

mos integrated circuit μ PD75312B, 75316B

4-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75316B is a 75X Series 4-bit single-chip microcomputer capable of the same data processing as an 8-bit microcomputer.

It is a low-voltage operation version of the μ PD75316 with an on-chip LCD controller/driver. Operation at an ultralow voltage of 2.0 V is possible. An ultra small-sized plastic TQFP (12 x 12 mm) is also provided and it is suitable for small-sized sets that use an LCD panel.

A detailed explanation of the functions will be given in the user's manual listed below. It should be read before starting design work.

 μ PD75308 User's Manual: IEM-1263

FEATURES

- Ultra-low-voltage operation possible: VDD = 2.0 to 6.0 V Instruction execution time adjustment function
 - Can be driven by two 1.5-V manganese batteries.
- · On-chip memory
 - Program memory (ROM)
 - : 16256×8 bits (μ PD75316B)
 - : 12160 \times 8 bits (μ PD75312B)
 - Data memory (RAM)
 - : 1024×4 bits

- Instruction execution time adjustment function convenient in high-speed operation and power saving
 - 0.95 μs, 1.91 μs, 15.3 μs (@ 4.19 MHz)
 - 122 μs (@ 32.768 kHz)
- On-chip programmable LCD controller/driver
 - LCD drive voltage: 2.0 V to VDD
- Ultra small-sized plastic TQFP (12 x 12 mm)
 - · Suitable for small-sized set, such as a camera.
- PROM version μ PD75P316B also available.

APPLICATIONS

Remote control, camcorder, camera, gas meter, etc.

ORDERING INFORMATION

Part number	Package
μ PD75312BGC- $\times\times$ -3B9	80-pin plastic QFP (14 x 14 mm)
μ PD75312BGK- $\times\!\times$ -BE9	80-pin plastic TQFP (Fine pitch) (12 x 12 mm)
μ PD75316BGC- \times \times -3B9	80-pin plastic QFP (14 x 14 mm)
μ PD75316BGK- $\times\!\times$ -BE9	80-pin plastic TQFP (Fine pitch) (12 x 12 mm)

Unless stated otherwise, the explanations in this document will use the μ PD75316B as a representative part.

The information in this document is subject to change without notice.

FUNCTION OUTLINE (1/2)

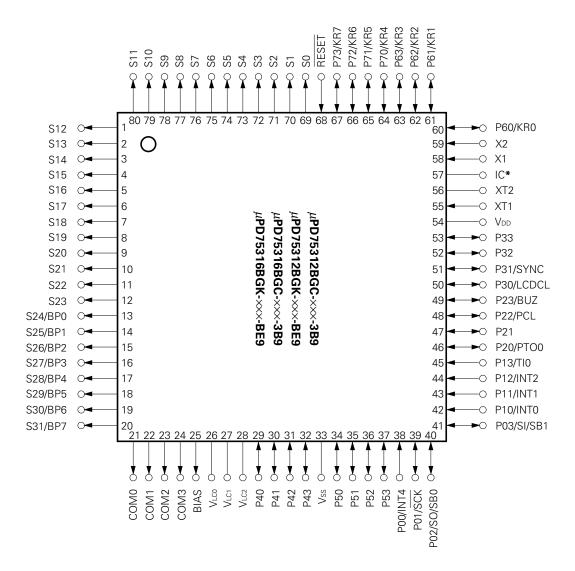
Item			Function			
Number of basic in	structions	41				
Instruction cycle			0.95 μs, 1.91 μs, 15.3 μs (main system clock: @ 4.19 MHz) 122 μs (subsystem clock: @ 32.768 kHz)			
On ship manage	ROM	162	56 × 8 k	oits (μPD75316B), 1216	60 × 8 bits (μPD75312B)	
On-chip memory	RAM	102	4 × 4 bi	ts		
General register				ess: 8 (B, C, D, E, H, L, ess: 4 (BC, DE, HL, XA)	•	
Accumulators		• 4-	bit accı	nulator (CY) Imulator (A) Imulator (XA)		
Instruction set		 Various bit manipulation instructions Efficient 4-bit data manipulation instructions 8-bit data transfer instructions GETI instruction that can implement 2-byte/3-byte instructions with 1 byte 				
		40	8	CMOS input CMOS input/output	- with software-specifiable pull-up resistors : 23	
I/O lines		40	8	CMOS output	Used with segment pins	
			8	N-ch open-drain input/output	10-V withstand voltage, with mask option pull- up resistors: 8	
LCD controller/driver		 Number of segments selection: 24/28/32 segments (4/8 can be switched at bit port output.) Display mode selection: Static, 1/2 duty, 1/3 duty (1/2 bias), 1/3 duty (1/3 bias), 1/4 duty LCD drive split resistor can be incorporated by mask option 			port output.) , 1/2 duty, 1/3 duty (1/2 bias), 1/3 duty (1/3 bias), uty	
Supply voltage ran	Supply voltage range V _{DD} = 2.0 to 6.0 V					
Timer		* 8-bit timer/event counter * Clock source: 4 stages * Event count possible 3 channels * 8-bit basic interval timer * Standard clock generation: 1.95 ms, 7.82 ms, 31.3 ms, 250 m (@ 4.19 MHz) * Watchdog timer application possible			stages ssible ral timer generation: 1.95 ms, 7.82 ms, 31.3 ms, 250 ms	

2

FUNCTION OUTLINE (2/2)

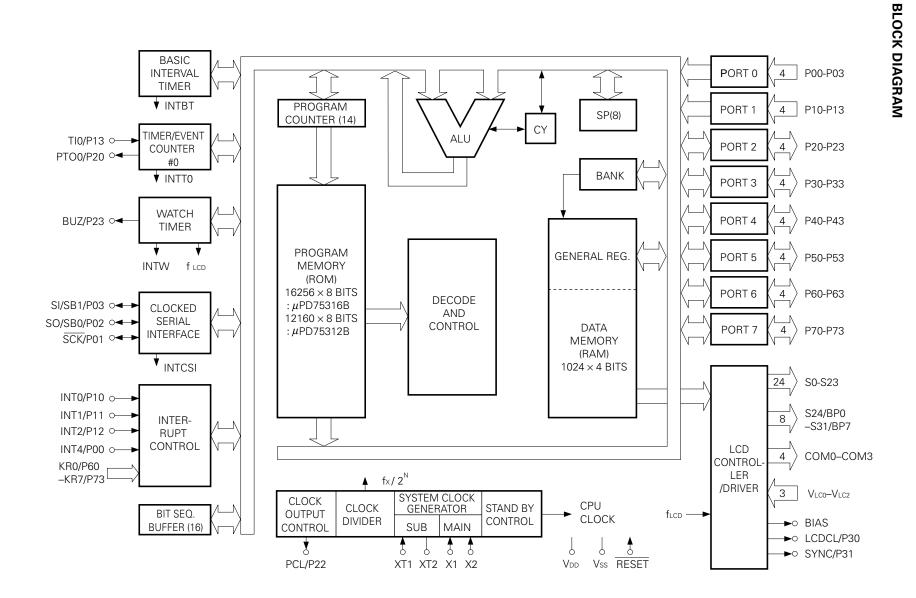
ltem		Function		
Timer	3 channels	Clock timer 0.5-second time interval generation Count clock source: Main system clock and subsystem clock switchable Clock fast count mode (3.9-ms time interval generation) Buzzer output possible (2 kHz)		
8-bit serial interface	Three modes application possible 3-wire serial I/O mode 2-wire serial I/O mode SBI mode			
	LSB first/M	SB first switchable		
Bit sequential buffer	Special bit manipulation memory: 16 bits • Perfect for remote control application			
	Timer/event	counter output (PTO0): square-wave output frequency specifiable		
Clock output function	Clock output (PCL): Φ, 524, 262, 65.5 kHz (@ 4.19 MHz)			
	Buzzer outpu	nt (BUZ): 2 kHz (@ 4.19 MHz or 32.768 kHz)		
Vectored interrupt	• External :			
Test input	• External : 1 • Internal : 1			
System clock oscillator	Ceramic or crystal oscillator for main system clock oscillation: 4.194304 MHz Crystal oscillator for subsystem clock oscillation: 32.768 kHz			
Standby	STOP/HALT mode			
Package		tic QFP (14 x 14 mm) tic TQFP (Fine pitch) (12 x 12 mm)		

3



CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	5
2.	BLOCK DIAGRAM	6
3.	PIN FUNCTIONS	7
	3.1 PORT PINS	7
	3.2 NON-PORT PINS	9
	3.3 PIN INPUT/OUTPUT CIRCUITS	10
	3.4 RECOMMENDED CONNECTION OF UNUSED PINS	12
4.	MEMORY CONFIGURATION	13
5.	PERIPHERAL HARDWARE FUNCTIONS	
	5.1 PORTS	
	5.2 CLOCK GENERATOR	
	5.3 CLOCK OUTPUT CIRCUIT	
	5.4 BASIC INTERVAL TIMER	
	5.5 WATCH TIMER	
	5.6 TIMER/EVENT COUNTER	
	5.7 SERIAL INTERFACE	
	5.8 LCD CONTROLLER/DRIVER	
	5.9 BIT SEQUENTIAL BUFFER 16 BITS	28
6.	INTERRUPT FUNCTION	29
7.	STANDBY FUNCTION	31
8.	RESET FUNCTION	32
9.	INSTRUCTION SET	35
10	. MASK OPTION SELECTION	42
11.	. ELECTRICAL SPECIFICATIONS	43
12	. CHARACTERISTIC CURVES (For Reference Only)	65
13	PACKAGE DRAWINGS	69
14.	. RECOMMENDED SOLDERING CONDITION	71
ΑP	PPENDIX A. DIFFERENCES AMONG μ PD75308B SERIES PRODUCTS	73
ΑP	PPENDIX B. DEVELOPMENT TOOLS	74
۸ -	DRENDLY C. DELATED DOCUMENTATION	
A٢	PPENDIX C. RELATED DOCUMENTATION	


1. PIN CONFIGURATION (TOP VIEW)

* IC (Internally Connected) pin should be directly connected to VDD.

P00 to 03	: Port 0	S0 to 31	: Segment Output 0 to 31
P10 to 13	: Port 1	COM0 to 3	: Common Output 0 to 3
P20 to 23	: Port 2	$V_{\text{LC0-2}}$: LCD Power Supply 0 to 2
P30 to 33	: Port 3	BIAS	: LCD Power Supply Bias Control
P40 to 43	: Port 4	LCDCL	: LCD Clock
P50 to 53	: Port 5	SYNC	: LCD Synchronization
P60 to 63	: Port 6	TI0	: Timer Input 0
P70 to 73	: Port 7	PTO0	: Programmable Timer Output 0
BP0 to 7	: Bit Port	BUZ	: Buzzer Clock
KR0 to 7	: Key Return	PCL	: Programmable Clock
SCK	: Serial Clock	INT0, 1, 4	: External Vectored Interrupt 0, 1, 4
SI	: Serial Input	INT2	: External Test Input 2
so	: Serial Output	X1, 2	: Main System Clock Oscillation 1, 2
SB0,1	: Serial Bus 0, 1	XT1, 2	: Subsystem Clock Oscillation 1, 2
RESET	: Reset Input	IC	: Internally Connected

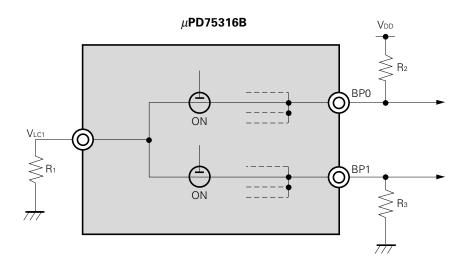
Ņ

3. PIN FUNCTIONS

3.1 PORT PINS (1/2)

Pin Name	Input/Output	Dual- Function Pin	Function	8-bit I/O	Reset	I/O Circuit Type *1
P00	Input	INT4			Input -	B
P01	Input/output	SCK	4-bit input port (PORT 0) On-chip pull-up resistor can be specified for			F- A
P02	Input/output	SO/SB0	P01 to P03 as a 3-bit unit by software.	×		F - B
P03	Input/output	SI/SB1				M- C
P10		INT0	With noise elimination function			
P11		INT1	A his in part (POPT 4)			
P12	Input	INT2	4-bit input port (PORT 1) On-chip pull-up resistor can be specified as a	×	Input	B - C
P13		TI0	4-bit unit by software.			
P20		PTO0		×	Input	E - B
P21		_	4-bit input/output port (PORT 2)			
P22	Input/output	PCL	On-chip pull-up resistor can be specified as a 4-bit unit by software.			
P23		BUZ				
P30 *2		LCDCL		×	Input	E - B
P31 * 2		SYNC	Programmable 4-bit input/output port (PORT 3)			
P32 * 2	Input/output	_	Input/output can be specified bit-wise. On-chip pull-up resistor can be specified as a			
P33 * 2		_	4-bit unit by software.			
P40 to P43 *2	Input/output	_	N-ch open-drain 4-bit input/output port (PORT 4) On-chip pull-up resistor can be specified bitwise (mask option). Open-drain: 10-V withstand voltage		High level (on- chip pull-up resistor) or high- impedance	М
P50 to P53 *2	Input/output	_	N-ch open-drain 4-bit input/output port (PORT 5) On-chip pull-up resistor can be specified bitwise (mask option). Open-drain: 10-V withstand voltage	0	High level (on- chip pull-up resistor) or high- impedance	М

- * 1. : Schmitt triggered input2. LED direct drive possible



3.1 PORT PINS (2/2)

Pin Name	Input/Output	Dual- Function Pin	Function	8-bit I/O	Reset	I/O Circuit Type *1
P60		KR0				
P61	Input/output	KR1	Programmable 4-bit input/output port (PORT 6) Input/output can be specified bit-wise.		la aust	
P62	input/output	KR2	On-chip pull-up resistor can be specified as a 4-bit unit by software.		Input	€- A
P63		KR3	4-bit unit by software.			
P70		KR4		0	Input	(F) - A
P71		KR5	4-bit input/output port (PORT 7) On-chip pull-up resistor can be specified as a			
P72	- Input/output	KR6	4-bit unit by software.			
P73		KR7				
BP0		S24				
BP1	Outmut	S25				G - C
BP2	Output	S26				
BP3		S27	1-bit output port (BIT PORT)			
BP4		S28	Also used as segment output pin.	×	* 2	
BP5	Output	S29				
BP6	Output S30					
BP7	1	S31				

- * 1. : Schmitt triggered input
 - 2. BP0 to BP7 select V_{LC1} as the input source. However, the output level depends on BP0 to BP7 and V_{LC1} external circuit.

Example BP0 to BP7 are connected mutually within the μ PD75316B. Therefore, the output level of BP0 to BP7 is determined by the value of R1, R2 and R3.

