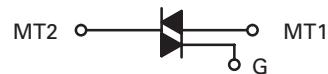


MAC15 Series

Pin Out


Description

Designed primarily for full-wave ac control applications, such as solid-state relays, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied main terminal voltage with positive or negative gate triggering.

Features

- Blocking Voltage to 800 V
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Gate Triggering Guaranteed in Three Modes (MAC15 Series) or Four Modes (MAC15A Series)
- These Devices are Pb-Free and are RoHS Compliant

Functional Diagram

Additional Information

Datasheet

Resources

Samples

Maximum Ratings ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, $T_J = 25^\circ$ to 100°C)	V_{DRM} , V_{RRM}	400 600 800	V
MAC15A6G MAC15-8G, MAC15A8G MAC15-10G, MAC15A10G			
On-State RMS Current (Full Cycle Sine Wave, 50 to 60 Hz, $T_C = 90^\circ\text{C}$)	$I_{\text{T(RMS)}}$	15	A
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, $T_J = 125^\circ\text{C}$ Preceded and Followed by Rated Current)	I_{TSM}	150	A
Peak Gate Voltage (Pulse Width :: 1.0 μsec ; $T_C = 90^\circ\text{C}$)	V_{GM}	10	V
Circuit Fusing Consideration ($t = 8.3 \text{ ms}$)	I^2t	93	A^2sec
Peak Gate Power ($T_C = +80^\circ\text{C}$, Pulse Width = 1.0 μs)	P_{GM}	20	W
Peak Gate Current (Pulse Width :: 1.0 μsec ; $T_C = 90^\circ\text{C}$)	I_{GM}	2.0	A
Average Gate Power ($t = 8.3 \text{ ms}, T_C = 80^\circ\text{C}$)	$P_{\text{G(AV)}}$	0.5	W
Operating Junction Temperature Range	T_J	-40 to +125	$^\circ\text{C}$
Storage Temperature Range	T_{stg}	-40 to +150	$^\circ\text{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics

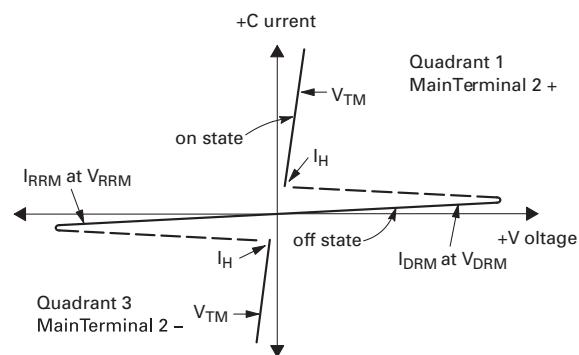
Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (AC)	R_{8JC}	2.0	$^\circ\text{C/W}$
Junction-to-Ambient	R_{8JA}	62.5	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T_L	260	$^\circ\text{C}$

Electrical Characteristics - OFF ($T_J = 25^\circ\text{C}$ unless otherwise noted ; Electricals apply in both directions)

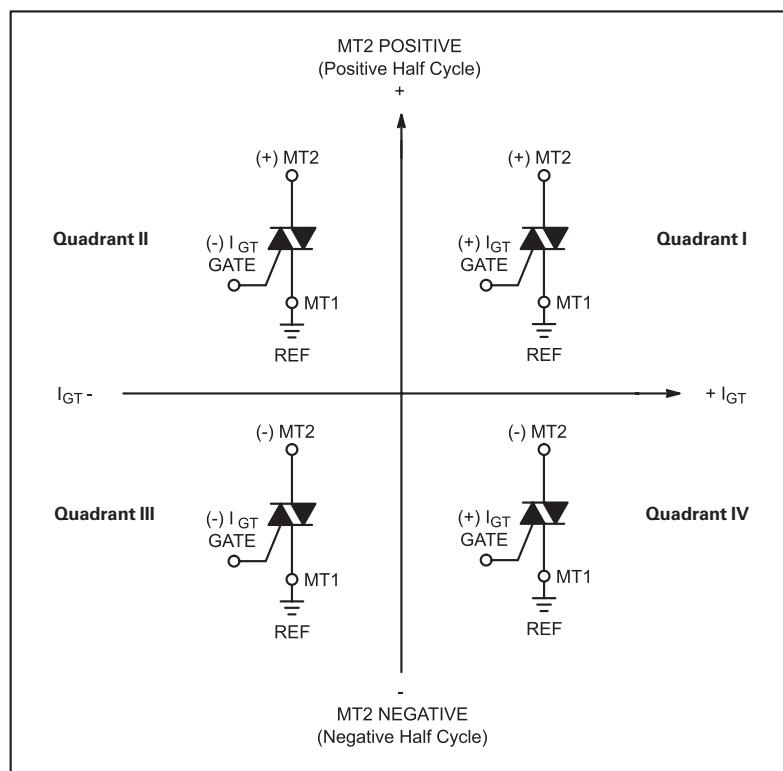
Characteristic		Symbol	Min	Typ	Max	Unit
Peak Repetitive Blocking Current ($V_D = V_{\text{DRM}} = V_{\text{RRM}}$; Gate Open)	$T_J = 25^\circ\text{C}$	I_{DRM}	-	-	1.0	μA
	$T_J = 125^\circ\text{C}$	I_{RRM}	-	-	2.0	mA

