

74ALVCH16245

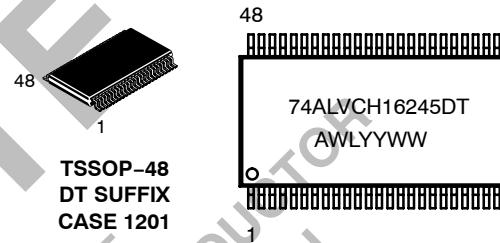
Low-Voltage 16-Bit Transceiver with Bus Hold 1.8/2.5/3.3 V

(3-State, Non-Inverting)

The 74ALVCH16245 is an advanced performance, non-inverting 16-bit transceiver. It is designed for very high-speed, very low-power operation in 1.8 V, 2.5 V or 3.3 V systems.

The 74ALVCH16245 is designed with byte control. It can be operated as two separate octals, or with the controls tied together, as a 16-bit wide function. The Transmit/Receive (T/\bar{R}_n) inputs determine the direction of data flow through the bi-directional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B to A ports. The Output Enable inputs ($\bar{O}En$), when HIGH, disable both A and B ports by placing them in a HIGH Z condition. The data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating inputs at a valid logic state.

- Designed for Low Voltage Operation: $V_{CC} = 1.65 - 3.6$ V
- 3.6 V Tolerant Inputs and Outputs
- High Speed Operation: 3.0 ns max for 3.0 to 3.6 V
3.7 ns max for 2.3 to 2.7 V
6.0 ns max for 1.65 to 1.95 V
- Static Drive: ± 24 mA Drive at 3.0 V
 ± 12 mA Drive at 2.3 V
 ± 4 mA Drive at 1.65 V
- Supports Live Insertion and Withdrawal
- Includes Active Bushold to Hold Unused or Floating Inputs at a Valid Logic State
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0$ V[†]
- Near Zero Static Supply Current in All Three Logic States (40 μ A) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds ± 250 mA @ 125°C
- ESD Performance: Human Body Model >2000V; Machine Model >200V
- Second Source to Industry Standard 74ALVCH16245


[†]To ensure the outputs activate in the 3-state condition, the output enable pins should be connected to V_{CC} through a pull-up resistor. The value of the resistor is determined by the current sinking capability of the output connected to the $\bar{O}E$ pin.

ON Semiconductor®

<http://onsemi.com>

MARKING DIAGRAM

TSSOP-48
DT SUFFIX
CASE 1201

A = Assembly
Location
WL = Wafer Lot
YY = Year
WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
74ALVCH16245DTR	TSSOP	2500/Tape & Reel

74ALVCH16245

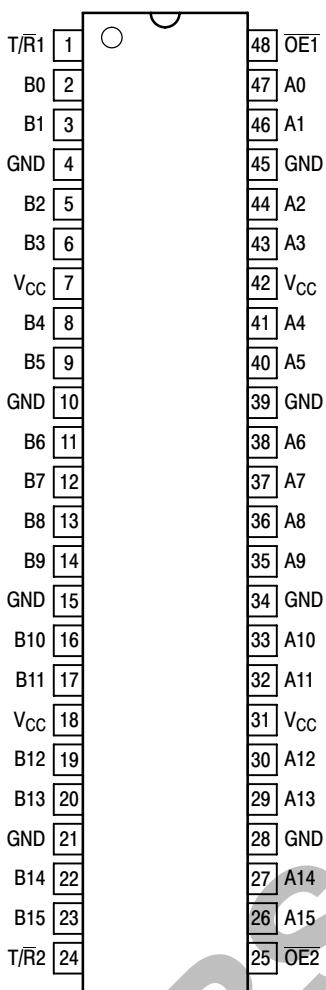


Figure 1. 48-Lead Pinout
(Top View)

PIN NAMES

Pins	Function
$\overline{OE_1}$	Output Enable Inputs
T/R _n	Transmit/Receive Inputs
A ₀ –A ₁₅	Side A Inputs or 3-State Outputs
B ₀ –B ₁₅	Side B Inputs or 3-State Outputs