3.2 NON-PORT PINS

Pin Name	Input/Output	Dual- Function Pin	Function		Reset	I/O Circuit Type *1
TI0	Input	P13	External event pulse input pin to	timer/event counter	Input	B - C
PTO0	Input/output	P20	Timer/event counter output pin		Input	E - B
PCL	Input/output	P22	Clock output pin		Input	E - B
BUZ	Input/output	P23	Fixed frequency output pin (for b trimming)	ouzzer or system clock	Input	E - B
SCK	Input/output	P01	Serial clock input/output pin		Input	(F) - A
SO/SB0	Input/output	P02	Serial data output pin Serial bus input/output pin		Input	F - B
SI/SB1	Input/output	P03	Serial data input pin Serial bus input/output pin		Input	M - C
INT4	Input	P00	Edge detection vectored interrup edge and falling edge detection of		Input	B
INT0		P10	Edge detection vectored	Clocked	la accet	(B) - C
INT1	Input	P11	interrupt input pin (detection edge selectable)	Asynchronous	Input	B)-C
INT2	Input	P12	Edge detection testable input pin (rising edge detection)	Asynchronous	Input	B - C
KR0 to KR3	Input/output	P60 to P63	Parallel falling edge detection tes	stable input pin	Input	F - A
KR4 to KR7	Input/output	P70 to P73	Parallel falling edge detection tes	stable input pin	Input	F - A
S0 to S23	Output	_	Segment signal output pin		*2	G - A
S24 to S31	Output	BP0 to BP7	Segment signal output pin		*2	G - C
COM0 to COM3	Output	_	Common signal output pin		*2	G - B
V _{LC0} to V _{LC2}	_	_	LCD drive power supply pin On-chip split resistor (mask optic	on)	_	_
BIAS	Output	_	External split resistor cut output	pin	*3	_
LCDCL *4	Input/output	P30	External expansion driver drive of	clock output pin	Input	E - B
SYNC *4	Input/output	P31	External expansion driver synchr pin	onization clock output	Input	E - B
X1, X2	Input	_	Main system clock oscillation cry pin. For external clock, the extern to X1 and the inverted phase is in	nal clock signal is input	_	_
XT1	Input	_	Subsystem clock oscillation crystal connection pin. For			
XT2	_	_	external clock, the external clock signal is input to XT1 and XT2 is opened. XT1 can be used as a 1-bit input (test) pin.		_	_
RESET	Input	_	System reset input pin		_	B
IC		_	Internally Connected. Directly connected to VDD.		_	_
VDD	_	_	Positive power supply pin		_	_
Vss	_	_	GND potential pin		_	_

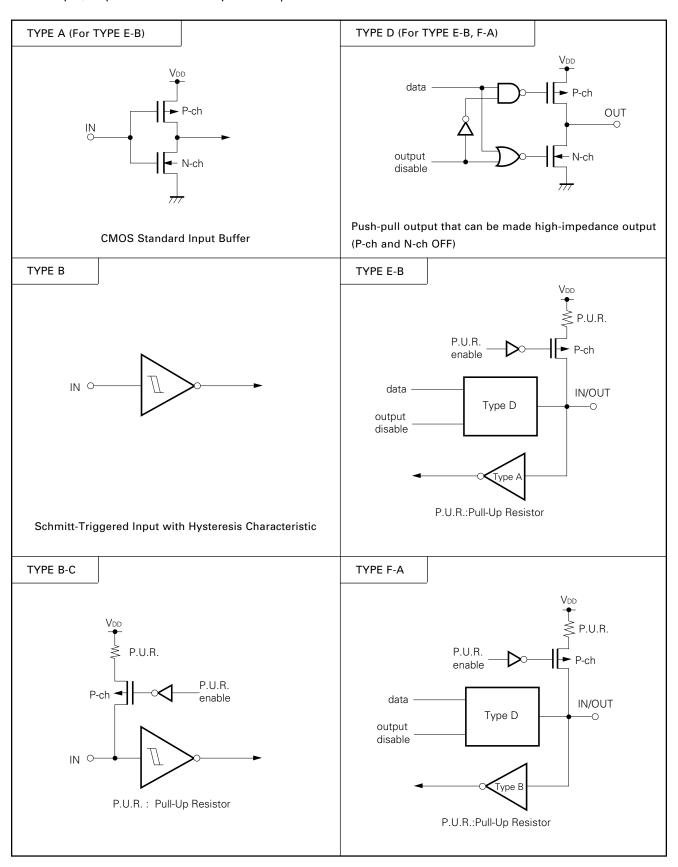
No on-chip split resistor... High-impedance

^{* 1. ○:} Schmitt triggered input

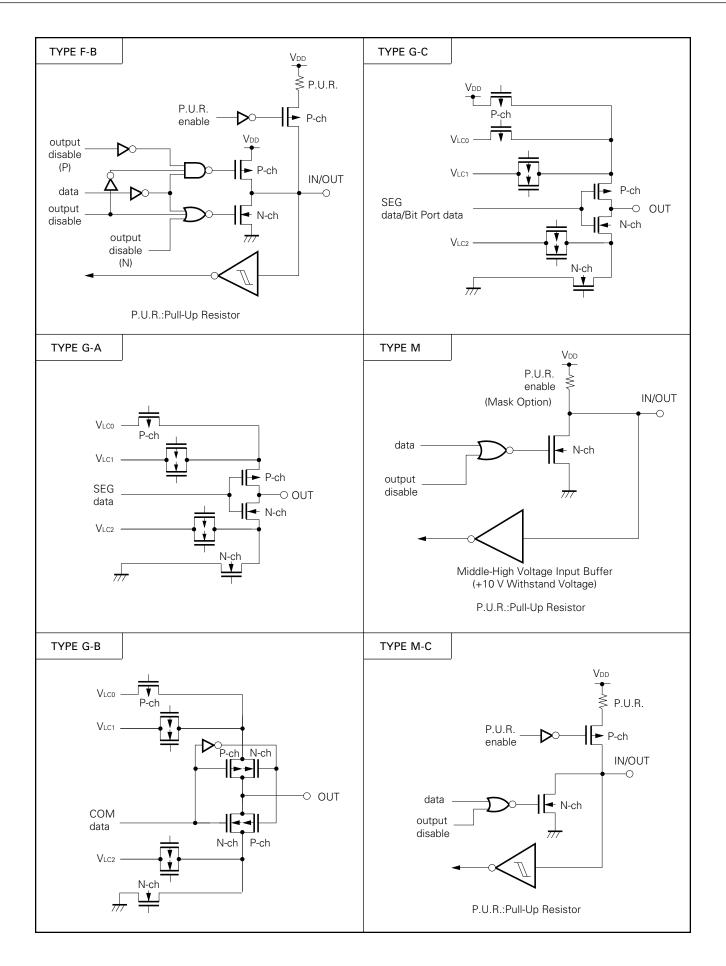
* 2. Display outputs are selected with VLcx shown below as the input source.

S0 to S31: VLc1, COM0 to COM2: VLc2, COM3: VLc0

However, the level of each display output depends on the display output and VLCX external circuit.


^{* 3.} On-chip split resistor.....Low level

^{* 4.} Pins provided for system expansion. Currently, only used as P30 and P31 pins.



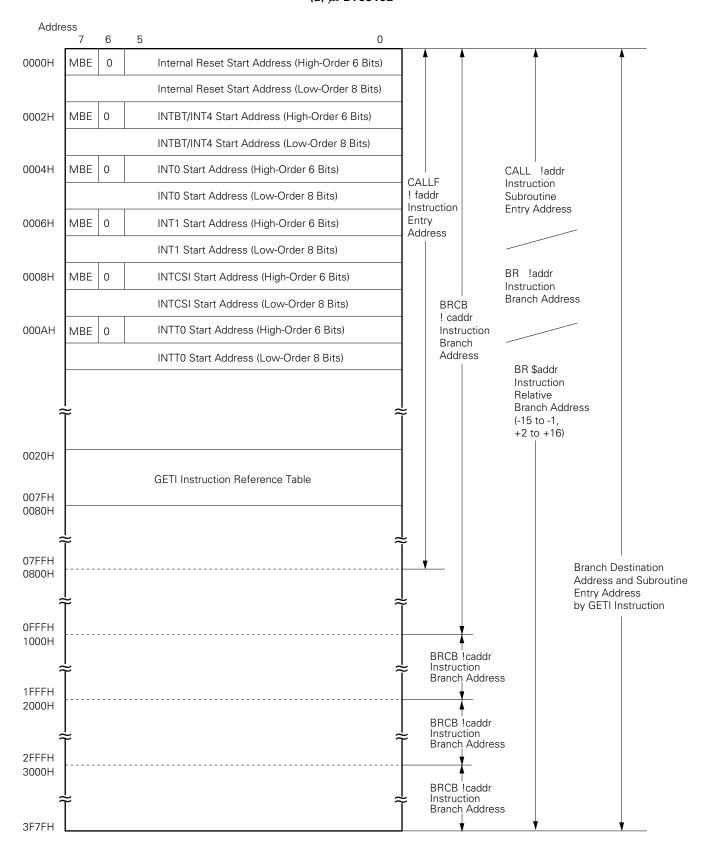
3.3 PIN INPUT/OUTPUT CIRCUITS

The input/output circuits of each pin of the μ PD75316B are shown in schematic form.

3.4 RECOMMENDED CONNECTION OF UNUSED PINS

Table 3-1 List of Recommended Connection of Unused Pins

Pin	Recommended Connection
P00/INT4	Connect to Vss.
P01/SCK	
P02/SO/SB0	Connect to Vss or VDD.
P03/SI/SB1	
P10/INT0 to P12/INT2	Connect to Vss.
P13/T10	Connect to vss.
P20/TO0	
P21	
P22/PCL	
P23/BUZ	
P30/LCDCL	
P31/SYNC	Input state : Connect to Vss or Vpd.
P32	Output state : Leave open.
P33	
P40 to P43	
P50 to P53	
P60/KR0 to P63/KR3	
P70/KR4 to P73/KR7	
S0 to S23	
S24/BP0 to S31/BP7	Leave open.
COM0 to COM3	
VLC0 to VLC2	Connect to Vss.
BIAS	Connect to Vss when VLco to VLc2 unused.
ымо	Otherwise leave open.
XT1	Connect to Vss or VDD.
XT2	Leave open.
IC	Directly connect to V _{DD} .


4. MEMORY CONFIGURATION

- Program memory (ROM) ... 16256 \times 8 bits (0000H to 3F7FH) : μ PD75316B ... 12160 \times 8 bits (0000H to 2F7FH) : μ PD75312B
 - 0000H to 0001H: Vector table in which program start address by reset is written.
 - 0002H to 000BH: Vector table in which program start address by interrupt is written.
 - 0020H to 007FH : Table area that is referred by GETI instruction.
- Data Memory
 - \bullet Data area ... 1024 \times 4 bits (000H to 3FFH)
 - Peripheral hardware area ... 128×4 bits (F80H to FFFH)

Fig. 4-1 Program Memory Map

(a) μ PD75316B

(b) μ PD75312B

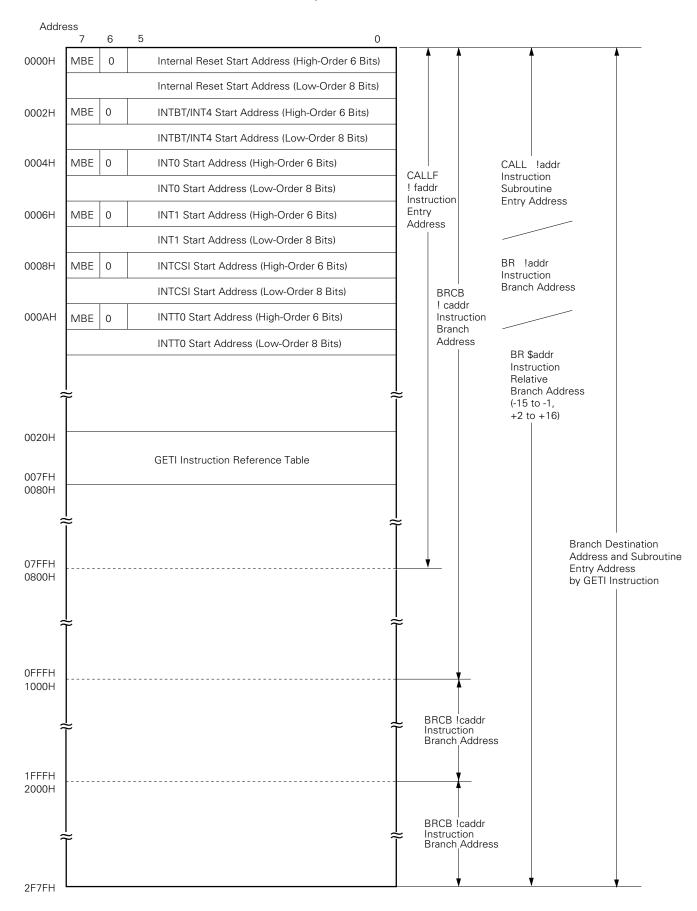
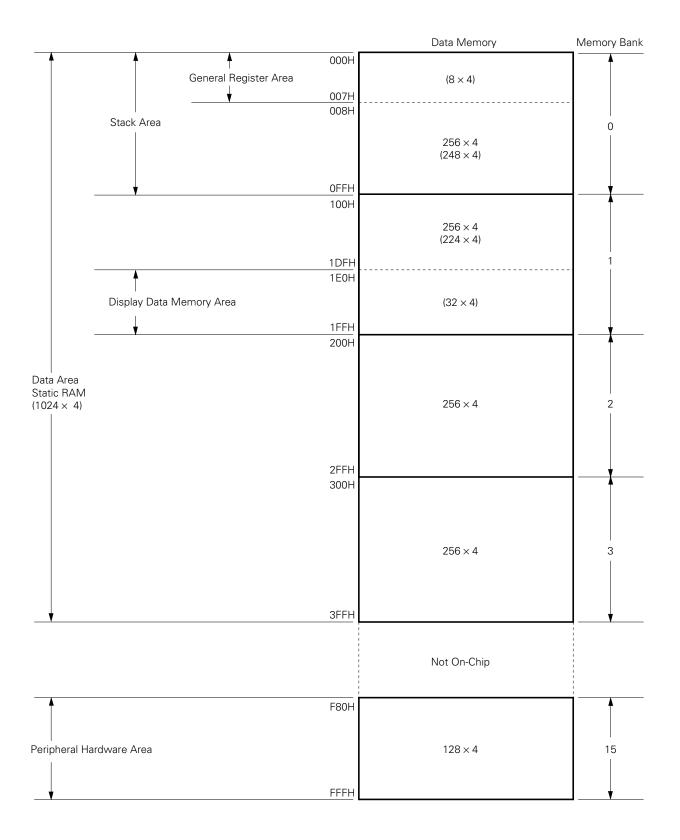



