MOS FET Relays G3VM-201G1

Ultrasensitive MOS FET Relay in 200 V Load series for power savings, SOP Package.

- Trigger LED forward current of 1 mA (maximum) facilitates power saving designs and prolonged battery life.
- · Continuous load current of 200 mA.
- RoHS Compliant

■ Application Examples

- Broadband systems and Measurement devices
- · Security systems
- Industrial equipment
- Battery powered equipment and Amusement machines

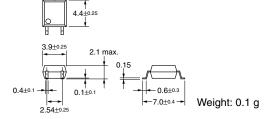
<u>NEW</u>

Note: The actual product is marked differently from the image shown

■ List of Models

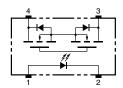
Contact form	Terminals	Load voltage (peak value) (See the note.)	Model	Number per stick	Number per tape
SPST-NO	Surface-mounting	200 V	G3VM-201G1	100	
	terminals		G3VM-201G1(TR)		2,500

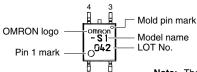
Note: The AC peak and DC value are given for the load voltage.


■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

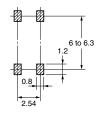
G3VM-201G1




Note: The actual product is marked differently from the image shown here.

■ Terminal Arrangement/Internal Connections (Top View)

G3VM-201G1



Note: The actual product is marked differently from the image shown here.

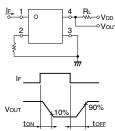
■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-201G1

■ Absolute Maximum Ratings $(T_a = 25^{\circ}C)$

	Item	Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I _F	50	mA	
	Repetitive peak LED forward current	I _{FP}	1	Α	100 μs pulses, 100 pps
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$
	LED reverse voltage	V_R	5	٧	
	Connection temperature	T _j	125	°C	
Output	Load voltage (AC peak/DC)	V _{OFF}	200	٧	
	Continuous load current (AC peak/DC)	Io	200	mA	
	ON current reduction rate	Δ I _O /°C	-2.0	mA/°C	$T_a \ge 25^{\circ}C$
	Connection temperature	T _j	125	°C	
	ric strength between input and (See note 1.)	V _{I-O}	1,500	V _{rms}	AC for 1 min
Operati	ing temperature	Ta	-40 to +85	°C	With no icing or condensation
Storage temperature		T _{stg}	-55 to +100	°C	With no icing or condensation
Soldering temperature (10 s)			260	°C	10 s

Note:

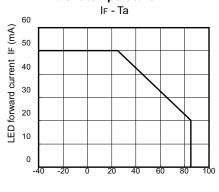

The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics ($T_a = 25$ °C)

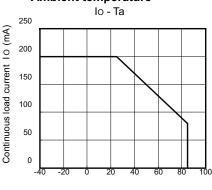
ltem		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V _F	1.0	1.15	1.3	٧	I _F = 10 mA
	Reverse current	I _R			10	μА	V _R = 5 V
	Capacity between terminals	C _T		30		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}		0.4	1	mA	I _O = 200 mA
Output	Maximum resistance with output ON	R _{ON}		5	8	Ω	I _F = 2 mA, I _O = 200 mA
	Current leakage when the relay is open	I _{LEAK}		1	1000	nA	$V_{OFF} = 200 \text{ V}, T_a = 25^{\circ}\text{C}$
	Capacity between terminals	C _{OFF}		90		pF	V = 0, f = 1MHz
Capacity between I/O terminals		C _{I-O}		0.8		pF	$f = 1 \text{ MHz}, V_s = 0 \text{ V}$
Insulation resistance		R _{I-O}	1,000			ΜΩ	$\begin{aligned} &V_{\text{I-O}} = 500 \text{ VDC}, \\ &R_{\text{oH}} \leq 60\% \end{aligned}$
Turn-ON time		t _{ON}		3	8	ms	$I_F = 2 \text{ mA}, R_L = 200 \Omega,$ $V_{DD} = 20 \text{ V (See note 2.)}$
Turn-OFF time		t _{OFF}		0.6	3	ms	v _{DD} = 20 v (See note 2.)

2. Turn-ON and Turn-OFF Times

Note:

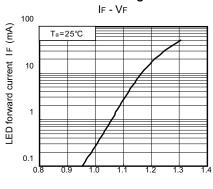

■ Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.


Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}			160	V
Operating LED forward current	I _F		2	25	mA
Continuous load current (AC peak/DC)	Io			160	mA
Operating temperature	T _a	-20		65	°C

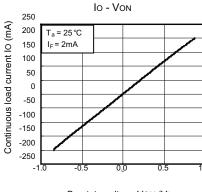
■ Engineering Data

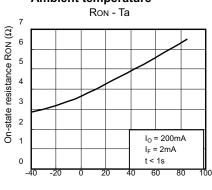
LED forward current vs. Ambient temperature



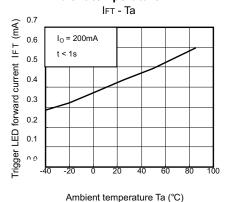
Continuous load current vs. **Ambient temperature**

Ambient temperature Ta (°C)


LED forward current vs. LED forward voltage


LED forward voltage VF (V)

Continuous load current vs. On-state voltage


Ambient temperature Ta (°C)

On-state resistance vs. Ambient temperature

Trigger LED forward current vs. **Ambient temperature**

On-state voltage VON (V)

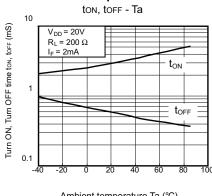
LED forward current

10

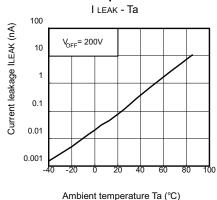
0.1

0.01

Turn ON, Turn OFF time ton, torr (mS)


ton. toff - If

 t_{OFF}


Turn ON, Turn OFF time vs.

Ambient temperature Ta (°C)

Current leakage vs. **Ambient temperature**

LED forward current IF (mA)

 $V_{DD} = 20V$ R_L = 200 Ω

T_a = 25 °C

Ambient temperature Ta (°C)

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

Specifications subject to change without notice

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

OMRON ELECTRONIC COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Printed in USA

MOS FET Relays **G3VM-201G1**

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron: G3VM-201G1