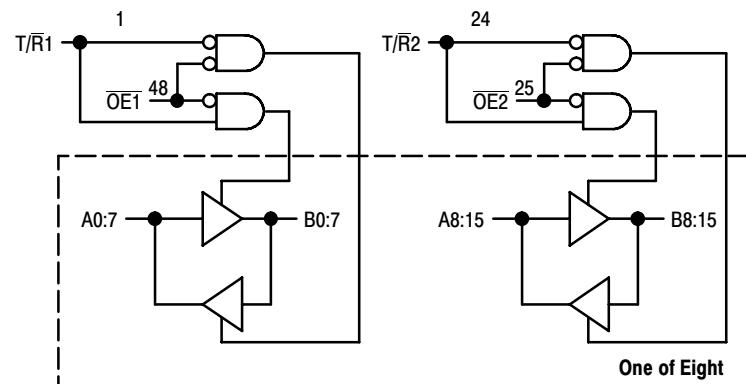


Figure 2. Logic Diagram

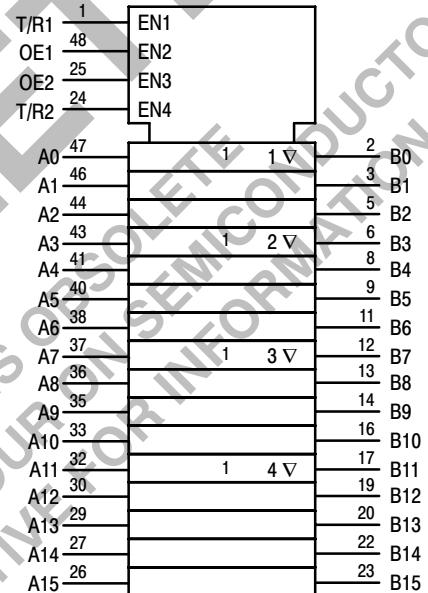


Figure 3. IEC Logic Diagram

Inputs		Outputs	Inputs		Outputs
OE1	T/R1		OE2	T/R2	
L	L	Bus B0:7 Data to Bus A0:7	L	L	Bus B8:15 Data to Bus A8:15
L	H	Bus A0:7 Data to Bus B0:7	L	H	Bus A8:15 Data to Bus B8:15
H	X	High Z State on A0:7, B0:7	H	X	High Z State on A8:15, B8:15

H = High Voltage Level; L = Low Voltage Level; X = High or Low Voltage Level and Transitions Are Acceptable

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	−0.5 to +4.6	V
V_I	DC Input Voltage	−0.5 to +4.6	V
V_O	DC Output Voltage	−0.5 to +4.6	V
I_{IK}	DC Input Diode Current $V_I < GND$	−50	mA
I_{OK}	DC Output Diode Current $V_O < GND$	−50	mA
I_O	DC Output Sink Current	±50	mA
I_{CC}	DC Supply Current per Supply Pin	±100	mA
I_{GND}	DC Ground Current per Ground Pin	±100	mA
T_{STG}	Storage Temperature Range	−65 to +150	°C
T_L	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
T_J	Junction Temperature Under Bias	+150	°C
θ_{JA}	Thermal Resistance (Note 2)	90	°C/W
MSL	Moisture Sensitivity	Level 1	
F_R	Flammability Rating	Oxygen Index: 30 to 35	UL 94 V-O @ 0.125 in
V_{ESD}	ESD Withstand Voltage	Human Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	>2000 >200 N/A
$I_{LATCH-UP}$	Latch-Up Performance Above V_{CC} and Below GND at 125°C (Note 6)	±250	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_O absolute maximum rating must be observed.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.
3. Tested to EIA/JESD22-A114-A.
4. Tested to EIA/JESD22-A115-A.
5. Tested to JESD22-C101-A.
6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply Voltage Operating Data Retention Only	2.3 1.5	3.6 3.6	V
V_I	Input Voltage (Note 7)	−0.5	3.6	V
V_O	Output Voltage (Active State) (3-State)	0 0	V_{CC} 3.6	V
T_A	Operating Free-Air Temperature	−40	+85	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ $V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$	0 0	20 10	ns/V

7. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	$T_A = -40^\circ\text{C to } +85^\circ\text{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 8)	$1.65 \text{ V} \leq V_{CC} < 2.3 \text{ V}$	$0.65 \times V_{CC}$		V
		$2.3 \text{ V} \leq V_{CC} \leq 2.7 \text{ V}$	1.7		
		$2.7 \text{ V} < V_{CC} \leq 3.6 \text{ V}$	2.0		
V_{IL}	LOW Level Input Voltage (Note 8)	$1.65 \text{ V} \leq V_{CC} < 2.3 \text{ V}$		$0.35 \times V_{CC}$	V
		$2.3 \text{ V} \leq V_{CC} \leq 2.7 \text{ V}$		0.7	
		$2.7 \text{ V} < V_{CC} \leq 3.6 \text{ V}$		0.8	
V_{OH}	HIGH Level Output Voltage	$1.65 \text{ V} \leq V_{CC} \leq 3.6 \text{ V}; I_{OH} = -100 \mu\text{A}$	$V_{CC} - 0.2$		V
		$V_{CC} = 1.65 \text{ V}; I_{OH} = -4 \text{ mA}$	1.2		
		$V_{CC} = 2.3 \text{ V}; I_{OH} = -6 \text{ mA}$	2.0		
		$V_{CC} = 2.3 \text{ V}; I_{OH} = -12 \text{ mA}$	1.7		
		$V_{CC} = 2.7 \text{ V}; I_{OH} = -12 \text{ mA}$	2.2		
		$V_{CC} = 3.0 \text{ V}; I_{OH} = -12 \text{ mA}$	2.4		
		$V_{CC} = 3.0 \text{ V}; I_{OH} = -24 \text{ mA}$	2.0		
V_{OL}	LOW Level Output Voltage	$1.65 \text{ V} \leq V_{CC} \leq 3.6 \text{ V}; I_{OL} = 100 \mu\text{A}$		0.2	V
		$V_{CC} = 1.65 \text{ V}; I_{OL} = 4 \text{ mA}$		0.45	
		$V_{CC} = 2.3 \text{ V}; I_{OL} = 6 \text{ mA}$		0.4	
		$V_{CC} = 2.3 \text{ V}; I_{OL} = 12 \text{ mA}$		0.7	
		$V_{CC} = 2.7 \text{ V}; I_{OL} = 12 \text{ mA}$		0.4	
		$V_{CC} = 3.0 \text{ V}; I_{OL} = 24 \text{ mA}$		0.55	
I_I	Input Leakage Current	$1.65 \text{ V} \leq V_{CC} \leq 3.6 \text{ V}; 0 \text{ V} \leq V_I \leq 3.6 \text{ V}$		± 5.0	μA
$I_{I(HOLD)}$	Minimum Bus-hold Input Current	$V_{CC} = 3.6 \text{ V}; V_{IN} = 0 \text{ to } 3.6 \text{ V}$		± 500	μA
		$V_{CC} = 3.0 \text{ V}, V_{IN} = 0.8 \text{ V}$	75		
		$V_{CC} = 3.0 \text{ V}, V_{IN} = 2.0 \text{ V}$	-75		
		$V_{CC} = 2.3 \text{ V}, V_{IN} = 0.7 \text{ V}$	45		
		$V_{CC} = 2.3 \text{ V}, V_{IN} = 1.7 \text{ V}$	-45		
		$V_{CC} = 1.65 \text{ V}, V_{IN} = 0.58 \text{ V}$	25		
		$V_{CC} = 1.65 \text{ V}, V_{IN} = 1.07 \text{ V}$	-25		
I_{OZ}	3-State Output Current	$1.65 \text{ V} \leq V_{CC} \leq 3.6 \text{ V}; 0 \text{ V} \leq V_O \leq 3.6 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}$		± 10	μA
I_{OFF}	Power-Off Leakage Current	$V_{CC} = 0 \text{ V}; V_I \text{ or } V_O = 3.6 \text{ V}$		10	μA
I_{CC}	Quiescent Supply Current (Note 9)	$1.65 \text{ V} \leq V_{CC} \leq 3.6 \text{ V}; V_I = \text{GND} \text{ or } V_{CC}$		40	μA
		$1.65 \text{ V} \leq V_{CC} \leq 3.6 \text{ V}; 3.6 \text{ V} \leq V_I, V_O \leq 3.6 \text{ V}$		± 40	
ΔI_{CC}	Increase in I_{CC} per Input	$2.7 \text{ V} < V_{CC} \leq 3.6 \text{ V}; V_{IH} = V_{CC} - 0.6 \text{ V}$		750	μA

8. These values of V_I are used to test DC electrical characteristics only.

9. Outputs disabled or 3-state only.

AC CHARACTERISTICS (Note 10; $t_R = t_F = 2.0$ ns; $C_L = 30$ pF; $R_L = 500$ Ω)