Fig. 4-2 Data Memory Map

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 PORTS

I/O Ports has 4 types

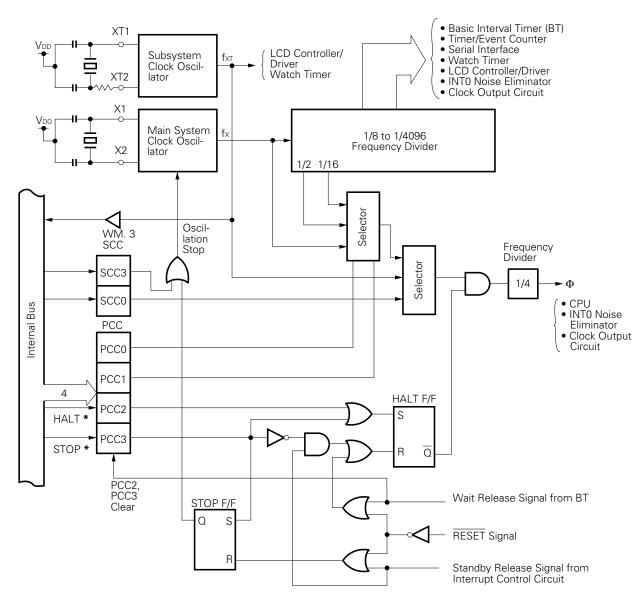
• CMOS input (PORT0, 1) : 8 • CMOS input/output (PORT2, 3, 6, 7) : 16 • N-ch open-drain (PORT4, 5) : 8 • CMOS output (BP0 to BP7) : 8 Total 40

Table 5-1 Port Function

Port (Symbol)	Function	Operation/Features	Remarks	
PORT0	4-bit input	This port can be used for reading or testing regardless of the operating mode of the dual-	Dual-function as pins INT4, SCK, SO/B0, SI/B1.	
PORT1		function pin.	Dual-function as pins INT0 to INT2 and TI0.	
PORT3*		Can be set to 1-bit input or output mode.	Dual-function as pins LCDCL and SYNC.	
PORT6	4-bit input/output	Can be set to 1-bit input of output mode.	Dual-function as pins KR0 to KR3.	
PORT2	. Sie inpagoaipat	Can be set to 4-bit input or output mode. Ports 6 and 7 can be paired for 8-bit data input or	Dual-function as pins PTO0, PCL, BUZ.	
PORT7		output.	Dual-function as pins KR4 to KR7.	
PORT4* PORT5*	4-bit input/output (N-ch open-drain, 10-V withstand voltage)	Can be set to 4-bit input or output mode. Ports 4 and 5 can be paired for 8-bit data input or output.	On-chip pull-up resistor specifiable bitwise by mask oftion.	
BP0 to BP7	1-bit output	Data output in 1-bit units. It is possible to switch the output drive segment output S24 to S31 using the software.	The drive capability is small. For CMOS load drive.	

^{*} LED can be driven directly.

5.2 CLOCK GENERATOR


The operation of the clock generator circuit is determined by the processor clock control register (PCC) and the system clock control register (SCC).

There are two kinds of clocks; the main system clock and the subsystem clock.

It is also possible to change the instruction execution time.

- 0.95 μ s/1.91 μ s/15.3 μ s (main system clock: @ 4.19 MHz)
- 122 μs (sub-system clock: @ 32.768 kHz)

Fig. 5-1 Clock Generator Block Diagram

fx: Main system clock frequency

fxT: Subsystem clock frequency

 $\Phi: \qquad \mathsf{CPU} \; \mathsf{clock}$

PCC: Processor clock control register SCC: System clock control register

Remarks 1. * indicates instruction execution.

2. Φ one clock cycle (tcv) is one machine cycle instruction. For tcv, refer to AC characteristics in "11 ELECTRICAL SPECIFICATIONS."

5.3 CLOCK OUTPUT CIRCUIT

The clock output circuit is used for outputting the clock pulse from the P22/PCL pins. It is used, for example, when a clock pulse is to be output to the remote control output, peripheral LSI, etc..

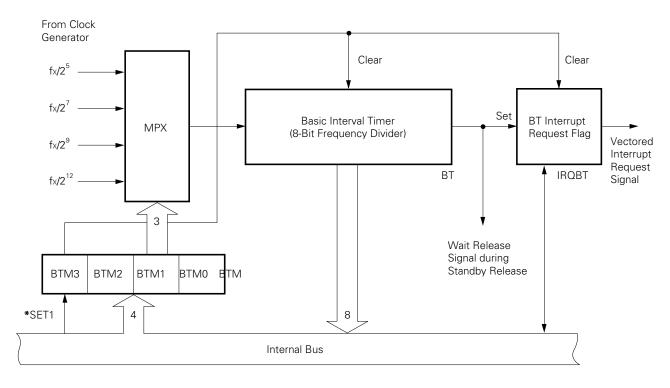
• Clock output (PCL) : Φ , 524, 262, 65.5 kHz (4.19 MHz operation)

The configuration of the clock output circuit is shown below.

From Clock Generator Output Buffer Selector O PCL/P22 PORT2.2 Bit 2 of PMGB Bit Specified P22 In Port 2 Input/Output CLOM3 0 CLOM1¢LOM0 CLOM Output Latch Mode 4 Internal Bus

Fig. 5-2 Clock Output Circuit Configuration

Remark Consideration is given so that a low-amplitude pulse is not output when switching between clocks.



5.4 BASIC INTERVAL TIMER

The basic interval timer includes the following functions.

- It operates as an interval timer which generates reference time interrupts.
- It can be applied as a watchdog timer which detects inadvertent program loop.
- Selects and counts wait times when the standby mode is released.
- It reads count contents.

Fig. 5-3 Basic Interval Timer Configuration

Remark * indicates instruction execution.

5.5 WATCH TIMER

The μ PD75316B incorporates a watch timer channel. The watch timer has the following functions.

- Sets test flags (IRQW) at 0.5-second intervals.
 The standby mode can be released with IRQW.
- 0.5-second time intervals can be created in either the main system clock or the subsystem clock.
- In the rapid feed mode, time intervals which are 128 times normal (3.91 ms) can be set, making this function convenient for program debugging and testing.
- A fixed frequency (2.048 kHz) can be output to the P23/BUZ pin for use in generating buzzer sounds and trimming system clock oscillator frequencies.
- The frequency divider can be cleared, enabling creation of watches that can start from 0 second.

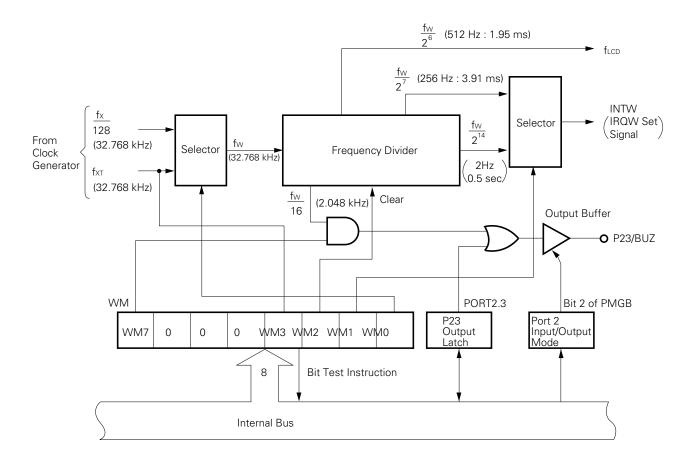


Fig. 5-4 Watch Timer Block Diagram

Remark Values in parentheses are when fx = 4.194304 MHz and fxT = 32.768 kHz.

5.6 TIMER/EVENT COUNTER

The μ PD75316B incorporates a timer/event counter channel. The functions of the timer/event counter are as follows.

- Operates as a programmable interval timer.
- Outputs square waves in the desired frequency to the PTO0 pin.
- Operates as an event counter.
- Divides the TI0 pin input into N divisions and outputs it to the PTO0 pin (frequency divider operation).
- Supplies a serial shift clock to the serial interface circuit.
- Count status read function.

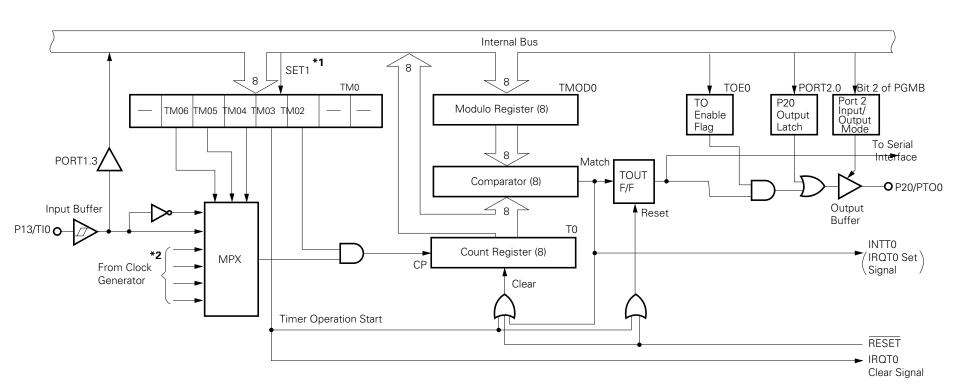
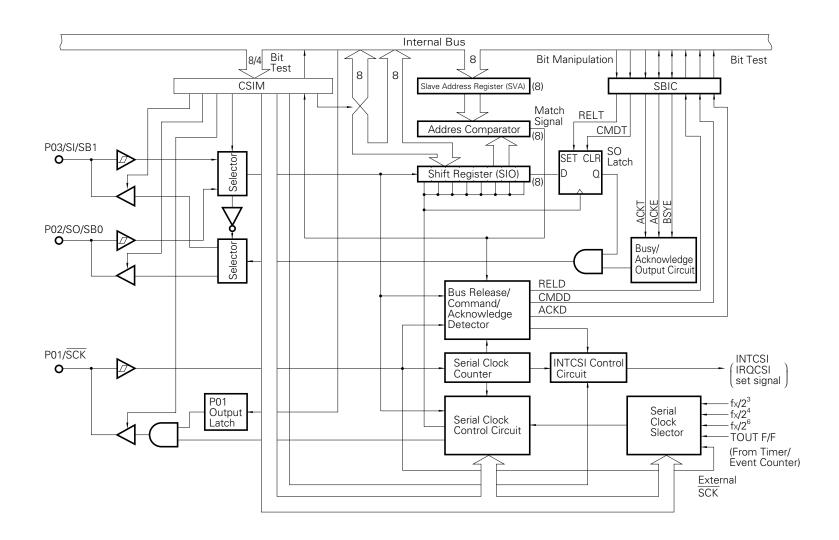


Fig. 5-5 Timer/Event Counter Block Diagram

- * 1. SET1: Instruction execution
 - 2. For detail, see Fig. 5-1.



5.7 SERIAL INTERFACE

The μ PD75316B incorporates a clocked 8-bit serial interface which has the following three types of mode.

- 3-wire serial I/O mode
- 2-wire serial I/O mode
- SBI mode (serial bus interface mode)

Fig. 5-6 Serial Interface Block Diagram

5.8 LCD CONTROLLER/DRIVER

The μ PD75316B has an on-chip display controller which generates segment signals and common signals in accordance with data in display data memory as well as a segment driver and common driver capable of directly driving the LCD panel.

The configuration of the LCD controller/driver is shown in Fig. 5-7.

The functions of the LCD controller/driver are as follows.

- Display data memory are read automatically through DMA operations and segment signals and common signals are generated.
- 5 different display modes can be selected.
- 1 Static
- (2) 1/2 duty (1/2 bias)
- 3 1/3 duty (1/2 bias)
- 4 1/3 duty (1/3 bias)
- (5) 1/4 duty (1/3 bias)
- In each of the display modes, 4 types of frame frequency can be selected.
- The segment signal output is a maximum of 32 segments (S0 to S31) and 4 common outputs (COM0 to COM3).
- Segment signal outputs (S24 to S27, S28 to S31) are in 4-segment units and they can be switched for use as output ports (BP0 to BP3, BP4 to BP7).
- Split resistors can be incorporated for the LCD drive power supply (mask option).
- Conformity to various bias methods and LCD drive voltages is possible.
- · When the display is OFF, the current flowing to the split resistors is cut.
- Display data memory not used for the display can be used as ordinary data memory.
- Operation by the subsystem clock is also possible.

Ó

SYNC LCDCL

Ó

COM3 COM2COM1COM0 V LC2 VLC1 VLC0 P31/ P30/

8 8 Port Mode Register Group A 1 0 Display Control Register 1FEH 1F8H Display Data Display Mode Register Memory 0 3 2 1 3 2 1 3 2 1 0 3 2 1 Timing Controller Multiplexer Selector LCD Drive Voltage Segment Driver Common Driver Control

S0

Ó

S23

S24/BP0

0

S30/BP6

S31/BP7

Fig. 5-7 LCD Controller/Driver Block Diagram

5.9 BIT SEQUENTIAL BUFFER 16 BITS

The bit sequential buffer is special data memory for bit manipulations and can be used easily particularly for bit manipulations where addresses and bit specifications are changed sequentially, so it is convenient for processing data with long bit lengths bit-wise.

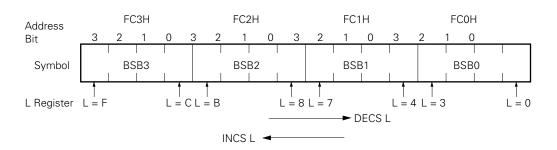


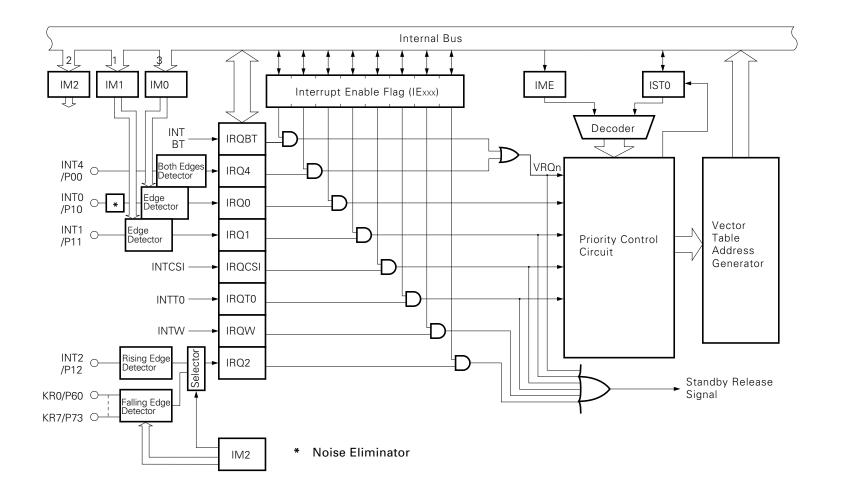
Fig. 5-8 Bit Sequential Buffer Format

Remark In "pmem.@L" addressing, the specified bit corresponding to the L register is moved.

