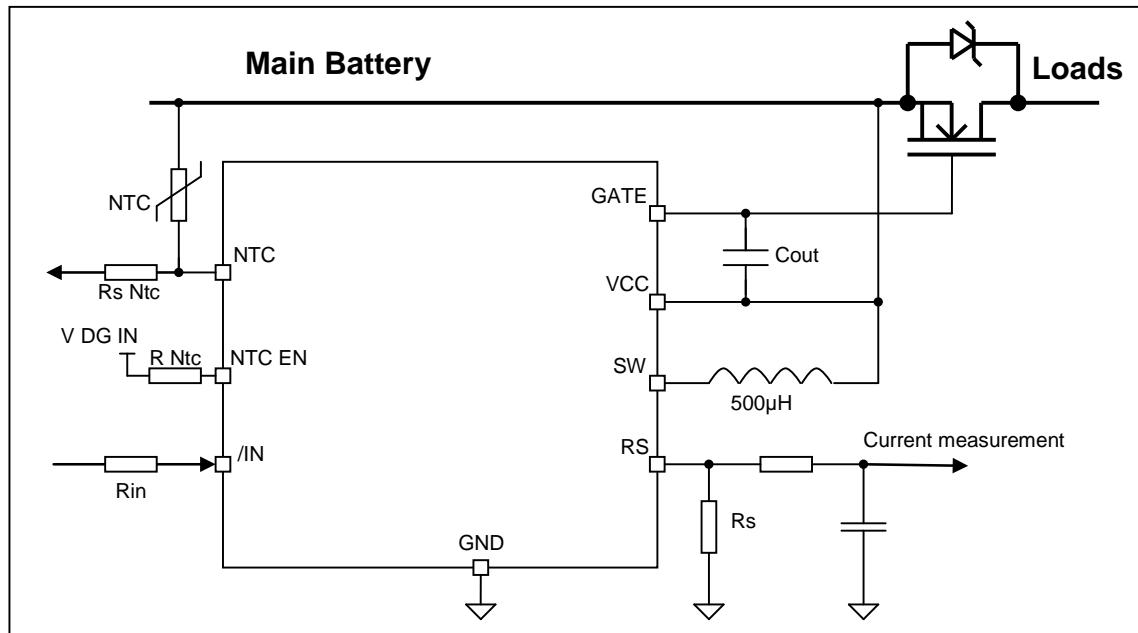


LOW QUIESCENT CURRENT MOSFET DRIVER

Features

- Very low quiescent current on state
- Boost converter with integrated diode
- Standard level gate voltage
- Wide operating voltage 4-36V
- Temperature monitoring with NTC interface
- Lead-Free, Halogen Free, RoHS compliant


Applications

- Battery switch for Stop and Start system

Description

The AUIR3240S is a high side mosfet driver for battery switch application where a very low quiescent current is required when the driver is on. The AUIR3240S is a combination of a boost DC/DC converter using an external inductor and a gate driver. It drives standard level Mosfet even at low battery voltage. The input is active low to reduce current consumption.

Typical Connection

Product Summary

Operating voltage 4-36V
Vgate 11.5V min.
Iqcc On 50µA max.

Package

Qualification Information[†]

Qualification Level		Automotive (per AEC-Q100 ^{††})	
Comments: This family of ICs has passed an Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.			
Moisture Sensitivity Level		SOIC-8L	MSL2, 260°C (per IPC/JEDEC J-STD-020)
ESD	Machine Model	Class M0 (+/-50V) (per AEC-Q100-003)	
	Human Body Model	Class H0 (+/-50V) (per AEC-Q100-002)	
	Charged Device Model	Class C4 (+/-1000V) (per AEC-Q100-011)	
IC Latch-Up Test		Yes	
RoHS Compliant		Yes	

[†] Qualification standards can be found at International Rectifier's web site <http://www.irf.com/>

^{††} Exceptions to AEC-Q100 requirements, if any, are noted in the qualification report.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to Ground lead. (T_{ambient}=25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vcc-gnd	Maximum Vcc voltage	-0.3	65	V
Vgate-Vsw	Maximum Vgate-Vsw voltage	-1	65	
Vsw-gnd	Maximum Sw voltage	-0.3	65	
Vrs-gnd	Maximum Rs voltage	-0.3	6	
Vntc	Maximum Ntc voltage	-0.3	65	
Vntc_en	Maximum NTC_EN voltage	-0.3	6	
Vin	Maximum IN pin voltage	-0.3	6	
Isw	Maximum continuous current in SW pin	—	200	mA
T _j max.	Max. storage & operating temperature junction temperature	-40	150	°C

Thermal Characteristics

Symbol	Parameter	Typ.	Max.	Units
R _{th}	Thermal resistance junction to ambient	100	—	°C/W

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
V _{IH}	High level input voltage	2.5	5.5	V
V _{IL}	Low level input voltage	0	0.9	
R _s NTC	Serial NTC resistor	4	10	kΩ
R _{in}	Input resistor	4	10	

Static Electrical Characteristics

$T_j=40..125^\circ\text{C}$, $V_{cc}=6..16\text{V}$ (unless otherwise specified), typical value are given for $V_{cc}=14\text{V}$ and $T_j=25^\circ\text{C}$.