Symbol	Parameter	Waveform	Limits						Unit	
			$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$							
			$V_{CC} = 3.0$ V to 3.6 V		$V_{CC} = 2.3$ V to 2.7 V		$V_{CC} = 1.65$ V to 1.95 V			
			Min	Max	Min	Max	Min	Max		
t_{PLH} t_{PHL}	Propagation Delay Input to Output	1	1.0 1.0	3.0 3.0	1.0 1.0	3.7 3.7	1.0 1.0	6.0 6.0	ns	
t_{PZH} t_{PZL}	Output Enable Time to High and Low Level	2	1.0 1.0	4.4 4.4	1.0 1.0	5.7 5.7	1.0 1.0	9.3 9.3	ns	
t_{PHZ} t_{PLZ}	Output Disable Time From High and Low Level	2	1.0 1.0	4.1 4.1	1.0 1.0	5.2 5.2	1.0 1.0	7.6 7.6	ns	
t_{OSHL} t_{OSLH}	Output-to-Output Skew (Note 11)			0.5 0.5		0.5 0.5		0.75 0.75	ns	

10. For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

11. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.

The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	Note 12	6	pF
C_{OUT}	Output Capacitance	Note 12	7	pF
C_{PD}	Power Dissipation Capacitance	Note 12, 10MHz	20	pF

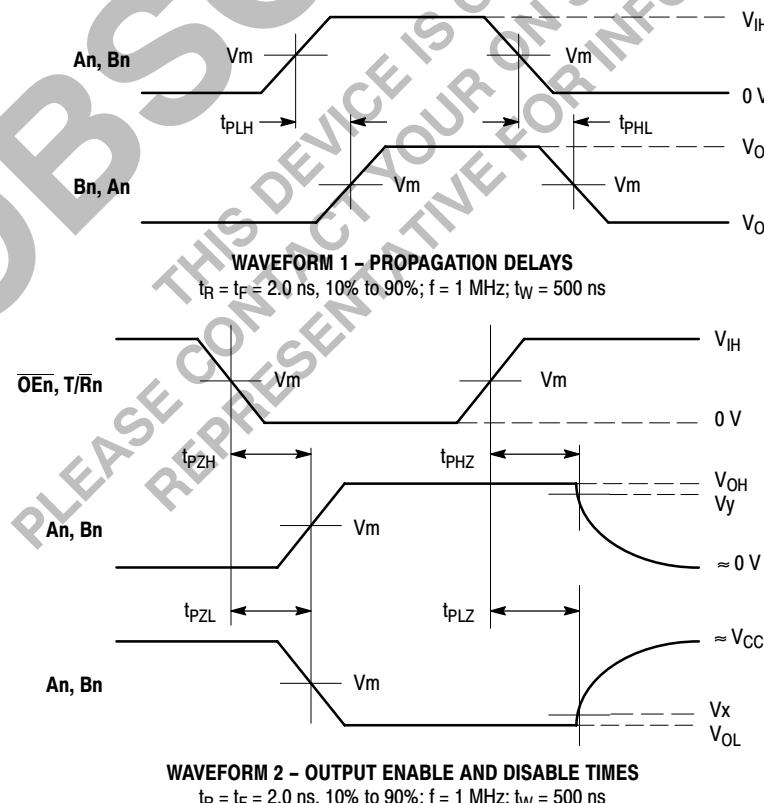
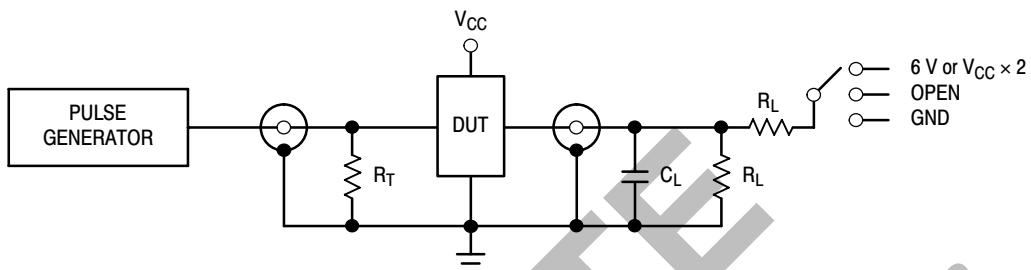


12. $V_{CC} = 1.8, 2.5$ or 3.3 V; $V_I = 0$ V or V_{CC} .