6. INTERRUPT FUNCTION

The μ PD75316B has six interrupt sources which enable multiple interrupt by software control. It also has two test sources, of which the INT2 has two edge detection testable inputs.

Table 6-1. Types of Interrupt Sources


	Interrupt sources	Internal/external	Interrupt priority ^{Note 1}	Vectored interrupt request signal (vector table address)
INTBT	(standard interval signal from basic interval timer)	Internal	1	VRQ1 (0002H)
INT4	(both rising and falling edge detection are valid.)	External	'	VNQ1 (0002H)
INT0	(Rising or falling detection edge is selected.)	External	2	VRQ2 (0004H)
INT1	Selected.)	External	3	VRQ3 (0006H)
INTCSI	(serial data transfer end signal)	Internal	4	VRQ4 (0008H)
INTT0	(match signal between the count register and modulo register of programmable timer/counter)	Internal	5	VRQ5 (000AH)
INT2 ^{Note 2} (rising edge detection of input to INT2 pin or falling edge detection of input to KR0-KR7)		External	Testable input signal (IRQ2 and IRWQ are set.)	
INTW	ote ² (signal from clock timer)	Internal		

- **Notes 1.** Interrupt priority is serviced according to the order of priority, when several interrupt requests are generated simultaneously.
 - 2. Test source. They are affected by the interrupt enable flag in the same way as the interrupt source, but no vectored interrupt is generated.

The μ PD75316B interrupt control circuit has the following functions:

- Hardware control vectored interrupt function that can control interrupt acknowledgement by interrupt flag (IExxx) and interrupt master enable flag (IME).
- Interrupt start address can be set.
- Interrupt request flag (IRQxxx) test function (interrupt generation confirmation by software possible).
- Standby mode release (selection of interrupt that releases the standby mode by interrupt enable flag possible).

Fig.6-1 Interrupt Control Circuit Block Diagram

7. STANDBY FUNCTION

To reduce the power consumption during program wait, the μ PD75316B has two standby modes: STOP mode and HALT mode.

Table 7-1 Operation Status at Standby Mode

		STOP Mode	HALT Mode
Setting instruction		STOP instruction	HALT instruction
System clock at setting		Only main system clock settable	Main system clock or subsystem clock settable
	Clock generator	Only main system clock oscillation stopped	Only CPU clock Φ stopped (oscillation continued)
	Basic interval timer	Stopped	Operable (IRQBT set at reference time intervals)*
	Serial interface	Operable only when external SCK input selected as serial clock	Operable*
n Status	Timer/event counter	Operable only when TI0 pin input specified as count clock	Operable*
Operation Status	Watch timer	Operable only when fxT selected as count clock	Operable
	LCD controller	Operable only when fxT selected as LCDCL	Operable
	External interrupt	INT1, 2, 4: Operable Only INT0 inoperable	
	CPU	Stopped	
Release signal		Interrupt request signal from operable hardware enabled by interrupt enable flag, or RESET input	Interrupt request signal from operable hardware enabled by interrupt enable flag, or RESET input

^{*} Cannot be operable during main system clock stop.

Operating Mode

8. RESET FUNCTION

Mode

The μ PD75316B is reset and the hardware is initialized as shown in Table 8-1 by $\overline{\text{RESET}}$ input. The reset operation timing is shown in Fig. 8-1.

Wait
(31.3 ms/4.19 MHz)

RESET Input

Operating Mode or Standby

Fig. 8-1 Reset Operation by RESET Input

Table 8-1 Status of Each Hardware after Resetting (1/3)

Internal Reset Operation

HALT Mode

Hardware		RESET Input in Standby Mode	RESET Input During Operation
Program counter (PC)		Low-order 6 bits of program memory address 0000H are set in PC13 to 8 and the contents of address 0001H are set in PC7 to 0.	Same as the left
PSW	Carry flag (CY)	Held	Undefined
	Skip flag (SK0 to 2)	0	0
	Interrupt status flag (IST0)	0	0
	Bank enable flag (MBE)	Bit 7 of program memory address 0000H is set in MBE.	Same as the left
Stack pointer (SP)		Undefined	Undefined
Data memory (RAM)		Held*	Undefined
General register (X, A, H, L, D, E, B, C)		Held	Undefined
Bank selection register (MBS)		0	0

^{*} Data of data memory addresses 0F8H to 0FDH becomes undefined by RESET input.

Table 8-1 Status of Each Hardware after Resetting (2/3)

Hardware		RESET Input in Standby Mode	RESET Input During Operation
Basic interval	Counter (BT)	Undefined	Undefined
timer	Mode register (BTM)	0	0
	Counter (T0)	0	0
Timer/event	Modulo register (TMOD0)	FFH	FFH
counter	Mode register (TM0)	0	0
	TOE0, TOUT F/F	0, 0	0, 0
Watch timer	Mode register (WM)	0	0
	Shift register (SIO)	Held	Undefined
	Operating mode register (CSIM)	0	0
Serial interface	SBI control register (SBIC)	0	0
	Slave address register (SVA)	Held	Undefined
0	Processor clock control register (PCC)	0	0
Clock generator, clock output	System clock control register (SCC)	0	0
circuit	Clock output mode register (CLOM)	0	0
100	Display mode register (LCDM)	0	0
LCD controller	Display control register (LCDC)	0	0
	Interrupt request flag (IRQxxx)	Reset (0)	Reset (0)
I-4	Interrupt enable flag (IExxx)	0	0
Interrupt function	Interrupt master enable flag (IME)	0	0
	INT0, 1, 2 mode registers (IM0, 1, 2)	0, 0, 0	0, 0, 0

Table 8-1 Status of Each Hardware after Resetting (3/3)

Hardware		RESET Input in Standby Mode	RESET Input During Operation
	Output buffer	OFF	OFF
	Output latch	Clear (0)	Clear (0)
Digital port	I/O mode register (PMGA, B)	0	0
	Pull-up resistor specification register (POGA)	0	0
Bit sequential buffer (BSB0 to 3)		Held	Undefined

9 INSTRUCTION SET

(1) Operand identifier and description method

The operand is described in the operand field of each instruction in accordance with the description method for the operand identifier of the instruction. For details refer to RA75X Assembler Package User's Manual Language Volume (EEU-1363). When there are multiple elements in the description method, one of the elements is selected. Uppercase letters and symbols (+,-) are keywords and should be described without change as shown.

For immediate data, a suitable value or label is described.

Various register or flag symbols can be used as a label instead of mem, fmem, pmem, bit, etc. (see the μ PD75308 User's Manual (IEM-1263) for details). However, there are restrictions on the labels for which fmem and pmem can be used.

Identifier	Description		
reg	X, A, B, C, D, E, H, L		
reg1	X, B, C, D, E, H, L		
rp	XA, BC, DE, HL		
rp1	BC, DE, HL		
rp2	BC, DE		
rpa	HL, DE, DL		
rpa1	DE, DL		
n4	4-bit immediate data or label		
n8	8-bit immediate data or label		
mem*	8-bit immediate data or label		
bit	2-bit immediate data or label		
fmem pmem	FB0H to FBFH, FF0H to FFFH immediate data or label FC0H to FFFH immediate data or label		
addr	μPD75312B μPD75316B	0000H to 2F7FH immediate data or label 0000H to 3F7FH immediate data or label	
caddr	12-bit immediate data or label		
faddr	11-bit immediate data or label		
taddr	20H to 7FH immediate data (however, bit0 = 0) or label		
PORTn	PORT 0 to PORT 7		
IExxx	IEBT, IECSI, IET0, IE0, IE1, IE2, IE4, IEW		
MBn	MB0, MB1, MB2, MB3, MB15		

* For mem, only even addresses can be entered in the case of 8-bit data processing.

35

(2) Operation description legend

A : A register; 4-bit accumulator

B : B register;
C : C register;
D : D register;
E : E register;
H : H register;
L : L register;
X : X register;

XA : Register pair (XA); 8-bit accumulator

BC : Register pair (BC)
DE : Register pair (DE)
HL : Register pair (HL)
PC : Program counter
SP : Stack pointer

CY : Carry flag; bit accumulator
PSW : Program status word
MBE : Memory bank enable flag

PORTn : Portn (n = 0 to 7)

IME : Interrupt master enable flag

IExxx : Interrupt enable flag

MBS : Memory bank selection registerPCC : Processor clock control register

. : Address, bit delimiter ($\times\times$) : Contents addressed by $\times\times$

imesH : Hexadecimal data

(3) Description of addressing area field symbols

*1	MB = MBE • MBS	MBS = 0 to 3, 15)	1					
*2	MB = 0							
*3		(00H to 7FH) 5 (80H to FFH) IBS (MBS = 0 to 3, 15)	Data Memory Addressing					
*4	,	MB = 15, fmem = FB0H to FBFH, FF0H to FFFH						
*5	MB = 15, pmem =	FC0H to FFFH	•					
*6	μPD75312B	addr = 0000H to 2F7FH	•					
	μPD75316B	PD75316B addr = 0000H to 3F7FH						
*7	· ·	c) -15 to (Current PC) -1, c) +2 to (Current PC) + 16						
	μPD75312B	caddr = 0000H to 0FFFH ($PC_{13} = 0$, $PC_{12} = 0$)or 1000H to 1FFFH ($PC_{13} = 0$, $PC_{12} = 1$) or 2000H to 2F7FH ($PC_{13} = 1$, $PC_{12} = 0$)	Program Memory Addressing					
*8	μPD75316B	caddr = 0000H to 0FFFH (PC ₁₃ = 0, PC ₁₂ = 0) or 1000H to 1FFFH (PC ₁₃ = 0, PC ₁₂ = 1) or 2000H to 2FFFH (PC ₁₃ = 1, PC ₁₂ = 0) or 3000H to 3F7FH (PC ₁₃ = 1, PC ₁₂ = 1)						
*9	faddr = 0000H to 0	1						
*10	taddr = 0020H to 0	07FH						

- Remarks 1. MB indicates the accessible memory bank.
 - 2. For *2, MB = 0 without regard to MBE and MBS.
 - 3. For *4 and *5, MB = 15 without regard to MBE and MBS.
 - 4. *6 to *10 indicate the addressable area.

(4) Explanation of machine cycle field

S shows the number of machine cycles required when skip is performed by an instruction with skip. The value of S changes as follows:

Caution One machine cycle is required to skip a GETI instruction.

One machine cycle is equivalent to one cycle (= tcv) of the CPU clock Φ . Three times can be selected by PCC setting.

Note 1	Mne- monic	Operand	Bytes	Machine Cycles	Operation	Address- ing Area	Skip Condition
		A, #n4	1	1	A ← n4		Stack A
		reg1, #n4	2	2	reg1 ← n4		
		XA, #n8	2	2	XA ← n8		Stack A
		HL, #n8	2	2	HL ← n8		Stack B
		rp2, #n8	2	2	rp2 ← n8		
		A, @HL	1	1	$A \leftarrow (HL)$	*1	
		A, @rpa1	1	1	$A \leftarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftarrow (HL)$	*1	
	MOV	@HL, A	1	1	$(HL) \leftarrow A$	*1	
		@HL, XA	2	2	$(HL) \leftarrow XA$	*1	
		A, mem	2	2	$A \leftarrow (mem)$	*3	
e.		XA, mem	2	2	$XA \leftarrow (mem)$	*3	
Transfer		mem, A	2	2	(mem) ← A	*3	
Ļ		mem, XA	2	2	$(mem) \leftarrow XA$	*3	
		A, reg	2	2	$A \leftarrow reg$		
		XA, rp	2	2	XA ← rp		
		reg1, A	2	2	reg1 ← A		
		rp1, XA	2	2	$rp1 \leftarrow XA$		
		A, @HL	1	1	$A \leftrightarrow (HL)$	*1	
		A, @rpa1	1	1	$A \leftrightarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftrightarrow (HL)$	*1	
	хсн	A, mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A,reg1	1	1	$A \leftrightarrow reg1$		
		XA, rp	2	2	$XA \leftrightarrow rp$		
Note 2	MOVT	XA, @PCDE	1	3	$XA \leftarrow (PC_{13-8} + DE)_{ROM}$		
Not	IVIOVI	XA, @PCXA	1	3	$XA \leftarrow (PC_{13-8} + XA)_{ROM}$		
	ADDS	A, #n4	1	1 + S	$A \leftarrow A + n4$		carry
	7,000	A, @HL	1	1 + S	$A \leftarrow A + (HL)$	*1	carry
	ADDC	A, @HL	1	1	$A,CY \leftarrow A + (HL) + CY$	*1	
	SUBS	A, @HL	1	1 + S	$A \leftarrow A - (HL)$	*1	borrow
ion	SUBC	A, @HL	1	1	$A,CY \leftarrow A - (HL) - CY$	*1	
Operation	AND	A, #n4	2	2	$A \leftarrow A \wedge n4$		
Q	, • D	A, @HL	1	1	$A \leftarrow A \wedge (HL)$	*1	
	OR	A, #n4	2	2	$A \leftarrow A \vee n4$		
		A, @HL	1	1	$A \leftarrow A \vee (HL)$	*1	
	XOR	A, #n4	2	2	$A \leftarrow A \forall n4$		
	AON	A, @HL	1	1	$A \leftarrow A \not\sim (HL)$	*1	