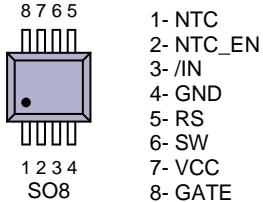
Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
$V_{cc\ op.}$	Operating voltage range	4	—	36	V	See page 10
$I_{q\ Vcc\ Off}$	Supply current when Off, $T_j=25^\circ\text{C}$	—	85	120	μA	$V_{in}=5\text{V}$, $NTC_EN=0\text{V}$ $K1\ off$, $K2\ on$
	Supply current when Off, $T_j=125^\circ\text{C}$	—	110	200		
$I_{q\ Vcc\ On}$	Supply current when On, $T_j=25^\circ\text{C}$	—	2	10	μA	$V_{in}=0\text{V}$, $NTC_EN=0\text{V}$ $K1\ off$, see page 8
	Supply current when On, $T_j=125^\circ\text{C}$	—	3	10		
$I_{q\ gate\ On}$	Quiescent current on Gate, $T_j=25^\circ\text{C}$	—	6	20	μA	$V_{in}=0\text{V}$, $V_{gate}=14\text{V}$ $K1\ off$, see page 8
	Quiescent current on Gate, $T_j=125^\circ\text{C}$	—	12	40		
$V_{br\ gate}$	Breakdown voltage between and V_{cc}	15	17	20	V	$I=10\text{mA}$
OV	Over-voltage protection	50	55	60		
I_{in}	Input current	—	30	65	μA	$V_{in}=5\text{V}$
$V_{in\ th}$	IN threshold voltage	1	2	2.5	V	
$V_{gs\ th}$	Gate output threshold	11.5	12.5	13.5		$I_{gate}=0\mu\text{A}$
$V_{rs\ th}$	R_s threshold, $T_j=-40^\circ\text{C}$	0.9	1.1	1.3		
	R_s threshold, $T_j=25^\circ\text{C}$	0.85	1	1.2		
	R_s threshold, $T_j=125^\circ\text{C}$	0.75	0.95	1.2		
$R_{ds\ on\ K1}$	$R_{ds\ on}$ of $K1$, $T_j=-40^\circ\text{C}$	—	8	13	Ω	$I=100\text{mA}$
	$R_{ds\ on}$ of $K1$, $T_j=25^\circ\text{C}$	—	11	15		
	$R_{ds\ on}$ of $K1$, $T_j=125^\circ\text{C}$	—	15	20		
$R_{ds\ on\ K2}$	$R_{ds\ on}$ of $K2$, $T_j=-40^\circ\text{C}$	—	20	30	Ω	
	$R_{ds\ on}$ of $K2$, $T_j=25^\circ\text{C}$	—	25	35		
	$R_{ds\ on}$ of $K2$, $T_j=125^\circ\text{C}$	—	40	55		
V_f	Forward voltage of rectifier diode	—	0.7	1	V	$I=100\text{mA}$
$I_{q\ ntc}$	Quiescent current in NTC	—	0.1	1	μA	$V_{NTC}=16\text{V}$, $V_{ntc_en}=0\text{V}$
I_{Ntc}	Out Ntc current $R_{ntc}=7\text{k}$, $V_{dg\ in}=5\text{V}$	—	1	—	mA	$V_{ntc}>6\text{V}$
$V_{th\ ntc_en}$	NTC_EN threshold voltage	1.15	1.5	1.9	V	$I=500\mu\text{A}$
I ratio ntc	Current ratio between NTC_EN and NTC	1.9	2.05	2.2		$V_{ntc}>6\text{V}$