Electrical Characteristics - ON ($T_J = 25^\circ\text{C}$ unless otherwise noted; Electricals apply in both directions)

Characteristic	Symbol	Min	Typ	Max	Unit
Peak On-State Voltage (Note 2) ($I_{\text{TM}} = \pm 21\text{ A}$ Peak)	V_{TM}	-	1.3	1.6	V
Gate Trigger Current (Continuous dc) ($V_D = 12\text{ V}$, $R_L = 100\text{ }\Omega$)	MT2(+), G(+)	I_{GT}	-	-	50
	MT2(+), G(-)		-	-	50
	MT2(-), G(-)		-	-	50
	MT2(-), G(+)		-	-	75
Gate Trigger Voltage (Continuous dc) ($V_D = 12\text{ V}$, $R_L = 100\text{ }\Omega$)	MT2(+), G(+)	V_{GT}	0.5	0.62	1.3
	MT2(+), G(-)		0.5	0.57	1.3
	MT2(-), G(-)		0.5	0.65	1.3
	MT2(-), G(+)		0.5	0.74	1.3
Gate Non-Trigger Voltage ($T_J = 125^\circ\text{C}$) ($V_D = 12\text{ V}$, $R_L = 100\text{ }\Omega$)	MT2(+), G(+)	V_{GD}	0.2	-	-
	MT2(+), G(-)		0.2	-	-
	MT2(-), G(-)		0.2	-	-
	MT2(-), G(+)		0.2	-	-
Holding Current ($V_D = 12\text{ V}_{\text{dc}}$, Gate Open, Initiating Current = $\pm 200\text{ mA}$)	I_H	-	6.0	40	mA