Notes 1. Instruction Group

2. Table reference

Note 1	Mne- monic	Operand	Bytes	Machine Cycles	Operation	Address- ing Area	Skip Condition
Note 2	RORC	Α	1	1	$CY \leftarrow A_0, A_3 \leftarrow CY, A_{n-1} \leftarrow A_n$		
No	NOT	Α	2	2	$A \leftarrow \overline{A}$		
		reg	1	1 + S	reg ← reg + 1		reg = 0
Note 3	INCS	@HL	2	2 + S	(HL) ← (HL) + 1	*1	(HL) = 0
Š		mem	2	2 + S	(mem) ← (mem) + 1	*3	(mem) = 0
	DECS	reg	1	1 + S	reg ← reg − 1		reg = FH
٦		reg, #n4	2	2 + S	Skip if reg = n4		reg = n4
arisc	SKE	@HL, #n4	2	2 + S	Skip if (HL) = n4	*1	(HL) = n4
Comparison		A, @HL	1	1 + S	Skip if A = (HL)	*1	A = (HL)
ပိ		A, reg	2	2 + S	Skip if A = reg		A = reg
	SET1	CY	1	1	CY ← 1		
Note 4	CLR1	CY	1	1	CY ← 0		
Š	SKT	CY	1	1 + S	Skip if CY = 1		CY = 1
	NOT1	CY	1	1	$CY \leftarrow \overline{CY}$		
		mem.bit	2	2	(mem.bit) ← 1	*3	
	SET1	fmem.bit	2	2	(fmem.bit) ← 1	*4	
	02	pmem.@L	2	2	(pmem ₇₋₂ + L ₃₋₂ .bit (L ₁₋₀)) ← 1	*5	
		@H + mem.bit	2	2	(H + mem₃-₀.bit) ← 1	*1	
		mem.bit	2	2	(mem.bit) ← 0	*3	
	CLR1	fmem.bit	2	2	(fmem.bit) ← 0	*4	
uo	CENT	pmem.@L	2	2	(pmem ₇₋₂ + L ₃₋₂ .bit (L ₁₋₀)) ← 0	*5	
ry bit manipulation		@H + mem.bit	2	2	(H + mem₃-o.bit) ← 0	*1	
anip		mem.bit	2	2 + S	Skip if (mem.bit) = 1	*3	(mem.bit) = 1
it m	SKT	fmem.bit	2	2 + S	Skip if (fmem.bit) = 1	*4	(fmem.bit) = 1
ry bi	OKI	pmem.@L	2	2 + S	Skip if (pmem ₇₋₂ + L ₃₋₂ .bit (L ₁₋₀)) = 1	*5	(pmem.@L) = 1
Memo		@H + mem.bit	2	2 + S	Skip if (H + mem ₃₋₀ .bit) = 1	*1	(@H + mem.bit) = 1
ž		mem.bit	2	2 + S	Skip if (mem.bit) = 0	*3	(mem.bit) = 0
	SKF	fmem.bit	2	2 + S	Skip if (fmem.bit) = 0	*4	(fmem.bit) = 0
	pmem.@L		2	2 + S	Skip if (pmem ₇₋₂ + L ₃₋₂ .bit (L ₁₋₀)) = 0	*5	(pmem.@L) = 0
		@H + mem.bit	2	2 + S	Skip if (H + mem ₃₋₀ .bit) = 0	*1	(@H + mem.bit) = 0
		fmem.bit	2	2 + S	Skip if (fmem.bit) = 1 and clear	*4	(fmem.bit) = 1
	SKTCLR	pmem.@L	2	2 + S	Skip if (pmem ₇₋₂ + L_{3-2} .bit (L_{1-0})) = 1 and clear	*5	(pmem.@L) = 1
		@H + mem.bit	2	2 + S	Skip if (H + mem ₃₋₀ .bit) = 1 and clear	*1	(@H + mem.bit) = 1

Notes 1. Instruction Group

- 2. Accumulator operation
- 3. Increment/decrement
- 4. Carry flag manipulation

Note 1	Mne- monic	Operand	Bytes	Machine Cycles	Operation	Address- ing Area	Skip Condition
		CY, fmem.bit	2	2	$CY \leftarrow CY \land (fmem.bit)$	*4	
on	AND1	CY, pmem.@L	2	2	$CY \leftarrow CY \land (pmem_{7-2} + L_{3-2}.bit (L_{1-0}))$	*5	
ılati		CY, @H + mem.bit	2	2	$CY \leftarrow CY \land (H + mem_{3-0}.bit)$	*1	
Memory bit manipulation		CY, fmem.bit	2	2	$CY \leftarrow CY \lor (fmem.bit)$	*4	
t ma	OR1	CY, pmem.@L	2	2	$CY \leftarrow CY \lor (pmem_{7-2} + L_{3-2}.bit (L_{1-0}))$	*5	
y bi		CY, @H + mem.bit	2	2	CY ← CY V (H + mem₃-o.bit)	*1	
mol		CY, fmem.bit	2	2	CY ← CY ∀ (fmem.bit)	*4	
Me	XOR1	CY, pmem.@L	2	2	CY ← CY ∀ (pmem ₇₋₂ + L ₃₋₂ .bit (L ₁₋₀))	*5	
		CY, @H + mem.bit	2	2	CY ← CY ∀ (H + mem₃-₀.bit)	*1	
Branch	BR	addr		_	$PC_{13-0} \leftarrow addr$ (The assembler selects the optimum instruction from among the BR !addr, BRCB !caddr, and BR \$addr instructions.)	*6	
Bra		!addr	3	3	$PC_{130} \leftarrow addr$	*6	
		\$addr	1	2	$PC_{130} \leftarrow addr$	*7	
	BRCB	!caddr	2	2	PC13-0 ← PC13, 12 + caddr11-0	*8	
	CALL	!addr	3	3	$(SP - 4) (SP - 1) (SP - 2) \leftarrow PC_{11-0}$ $(SP - 3) \leftarrow MBE, 0, PC_{13}, PC_{12}$ $PC_{13-0} \leftarrow addr, SP \leftarrow SP - 4$	*6	
	CALLF	!faddr	2	2	$(SP - 4) (SP - 1) (SP - 2) \leftarrow PC_{11-0}$ $(SP - 3) \leftarrow MBE, 0, PC_{13}, PC_{12}$ $PC_{13-0} \leftarrow 00, faddr, SP \leftarrow SP - 4$	*9	
k control	RET		1	3	MBE, PC ₁₃ , PC ₁₂ \leftarrow (SP + 1) ₃ , 1, 0 PC ₁₁₋₀ \leftarrow (SP) (SP + 3) (SP + 2) SP \leftarrow SP + 4		
Subroutine stack control	RETS		1	3+S	MBE, PC ₁₃ , PC ₁₂ \leftarrow (SP + 1) _{3, 1, 0} PC ₁₁₋₀ \leftarrow (SP) (SP + 3) (SP + 2) SP \leftarrow SP + 4, then skip unconditionally		Unconditional
Subr	RETI		1	3	$\begin{aligned} & PC_{13}, PC_{12} \leftarrow (SP+1)_{1,0} \\ & PC_{11-0} \leftarrow (SP) \; (SP+3) \; (SP+2) \\ & PSW \leftarrow (SP+4) \; (SP+5), SP \leftarrow SP+6 \end{aligned}$		
	DUCU	rp 1 1 (SP − 1) (SP − 2) ← rp, SP ← SP − 2		$(SP - 1) (SP - 2) \leftarrow rp, SP \leftarrow SP - 2$			
	PUSH	BS	2	2	$(SP-1) \leftarrow MBS, (SP-2) \leftarrow 0, SP \leftarrow SP-2$		
	rp		1	1	$rp \leftarrow (SP + 1) (SP), SP \leftarrow SP + 2$		
	POP	BS	2	2	$MBS \leftarrow (SP + 1), SP \leftarrow SP + 2$		
			2	2	IME ← 1		
te 2	EI	IE×××	2	2	$IE \times \times \times \leftarrow 1$		
Note			2	2	IME ← 0		
	DI	IE×××	2	2	$IE \times \times \times \leftarrow 0$		

Notes 1. Instruction Group

2. Interrupt control

Note 1	Mne- monic	Operand	Bytes	Machine Cycles	Operation	Address- ing Area	Skip Condition
Ħ	IN	A, PORTn	2	2	$A \leftarrow PORT_n$ (n = 0-7)		
outp		XA, PORTn	2	2	$XA \leftarrow PORT_{n+1}, PORT_n$ (n = 4, 6)		
Input/output	OUT	PORTn, A	2	2	$PORT_n \leftarrow A$ (n = 2-7)		
<u>=</u>	001	PORTn, XA	2	2	PORT $_{n+1}$, PORT $_n \leftarrow XA$ (n =4, 6)		
2	HALT		2	2	Set HALT Mode (PCC.2 \leftarrow 1)		
Note	STOP		2	2	Set STOP Mode (PCC.3 ← 1)		
2	NOP		1	1	No Operation		
	SEL	MBn	2	2	$MBS \leftarrow n \ (n=0 \ to \ 3, \ 15)$		
Special	GETI	taddr	1	3	 TBR Instruction PC₁₃₋₀ ← (taddr) ₅₋₀ + (taddr + 1) TCALL Instruction (SP - 4) (SP - 1) (SP - 2) ← PC₁₁₋₀ (SP - 3) ← MBE, 0, PC₁₃, PC₁₂ PC₁₃₋₀ ← (taddr) ₅₋₀ ← (taddr + 1) SP ← SP - 4 Other than TBR and TCALL Instruction 	*10	Conforms to
					Execution of an instruction addressed at (taddr) and (taddr + 1)		referenced instruction.

Caution: At IN/OUT instruction execution, MBE = 0 or MBE = 1, MBS = 15 must be set in advance.

Notes 1. Instruction Group

2. CPU control

Remark The TBR and TCALL instructions are assembler pseudo instructions for GETI instruction table definition.

10. MASK OPTION SELECTION

The following mask options are available at the pins:

Pin Function	Mask Option
P40 to P43, P50 to P53	Pull-up resistor (specifiable bit-wise)No pull-up resistor (specifiable bit-wise)
VLco to VLc2, BIAS	 LCD drive power supply split resistor (specified in units of 4) No LCD drive power supply split resistor (specified in units of 4)

11. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (Ta = 25 $^{\circ}$ C)

PARAMETER	SYMBOL	TEST CONDITIONS		ONS	RATING	UNIT
Supply voltage	V _{DD}				-0.3 to +7.0	V
	V _{I1}	Except ports 4, 5			-0.3 to V _{DD} +0.3	V
Input voltage	Vı2	B	On-chi	p pull-up resistor	-0.3 to V _{DD} +0.3	V
	V 12	Ports 4, 5	Open-	drain	-0.3 to +11	V
Output voltage	Vo				-0.3 to V _{DD} +0.3	V
O. 44 bi-b		Per pin			-15	mA
Output current, high	Іон	All output pins			-30	mA
		Per pin		Peak value	30	mA
				Effective value	15	mA
Output current, low		T-+- -f+- 0 0	2.5	Peak value	100	mA
Output current, low	loL*	Total of ports 0, 2,	3, 5	Effective value	60	mA
		Total of monto 4 C	7	Peak value	100	mA
		Total of ports 4, 6,	Total of ports 4, 6, 7		60	mA
Operating temperature	Topt				-40 to +85	°C
Storage temperature	T _{stg}				−65 to +150	°C

^{*} Calculate the effective value with the formula [Effective value] = [Peak value] $\times \sqrt{\text{duty}}$.

Caution: If even one parameter exceeds the absolute maximum rating, even momentarily, the quality of the product may be impaired. The absolute maximum rating is a rated threshold value at which the product can be physically damaged. Be sure to use the product within the absolute maximum ratings.

CAPACITANCE (Ta = 25 $^{\circ}$ C, V_{DD} = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	Cin				15	pF
Output capacitance	Соит	f = 1 MHz			15	pF
Input /output capacitance	Сю	Unmeasured pin returned to 0 V			15	pF

MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = -40 to +85 °C, VDD = 2.0 to 6.0 V)

RESONATOR	RECOMMENDED CIRCUIT	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
	X1 X2	Oscillator frequency (fxx) *1		1.0		5.0 *3	MHz
Ceramic resonator	C1 C2	Oscillation stabilization time *2	After V _{DD} reaches the minimum value in the oscillation voltage range			4	ms
	X1 X2 C1 C2 VDD	Oscillator frequency (fxx) *1		1.0	4.19	5.0 *3	MHz
Crystal resonator		Oscillation stabilization time *2	V _{DD} = 4.5 to 6.0 V			10	ms
						30	ms
	X1 X2	X1 input frequency (fx) *1		1.0		5.0 *3	MHz
External clock	μPD74HCU04	X1 input high and low level widths (txH, txL)		100		500	ns

- * 1. For the oscillator frequency and the X1 input frequency, only the characteristics of the oscillation circuit are shown. For the instruction execution time, refer to the AC characteristics.
 - 2. Time required for oscillation to become stabilized after VDD application or STOP mode release.
 - 3. When the oscillator frequency is 4.19 MHz < $f_{XX} \le 5.0$ MHz, do not select PPC = 0011 as instruction execution time. If PCC = 0011 is selected, 1 machine cycle becomes less than 0.95 μ s, with the result that specified MIN. value 0.95 μ s cannot be observed.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = -40 to +85 °C, VDD = 2.0 to 6.0 V)

RESONATOR	RECOMMENDED CIRCUIT	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Crystal resonator	XT1 XT2	Oscillator frequency (fxT)		32	32.768	35	kHz
	C3 = C4	Oscillation stabilization time*	V _{DD} = 4.5 to 6.0 V		1.0	2	s
						10	s
External clock	X1 X2 Open	XT1 input frequency (fxt)		32		100	kHz
		XT1 input high and low level widths (txth, txtl)		5		15	μs

* Time required for oscillation to become stabilized after VDD application.

Caution:

When the main system clock oscillator or subsystem clock oscillator is used, the shaded area in the figures should be wired as follows to prevent influence from the wiring capacitance, etc.

- Wiring should be as short as possible.
- Do not cross signal lines.
- Do not place the circuit close to a line in which varying high current flows.
- The connecting point of oscillator capacitor should always be the same potential as V_{DD} . Do not connect it to the power supply pattern in which high current flows.
- Do not fetch a signal from the oscillator.

When the subsystem clock is used, special care is needed for the wiring. The subsystem clock oscillator is designed to be low-amplification circuit for low current consumption, thus mulfunction due to noise occurs more often than with the main system clock oscillator.

45

RECOMMENDED OSCILLATOR CONSTANTS

MAIN SYSTEM CLOCK: CERAMIC RESONATOR (Ta = -40 to +85 °C)

Manufacture	Product Name	Fragues av (MIII-)	Recom	mended co	nstants	Oscillator voltage range (V)		
Manufacture		Frequency (MHz)	C1 (pF)	C2 (pF)	R (kΩ)	MIN.	MAX.	
MURATA	$CSB \times \times \times \times J$	1.000 to 1.250			5.6		6.0	
	CSA×.×××MK040	1.251 to 1.799	100	100	_	2.0		
	CSA ×. ×× MG040	1 000 +- 2 440						
	CST x. x x MG040	1.800 to 2.440	Internal	Internal			6.0	
	CSA ×. ××MG	2.450.4- 5.000	30	30				
	$CST \times \times MGW$	2.450 to 5.000	Internal	Internal				

MAIN SYSTEM CLOCK: CERAMIC RESONATOR (Ta = -40 to +85 °C)

Manufacture	Due do et News	[Recommen	ded constants	Oscillator voltage range (V)		
Manufacture	Product Name	Frequency (MHz)	C1 (pF)	C2 (pF)	MIN.	MAX.	
KYOCERA	KBR-1000Y	1.00	100		- 2.0		
	KBR-1000F	1.00		100			
	KBR-2.0MS	2.00	100	100			
	PBRC 2.00A	2.00				6.0	
	KBR-4.0MSA		33	33			
	PBRC 4.00A	4.00					
	KBR-4.0MKS	4.00		1			
	KBR-4.0MWS		Internal	Internal			
	KBR-5.0MSA		33	33			
	PBRC 5.00A	6.00	33	33			
	KBR-5.0MKS	0.00	Internal	Internal			
	KBR-5.0MWS		Internal	internai			

MAIN SYSTEM CLOCK: CERAMIC RESONATOR (Ta = -40 to +85 °C)

Manufacture	Product Name	Eroguepov (MHz)	Recommen	ded constants	Oscillator voltage range (\		
Manufacture	Froduct Name	Frequency (MHz)	C1 (pF)	C2 (pF)	MIN.	MAX.	
токои	CRHF 2.50	2.5					
	CRHF 3.00	3.0	20	20	2.0	0.0	
	CRHF 4.00	4.0	30	30	2.0	6.0	
	CRHF 5.00	5.0					

SUBSYSTEM CLOCK: CRYSTAL RESONATOR (Ta = -15 to +60 °C)

Manufacture Product Name	Product Name	Frequency (MHz)	Recom	mended co	nstants	Oscillator voltage range (V)		
	r roudet ivallie		C3 (pF)	C4 (pF)	R (kΩ)	MIN.	MAX.	
KYOCERA	KF-38G	32.768	18	33	220	2.0	6.0	

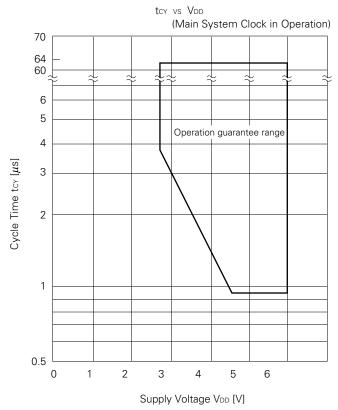
Caution: Make the fine-adjustment of crystal resonator frequency with external capacitor C1 or C3.

