IrDA infrared communication IC (SIR / ASK compatible)

RPM-800CB Series

The RPM-800CB series is an infrared communication IC that is compatible with the IrDA1.0 and ASK communication systems. The infrared LED, PIN photodiode, and modulator circuit are combined onto a single package, and connection to a UART requires just three lines (transmit, receive, and control).

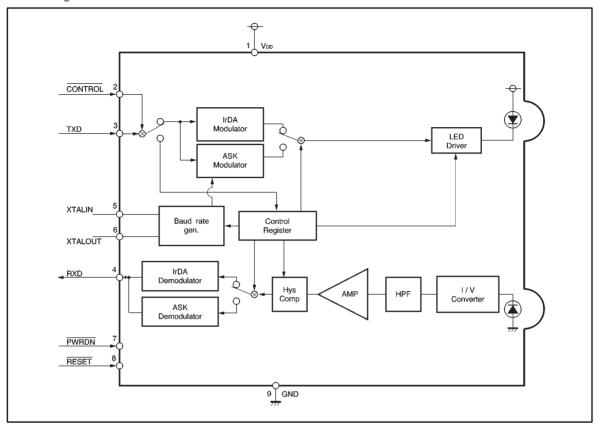
Applications

Cellular phones, pagers, PDA, PHS, notebook PCs, and printers

Features

- Infrared emitting, receiver, and modulator / demodulator on the chip.
- 2) Switchable modes.
 - IrDA mode
 - ASK mode

- 3) 2.4 to 115.2kbps communication rate.
- 4) Built-in powerdown mode
- 5) Power supply voltage input range 2.7 to 5.5V.


● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	− 0.3∼ + 7.0	V
Operating temperature	Topr	0~+60	°C
Storage temperature	Tstg	-20~+85	°C

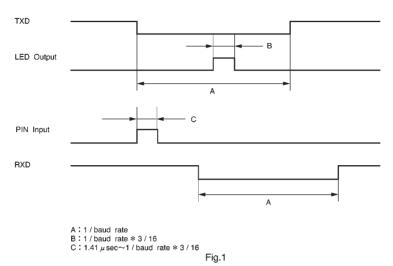
• Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	V _{DD}	2.7	3.0	5.5	V

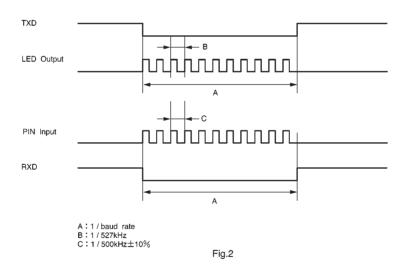
■Block diagram

Pin descriptions

Pin No.	Pin name	Function
1	V _{DD}	Power supply
2	CONTROL	Register write control pin Transmit: High, Register set: Low
3	TXD	Transmit / register write data input pin Data1: High, Data 0: Low
4	RXD	Receive data output pin Data1: High, Data 0: Low
5	XTALIN	Crystal oscillator connection pin (3.6864MHz)
6	XTALOUT	Crystal oscillator connection pin (3.6864MHz)
7	PWRDN	Power down control pin Power down: Low
8	RESET	Internal register reset pin Reset: Low
9	GND	Ground


●Input / output circuits

Pin No.	Pin name	Function	Equivalent circuit
1	V _{DD}	Power supply	_
2	CONTROL	Register write control pin Transmit: High, Register set: Low	CONTROL
3	TXD	Transmit / register write data input pin Data 1: High, Data 0: Low	
4	RXD	Receive data output pin Data 1: High, Data 0: Low	RXD
5	XTALIN	Crystal oscillator connection pin (3.6864MHz)	
6	XTALOUT	Crystal oscillator connection pin (3.6864MHz)	XTALIN XTALOUT XTALOUT
7	PWRDN	Power down control pin Power down: Low	
8	RESET	Internal register reset pin Reset: Low	PWRDN RESET 7777
		Ground	


●Electrical characteristics (unless otherwise noted, Ta = 25°C and V_{DD} = 3V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Power supply current 1	IDD1	_	_	3.5	mA	Stand-by for receiving
Power supply current 2	IDD2	_	_	10	μΑ	Power down,No ambient light
Power supply current 3	Іррз	-	_	300	mA	With max. LED current drive
Control input high voltage	ViH	V _{DD} -0.5	_	_	V	_
Control input low voltage	VIL	_	_	0.8	V	_
Control input high current	Iн	_	_	-2.0	μΑ	_
Control input low current	lıL	_	_	2.0	μΑ	_
TXD input high voltage	ViH	V _{DD} -0.5	_	_	V	_
TXD input low voltage	VIL	_	_	0.8	V	_
TXD input high current	Iн	_	_	-2.0	μΑ	_
TXD input low current	lıL	_	_	2.0	μΑ	_
XTALIN input high voltage	ViH	V _{DD} -0.5	_	_	V	_
XTALIN input low voltage	VIL	_	_	0.8	V	_
XTALIN input high current	Іін	_	_	-10.0	μΑ	_
XTALIN input low current	lı∟	_	_	10.0	μΑ	_
PWRDN input high voltage	ViH	V _{DD} -0.5	_	_	V	_
PWRDN input low voltage	VIL	_	_	0.8	V	_
PWRDN input high current	Iн	_	_	-2.0	μΑ	_
PWRDN input low current	lıL	_	_	2.0	μΑ	_
RESET input high voltage	ViH	V _{DD} -0.5	_	_	V	_
RESET input low voltage	VIL	_	_	0.8	V	_
RESET input high current	Iн	_	_	-2.0	μΑ	_
RESET input low current	lıL	_	_	2.0	μΑ	_
XTALOUT output high voltage	Vон	V _{DD} -0.5	_	_	V	Iон=-0.2mA
XTALOUT output low voltage	Vol	_	_	0.5	V	IoL=0.2mA
RXD output high voltage	Vон	V _{DD} -0.5	_	_	V	Iон=-2.0mA
RXD output low voltage	Vol	_		0.5	V	IoL=2.0mA

●Circuit operation IrDA format

ASK format

Register function

Control character format

As shown in the Fig.3, the control character is made up of four address bits, four data bits, a start bit and a stop bit.

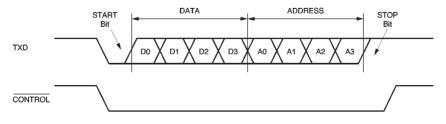


Fig.3

Explanation of the registers

Register table

No.	Address	Function
1	0000	Control register 1
2	0010	LED drive current control register
3	0011	Baud rate register
4	0100	Mode register
5	0101	Control register 2

1) Control register 1

Reset

٠	D3	D3 D2		D0	
	ECHO	ECAN	RXEN	TXEN	
	0	0	0	0	

ECHO 0 No control character echo back

1 Control character echo back

ECAN 0 Does not cancel reception of transmitted (self emitted) data

1 Cancels reception of transmitted (self emitted) data

RXEN 0 Receiver OFF

1 Receiver ON

TXEN 0 Transmitter OFF

1 Transmitter ON

2) LED drive current control register

	D3	D2	D1	D0	
·	0	LP2	LP1	LP0	
Reset	0	0	0	0	

0000 H

0001 M

0010 L

3) Baud rate register

	D3	D2		D1	D0		
	0		BR2	BR1	BR0		
Rese	t 0		0	1	0		
0000	2.4Kbps	_					
0001	4.8Kbps						
0010	9.6Kbps		(l	411	l. i.e		
0011	19.2Kbps			n the cloc	K IS		
0100	38.4Kbps		3.68	64MHz)			
0101	57.6Kbps						
0110	115.2Kbps						

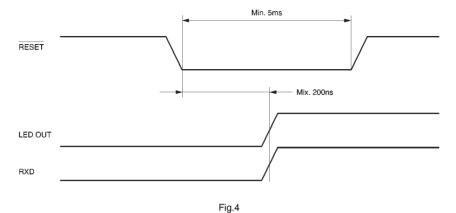
4) Mode register

	D3	D2	D1	D0
	0	0	0	MD
Reset	0	0	0	0

0000 IrDA

0001 ASK When V_{DD} = 5V and ASK is used, set the LED drive control register to M or L.

5) Control register 2


	D3	D2	D1	D0
	0	0	0	LOAD
Reset	0	0	0	0

LOAD 0 Do not load the baud rate counter value
1 Load the baud rate counter value

^{*} The load bit automatically returns to 0 after the counter value is loaded.

Timing chart

1) Reset operation

2) Register write

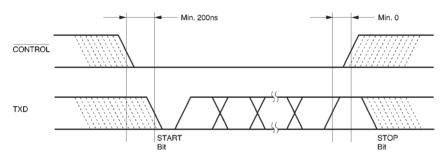


Fig.5

3) Echo back

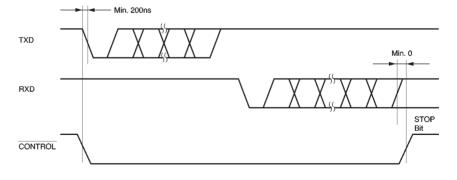


Fig.6

4) Transmit

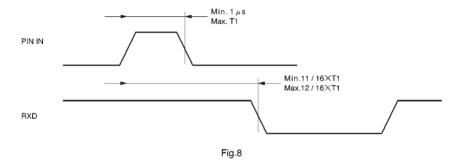



Fig.7

5) Receive

6) Echo cancel

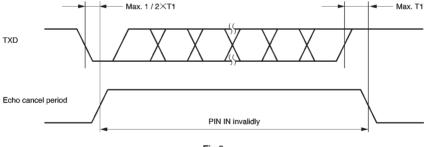


Fig.9

7) Power down

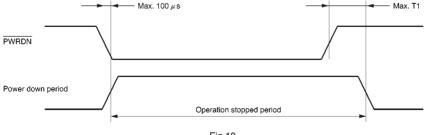


Fig.10

* T1=1 / baud rate

Application example

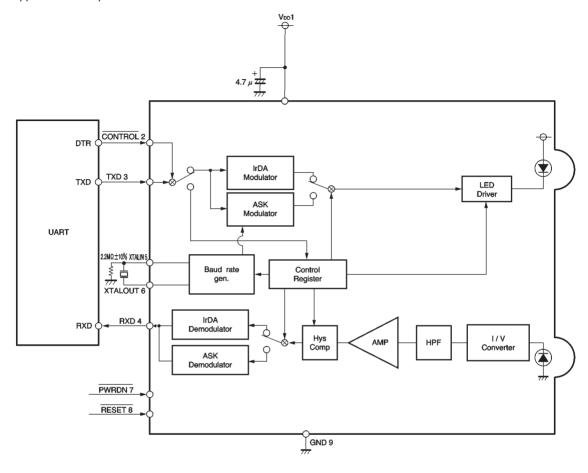
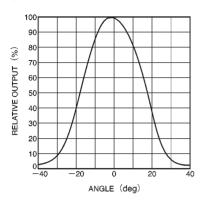



Fig.11

Operation notes

- (1) Use a shield when there is a possibility of influence due to electromagnetic noise.
- (2) The baud rate is set to 9600bps after the power is applied, or the IC is reset.
- (3) The setting in the baud rate register becomes effective when the LOAD bit of control register 2 is set to 1.
- (4) Avoid using together with strong light sources.
- (5) We recommend to use crystal oscillator.

Electrical characteristics curves

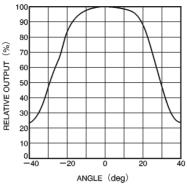
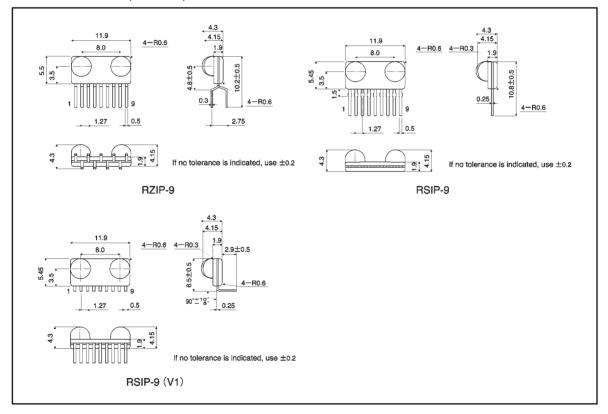



Fig.12 Light transmitter characteristics

Fig.13 Light receiver characteristics

External dimensions (Units: mm)