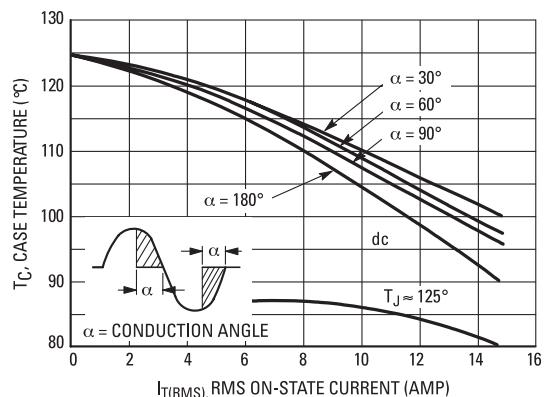

2. Indicates Pulse Test: Pulse Width $\leq 2.0\text{ ms}$, Duty Cycle $\leq 2\%$.

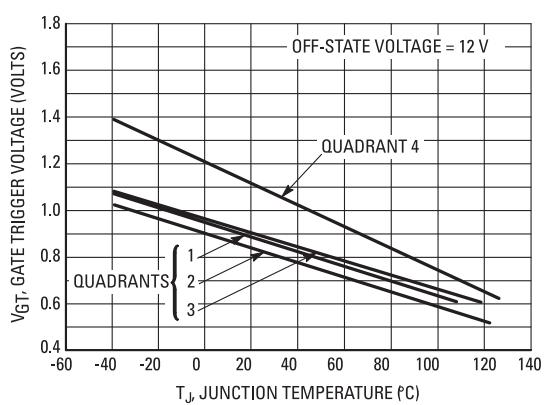
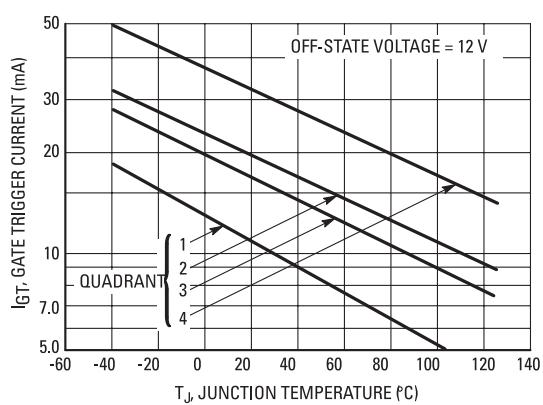
Dynamic Characteristics

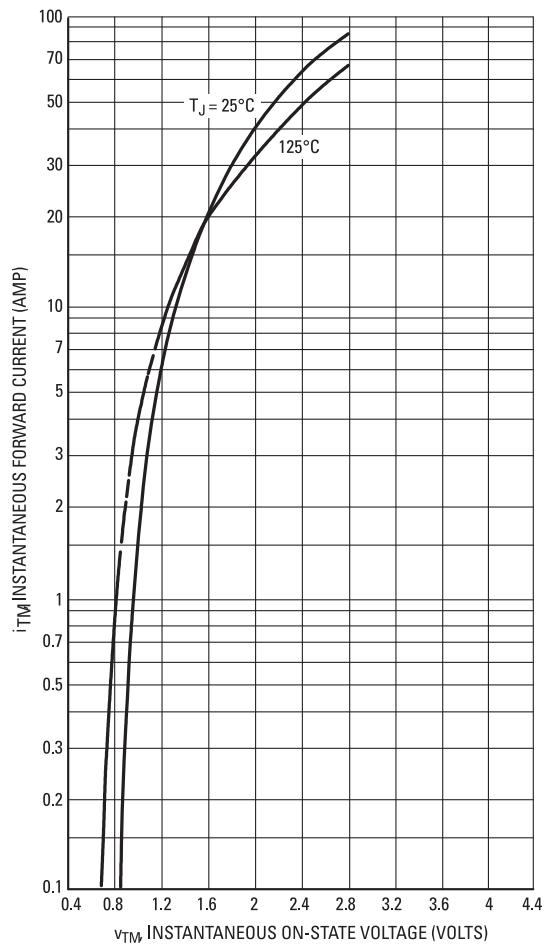
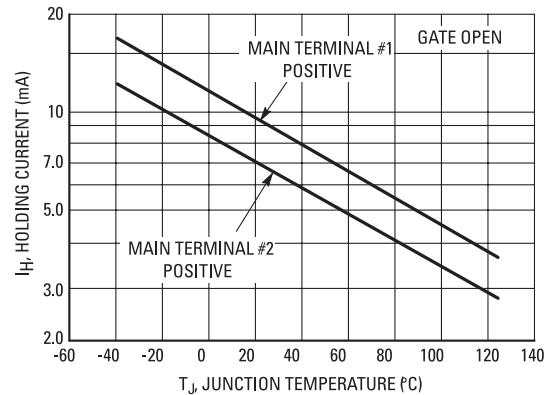
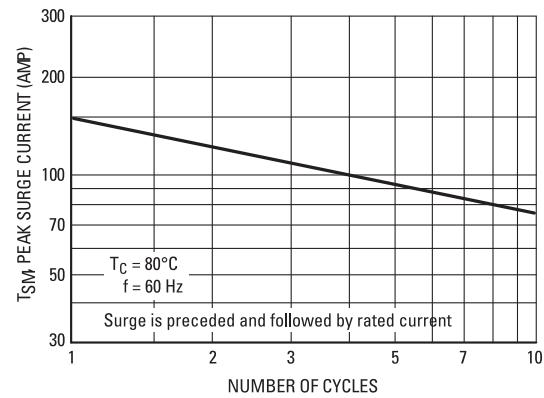
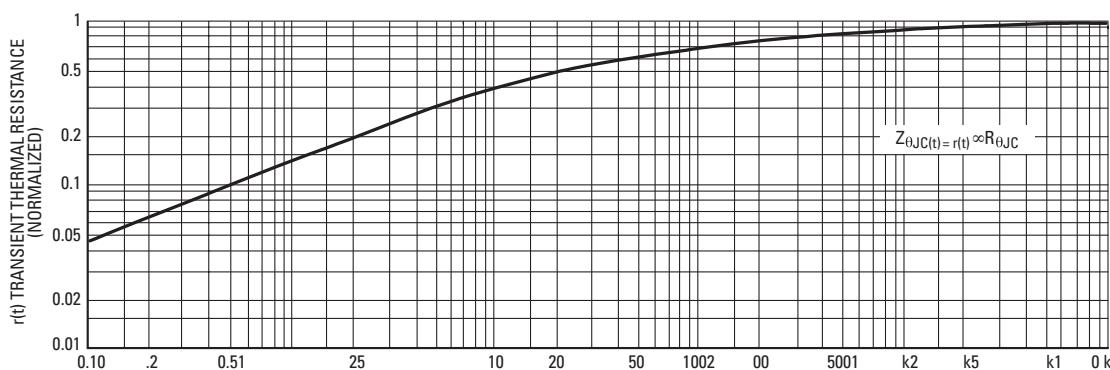