DC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = 2.7 to 6.0 V) (1/2)

PARAMETER	SYMBOL	TEST CON	DITIONS	MIN.	TYP.	MAX.	UNIT
	VIH1	Ports 2 and 3		0.7 VDD		VDD	V
Input voltage,	VIH2	Ports 0, 1, 6, 7, RESE	T	0.8 VDD		VDD	V
high	.,		p pull-up resistor	0.7 VDD		VDD	٧
Input voltage, high Input voltage, low Output voltage, high Output voltage, low Input leakage current, high	VIH3	Ports 4 and 5 Open-	drain	0.7 VDD		10	V
	VIH4	X1, X2, XT1		VDD -0.5		VDD	V
	VIL1	Ports 2, 3, 4 and 5	Ports 2, 3, 4 and 5			0.3 VDD	V
	VIL2	Ports 0, 1, 6, 7, RESE	T	0		0.2 VDD	V
	VIL3	X1, X2, XT1		0		VDD VDD VDD 10 VDD 0.3 VDD	V
	V он1	Ports 0, 2, 3, 6, 7, BIAS	V _{DD} = 4.5 to 6.0 V Іон = -1mA	VDD -1.0			V
Output voltage,			Іон = –100 μА	VDD -0.5			V
Output voltage, high –	V _{0H2}	BP0 to BP7 (with 2 loн outputs)	$V_{DD} = 4.5 \text{ to}$ 6.0 V $I_{OH} = -100 \ \mu\text{A}$	VDD -2.0			V
			Iон = −30 <i>μ</i> A	VDD -1.0			V
Input voltage, high Output voltage, high Output voltage, low Input leakage current, high		Ports	Ports 3, 4, 5 V _{DD} = 4.5 to 6.0 V I _{OL} = 15 mA		0.5	2.0	V
	V _{OL1}	0, 2, 3, 4, 5, 6 and 7	V _{DD} = 4.5 to 6.0 V I _{OL} = 1.6 mA			0.4	V
			IοL = 400 μA			0.5	V
		SB0, 1	Open-drain pull-up resistor \geq 1 k Ω			0.2 V _{DD}	V
	V _{OL2}	BP0 to BP7 (with 2 loL outputs)	$V_{DD} = 4.5 \text{ to}$ 6.0 V $I_{OL} = 100 \ \mu\text{A}$			1.0	V
			IοL = 50 μA			1.0	V
	Ішн1	VIN = VDD	Other than below			3	μΑ
Input leakage current, high	ILIH2	טט ע = או ע	X1, X2, XT1			20	μΑ
	Іинз	V _{IN} = 10 V	Ports 4 and 5 (when open -drain)			VDD	μΑ
Input leakage	Ішт	V _{IN} = 0 V	Other than below			-3	μΑ
current, low	ILIL2	VIIN — U V	X1, X2, XT1			-20	μΑ

DC CHARACTERISTICS (Ta = -40 to +85 °C, $\overline{V_{DD}}$ = 2.7 to 6.0 \overline{V}) (2/2)

PARAMETER	SYMBOL	TEST CONI	DITIONS		MIN.	TYP.	MAX.	UNIT
	Ігон1	Vout = Vdd	Other t	han			3	μΑ
Output leakage current, high	Ігон2	Vоит = 10 V	Ports 4 (when drain)				20	μΑ
Output leakage current, low	Ігог	Vout = 0 V					-3	μΑ
	RL1	Ports 0, 1, 2, 3, 6 and 7 (Except P00)	V _{DD} = 5 ±10%	.0 V	15	40	80	kΩ
On-chip pull-up	NL1	Vin = 0 V	V _{DD} = 3 ±10%	.0 V	30		200	kΩ
resistor		Ports 4, 5	V _{DD} = 5 ±10%	.0 V	15	40	70	kΩ
	R _{L2}	Vout = VDD -2.0 V	V _{DD} = 3 ±10%	3.0 V	15	40	70	kΩ
LCD drive voltage	VLCD				2.0		V _{DD}	V
LCD split resistor	RLCD				60	100	150	kΩ
LCD output voltage deviation*1 (common)	Vodc	Io = ±5 μA	$V_{LCD0} = V_{LCD}$ $V_{LCD1} =$ $V_{LCD} \times 2/3$ $V_{LCD2} = V_{LCD}$ $\times 1/3$ $2.7 \text{ V} \leq V_{LCD}$ $\leq V_{DD}$		0		±0.2	V
LCD output voltage deviation*1 (segment)	Vobs	Io = ±1μA			0		±0.2	>
	I _{DD1}		V _{DD} = 5 ±10%*			3.0	9	mA
	וטטו	4.19 MHz*3 crystal oscillation C1=C2=	V _{DD} = 3 ±10%*!			0.4	1.2	mA
	l _{DD2}	22 pF	HALT	V _{DD} = 5 V ±10%		1	3	mA
Supply current *2			mode	V _{DD} = 3 V ±10%		300	900	μΑ
	Едај	32 kHz *6	V _{DD} = 3 ±10%	3 V		20	60	μΑ
	I _{DD4}	crystal oscillation	HALT mode	V _{DD} = 3 V ±10%		7	21	μΑ
			V _{DD} = 5	5 V±10%		1	25	μΑ
	I _{DD5}	XT1 = 0 V STOP mode	V _{DD} =			0.5	15	μΑ
			3 V ±10%	T _a = 25°C		0.5	5	μΑ


- * 1. The voltage deviation is a difference between the segment and common output ideal value (VLCDn; n = 0, 1, 2) and output voltage.
 - 2. Current flowing in the internal pull-up resistor and LCD split resistor are not included.
 - 3. Includes the case when the subsystem clock is oscillated.
 - 4. When the processor clock control register (PCC) is set to 0011 and operated in high-speed mode.
 - **5**. When the PCC is set to 0000 and operated in low-speed mode.
 - **6.** When operated by the subsystem clock with the system clock control register (SCC) set to 1001 and the main system clock oscillation stopped.

AC CHARACTERISTICS (Ta = -40 to +85 $^{\circ}$ C , V_{DD} = 2.7 to 6.0 V)

PARAMETER	SYMBOL	TEST CON	IDITIONS	MIN.	TYP.	MAX.	UNIT
CPU clock cycle time	tcv	Operation with main	VDD = 4.5 to 6.0 V	0.95		64	μs
(minimum instruction		system clock		3.8		64	μs
execution time = one machine cycle)*1		Operation with subsystem clock		114	122	125	μs
TIO input fraguancy	fτι	VDD = 4.5 to 6.0 V		0		1	MHZ
TI0 input frequency	111			0		275	kHz
TI0 input high- and low-	t тін,	VDD = 4.5 to 6.0 V		0.48			μs
level widths	tтıL			1.8			μs
	_	INT0		*2			μs
Interrupt input high- and low-level widths	tinth,	INT1, 2, 4		10			μs
	t intl	KR0-7	0 1 0 275 0.48 1.8		μs		
RESET low-level width	trsl			10			μs

- * 1. CPU clock (Φ) cycle time is determined by oscillation frequency of the connected resonator, system clock control register (SCC) and processor clock control register (PCC).
 - Characteristics for supply voltage V_{DD} vs. Cycle time t_{CY} in main system clock operation is shown below.
 - 2. It becomes $2t_{CY}$ or $128/f_X$ by interrupt mode register (IM0) setting.

SERIAL TRANSFER OPERATION

2-wire and 3-wire serial I/O mode (SCK...Internal clock output): (Ta = -40 to +85 °C , VDD = 2.7 to 6.0 V)

PARAMETER	SYMBOL	TEST CON	DITIONS	MIN.	TYP.	MAX.	UNIT
		$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		1600			ns
SCK cycle time	tkcy1						ns
SCK high- and low-level	t KL1	V _{DD} = 4.5 to 6.0 V	V _{DD} = 4.5 to 6.0 V				ns
widths	t кн1		tксү1/2-150			ns	
SI setup time (to SCK↑)	tsıĸı			150			ns
SI hold time (from SCK1)	t KSI1			400			ns
SO output delay time	tunna	R _L = 1 k Ω, C _L = 100 pF* $\frac{V_{DD} = 4.5 \text{ to } 6.0 \text{ V}}{}$				250	ns
from SCK↓	tkso1					1000	ns

* R_L and C_L are SO output line load resistance and load capacitance, respectively.

2-wire and 3-wire serial I/O mode (SCK...External clock input): (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

PARAMETER	SYMBOL	TEST CON	DITIONS	MIN.	TYP.	MAX.	UNIT
SCK cycle time	tĸcy2	V _{DD} = 4.5 to 6.0 V		800			ns
ock cycle time	LKCY2						ns
SCK high- and low-level	t KL2	V _{DD} = 4.5 to 6.0 V	V _{DD} = 4.5 to 6.0 V				ns
widths	t кн2			1600			ns
SI setup time (to SCK1)	tsık2			100			ns
SI hold time (from SCK↑)	tksi2			400			ns
SO output delay time	tuana	B 41 0 0 400 Ex	V _{DD} = 4.5 to 6.0 V			300	ns
from SCK↓	tĸso2	$R_L = 1 \text{ k } \Omega$, $C_L = 100 \text{ pF*}$				1000	ns

* RL and CL are SO output line load resistance and load capacitance, respectively.

SBI mode (\overline{SCK} ...Internal clock output (master)): (Ta = -40 to +85 °C , $\overline{V_{DD}}$ = 2.7 to 6.0 \overline{V})

PARAMETER	SYMBOL	TEST CON	IDITIONS	MIN.	TYP.	MAX.	UNIT
SCK cycle time	†ксуз	V _{DD} = 4.5 to 6.0 V		1600			ns
OCK Cycle time	LKCY3			3800			ns
SCK high- and low-level	tкLз	V _{DD} = 4.5 to 6.0 V	/ _{DD} = 4.5 to 6.0 V				ns
widths	tкнз			tксүз/2-150			ns
SB0 and SB1 setup time (to SCK 1)	tsık3			150			ns
$SB0 and SB1 hold time (from \overline{SCK} \!\! \uparrow)$	tksıз			tксүз/2			ns
SB0 and SB1 output	tkso3	D 41 0 0 400 F*	V _{DD} = 4.5 to 6.0 V	0		250	ns
delay time from SCK↓	tk203	$R_L = 1 \text{ k } \Omega$, $C_L = 100 \text{ pF*}$		0		1000	ns
SB0, SB1↓ from SCK↑	tкsв			tксүз			ns
SCK↓ from SB0, SB1↓	tsвк			tксүз			ns
SB0 and SB1 low-level widths	t sbl			tксүз			ns
SB0 and SB1 high-level widths	tsвн			tксүз			ns

^{*} R_L and C_L are SB0, SB1 output line load resistance and load capacitance, respectively.

SBI mode (\overline{SCK} ...External clock input (slave)): (Ta = -40 to +85 °C , $\overline{V_{DD}}$ = 2.7 to 6.0 \overline{V})

PARAMETER	SYMBOL	TEST CON	IDITIONS	MIN.	TYP.	MAX.	UNIT
SCK cycle time	tunu	V _{DD} = 4.5 to 6.0 V		800			ns
SCK cycle time	tkcy4			3200			ns
SCK high- and low-level	t _{KL4}	V _{DD} = 4.5 to 6.0 V	/ _{DD} = 4.5 to 6.0 V				ns
widths	t KH4			1600			ns
SB0 and SB1 setup time (to SCK 1)	tsik4			100			ns
SB0 and SB1 hold time (from SCK1)	t KSI4			tксү4/2			ns
SB0 and SB1 output	t ks04	R _L = 1 k Ω, C _L = 100 pF*	V _{DD} = 4.5 to 6.0 V	0		300	ns
delay time from SCK↓	tN504	nl = 1 k Ω2, Cl = 100 pr		0		1000	ns
SB0, SB1↓ from SCK↑	tкsв			tKCY4			ns
SCK↓ from SB0, SB1↓	tsвк			tKCY4			ns
SB0 and SB1 low-level widths	t sbl			tkcy4			ns
SB0 and SB1 high-level widths	tsвн			tKCY4			ns

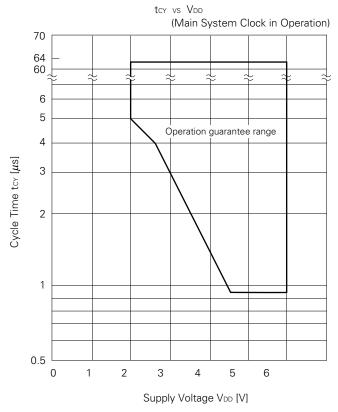
^{*} R_L and C_L are SB0, SB1 output line load resistance and load capacitance, respectively.

