

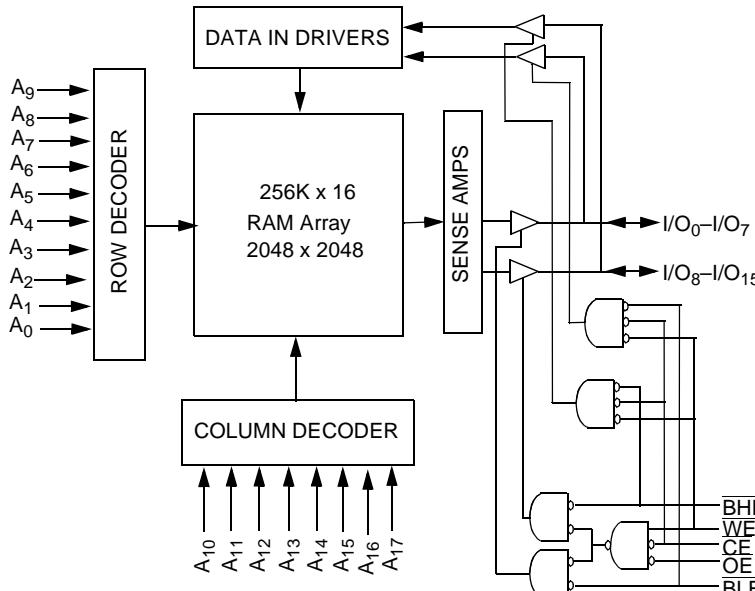
256K x 16 Static RAM

Features

- Low voltage range:
— CY62146V: 2.7V–3.6V
- Ultra-low active, standby power
- Easy memory expansion with \overline{CE} and \overline{OE} features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

The CY62146V is a high-performance CMOS static RAM organized as 262,144 words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (\overline{CE} HIGH). The input/output pins (I/O₀ through

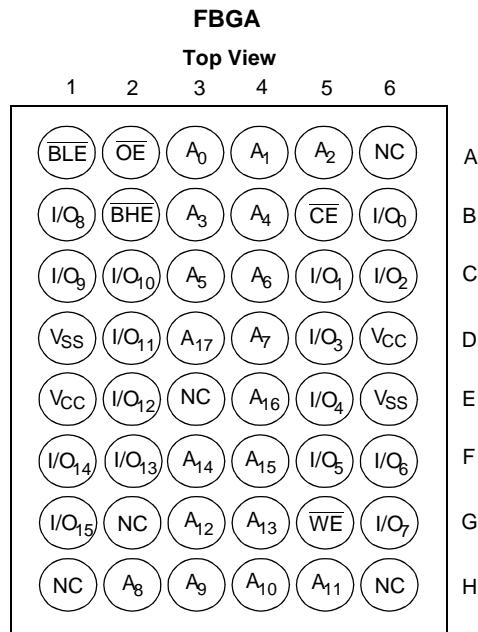

I/O₁₅) are placed in a high-impedance state when: deselected (\overline{CE} HIGH), outputs are disabled (\overline{OE} HIGH), \overline{BHE} and \overline{BLE} are disabled (\overline{BHE} , \overline{BLE} HIGH), or during a write operation (\overline{CE} LOW, and \overline{WE} LOW).

Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₆). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

The CY62146V is available in 48-Ball FBGA and standard 44-Pin TSOP Type II (forward pinout) packaging.

Logic Block Diagram



Pin Configurations

TSOP II (Forward)

Top View	
A ₄	1
A ₃	2
A ₂	3
A ₁	4
A ₀	5
CE	6
I/O ₀	7
I/O ₁	8
I/O ₂	9
I/O ₃	10
V _{CC}	11
V _{SS}	12
I/O ₄	13
I/O ₅	14
I/O ₆	15
I/O ₇	16
WE	17
A ₁₆	18
A ₁₅	19
A ₁₄	20
A ₁₃	21
A ₁₂	22
A ₅	44
A ₆	43
A ₇	42
OE	41
BHE	40
BLE	39
I/O ₁₅	38
I/O ₁₄	37
I/O ₁₃	36
I/O ₁₂	35
V _{SS}	34
V _{CC}	33
I/O ₁₁	32
I/O ₁₀	31
I/O ₉	30
I/O ₈	29
NC	28
A ₈	27
A ₉	26
A ₁₀	25
A ₁₁	24
A ₁₇	23

MoBL and More Battery Life are trademarks of Cypress Semiconductor Corporation.

Pin Configurations (continued)

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to +150°C

Ambient Temperature with

Power Applied -55°C to +125°C

Supply Voltage to Ground Potential -0.5V to +4.6V

DC Voltage Applied to Outputs
in High Z State^[1] -0.5V to V_{CC} + 0.5V

DC Input Voltage^[1] -0.5V to V_{CC} + 0.5V

Output Current into Outputs (LOW)..... 20 mA

Static Discharge Voltage >2001V
(per MIL-STD-883, Method 3015)

Latch-Up Current >200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
CY62146V	Industrial	-40°C to +85°C	2.7V to 3.6V

Product Portfolio

Product	V _{CC} Range			Power	Power Dissipation (Industrial)			
					Operating (I _{CC})		Standby (I _{SB2})	
	V _{CC(min.)}	V _{CC(typ.)} ^[2]	V _{CC(max.)}		Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62146V	2.7V	3.0V	3.6V	LL	7 mA	15 mA	2 μ A	20 μ A

Notes:

1. V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.

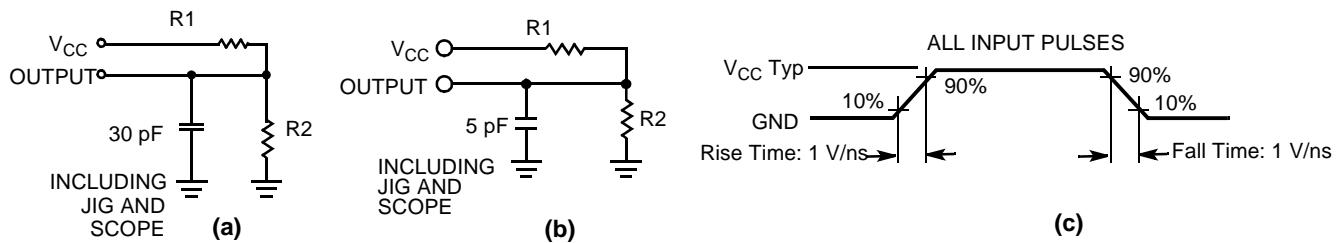
2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		CY62146V			Unit
				Min.	Typ. ^[2]	Max.	
V_{OH}	Output HIGH Voltage	$I_{OH} = -1.0$ mA	$V_{CC} = 2.7V$	2.4			V
V_{OL}	Output LOW Voltage	$I_{OL} = 2.1$ mA	$V_{CC} = 2.7V$			0.4	V
V_{IH}	Input HIGH Voltage		$V_{CC} = 3.6V$	2.2		$V_{CC} + 0.5V$	V
V_{IL}	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V
I_{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-1	± 1	+1	μA
I_{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled		-1	+1	+1	μA
I_{CC}	V_{CC} Operating Supply Current	$I_{OUT} = 0$ mA, $f = f_{MAX} = 1/t_{RC}$, CMOS Levels	$V_{CC} = 3.6V$		7	15	mA
		$I_{OUT} = 0$ mA, $f = 1$ MHz, CMOS Levels			1	2	mA
I_{SB1}	Automatic CE Power-Down Current—CMOS Inputs	$\overline{CE} \geq V_{CC} - 0.3V$, $V_{IN} \geq V_{CC} - 0.3V$ or $V_{IN} \leq 0.3V$, $f = f_{MAX}$		2	20	μA	
I_{SB2}	Automatic CE Power-Down Current—CMOS Inputs	$\overline{CE} \geq V_{CC} - 0.3V$ $V_{IN} \geq V_{CC} - 0.3V$ or $V_{IN} \leq 0.3V$, $f = 0$	$V_{CC} = 3.6V$				

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^\circ C$, $f = 1$ MHz, $V_{CC} = V_{CC(\text{typ.})}$	6	pF
C_{OUT}	Output Capacitance		8	pF


Thermal Resistance

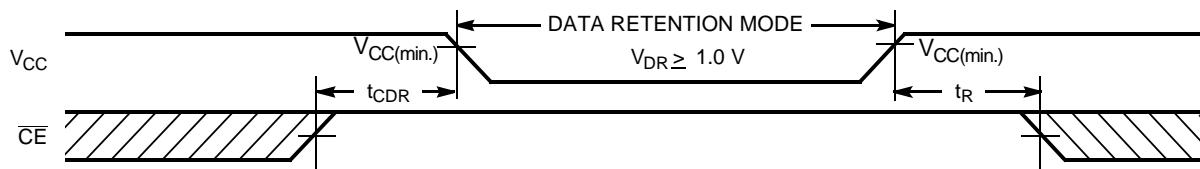
Description	Test Conditions	Symbol	BGA	TSOPII	Unit
Thermal Resistance (Junction to Ambient) ^[3]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	60	$^\circ C/W$
Thermal Resistance (Junction to Case) ^[3]		Θ_{JC}	16	22	$^\circ C/W$

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT



Parameter	3.0V	Unit
R1	1105	Ω
R2	1550	Ω
R _{TH}	645	Ω
V _{TH}	1.75	V

Data Retention Characteristics (Over the Operating Range)

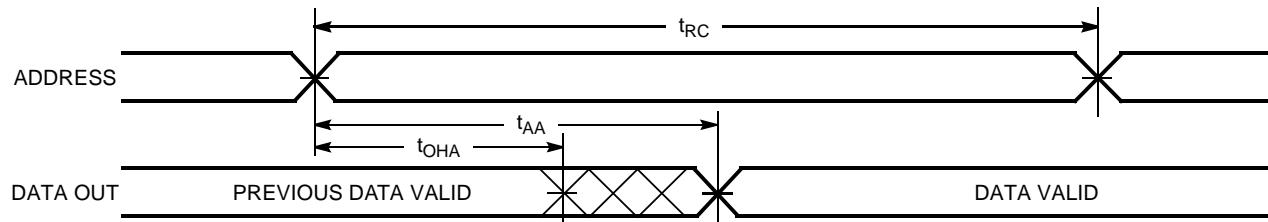
Parameter	Description	Conditions	Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention)		1.0		3.6	V
I _{CCDR}	Data Retention Current	V _{CC} = 1.0V CE ≥ V _{CC} - 0.3V, V _{IN} ≥ V _{CC} - 0.3V or V _{IN} ≤ 0.3V No input may exceed V _{CC} + 0.3V	LL	1	10	µA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[4]	Operation Recovery Time		70			ns

Data Retention Waveform

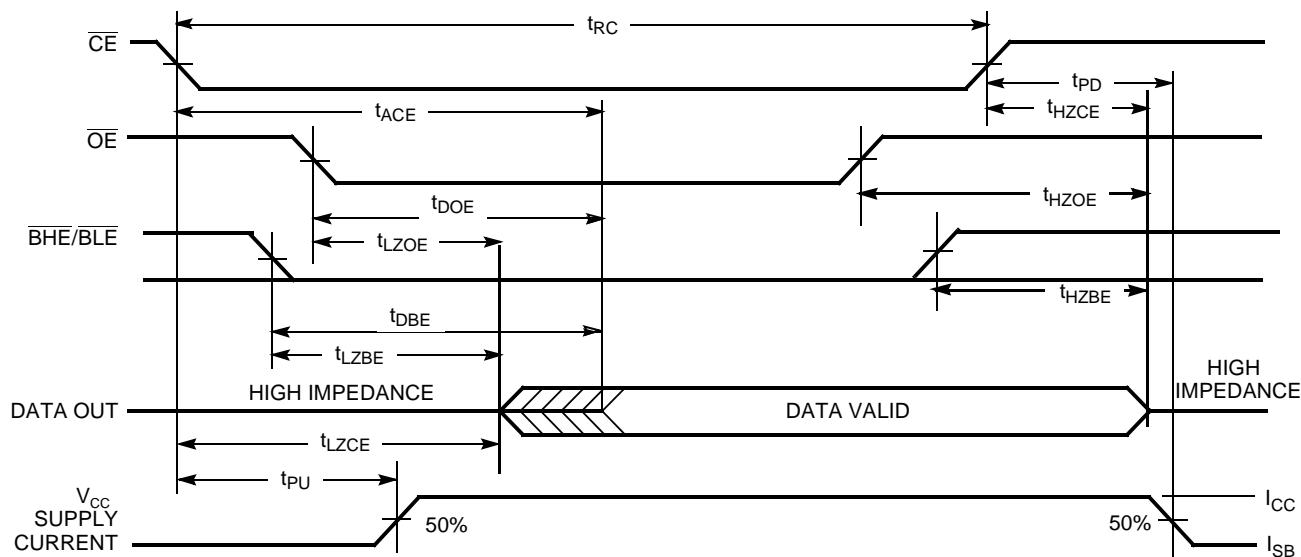
Note:

4. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 10 µs or stable V_{CC(min.)} ≥ 10 µs.

Switching Characteristics Over the Operating Range^[5]

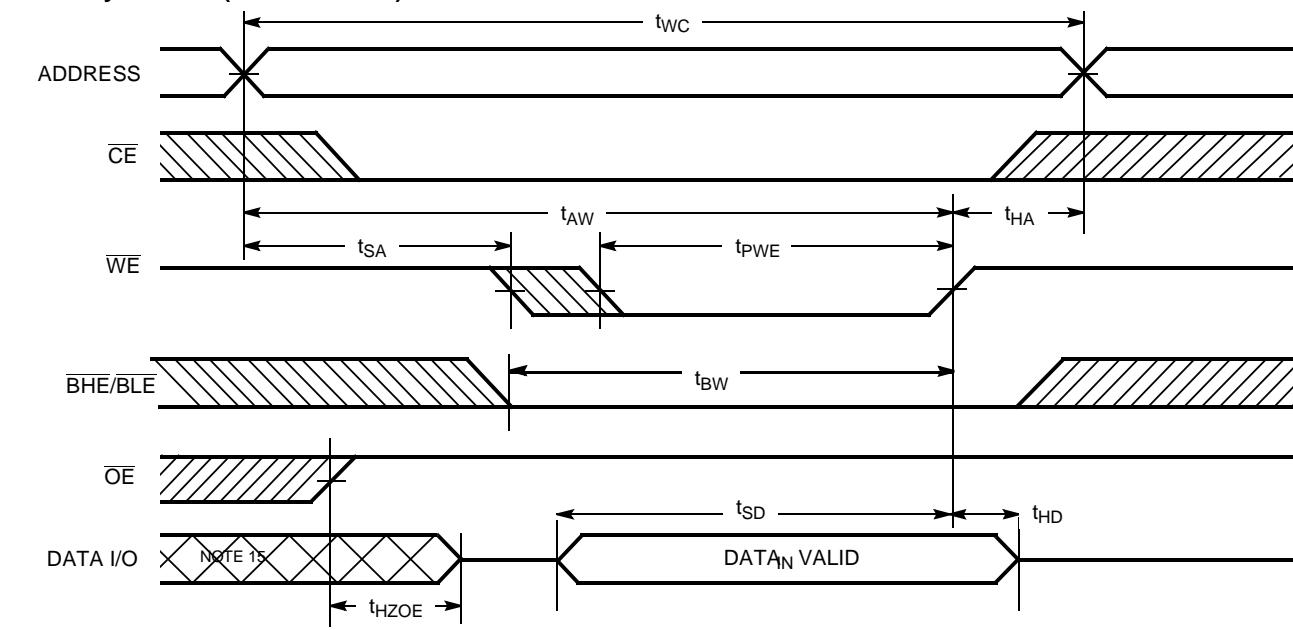
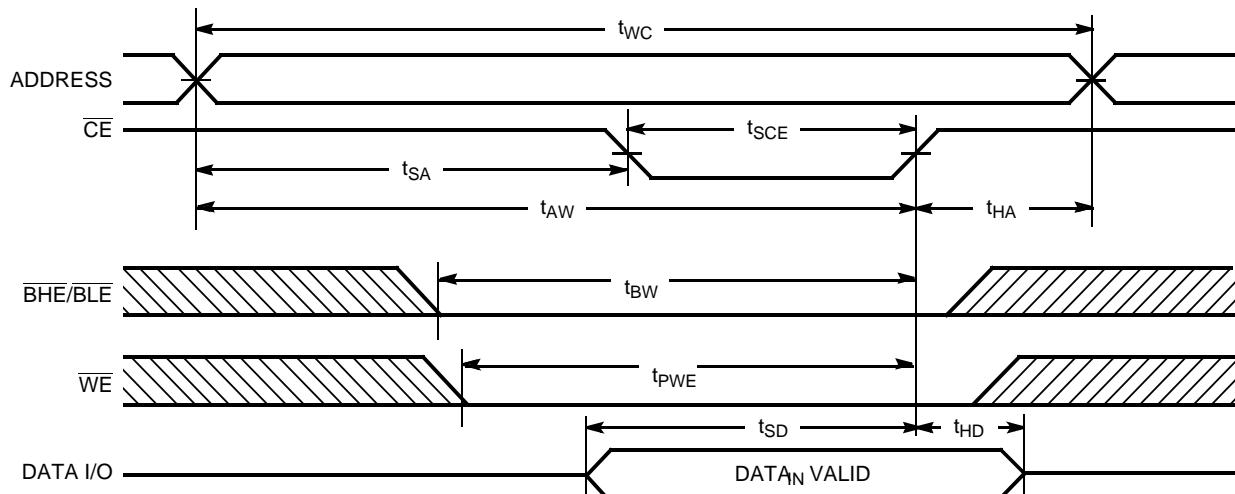

Parameter	Description	70 ns		Unit
		Min.	Max.	
READ CYCLE				
t_{RC}	Read Cycle Time	70		ns
t_{AA}	Address to Data Valid		70	ns
t_{OHA}	Data Hold from Address Change	10		ns
t_{ACE}	\overline{CE} LOW to Data Valid		70	ns
t_{DOE}	\overline{OE} LOW to Data Valid		25	ns
t_{LZOE}	\overline{OE} LOW to Low Z ^[6, 7]	5		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[7]		20	ns
t_{LZCE}	\overline{CE} LOW to Low Z ^[6]	10		ns
t_{HZCE}	\overline{CE} HIGH to High Z ^[6, 7]		20	ns
t_{PU}	\overline{CE} LOW to Power-Up	0		ns
t_{PD}	\overline{CE} HIGH to Power-Down		70	ns
t_{DBE}	\overline{BHE} / \overline{BLE} LOW to Data Valid		35	ns
t_{LZBE}	\overline{BHE} / \overline{BLE} LOW to Low Z	5		ns
t_{HZBE}	\overline{BHE} / \overline{BLE} HIGH to High Z		20	ns
WRITE CYCLE ^[8, 9]				
t_{WC}	Write Cycle Time	70		ns
t_{SCE}	\overline{CE} LOW to Write End	60		ns
t_{AW}	Address Set-Up to Write End	60		ns
t_{HA}	Address Hold from Write End	0		ns
t_{SA}	Address Set-Up to Write Start	0		ns
t_{PWE}	\overline{WE} Pulse Width	40		ns
t_{BW}	\overline{BHE} / \overline{BLE} Pulse Width	60		ns
t_{SD}	Data Set-Up to Write End	30		ns
t_{HD}	Data Hold from Write End	0		ns
t_{HZWE}	\overline{WE} LOW to High Z ^[6, 7]		25	ns
t_{LZWE}	\overline{WE} HIGH to Low Z ^[6]	10		ns

Notes:

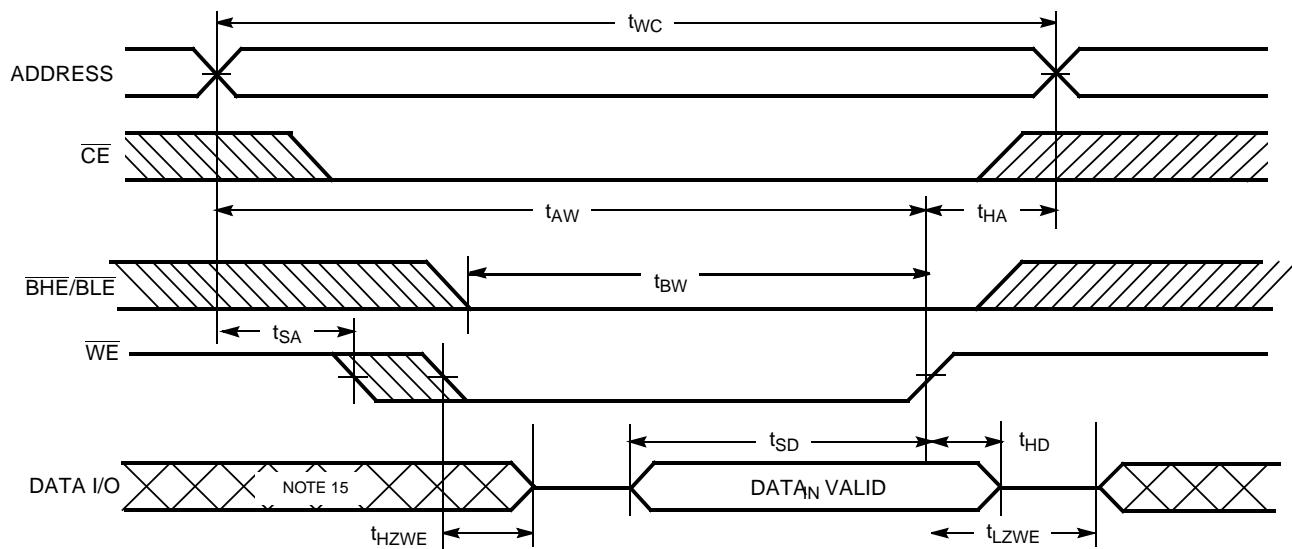
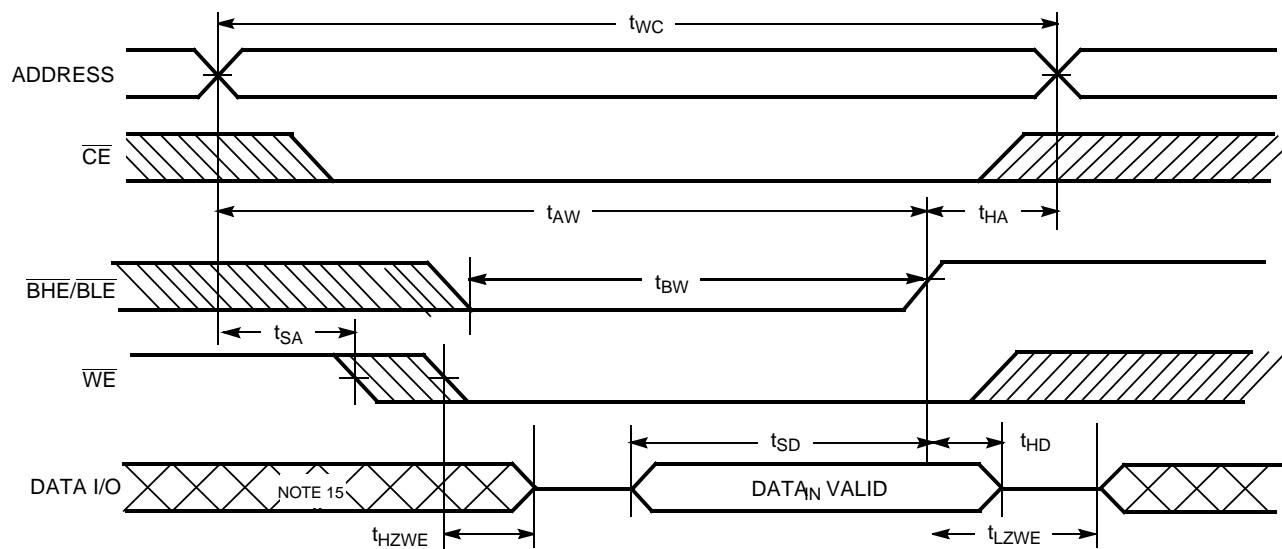

5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to $V_{CC(\text{typ.})}$, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.
6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.
7. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with $C_L = 5$ pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.
8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. The minimum write cycle time for Write Cycle #3 (WE controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD} .

Switching Waveforms

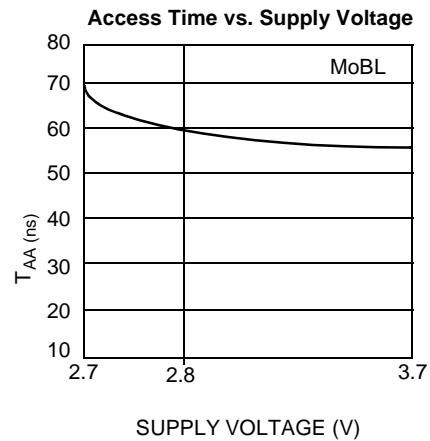
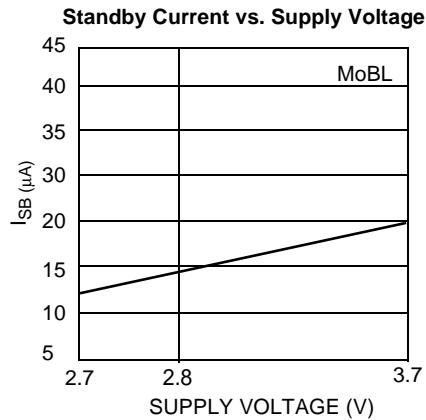
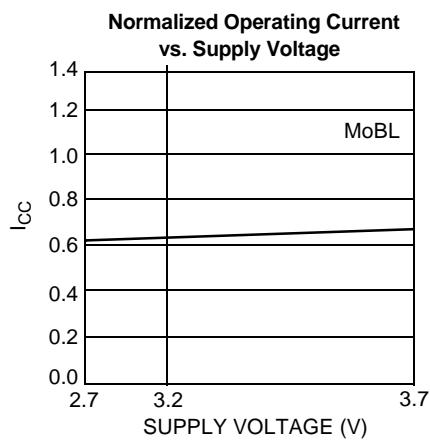
Read Cycle No. 1^[10, 11]

Read Cycle No. 2^[11, 12]

Notes:




10. Device is continuously selected. \overline{OE} , \overline{CE} = V_{IL} .
11. WE is HIGH for read cycle.
12. Address valid prior to or coincident with \overline{CE} transition LOW.

Switching Waveforms (continued)
Write Cycle No. 1 (\overline{WE} Controlled) ^[8, 13, 14]

Write Cycle No. 2 (\overline{CE} Controlled) ^[8, 13, 14]

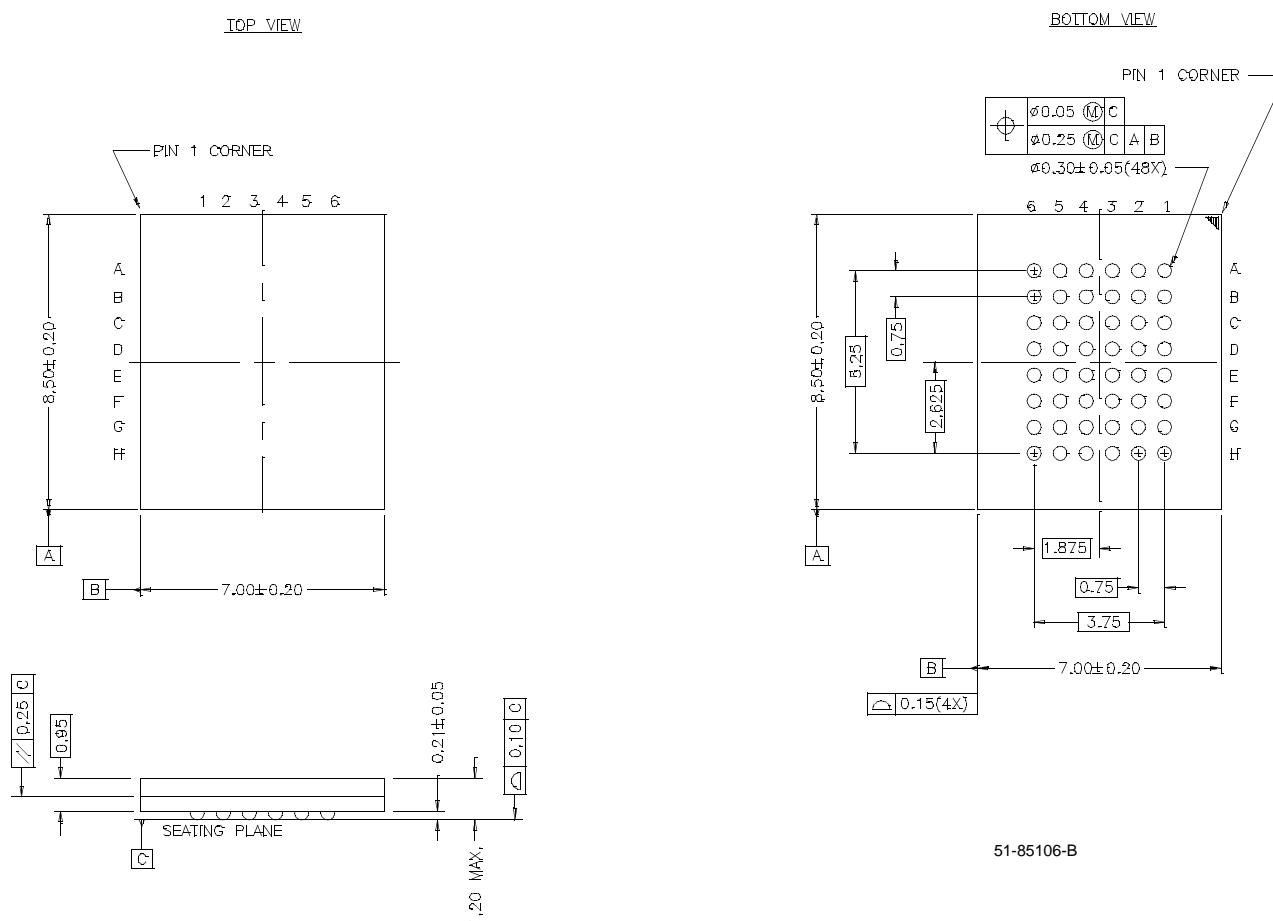
Notes:

13. Data I/O is high-impedance if $\overline{OE} = V_{IH}$.
14. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.
15. During this period, the I/Os are in output state and input signals should not be applied.

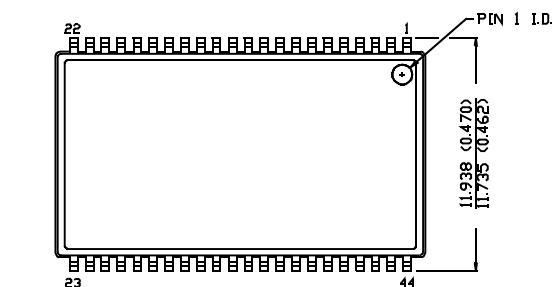
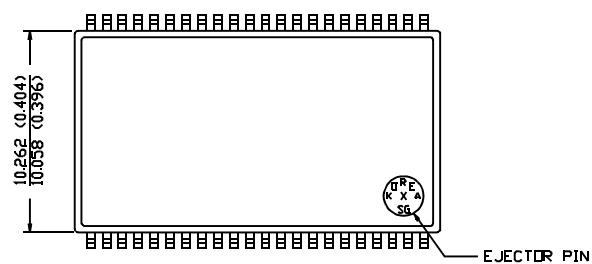
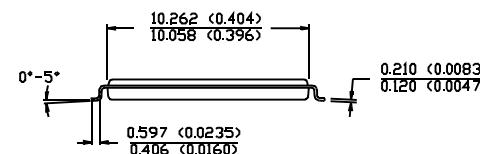
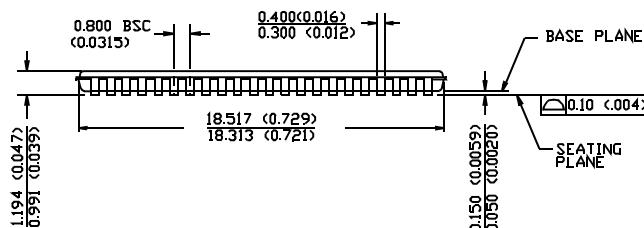
Switching Waveforms (continued)
Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[9, 14]

Write Cycle No. 4 ($\overline{\text{BHE/BLE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[15]

Typical DC and AC Characteristics


Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
H	X	X	X	X	High Z	Deselect/Power-Down	Standby (I _{SB})
L	H	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	H	L	H	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	H	L	L	H	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	H	L	H	H	High Z	Output Disabled	Active (I _{CC})
L	H	H	X	X	High Z	Output Disabled	Active (I _{CC})
L	L	X	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	L	X	H	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	X	L	H	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})
L	L	X	H	H	High Z	Output Disabled	Active (I _{CC})





Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62146VLL-70ZI	Z44	44-Pin TSOP II	Industrial
	CY62146VLL-70BAI	BA48B	48-Ball Fine Pitch BGA	

Document #: 38-00647-*E

Package Diagrams
48-Ball (7.00 mm x 8.50 mm x 1.20 mm) Fine Pitch BGA BA48B

Package Diagrams (continued)
44-Pin TSOP II Z44

 DIMENSION IN MM (INCH)
 MAX
 MIN

TOP VIEW

BOTTOM VIEW

51-85087-A

Revision History

Document Title: CY62146V MoBL Document Number: 38-00647				
REV.	ECN NO.	ISSUE DATE	ORIG. OF CHANGE	DESCRIPTION OF CHANGE
**	2056	12/01/98	SKX	1. New Data Sheet
*A	2518	2/24/99	SKX	1. Changed the voltage range to 1.8V–3.6V 2. Removed the shading on LL version.
*B	2656	8/27/99	SKX	1. Split part into 62146V & 62146V18; shaded 62146V18 part 2. Speed bin 70 ns only 3. Make final
*C	2855	1/12/00	CXV	1. Add thermal resistance table 2. Change graphs on last page to include: I_{SS} , I_{CC} , T_{AA} only
*D	3162	7/24/00	CXV	1. Separating MoBL/MoBL 2 2. Added 85 ns bin 3. Added Std. power bin
*E	3618	3/26/01	BCX	1. Package name change from BA49-BA48B 2. Dimension change from 7x 8.5 x 1.1 to 7 x 8.5 x 1.2 3. Typical DC and AC graphs changed