Timing Converter Characteristics

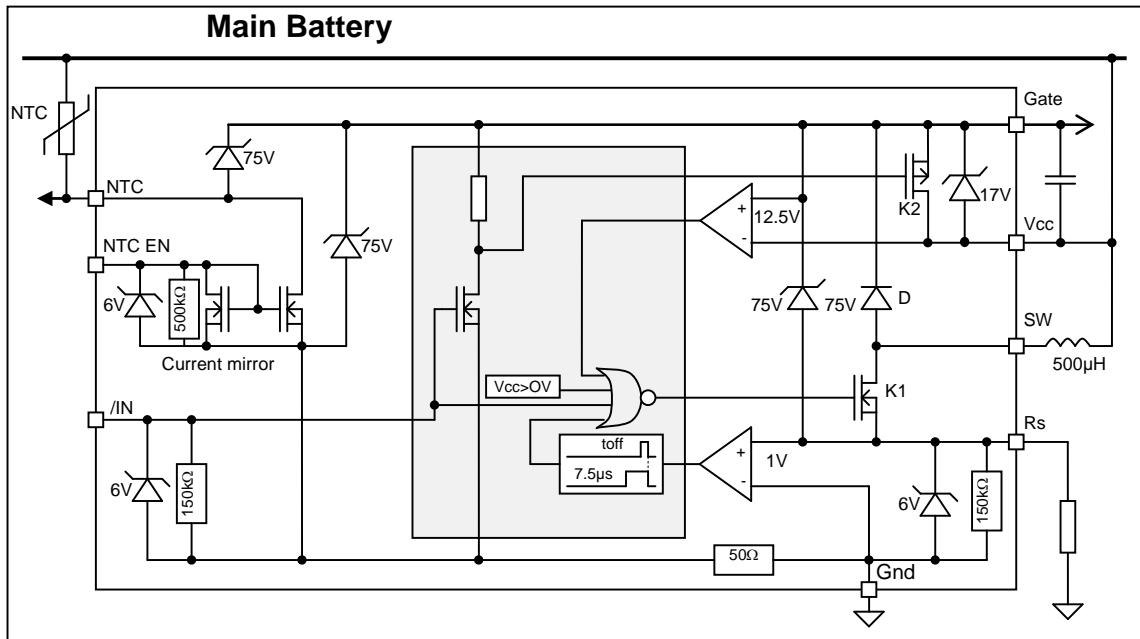
$T_j=40..125^\circ\text{C}$, $V_{cc}=6..16\text{V}$ (unless otherwise specified), typical value are given for $V_{cc}=14\text{V}$ and $T_j=25^\circ\text{C}$.

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
T_{off}	Off time	5	7.5	10	μs	
$T_{don\ K1}$	Turn-on delay of $K1$	—	0.2	—		
$T_{doff\ K1}$	Turn-off delay of $K1$	—	10	—		

Switching Characteristics

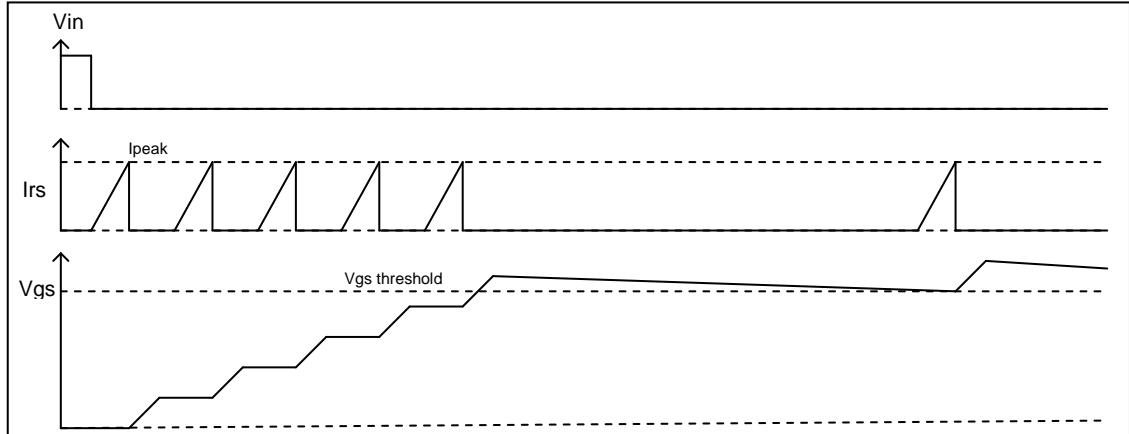

$T_j=40..125^\circ\text{C}$, $V_{cc}=6..16\text{V}$ (unless otherwise specified), typical value are given for $V_{cc}=14\text{V}$ and $T_j=25^\circ\text{C}$.