Figure 4. AC Waveforms

Symbol	V_{CC}		
	$3.3\text{ V} \pm 0.3\text{ V}$	$2.5\text{ V} \pm 0.2\text{ V}$	$1.8\text{ V} \pm 0.15\text{ V}$
V_{IH}	2.7 V	V_{CC}	V_{CC}
V_m	1.5 V	$V_{CC}/2$	$V_{CC}/2$
V_x	$V_{OL} + 0.3\text{ V}$	$V_{OL} + 0.15\text{ V}$	$V_{OL} + 0.15\text{ V}$
V_y	$V_{OH} - 0.3\text{ V}$	$V_{OH} - 0.15\text{ V}$	$V_{OH} - 0.15\text{ V}$

TEST	SWITCH
t_{PLH}, t_{PHL}	Open
t_{PZL}, t_{PLZ}	6 V at $V_{CC} = 3.3 \pm 0.3\text{ V}$; $V_{CC} \times 2$ at $V_{CC} = 2.5 \pm 0.2\text{ V}; 1.8\text{ V} \pm 0.15\text{ V}$
t_{PZH}, t_{PHZ}	GND

$C_L = 50\text{ pF}$ for $V_{CC} = 3.0 \pm 0.3\text{ V}$

$R_L = 500\text{ }\Omega$ or equivalent

$R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 5. Test Circuit

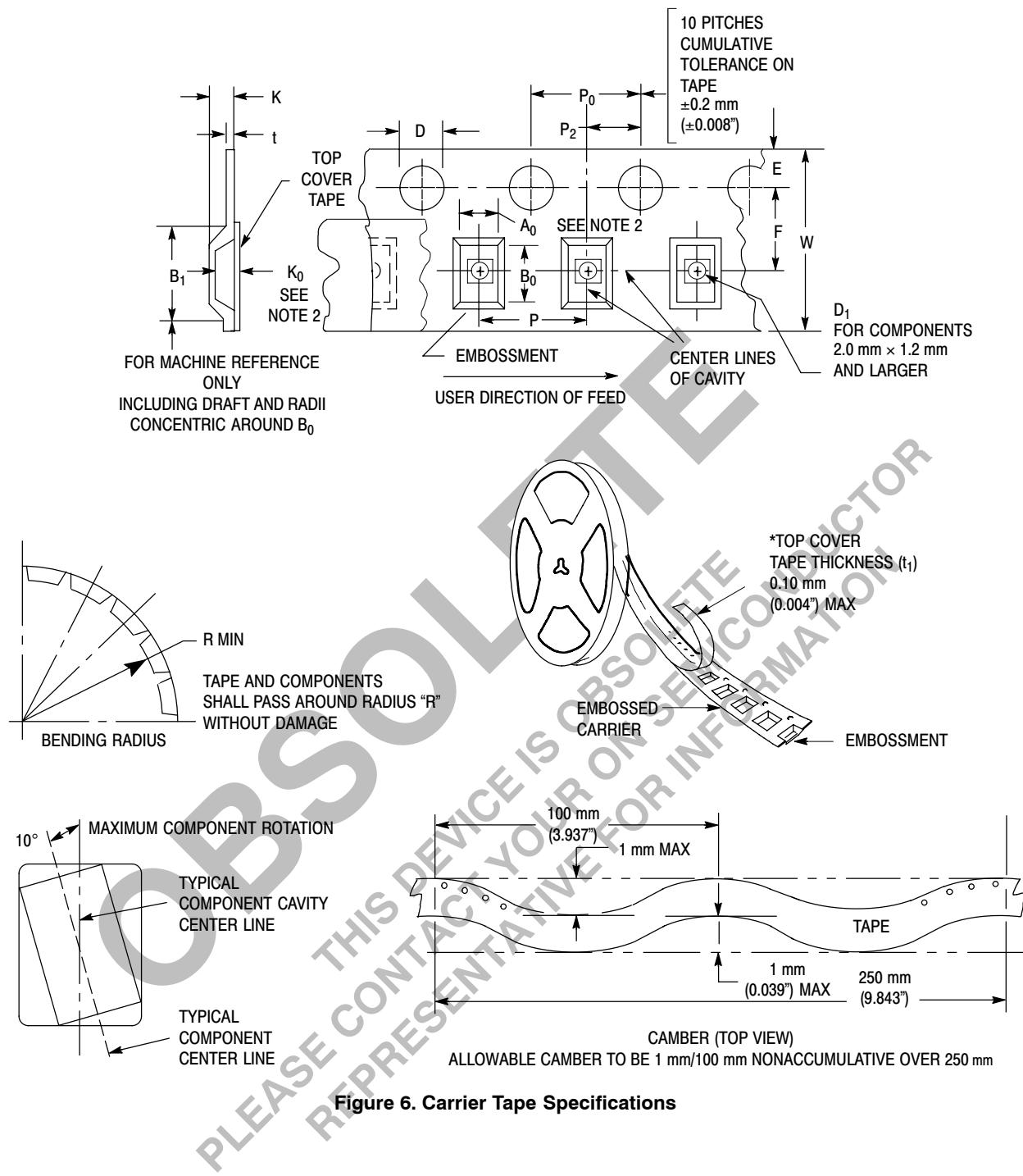


Figure 6. Carrier Tape Specifications

EMBOSSSED CARRIER DIMENSIONS (See Notes 13 and 14)

Tape Size	B_1 Max	D	D_1	E	F	K	P	P_0	P_2	R	T	W
24mm	20.1mm (0.791")	$1.5 + 0.1$ mm -0.0 (0.059 +0.004" -0.0)	1.5mm Min (0.060")	1.75 ± 0.1 mm (0.069 ±0.004")	11.5 ± 0.10 mm (0.453 ±0.004")	11.9 mm Max (0.468")	16.0 ± 0.1 mm (0.63 ±0.004")	4.0 ± 0.1 mm (0.157 ±0.004")	2.0 ± 0.1 mm (0.079 ±0.004")	30 mm (1.18")	0.6 mm (0.024")	24.3 mm (0.957")

13. Metric Dimensions Govern—English are in parentheses for reference only.

14. A_0 , B_0 , and K_0 are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity.

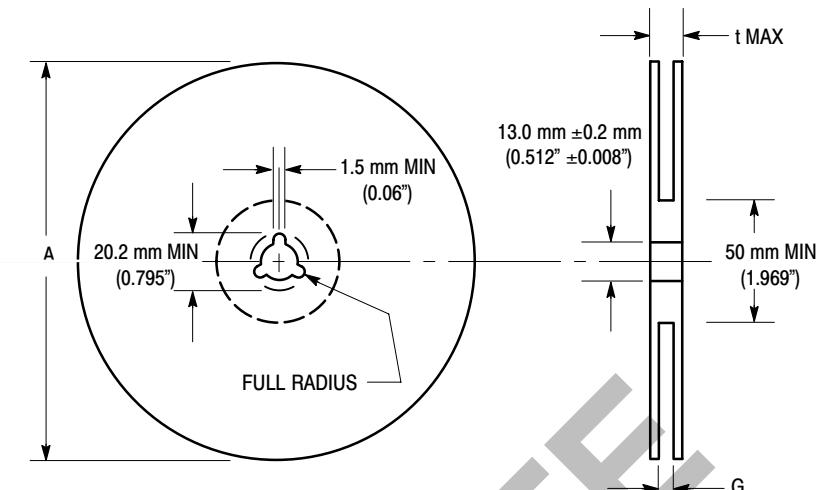


Figure 7. Reel Dimensions

REEL DIMENSIONS

Tape Size	A Max	G	t Max
24 mm	360 mm (14.173")	24.4 mm + 2.0 mm, -0.0 (0.961" + 0.078", -0.00)	30.4 mm (1.197")

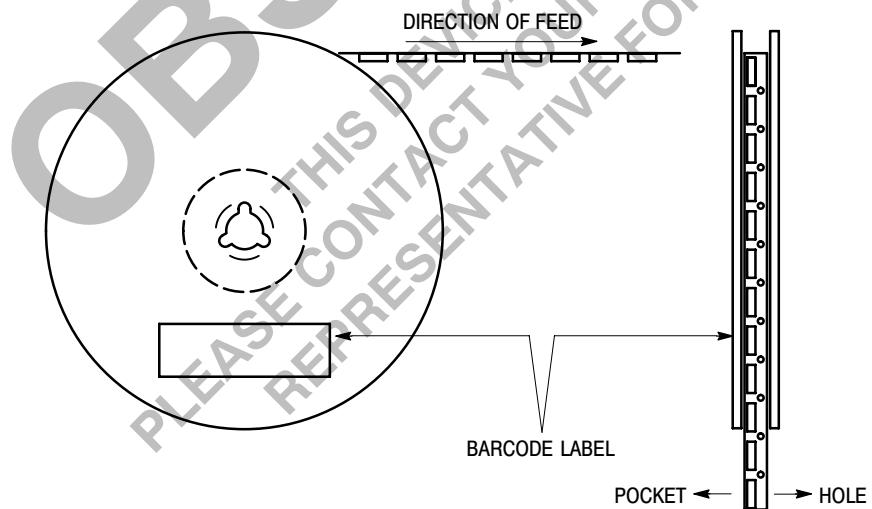


Figure 8. Reel Winding Direction

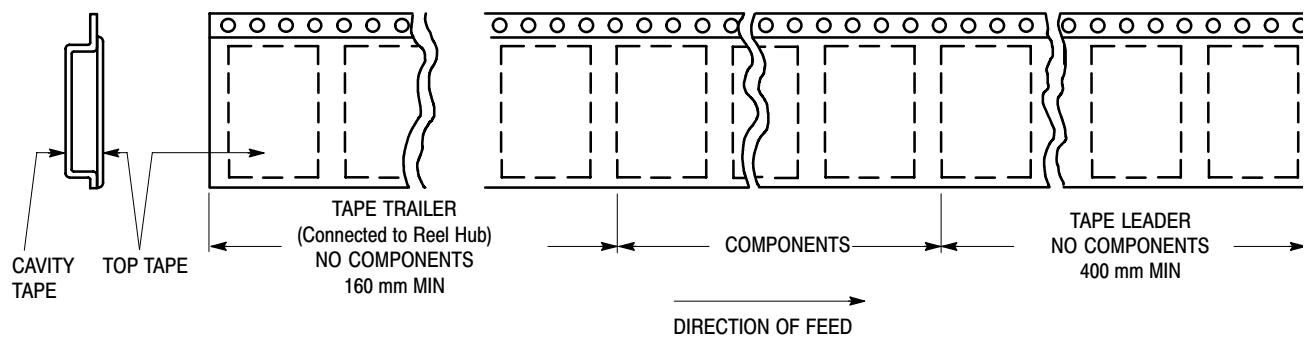


Figure 9. Tape Ends for Finished Goods

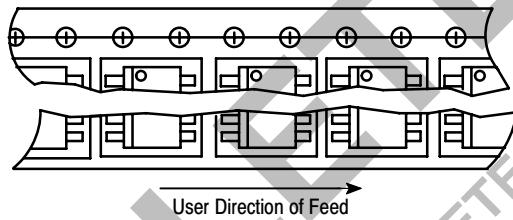


Figure 10. Reel Configuration

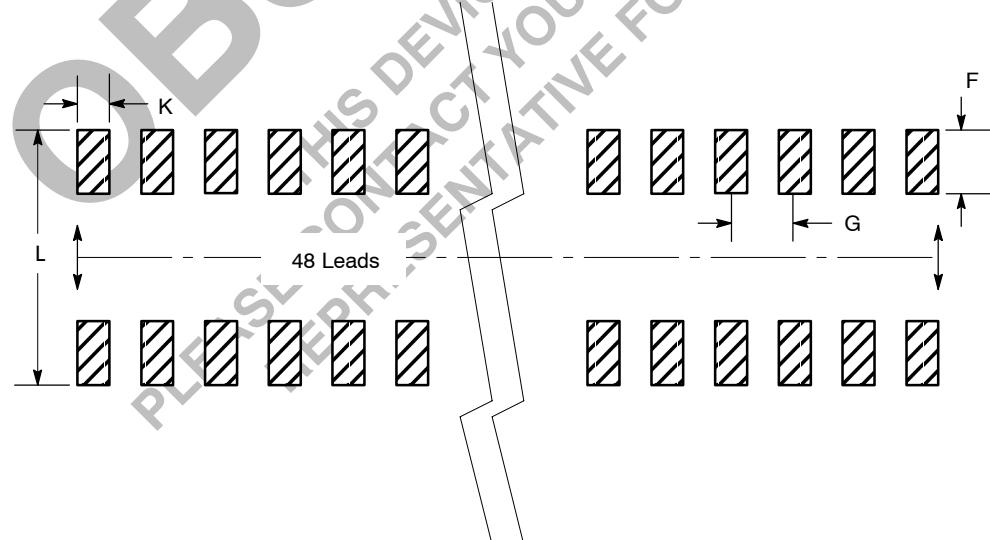