DC CHARACTERISTICS (Ta = -40 to +85 °C, \overline{V}_{DD} = 2.0 to 6.0 \overline{V}) (1/2)

PARAMETER	SYMBOL	TEST CON	IDITIONS	MIN.	TYP.	MAX.	UNIT
	VIH1	Ports 2 and 3		0.8 VDD		VDD	٧
Input voltage,	VIH2	Ports 0, 1, 6, 7, RESE	T	0.8 VDD		VDD	V
high			ip pull-up resistor	0.8 VDD		VDD	V
	VIH3	Ports 4 and 5 Open-	drain	0.8 VDD		10	V
	VIH4	X1, X2, XT1		VDD -0.3		VDD	٧
	VIL1	Ports 2, 3, 4 and 5		0		0.2 VDD	V
Input voltage, low	VIL2	Ports 0, 1, 6, 7, RESE	Ī	0		0.2 VDD	٧
	VIL3	X1, X2, XT1		0		0.25	٧
Output voltage,	V он1	Ports 0, 2, 3, 6, 7, BIAS	Іон = –100 μΑ	VDD -0.5			V
nign	VoH2	BP0 to BP7 (with 2 Іон outputs)	Іон = −10 μА	VDD -0.4			V
Output voltage, high Output voltage, low Input leakage current, high	Vol1	Ports 0, 2, 3, 4, 5, 6 and 7	IoL = 400 μA			0.5	V
		SB0, 1	Open-drain pull-up resistor \geq 1 k Ω			0.2 V _{DD}	V
	V _{OL2}	BP0 to BP7 (with 2 loL outputs)	IoL = 10 μA			0.4	V
	ILIH1	VIN = VDD	Other than below			3	μΑ
	I _{LIH2}	VIN = VDD	X1, X2, XT1			20	μΑ
	Ішнз	V _{IN} = 10 V	Ports 4 and 5 (when open -drain)			20	μΑ
	ILIL1		Other than below			-3	μΑ
current, low	ILIL2	Vin = 0 V	X1, X2, XT1			-20	μΑ
	Ісон1	Vout = Vdd	Other than below			3	μΑ
Input leakage current, high Input leakage current, low Output leakage current, high	ILOH2	Vout = 10 V	Ports 4 and 5 (when open -drain)			20	μΑ
Output leakage current, low	Ігог	Vout = 0 V				-3	μΑ

DC CHARACTERISTICS (Ta = -40 to +85 $^{\circ}$ C, V_{DD} = 2.0 to 6.0 V) (2/2)

PARAMETER	SYMBOL	TEST CON	DITIONS		MIN.	TYP.	MAX.	UNIT
On-chip pull-up	RL1	Ports 0, 1, 2, 3, 6 and 7 (except P00) V _{IN} = 0 V	V _{DD} = 2 ±10%	2.5 V	50		600	kΩ
resistor	R _{L2}	Ports 4, 5 Vout = Vdd -1.0 V	V _{DD} = 2.5 V ±10%		15	40	70	kΩ
LCD drive voltage	VLCD				2.0		V _{DD}	V
LCD split resistor	RLCD				60	100	150	kΩ
LCD output voltage deviation*1 (common)	Vodc	Io = ±5 μA	VLCD0 = VLCD VLCD1 = VLCD × 2/3 VLCD2 = VLCD × 1/3 2.0 V ≤ VLCD ≤ VDD		0		±0.2	V
LCD output voltage deviation*1 (segment)	Vobs	Io = ±1μA			0		±0.2	V
	I _{DD1}		V _{DD} = 3 ±10%*			0.4	1.2	mA
		4.19 MHz*3 crystal oscillation C1=C2=22 pF Low-speed mode	V _{DD} = 2 ±10%*			0.3	0.9	mA
	ldd2		HALT	V _{DD} = 3 V ±10%		300	900	μΑ
			mode	V _{DD} = 2.5 V ±10%		200	600	μΑ
Supply current *2	Іррз		V _{DD} = 3 V ±10%			20	60	μΑ
		32 kHz *5 crystal oscillation	V _{DD} = 2 ±10%			15	45	μΑ
	l _{DD4}	,	HALT	V _{DD} = 3 V ±10%		7	21	μΑ
			mode	V _{DD} = 2.5 V ±10%		4	12	μΑ
			V _{DD} = 3 V			0.5	15	μΑ
	Idds	XT1 = 0 V	±10%	T _a = 25°C		0.5	5	μΑ
	1000	STOP mode	V _{DD} = 2.5 V			0.4	15	μΑ
			±10%	T _a = 25°C		0.4	5	μΑ


- * 1. The voltage deviation is a difference between the segment and common output ideal value (VLCDn; n = 0, 1, 2) and output voltage.
 - 2. Current flowing in the on-chip pull-up resistor and LCD split resistor are not included.
 - 3. Includes the case when the subsystem clock is oscillated.
 - **4.** When the PCC is set to 0000 and operated in low-speed mode.
 - 5. When operated by the subsystem clock with the system clock control register (SCC) set to 1001 and the main system clock stopped.

AC CHARACTERISTICS (Ta = -40 to +85 $^{\circ}$ C , V_{DD} = 2.0 to 6.0 V)

PARAMETER	SYMBOL	TEST CON	TEST CONDITIONS			MAX.	UNIT
			VDD = 2.7 to 6.0 V	3.8		64	μs
CPU clock cycle time		Operation with main	VDD = 2.0 to 6.0 V	5		64	μs
(minimum instruction execution time = one machine cycle)*1	tcy	system clock	$T_a = -4.0 \text{ to } +6.0 \text{ V}$ $V_{DD} = 2.2 \text{ to } 6.0 \text{ V}$	3.4		64	μs
		Operation with subsystem clock		114	122	125	μs
TI0 input frequency	f⊤ı			0		275	kHz
TI0 input high- and low- level widths	tт⊪, tт⊩			1.8			μs
		INT0		*2			μs
Interrupt input high- and low-level widths	tinth,	INT1, 2, 4		10			μs
	t intl	KR0-7		10			μs
RESET low-level width	trsl			10			μs

- * 1. CPU clock (Φ) cycle time is determined by oscillation frequency of the connected resonator, system clock control register (SCC) and processor clock control register (PCC).
 - Characteristics for supply voltage V_{DD} vs. Cycle time t_{CY} in main system clock operation is shown below.
 - 2. It becomes 2tcy or 128/fx by interrupt mode register (IM0) setting.

SERIAL TRANSFER OPERATION

2-wire and 3-wire serial I/O mode (SCK...Internal clock output): (Ta = -40 to +85 °C , VDD = 2.0 to 6.0 V)

PARAMETER	SYMBOL	TEST CON	DITIONS	MIN.	TYP.	MAX.	UNIT
		V _{DD} = 4.5 to 6.0 V		1600			ns
SCK cycle time	t KCY1			3800			ns
SCK high- and low-level	t KL1	V _{DD} = 4.5 to 6.0 V		tkcy1/2-50			ns
width	t кн1		tксү1/2-150			ns	
SI setup time (to SCK↑)	tsıĸ1			250			ns
SI hold time (from SCK1)	tksi1			400			ns
SO output delay time from SCK↓	tkso1	R _L = 1 k Ω, C _L = 100 pF*	V _{DD} = 4.5 to 6.0 V			250	ns
		πε – τ κ 32, σε – 100 μι				1000	ns

^{*} R_L and C_L are SO output line load resistance and load capacitance, respectively.

2-wire and 3-wire serial I/O mode (SCK...External clock input): (Ta = -40 to +85 °C , VDD = 2.0 to 6.0 V)

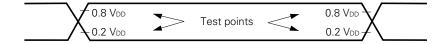
PARAMETER	SYMBOL	TEST CON	DITIONS	MIN.	TYP.	MAX.	UNIT
SCK cycle time	tĸcy2	V _{DD} = 4.5 to 6.0 V		800			ns
SCR Cycle time	LKCY2			3200			ns
SCK high- and low-level	tKL2	V _{DD} = 4.5 to 6.0 V		400			ns
widths	tĸн2			1600			ns
SI setup time (to SCK↑)	tsık2			100			ns
SI hold time (from SCK↑)	tksi2						ns
SO output delay time from SCK↓	e t _{KSO2}	R _L = 1 k Ω, C _L = 100 pF*	V _{DD} = 4.5 to 6.0 V			300	ns
						1000	ns

^{*} RL and CL are SO output line load resistance and load capacitance, respectively.

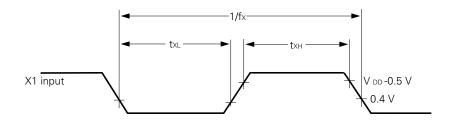
SBI mode (\overline{SCK} ...Internal clock output (master)): (Ta = -40 to +85 °C , $\overline{V_{DD}}$ = 2.0 to 6.0 V)

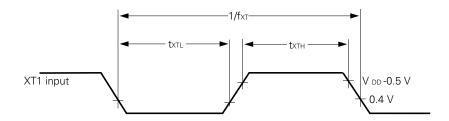
PARAMETER	SYMBOL	TEST CON	IDITIONS	MIN.	TYP.	MAX.	UNIT
SCK cycle time	tĸcy3	V _{DD} = 4.5 to 6.0 V		1600			ns
ock cycle time	LKC43			3800			ns
SCK high- and low-level	tкLз	V _{DD} = 4.5 to 6.0 V		tксүз/2-50			ns
widths	t кнз						ns
SB0 and SB1 setup time (to SCK 1)	tsık3			250			ns
SB0 and SB1 hold time (from \overline{SCK} ↑)	t ksı3			tксүз/2			ns
SB0 and SB1 output	tkso3	D 41 0 0 400 F	V _{DD} = 4.5 to 6.0 V	0		250	ns
delay time from SCK↓	LKSU3	$R_L = 1 \text{ k } \Omega$, $C_L = 100 \text{ pF*}$		0		1000	ns
SB0, SB1↓ from SCK↑	tкsв		1	tксүз			ns
SCK from SB0, SB1↓	t sBK			tксүз			ns
SB0 and SB1 low-level widths	t sbl			t ксүз			ns
SB0 and SB1 high-level widths	tsвн			tксүз			ns

* R_L and C_L are SB0, SB1 output line load resistance and load capacitance, respectively.


SBI mode (\overline{SCK} ...External clock input (slave)): (Ta = -40 to +85 °C , $\overline{V_{DD}}$ = 2.0 to 6.0 V)

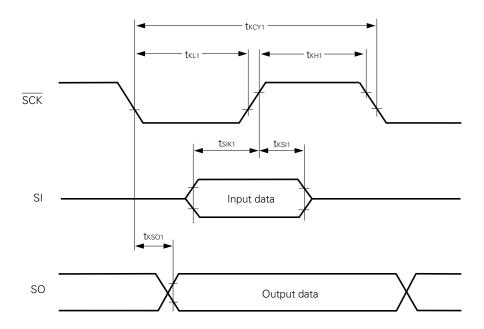
PARAMETER	SYMBOL	TEST CONDITIONS			TYP.	MAX.	UNIT
SCK cycle time	tkcy4	V _{DD} = 4.5 to 6.0 V		800			ns
SCK Cycle time	LKCY4			3200			ns
SCK high- and low-level	tKL4	V _{DD} = 4.5 to 6.0 V		400			ns
widths	tkH4						ns
SB0 and SB1 setup time (to SCK 1)	tsik4			100			ns
SB0 and SB1 hold time (from SCK↑)	tksi4			tксү4/2			ns
SB0 and SB1 output	tĸso4	D 1100 C 100 - F*	V _{DD} = 4.5 to 6.0 V	0		300	ns
delay time from SCK↓	tK504	$R_L = 1 \text{ k } \Omega$, $C_L = 100 \text{ pF*}$		0		1000	ns
SB0, SB1↓ from SCK↑	t ksB			tKCY4			ns
SCK from SB0, SB1↓	tsвк			tKCY4			ns
SB0 and SB1 low-level widths	t sbl			tKCY4			ns
SB0 and SB1 high-level widths	tsвн			tKCY4			ns

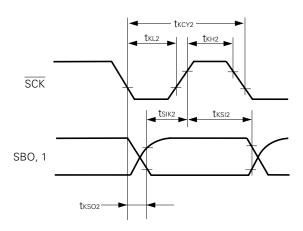

* R_L and C_L are SB0, SB1 output line load resistance and load capacitance, respectively.



AC Timing Test Points (except X1 and XT1 input)

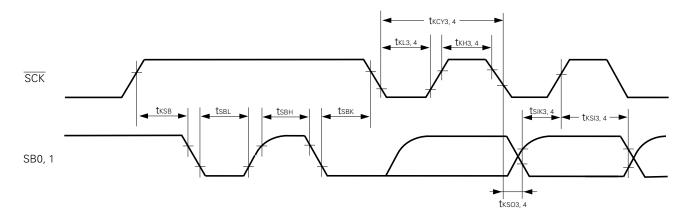
Clock Timing

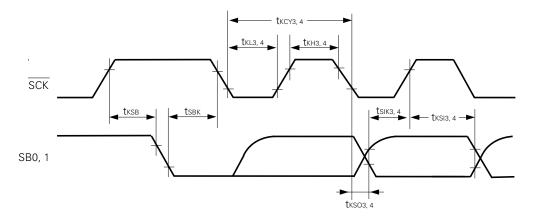

TI0 Timing



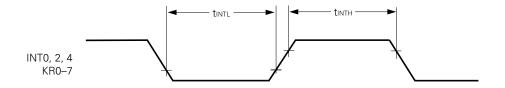
Serial Transfer Timing

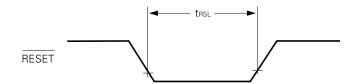
3-wire serial I/O mode:


2-wire serial I/O mode:



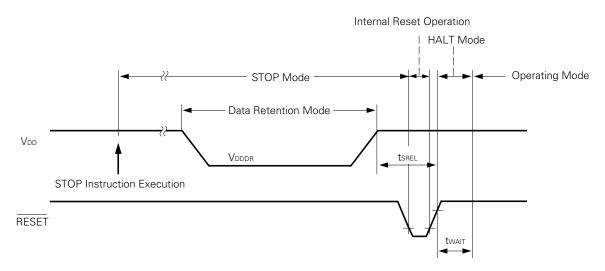
Serial Transfer Timing


Bus release signal transfer:


Command signal transfer:

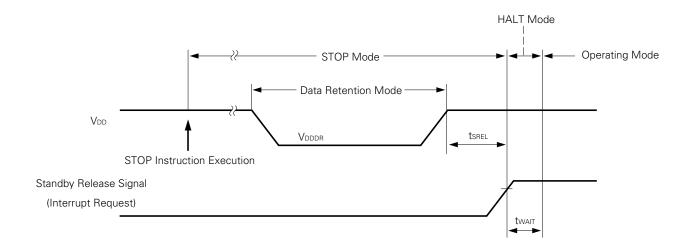
Interrupt Input Timing

RESET Input Timing

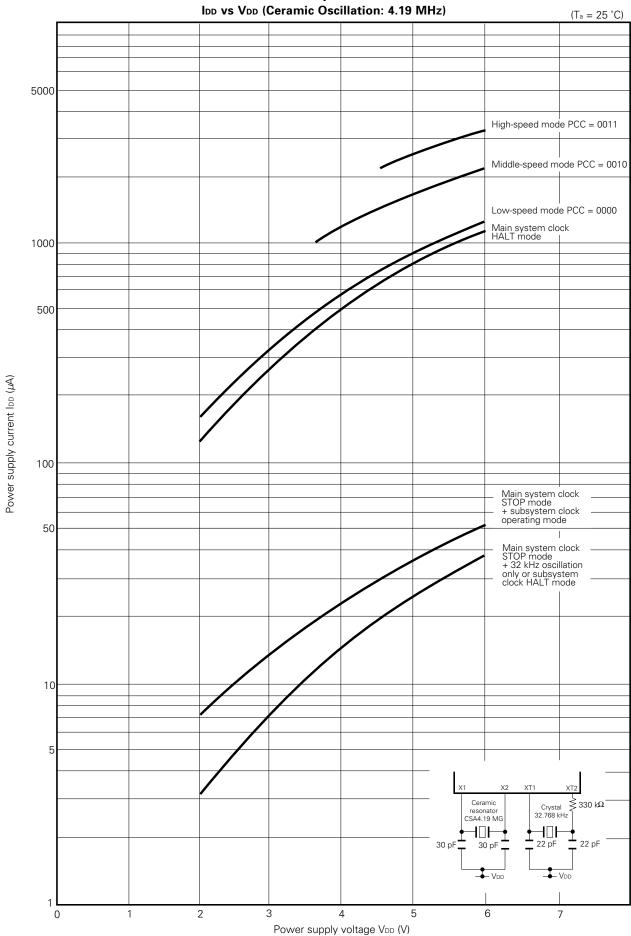

DATA RETENTION CHARACTERISTICS IN DATA MEMORY STOP MODE AND LOW SUPPLY VOLTAGE (Ta = -40 to +85 $^{\circ}$ C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data retention supply voltage	VDDDR		2.0		6.0	٧
Data retention supply current *1	IDDDR	V _{DDDR} = 2.0 V		0.3	15	μΑ
Release signal set time	t srel		0			μs
Oscillation stabilization wait	twait	Release by RESET		217/fx		ms
time *2	LWAII	Release by interrupt request		*3		ms

- * 1. Current to the on-chip pull-up resistor is not included.
 - 2. Oscillation stabilization wait time is time to stop CPU operation to prevent unstable operation upon oscillation start.
 - 3. According to the setting of the basic interval timer mode register (BTM) (see below).