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
$T_{don\ K2}$	Turn-on delay of $K2$	1	2.5	4	μs	$C=100\text{nF}$
$T_f\ K2$	Fall time of $K2$ 90% to 10% of $V_{gate}-V_{cc}$	—	6	20		
$I_{out\ K2}$	Gate low short circuit pulsed current	100	350	—		

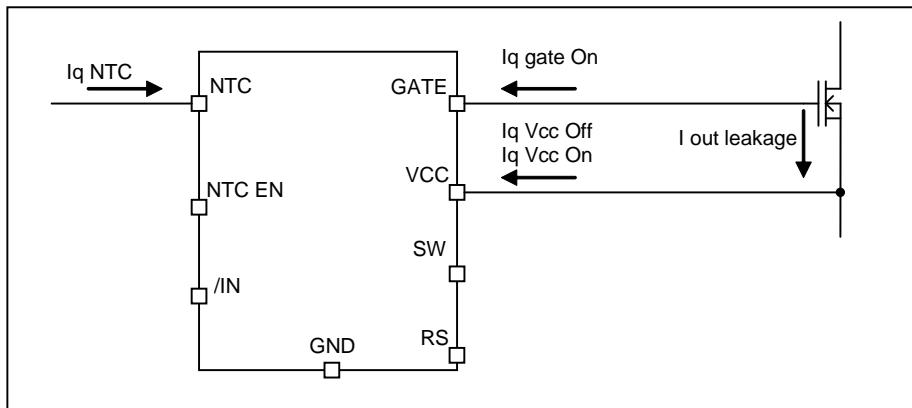

Lead Definitions

Pin number	Symbol	Description
1	NTC	An NTC resistor can be connected between this pin and the Vcc line close to the tab to sense the temperature of the Mosfet
2	NTC_EN	NTC_EN is the input of the NTC system.
3	/IN	Active low input pin to enable the boost converter or short the gate to Vcc
4	GND	Ground pin
5	RS	Current sense input pin
6	SW	Output of K1
7	VCC	Power supply
8	GATE	Output of the boost converter

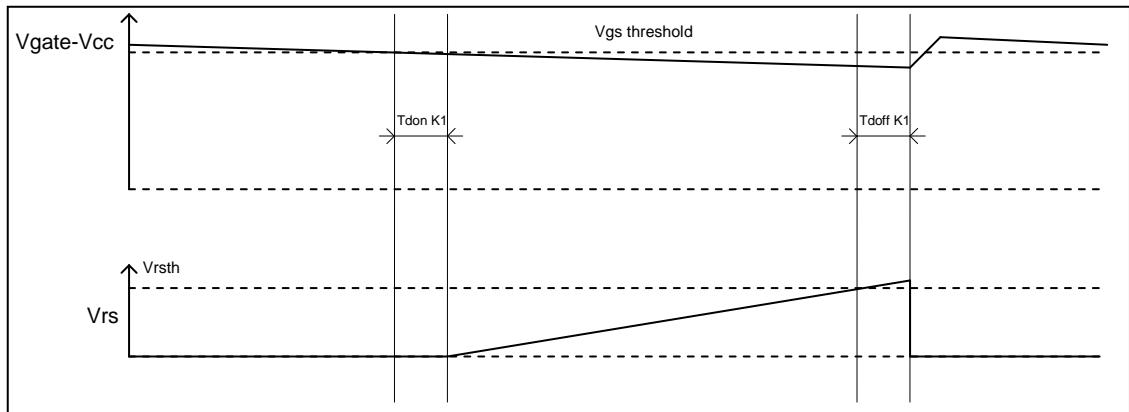
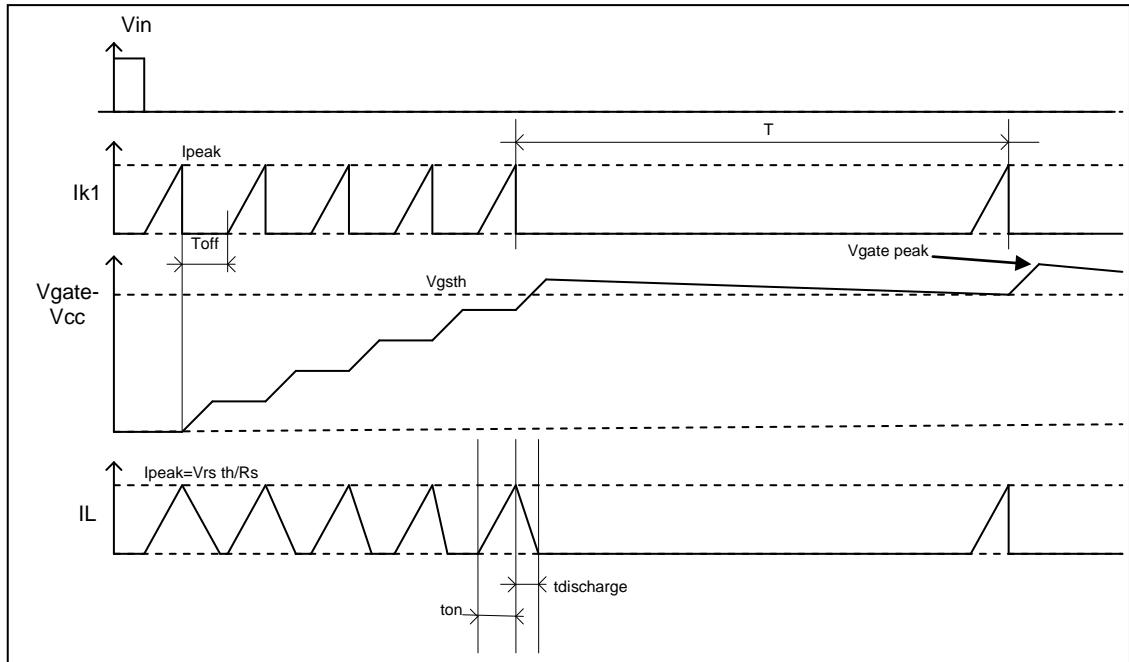
Lead Assignments