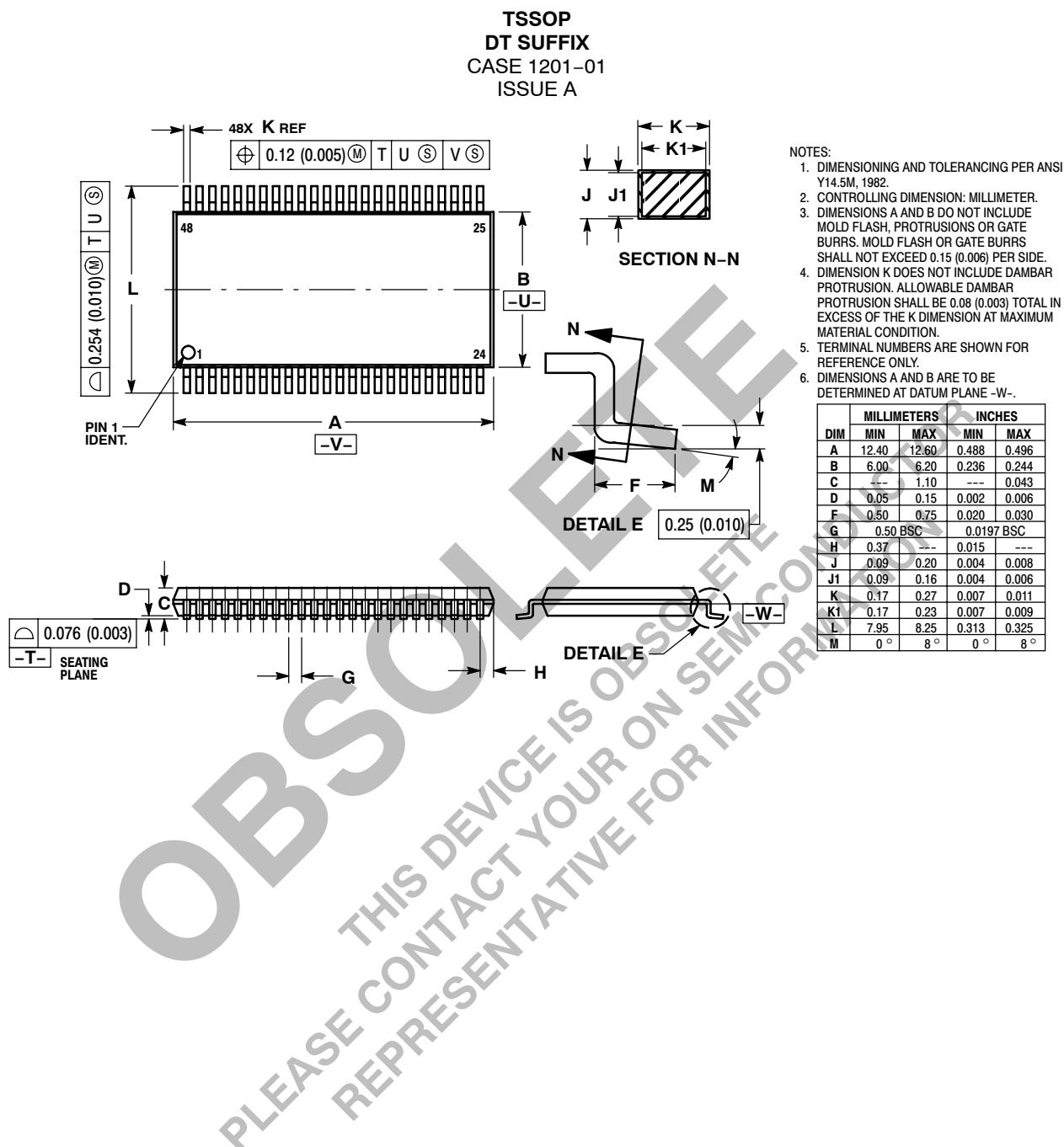



Figure 11. Package Footprint

PACKAGE DIMENSIONS

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.comOrder Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local Sales Representative