Characteristic	Symbol	Min	Typ	Max	Unit
Critical Rate of Rise of Commutation Voltage ($V_D = \text{Rated } V_{\text{DRM}}$, $I_{\text{TM}} = 21\text{ A}$, Commutating $\text{di}/\text{dt} = 7.6\text{ A}/\text{ms}$, Gate Unenergized, $T_C = 80^\circ\text{C}$)	dV/dt	-	5.0	-	$\text{V}/\mu\text{s}$

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I_{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I_{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I_H	Holding Current





Quadrant Definitions for a Triac

All polarities are referenced to MT1.

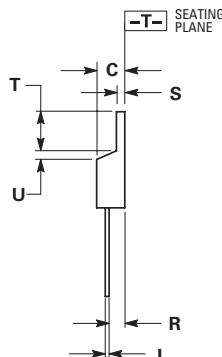
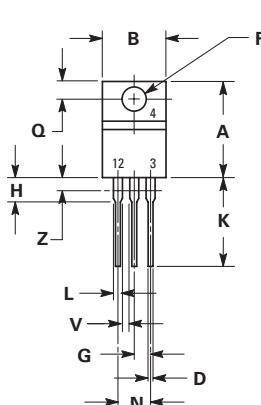


With in-phase signals (using standard AC lines) quadrants I and III are used.

Figure 1. RMS Current Derating

Figure 2. On-State Power Dissipation

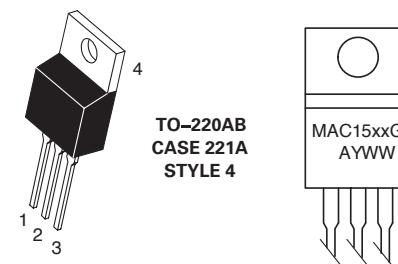

Figure 3. Typical Gate Trigger Voltage

Figure 4. Typical Gate Trigger Current

Figure 5. On-State Characteristics

Figure 6. Typical Holding Current

Figure 7. Maximum Non-Repetitive Surge Current

Figure 8. Thermal Response

Dimensions

Part Marking System

MAC15xx= Specific Device Code
xx = See Table on Page 2

A= Assembly Location (Optional)*

Y= Year

WW = Work Week

G= Pb-Free Package

* The Assembly Location code (A) is optional. In cases where the Assembly Location is stamped on the package the assembly code may be blank.

Dim	Inches		Millimeters	
	Min	Max	Min	Max
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Pin Assignment

1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	Main Terminal 2

Ordering Information

Device	Device Marking	Package	Shipping
MAC15-8G	MAC15-8	TO-220AB (Pb-Free)	500 Units Bulk
MAC15-10G	MAC1510		
MAC15A6G	MAC15A6		
MAC15A8G	MAC15A8		
MAC15A10G	MAC15A10		

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics