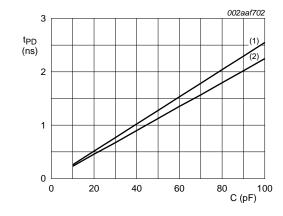

Enable/disable times are dominated by the RC time constant on the EN pin since the transistor turn off is on the order of ns, but the enable RC is on the order of ms.


Fall time is dominated by the external pull-down driver with only a slight Ron addition.

Rise time is dominated by the $R_{PU}\times C_L.$

Skew time within the part is virtually non-existent, dominated by the difference in bond wire lengths, which is typically small compared to the board-level routing differences.

Maximum data rate is dominated by the system capacitance and pull-up resistors.


(2)
$$V_{I(EN)} = 4.5 \text{ V}$$
; $I_O = 15 \text{ mA}$; $V_I = 2.4 \text{ V}$.

(3)
$$V_{I(EN)} = 2.3 \text{ V}$$
; $I_O = 64 \text{ mA}$; $V_I = 0 \text{ V}$.

(4)
$$V_{I(EN)} = 3.0 \text{ V}$$
; $I_O = 64 \text{ mA}$; $V_I = 0 \text{ V}$.

(5) $V_{I(EN)} = 4.5 \text{ V}$; $I_O = 64 \text{ mA}$; $V_I = 0 \text{ V}$.

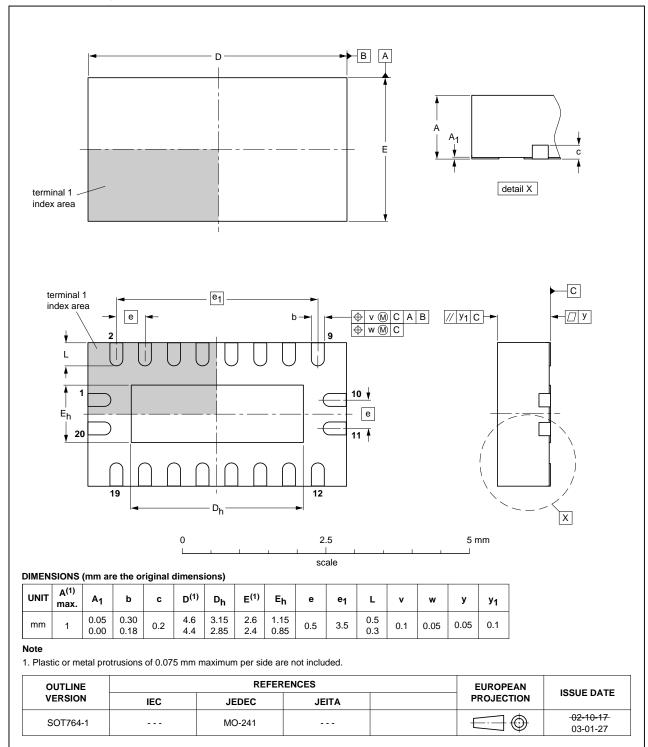
Fig 15. Typical capacitance versus propagation delay

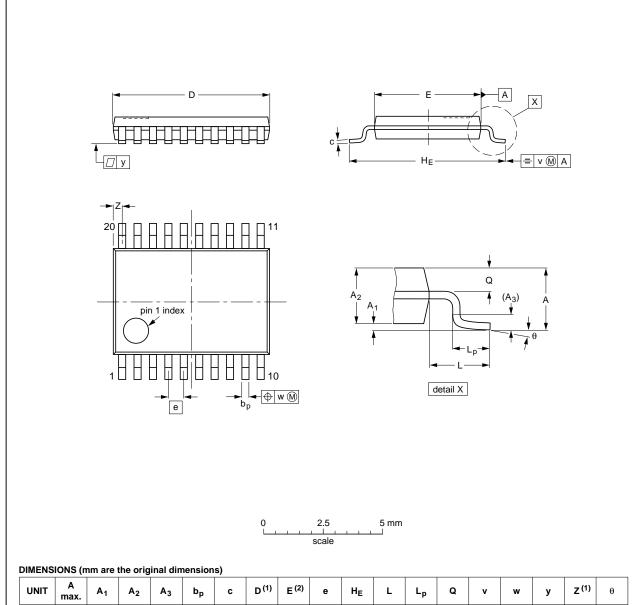
(1)
$$V_{I(EN)} = 3.0 \text{ V}$$
; $I_O = 15 \text{ mA}$; $V_I = 2.4 \text{ V}$.

(2)
$$V_{I(EN)} = 2.3 \text{ V}$$
; $I_O = 15 \text{ mA}$; $V_I = 1.7 \text{ V}$.

13. Package outline

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1




Fig 16. Package outline SOT764-1 (DHVQFN20)

NVT2008_NVT2010 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

Ξ							-,												
	UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT360-1		MO-153			99-12-27 03-02-19
			•	•	

Fig 17. Package outline SOT360-1 (TSSOP20)

NVT2008_NVT2010

DHVQFN24: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5 \times 5.5 \times 0.85$ mm

SOT815-1

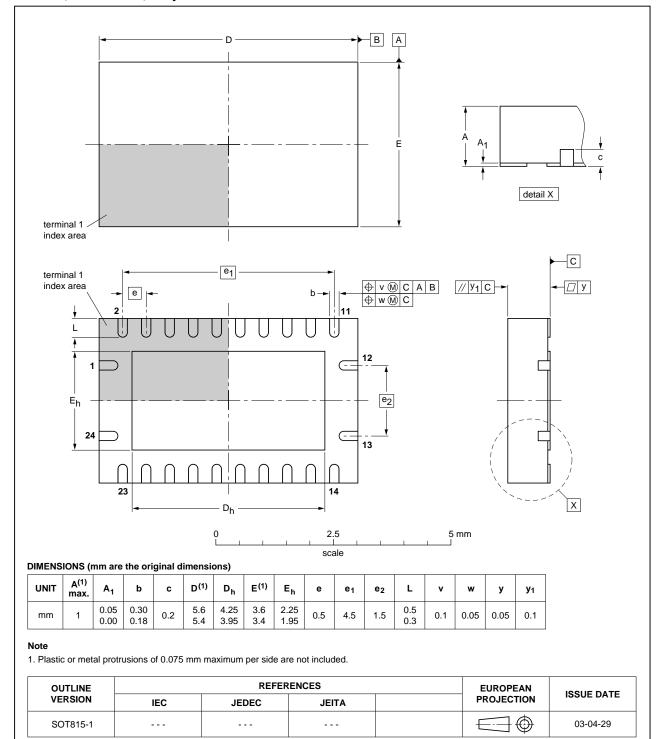


Fig 18. Package outline SOT815-1 (DHVQFN24)

NVT2008_NVT2010 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

HVQFN24: plastic thermal enhanced very thin quad flat package; no leads; 24 terminals; body 4 x 4 x 0.85 mm

SOT616-1

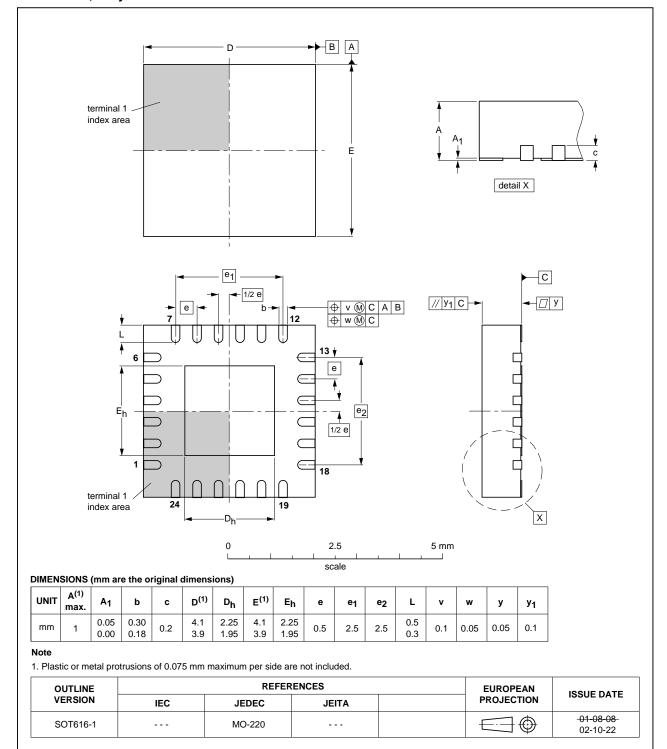
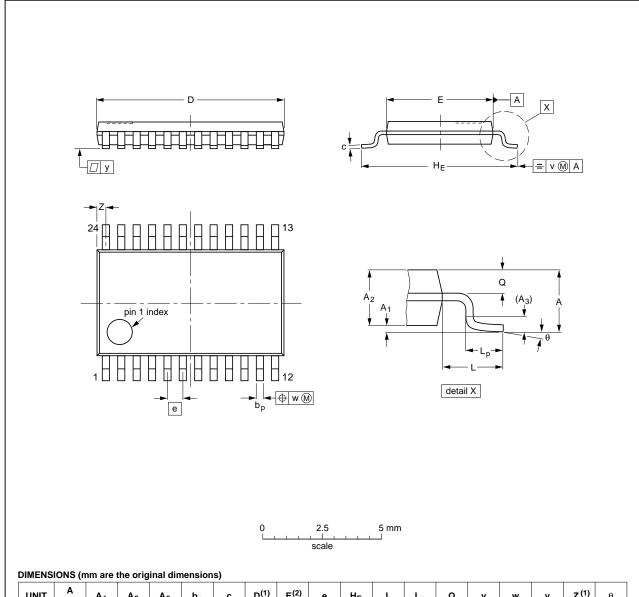


Fig 19. Package outline SOT616-1 (HVQFN24)


NVT2008_NVT2010

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

SOT355-1

DINILIAO	10110 (11	iiiii aic	inc ong	illai alli	10113101	3)												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	7.9 7.7	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN	ISSUE DATE		
	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT355-1		MO-153				99-12-27 03-02-19	
					1	03-02-19	

Fig 20. Package outline SOT355-1 (TSSOP24)

NVT2008_NVT2010

14. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

14.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

14.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- · Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

14.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

NVT2008_NVT2010

14.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 21</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 10 and 11

Table 10. SnPb eutectic process (from J-STD-020C)

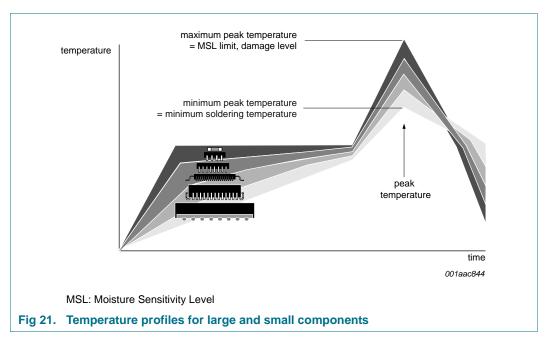

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	

Table 11. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C) Volume (mm³)			
	< 350	350 to 2000	> 2000	
< 1.6	260	260	260	
1.6 to 2.5	260	250	245	
> 2.5	250	245	245	

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 21.

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

15. Abbreviations

Table 12. Abbreviations

Description	
Charged Device Model	
ElectroStatic Discharge	
Gunning Transceiver Logic	
Human Body Model	
Inter-Integrated Circuit bus	
Input/Output	
Low Voltage Transistor-Transistor Logic	
Pulse Repetition Rate	
Resistor-Capacitor network	

16. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
NVT2008_NVT2010 v.2	20120903	Product data sheet	-	NVT2008_NVT2010 v.1
Modifications:	 <u>Section 2 "Features and benefits"</u>, ninth bullet item: deleted phrase "200 V MM per JESD22-A115" <u>Figure 6 "Pin configuration for HVQFN24"</u>: pinning arrangement corrected <u>Table 2 "Pin description"</u>: separated columns for NVT2010 packages with different pinning separated all pin functions per pin 			
NVT2008_NVT2010 v.1	20100908	Product data sheet	-	-

17. Legal information

18. Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

NVT2008_NVT2010

NVT2008; NVT2010

Bidirectional voltage-level translator

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

20. Contents

1	General description			
2	Features and benefits 1			
3	Ordering information			
4	Functional diagram 3			
5	Pinning information			
5.1	Pinning			
5.1.1	8-bit in TSSOP20 and DHVQFN20 packages . 3			
5.1.2	10-bit in TSSOP24, DHVQFN24 and HVQFN24			
	packages			
5.2	Pin description 5			
6	Functional description 6			
6.1	Function table 6			
7	Application design-in information 6			
7.1	Enable and disable 6			
7.2	Bidirectional translation			
7.3	Bidirectional level shifting between two different			
7.4	power domains nominally at the same potential 9 Sizing pull-up resistor			
7. 4 .1	Maximum frequency calculation			
7.4.1.1	Example maximum frequency			
8	Limiting values			
9	Recommended operating conditions 11			
10	Static characteristics 12			
11	Dynamic characteristics			
11.1	Open-drain drivers			
12	Performance curves			
13	Package outline			
14	Soldering of SMD packages			
14.1	Introduction to soldering 21			
14.2	Wave and reflow soldering 21			
14.3	Wave soldering 21			
14.4	Reflow soldering			
15	Abbreviations			
16	Revision history			
17	Legal information			
18	Data sheet status 25			
18.1	Definitions			
18.2	Disclaimers			
18.3	Trademarks			
19	Cantast information of			
20	Contact information			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.