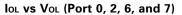

втмз	BTM2	BTM1	BTM0	Wait Time (Values at fx = 4.19 MHz in parentheses)
_	0	0	0	2 ²⁰ /fx (approx. 250 ms)
_	0	1	1	2 ¹⁷ /fx (approx. 31.3 ms)
_	1	0	1	2 ¹⁵ /fx (approx. 7.82 ms)
_	1	1	1	2 ¹³ /fx (approx. 1.95 ms)

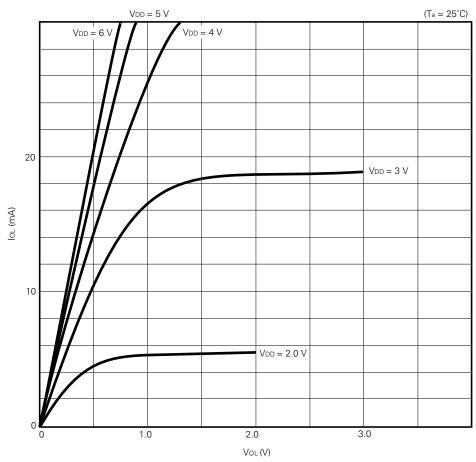
Data Retention Timing (STOP Mode Release by RESET)

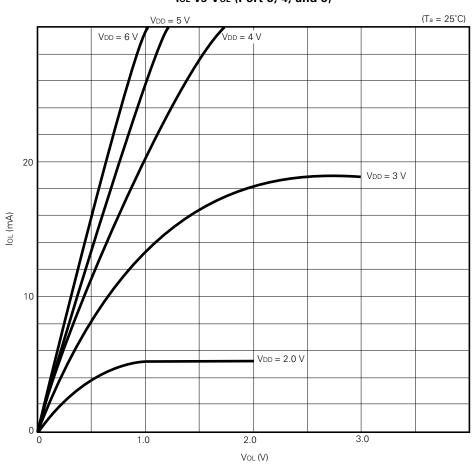


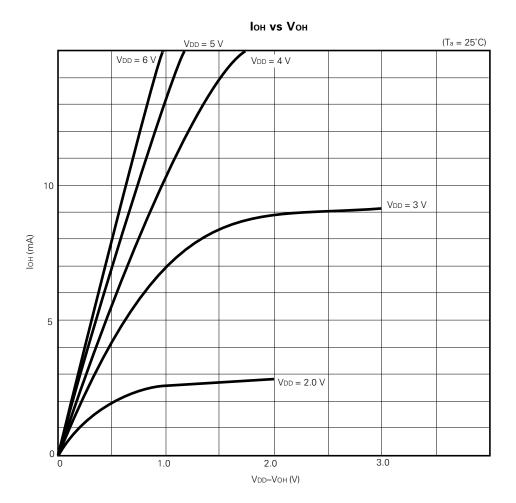
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)



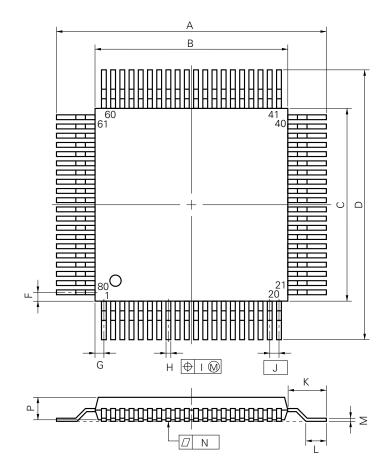


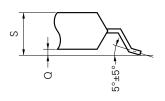

12. CHARACTERISTIC CURVES (For Reference Only)





IOL vs Vol (Port 3, 4, and 5)



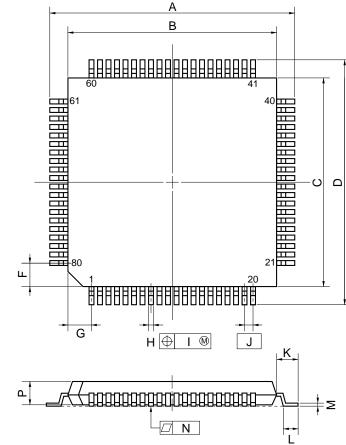


13. PACKAGE DRAWINGS

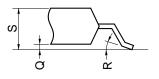
80 PIN PLASTIC QFP (□14)

detail of lead end

NOTE


Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

S80GC-65-3B9-3


ITEM	MILLIMETERS	INCHES
А	17.2±0.4	0.677±0.016
В	14.0±0.2	0.551 ^{+0.009} _{-0.008}
С	14.0±0.2	0.551+0.009
D	17.2±0.4	0.677±0.016
F	0.8	0.031
G	0.8	0.031
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031+0.009
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

80 PIN PLASTIC TQFP (FINE PITCH) (\square 12)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	14.0±0.2	$0.551^{+0.009}_{-0.008}$
В	12.0±0.2	0.472+0.009
С	12.0±0.2	0.472+0.009
D	14.0±0.2	0.551+0.009
F	1.25	0.049
G	1.25	0.049
Н	0.22 ^{+0.05} _{-0.04}	0.009±0.002
I	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0±0.2	0.039+0.009
L	0.5±0.2	0.020+0.008
М	0.145 ^{+0.055} _{-0.045}	0.006±0.002
N	0.10	0.004
Р	1.05	0.041
Q	0.05±0.05	0.002±0.002
R	5°±5°	5°±5°
S	1.27 MAX.	0.050 MAX.

P80GK-50-BE9-4

14. RECOMMENDED SOLDERING CONDITIONS

The product should be soldered and mounted under the conditions recommended in the table below.

For the details of recommended soldering conditions, refer to the information document "Semiconductor Device Mounting Technology Manual" (IEI-1207).

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 14-1 Surface Mounting Type Soldering Conditions

 μ PD75312BGC- $\times\times$ -3B9 : 80-pin plastic QFP (14 x 14 mm) μ PD75316BGC- $\times\times$ -3B9 : 80-pin plastic QFP (14 x 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Time: Within 30 s (at 210 °C or higher), Count: Twice or less <a attention"="" href="Attention</td><td>IR35-00-2</td></tr><tr><td>VPS</td><td>Package peak temperature: 215 °C, Time: Within 40 s (at 200 °C or higher), Count: Twice or less (1) Perform the second reflow when the device temperature has come down to the room temperature from the heating by the first reflow. (2) Do not wash flux away with water after the first reflow.	VP15-00-2
Wave soldering	Soldering tank temperature: 260 °C or less, Time: Within 10 s, Count: Once, Preheating temperature: 120 °C MAX. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300 °C or less, Time: Within 3 s (per side of device)	

Caution: Do not use several soldering methods in combination (except partial heating).

 μ PD75312BGK-xxx-3B9 : 80-pin plastic QFP (12 x 12 mm) μ PD75316BGK-xxx-3B9 : 80-pin plastic QFP (12 x 12 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Time: Within 30 s (at 210 °C or higher), Count: Twice or less, Exposure limit: Seven* days (after seven days, prebake at 125 °C is required for 10 hours) <attention></attention>	IR35-107-2
	(1) Perform the second reflow when the device temperature has come down to the room temperature from the heating by the first reflow.(2) Do not wash flux away with water after the first reflow.	
VPS	Package peak temperature: 215 °C, Time: Within 40 s (at 200 °C or higher), Count: Twice or less, Exposure limit: Seven*days (after seven days, prebake at 125 °C is required for 10 hours) Attention>	VP15-107-2
We	 (1) Perform the second reflow at the time the device temperature has come down to the room temperature from the heating by the first reflow. (2) Do not wash flux away with water after the first reflow. 	
Partial heating	Pin temperature: 300 °C or less, Time: Within 3 s (per side of device)	

^{*} For the storage period after dry-pack decapsulation, storage conditions are max. 25 °C, 65 % RH.

Caution: Do not use several soldering methods in combination (except partial heating).

APPENDIX A. DIFFERENCES AMONG μ PD75308B SERIES PRODUCTS

Name Item			75304	B/75306B/75308B	μPD75312B	μPD75316B	μPD75P316B	μPD75P316A	
Supply	voltage range		2.0 to 6.0 V						
ROM co	onfiguration			Mask RO	M		EPROM/one-time PROM		
Progran	n memory (bytes)		409	6/6016/8064	12160		16256		
Data me	emory (× 4 bits)			512			1024		
Instruct	ion cycle			.91 μs, 15.3 μs (ma ubsystem clock:@			9 MHz)		
	CMOS input		8	Pull-un resistor ca	an he incor	norated by	software: 23		
Input/	CMOS input/output	40	16	Pull-up resistor can be incorporated by software: 23					
output port	CMOS output	40	8	Used with segme	nt pin				
	N-ch open-drain input/output		8	10-V withstand vo			10-V withstand voluments without pull-up res	0 '	
LCD co	ntroller/driver		Common output: Static – 1/4 duty selected Segment output: Max. 32						
		LCD drive split resistor can be incorporated by mask option.					No LCD drive split resistor		
LCD dri	ve voltage	2.0 V to VDD							
Timer/c	ounter	8-bit timer/event counter 8-bit basic interval timer Watch timer							
Serial in	nterface	NEC standard serial bus interface (SBI) Clocked serial interface							
Vectore	d interrupts	• External: 3 • Internal: 3							
Test inp	out	External: 1 Internal: 1							
Clock o	utput (PCL)	Φ, 524 kHz, 262 kHz, 65.5 kHz (main system clock:@ 4.19 MHz)							
Buzzer	output (BUZ)	2 kHz (main system clock:@ 4.19 MHz, or subsystem clock:@ 32.768 KHz)						łz)	
Package	Package		80-pin plastic QFP (14 x 20 mm) 80-pin plastic QFP (14 x 14 mm) 80-pin plastic TQFP (Fine pitch) (12 x 12 mm)		80-pin pla (14 x 14 r 80-pin pla (Fine pitc (12 x 12 r	nm) astic TQFP h)	80-pin plastic QFP (14 x 14 mm) 80-pin plastic TQFP (Fine pitch) (12 x 12 mm) 80-pin ceramic WQFN*	80-pin plastic QFP (14 x 20 mm) 80-pin ceramic WQFN	
On-chip	PROM product		ackag GK pad	e : μPD75P316A ckage : μPD75P316B	μPD75	P316B			

^{*} Under development

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD75312B, 75316B.

	IE-75000-R* 1 IE-75001-R		75X series in-circuit emulator		
	IE-75000-R-EM* 2		Emulation board for the IE-75000-R and the IE-75001-R		
	EP-75308BGC-R		Emulation probe for the μ PD75312BGC and the 75316BGC.		
l e		EV-9200GC-80	80-pin conversion socket EV-9200GC-80 is also provided.		
Hardware	EP-75308BGK-R		Emulation probe for the μ PD75312BGK and the 75316BGK.		
Harc		EV-9200GK-80	80-pin conversion socket EV-9200GK-80 is also provided.		
	PG-1500		PROM programmer		
	PA-75P316BGC		PROM programmer adapter for the μ PD75P316BGC, connect to PG-1500.		
	PA-75P316BGK		PROM programmer adapter for the μ PD75P316BGK, connect to PG-1500.		
are	IE control program		Host machine		
oftware	PG-1500 controler		PC-9800 series (MS-DOS™ Ver.3.30 to Ver.5.00A*3)		
So	RA75X relocatable assen	nbler	IBM PC/AT™ (See "OS for IBM PC")		

- * 1. Maintenance products
 - 2. Not incorporated in IE-75001-R.
 - 3. The task-swap function is provided with the Ver.5.00/5.00A and cannot be used with this software.

OS for IBM PC

The following OSs are supported for IBM PC

os	Version
PC DOS™	Ver.5.0.2 to Ver.6.1 J6.03/V
MS-DOS	Ver.3.30 to Ver.5.00A 5.0/V, J6.2/V
IBM DOS™	J5.02/V

Caution: Ver.5.0 or higher contains a task swap function; however, this function cannot be used by this software.

APPENDIX C. RELATED DOCUMENTATION

List of Device-Related Documents

Document Name	Document No.
User's Manual	IEM-1263
Application Note	IEM-1239
Application Note	IEM-1245
75X Series Selection Guide	IF-1027

List of Development Tool-Related Documents

Document Name			Document No.
	IE-75000-R/IE-75001-R User's Manual		EEU-1416
are	IE-75000-R-EM User's Manual		EEU-1294
Мp	EP-75308BGC-R User's Manual		EEU-1406
Har	EP-75308BGK-R User's Manual		EEU-1408
	PG-1500 User's Manual		EEU-1335
Software	RA75X Assembler Package	Operation	EEU-1346
	User's Manual	Language	EEU-1363
So	PG-1500 Controller User's Manual		EEU-1291

Others

Document Name	Document No.
Package Manual	IEI-1213
Semiconductor Device Mounting Technology Manual	IEI-1207
Quality Grade on NEC Semiconductor Device	IEI-1209
NEC Semiconductor Device Reliability and Quality Control	_
Electrostatic Discharge (ESD) Test	_
Semiconductor Device Quality Guarantee Guide	MEI-1202
Micro Computer-Related Products Guide Other Manufacture Volume	_

Remark The related documents listed above may change without prior notice. The most up-to-date documents should be used for design work.

75

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,

Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special : Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,

Anticrime systems, etc.

M4 92.6

MS-DOS is a trademark of MicroSoft Corporation.

IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.