Block diagram

Description


The topology of the AUIR3240S is a boost DC/DC converter working in current mode. K1 is switched on when the gate voltage is lower than V_{gs} threshold. When R_s pin reaches $V_{rs\ th}$, K1 is turned off and the inductor charge the gate capacitor through D. The system cannot restart during T_{off} after $V_{rs\ th}$ has been reached. The DC/DC restart only when the Gate and the V_{cc} voltage difference is lower than 12.5V in order to achieve low quiescent current on the power supply.

To turn off the power Mosfet, the input must be pull high. Then the DC/DC converter is turned and K2 shorts the gate to V_{cc} .

Parameters definition

Current definition

Timing definition

Low quiescent current operation when On.

The AUIR3240S is able to operate with a very low quiescent current on the V_{cc} pin. Nevertheless the supply current depends also on the leakage of the power mosfet named "I out leakage" on the diagram below.

The leakage current is given when $K1$ is off. When $K1$ is on, the current flowing in V_{cc} is the current charging the inductor. Therefore the average current on the V_{cc} pin is the combination of the current when $K1$ is ON and OFF. The average current on the V_{cc} pin can be calculated using:

$$I_{V_{cc} \text{ average}} = I_{V_{cc} \text{ average } K1 \text{ ON}} + I_{V_{cc} \text{ average } K1 \text{ OFF}} + I_{q \text{ NTC}}$$

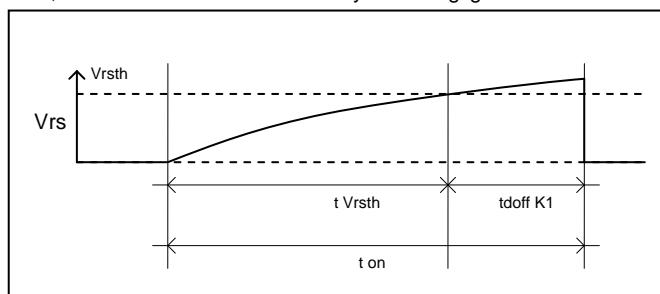
$$I_{VCC\ ave} = (I_{Q\ gate} + I_{out\ leakage}) * \frac{V_{gate} - V_{CC} + V_f}{V_{CC}} + I_Q V_{CC\ on} + I_Q NTC$$

With V_{gate} : the average voltage on the output.

$$V_{gate\ average} = (V_{gate\ peak} + V_{gsth})/2$$

V_{gate} peak can be calculated by:

$$V_{gate\ peak} = \sqrt{\frac{L}{C_{out}} \cdot I_{peak}^2 + V_{gsth}^2}$$


During On operation, the DC/DC works in pulse mode, meaning each time the V_{gate} - V_{CC} voltage comes below 12.5V, the AUIR3240S switches on K1 to recharge the gate voltage. When the I_{out} leakage is low enough to maintain the DC/DC in discontinuous mode, the frequency is calculate by:

$$T = \frac{I_{peak}^2 * L}{2 * (I_{Q\ gate} + I_{out\ leakage}) * (V_{gate} - V_{CC} + V_f)}$$

Peak current control

The current in the inductor is limited by the 1V comparator which monitors the voltage across R_S . Due to the delay in the loop ($t_{doff\ K1}$), the inductor current will exceed the threshold set by: $\frac{V_{rsth}}{R_S}$

At low voltage, the current waveform in the inductor is not anymore linear, but exponential because the sum of the resistor of K1, the inductor and R_S are not any more negligible.

