

1.75 MSPS, 4 mW 10-Bit/12-Bit Parallel ADCs

AD7470/AD7472

FEATURES

Specified for V_{DD} of 2.7 V to 5.25 V 1.75 MSPS for AD7470 (10-Bit) 1.5 MSPS for AD7472 (12-Bit) Low Power

AD7470: 3.34 mW Typ at 1.5 MSPS with 3 V Supplies

7.97 mW Typ at 1.75 MSPS with 5 V Supplies AD7472: 3.54 mW Typ at 1.2 MSPS with 3 V Supplies

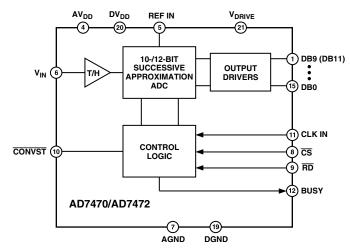
8.7 mW Typ at 1.5 MSPS with 5 V Supplies

Wide Input Bandwidth

70 dB Typ SNR at 500 kHz Input Frequency Flexible Power/Throughput Rate Management No Pipeline Delays

High Speed Parallel Interface Sleep Mode: 50 nA Typ

24-Lead SOIC and TSSOP Packages


GENERAL DESCRIPTION

The AD7470/AD7472 are 10-bit/12-bit high speed, low power, successive approximation ADCs. The parts operate from a single 2.7 V to 5.25 V power supply and feature throughput rates up to 1.5 MSPS for the 12-bit AD7472 and up to 1.75 MSPS for the 10-bit AD7470. The parts contain a low noise, wide bandwidth track-and-hold amplifier that can handle input frequencies in excess of 1 MHz.

The conversion process and data acquisition are controlled using standard control inputs, allowing easy interfacing to microprocessors or DSPs. The input signal is sampled on the falling edge of \overline{CONVST} , and conversion is also initiated at this point. BUSY goes high at the start of conversion and goes low 531.66 ns after falling edge of \overline{CONVST} (AD7472 with a clock frequency of 26 MHz) to indicate that the conversion is complete. There are no pipeline delays associated with the parts. The conversion result is accessed via standard \overline{CS} and \overline{RD} signals over a high speed parallel interface.

The AD7470/AD7472 use advanced design techniques to achieve very low power dissipation at high throughput rates. With 3 V supplies and 1.5 MSPS throughput rates, the AD7470 typically consumes, on average, just 1.1 mA. With 5 V supplies and 1.75 MSPS, the average current consumption is typically 1.6 mA. The part also offers flexible power/throughput rate management. Operating the AD7470 with 3 V supplies and 500 kSPS throughput reduces the current consumption to 713 μA . At 5 V supplies and 500 kSPS, the part consumes 944 μA .

FUNCTIONAL BLOCK DIAGRAM

AD7470 IS A 10-BIT PART WITH DB0 TO DB9 AS OUTPUTS. AD7472 IS A 12-BIT PART WITH DB0 TO DB11 AS OUTPUTS.

It is also possible to operate the parts in an auto sleep mode, where the part wakes up to do a conversion and automatically enters sleep mode at the end of conversion. This method allows very low power dissipation numbers at lower throughput rates. In this mode, the AD7472 can be operated with 3 V supplies at 100 kSPS, and consume an average current of just $124 \,\mu\text{A}$. At 5 V supplies and $100 \, \text{kSPS}$, the average current consumption is $171 \, \mu\text{A}$.

The analog input range for the part is 0 V to REF IN. The 2.5 V reference is applied externally to the REF IN pin. The conversion rate is determined by the externally-applied clock.

PRODUCT HIGHLIGHTS

- High Throughput with Low Power Consumption. The AD7470 offers 1.75 MSPS throughput and the AD7472 offers 1.5 MSPS throughput rates with 4 mW power consumption.
- Flexible Power/Throughput Rate Management. The conversion rate is determined by an externally-applied clock allowing the power to be reduced as the conversion rate is reduced.
 The part also features an auto sleep mode to maximize power efficiency at lower throughput rates.
- 3. No Pipeline Delay. The part features a standard successive approximation ADC with accurate control of the sampling instant via a CONVST input and once off conversion control.

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Fax: 781/326-8703 © 2003 Analog Devices, Inc. All rights reserved.

AD7470/AD7472

$\begin{array}{l} \textbf{AD7470-SPECIFICATIONS}^1 \ \, (V_{DD}=2.7 \ \text{V to } 5.25 \ \text{V}^2, \ \text{REF IN} = 2.5 \ \text{V}, \ f_{CLKIN} = 30 \ \text{MHz} @ 5 \ \text{V} \ \text{and} \ 24 \ \text{MHz} @ 3 \ \text{V}; \\ T_A = T_{MIN} \ \text{to} \ T_{MAX}^3, \ \text{unless otherwise noted.}) \end{array}$

Parameter	A Version ¹		Unit	Test Conditions/Comments	
DYNAMIC PERFORMANCE	5 V	3 V		f _S = 1.75 MSPS @ 5 V, f _S = 1.5 MSPS @ 3 V	
Signal to Noise + Distortion (SINAD)	60	60	dB min	$f_{IN} = 500 \text{ kHz Sine Wave}$	
	60	60	dB min	$f_{IN} = 100 \text{ kHz Sine Wave}$	
Signal-to-Noise Ratio (SNR)	60	60	dB min	$f_{IN} = 500 \text{ kHz Sine Wave}$	
, ,	60	60	dB min	$f_{IN} = 100 \text{ kHz Sine Wave}$	
Total Harmonic Distortion (THD)	-83	-83	dB typ	$f_{IN} = 500 \text{ kHz Sine Wave}$	
,	-75	-75	dB max	$f_{IN} = 100 \text{ kHz Sine Wave}$	
Peak Harmonic or Spurious Noise (SFDR)	-85	-85	dB typ	$f_{IN} = 500 \text{ kHz Sine Wave}$	
(-75	-75	dB max	f _{IN} = 100 kHz Sine Wave	
Intermodulation Distortion (IMD)			42 111411	IN TOO MILE SING WAVE	
Second-Order Terms	-79	-75	dB typ	f _{IN} = 500 kHz Sine Wave	
Second Start Terms	_75	-75	dB max	$f_{IN} = 100 \text{ kHz Sine Wave}$	
Third-Order Terms	_77	-75	dB typ	$f_{IN} = 500 \text{ kHz Sine Wave}$	
Timu-Order Terms	-75 -75	-75 -75	dB typ	$f_{IN} = 100 \text{ kHz Sine Wave}$	
Anartura Dalov	5	5		IIN - 100 KHZ Sine wave	
Aperture Delay			ns typ		
Aperture Jitter	15	15	ps typ	@ 2 JD	
Full Power Bandwidth	20	20	MHz typ	@ 3 dB	
DC ACCURACY				$f_S = 1.75 \text{ MSPS } @ 5 \text{ V}; f_S = 1.5 \text{ MSPS } @ 3 \text{ V}$	
Resolution	10	10	Bits		
Integral Nonlinearity	±1	±1	LSB max		
Differential Nonlinearity	±0.9	± 0.9	LSB max	Guaranteed No Missed Codes to 10 Bits	
Offset Error	±2.5	±2.5	LSB max		
Gain Error	±1	±1	LSB max		
ANALOG INPUT					
	O. DEE DI	O. DEE DI	**		
Input Voltage Ranges	0 to REF IN	0 to REF IN	V		
DC Leakage Current	±1	±1	μA max		
Input Capacitance	33	33	pF typ		
REFERENCE INPUT					
REF IN Input Voltage Range	2.5	2.5	V	±1% for Specified Performance	
DC Leakage Current	±1	±1	μA max	_	
Input Capacitance	10/20	10/20	pF typ	Track-and-Hold Mode	
LOGIC INPUTS					
Input High Voltage, V _{INH}	2.4	2.4	V min		
Input Low Voltage, V _{INI}	0.4	0.4	V max		
				Transcally 10 m A V = 0 V on V	
Input Current, I _{IN}	±1	±1	μA max	Typically 10 nA, $V_{IN} = 0 \text{ V or } V_{DD}$	
Input Capacitance, C _{IN} ⁴	10	10	pF max		
LOGIC OUTPUTS					
Output High Voltage, V _{OH}	$V_{DRIVE} - 0.2$	$V_{DRIVE} - 0.2$	V min	$I_{SOURCE} = 200 \mu\text{A}$	
Output Low Voltage, Vol	0.4	0.4	V max	$I_{SINK} = 200 \mu\text{A}$	
Floating-State Leakage Current	±10	± 10	μA max	$V_{\rm DD} = 2.7 \text{ V to } 5.25 \text{ V}$	
Floating-State Output Capacitance	10	10	pF max		
Output Coding	Straight (Nati	ural) Binary			
CONVERSION RATE					
Conversion Time	12	12	CLK IN Cycles (max)		
Track-and-Hold Acquisition Time	135	135	ns min		
				Conversion Time Acquisition Time	
Throughput Rate	1.75	1.5	MSPS max	Conversion Time + Acquisition Time	
				CLK IN of 30 MHz @ 5 V and 24 MHz @ 3 V	
POWER REQUIREMENTS					
$V_{ m DD}$	+2.7/+5.25		V min/max		
I_{DD}^{5}				Digital Inputs = $0 \text{ V or } DV_{DD}$	
Normal Mode	2.4		mA max	$V_{\rm DD} = 4.75 \text{ V}$ to 5.25 V; $f_{\rm S} = 1.75 \text{ MSPS}$; Typ 2 mA	
Quiescent Current	900		μA max	$V_{\rm DD} = 4.75 \text{ V to } 5.25 \text{ V}; f_{\rm S} = 1.75 \text{ MSPS}$	
Normal Mode	1.5		mA max	$V_{\rm DD} = 2.7 \text{ V to } 3.3 \text{ V; } f_{\rm S} = 1.5 \text{ MSPS; Typ } 1.3 \text{ m/s}$	
Quiescent Current	800		μA max	$V_{DD} = 2.7 \text{ V to } 3.3 \text{ V; } f_S = 1.5 \text{ MSPS}$	
Sleep Mode	1		μA max	$V_{DD} = 2.7 \text{ V to 3.3 V, 1s} = 1.3 \text{ MSF 3}$ $CLK \text{ IN} = 0 \text{ V or } DV_{DD}$	
Power Dissipation ