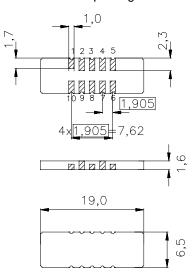


SAW Components

Data Sheet B3831

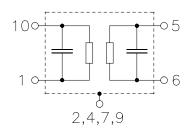
Data Sheet


Features

- Low-loss IF filter for CDMA base station
- Temperature stable
- Ceramic SMD package
- Unbalanced or balanced operation

Terminals

■ Gold plated


Ceramic package DCC18

Dimensions in mm, approx. weight 0,8 g

Pin configuration

10	Input or balanced input
1	Input ground or balanced input
5	Output or balanced output
6	Output ground or balanced output
3, 8	Ground
2. 4. 7. 9	Case ground

Туре	Ordering code	Marking and Package according to	Packing according to
B3831	B39151-B3831-U210	C61157-A7-A54	F61074-V8081-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

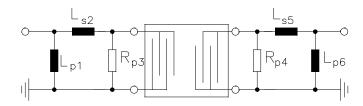
Operable temperature range	T	-40 / +85	°C
Storage temperature range	$T_{\rm stg}$	-40 / +85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	0	dBm

Data Sheet

Characteristics

Operating temperature range: T = -40 to +85 °CTerminating source impedance: $Z_{\text{S}} = 1000 \Omega \parallel 87 \text{nH}$ Terminating load impedance: $Z_{\text{L}} = 1000 \Omega \parallel 73 \text{nH}$

		min.	typ.	max.	
Nominal frequency	f_{N}		150	_	MHz
Minimum insertion attenuation	α_{min}	_	16,5	18	dB
1dB bandwidth $\alpha_{rel} \leq \text{1,0 dB}$	B _{1,0dB}	1,29	1,45	_	MHz
Amplitude ripple (p-p) $f_{\rm N} \pm 615 \rm kHz$	Δα	_	0,5	1,0	dB
Phase linearity (p-p) $f_{\rm N} \pm 615 \text{ kHz}$	Δφ	_	3,7	5,0	deg
Relative attenuation (relative to $\alpha_{\rm min}$) $f_{\rm N} \pm 2,25~{\rm MHz}~~~~f_{\rm N} \pm 40,0~{\rm MHz}$	α_{rel}	30	42	_	dB
VSWR $f_{\rm N} \pm 615 \text{ kHz}$		_	1,4:1	1,6:1	
Temperature coefficient of frequency 1)	TC _f	_	-0,036	_	ppm/K ²
Turnover temperature	T_0		35		°C

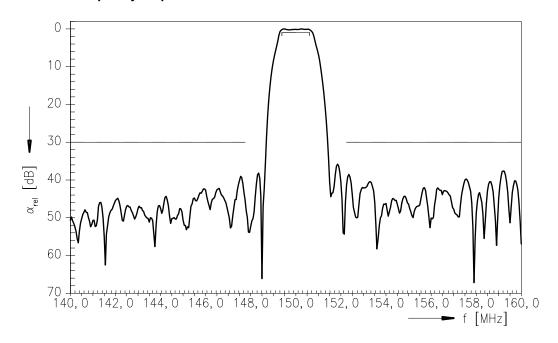

 $^{^{1)}}$ Temperature dependance of $f_{\rm c}$: $f_{\rm c}(T_{\rm A}) = f_{\rm c}(T_0)(1 + TC_{\rm f}(T_{\rm A} - T_0)^2)$

Data Sheet

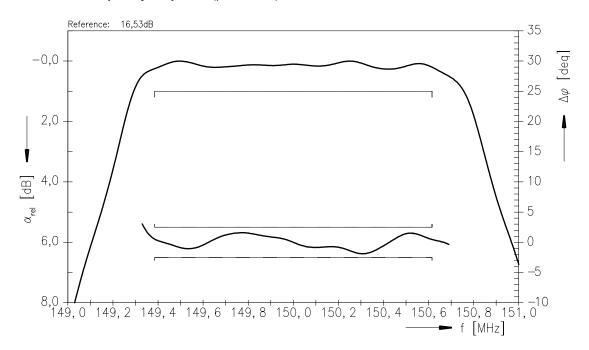
Matching network to 50 $\boldsymbol{\Omega}$

(Element values depend on PCB layout)

 $Lp1 = 27nH Rp4 = 820\Omega$


Ls2 = 56nH Ls5 = 56nH

 $Rp3 = 1000\Omega$ Lp6 = 33nH



Data Sheet

Normalized frequency response

Normalized frequency response (pass band)

Data Sheet

Published by EPCOS AG SAW MC IS, P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.