The peak current and t_{on} can be calculated as follow:

$$t_{Vrsth} = -\frac{L}{R_{K1} + R_S + R_L} * \ln\left(1 - \frac{(R_S + R_{K1} + R_L) * V_{rsth}}{R_S * V_{CC}}\right)$$

Where R_L is the resistor of the inductor

With : $t_{on} = t_{Vrsth} + t_{doff\ K1}$

The peak current can be solved by:

$$I_{peak} = \frac{V_{CC}}{R_{K1} + R_S + R_L} * (1 - e^{-\frac{t_{on} * (R_{K1} + R_S + R_L)}{L}})$$

Output voltage Characteristic

In most of case when the output of the AUIR3240S is able to recharge the capacitor higher than V_{gsth} , the output voltage will oscillate between V_{gsth} and V_{gate} peak. V_{gate} peak can be calculated by:

$$V_{gate \ peak} = \sqrt{\frac{L}{C_{out}} * I_{peak}^2 + V_{gsth}^2}$$

Minimum operating voltage

While the AUIR3240S operating voltage is specified between 4V and 36V. The minimum voltage is limited by the fact that the R_s voltage must reach the V_{rsth} taking account all resistors which limit the inductor current.

$$V_{cc \ min} = \frac{R_{k1} + R_s + R_l}{R_s} * V_{rsth}$$

Over-Voltage protection

The AUIR3240S integrates an over-voltage protection in order to protect K1. When V_{cc} exceed the Over-voltage threshold, the DC/DC is stopped.

NTC interface

The NTC interface allows the system to have a temperature measurement of the mosfet using one resistor and one NTC. The NTC must be connected to V_{cc} and close to the tab of the power Mosfet to have a good temperature sensing. The system works as a current mirror between NTC_EN and NTC pins. The typical ratio is 2, with $500\mu A$ flowing into NTC_EN , $1mA$ will flow in the NTC. The current in the NTC is fixed by adjusting R_{Ntc} and V_{Dg_In} . With $7k$ and $5V$, the current in the NTC will be $1mA$. The NTC function activated only if NTC_EN is powered.

If the NTC feature function is not used, NTC EN and NTC must be remained floating. The low consumption is achieved only when the NTC interface is not activated.

Output current measurement

The average current into R_s can be measured by adding a low pass filter before the ADC of the micro controller. Then the average output current can be evaluated using :

$$I_{out \ av} = I_{Rs \ av} * V_{cc} / (V_{gate} - V_{cc})$$

Knowing the output current can be useful to do a diagnostic on the power Mosfet. If the gate is short, the output current will be significantly higher than in normal operation.

Figures are given for typical value, $V_{cc}=14V$ and $T_j=25^{\circ}C$ otherwise specified

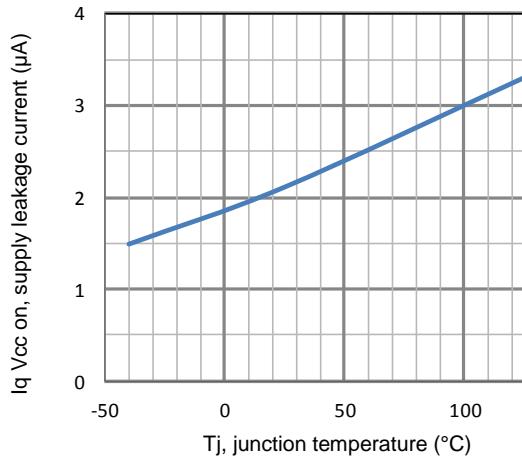


Figure 1 – I_q V_{cc} on (μA) Vs T_j ($^{\circ}C$)

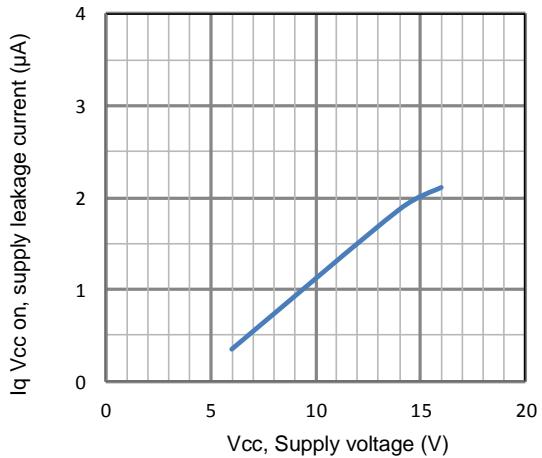


Figure 2 – I_q V_{cc} on (μA) Vs V_{cc} (V)

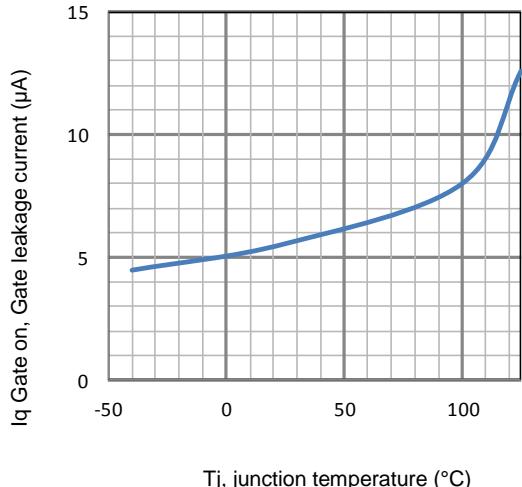


Figure 3 – I_q Gate on (μA) Vs T_j ($^{\circ}C$)

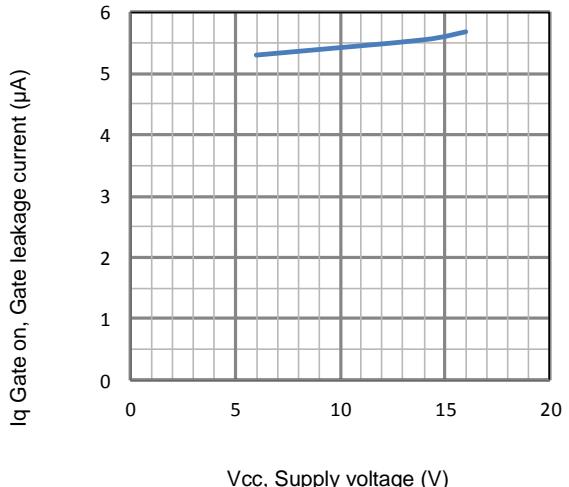


Figure 4 – I_q Gate on (μA) Vs V_{cc} (V)

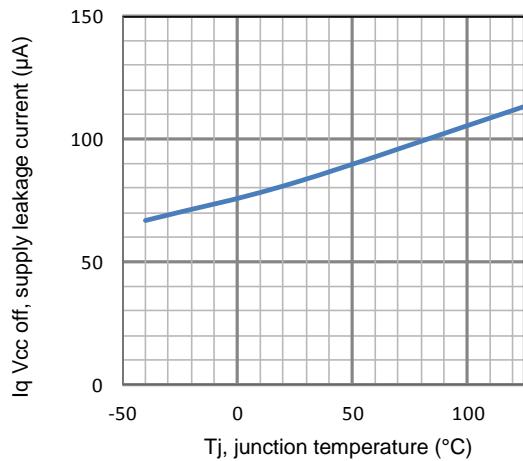
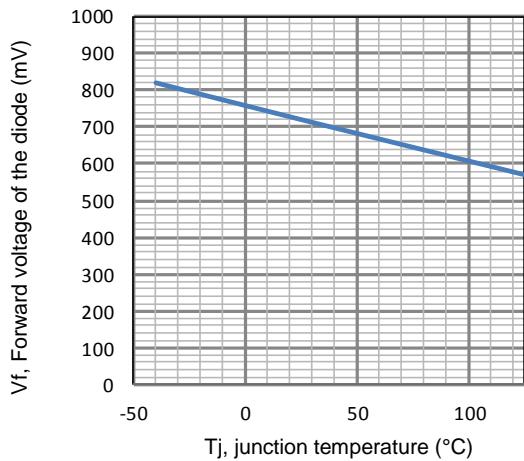
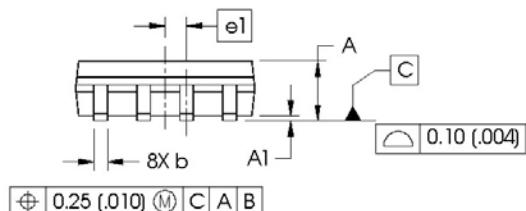
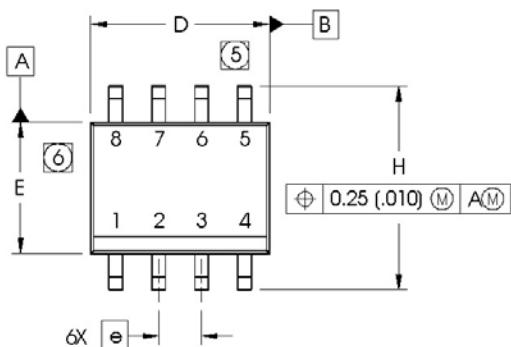
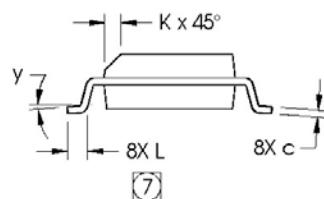


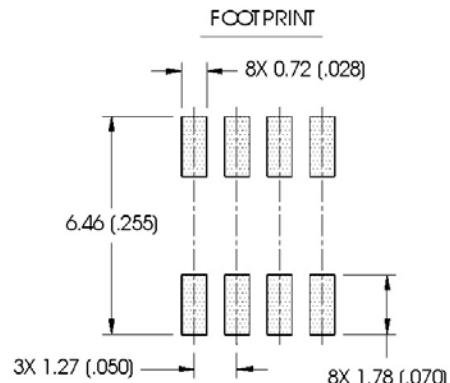
Figure 5 – I_q Vcc off (μ A) Vs T_j ($^{\circ}$ C)

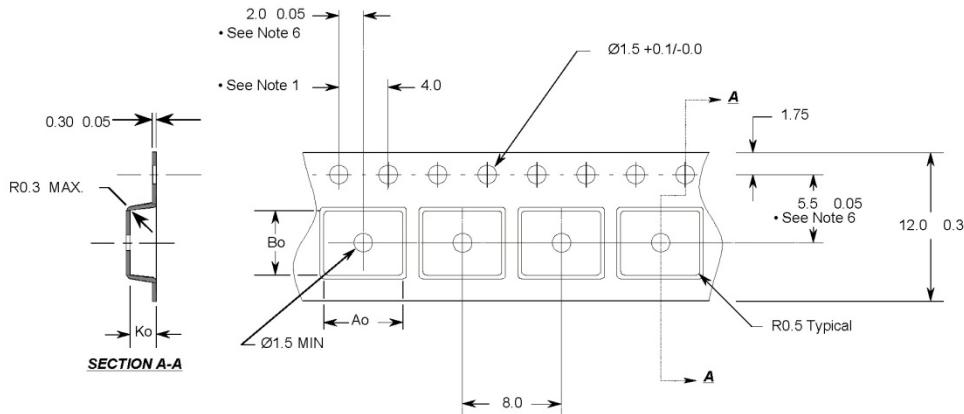

Figure 6 – V_f (mV) Vs T_j ($^{\circ}$ C)

Case Outline – SO8

Dimensions are shown in millimeters (inches)



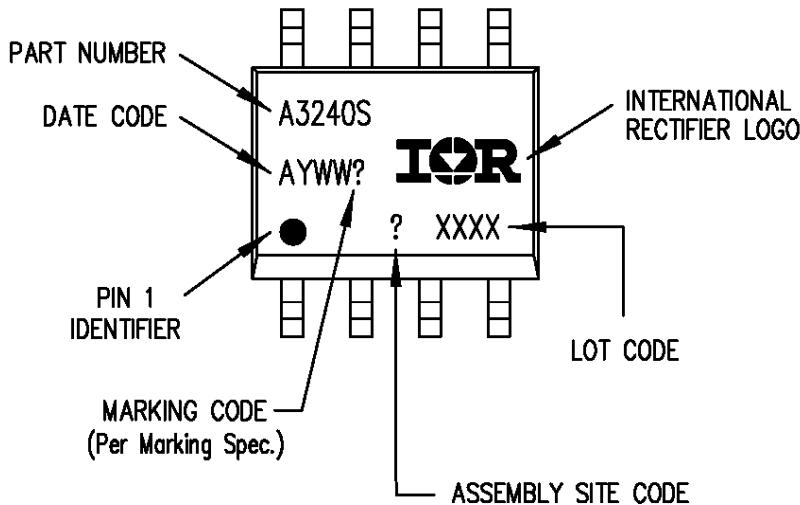
DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
c	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
E	.1497	.1574	3.80	4.00
e	.050	BASIC	1.27	BASIC
e1	.025	BASIC	0.635	BASIC
H	.2284	.2440	5.80	6.20
K	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
Y	0°	8°	0°	8°



NOTES:

1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
5. DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
6. DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
7. DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

Tape & Reel SO8


Notes:

1. 10 sprocket hole pitch cumulative tolerance 0.2
2. Camber not to exceed 1 mm in 100mm
3. Material: Black Conductive Advantek Polystyrene
4. Ao and Bo measured on a plane 0.3mm above the bottom of the pocket
5. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
6. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

Ao = 6.4 mm
Bo = 5.2 mm
Ko = 2.1 mm

- All Dimensions in Millimeters -

Part Marking Information

Ordering Information

Base Part Number	Package Type	Standard Pack		Complete Part Number
		Form	Quantity	
AUIR3240S	SOIC8	Tube	95	AUIR3240S
		Tape and reel	2500	AUIR3240STR

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center
<http://www.irf.com/technical-info/>

WORLD HEADQUARTERS:
101 N. Sepulveda Blvd., El Segundo, California 90245
Tel: (310) 252-7105

Revision History

Revision	Date	Notes/Changes
A	December 10th, 2011	Initial release
B	March, 28 th 2012	Page4 correct temperature condition for Vrstth +125°C
C	April, 2 nd 2012	Update maximum operating temperature
D	July, 17 th 2012	Update page 4, Tdon K1 typ.
E	November, 19 th 2012	Update formula page 9 tVrstth
F	October, 17 th 2013	Update NTC interface current page10

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[International Rectifier:](#)

[AUIR3240STR](#)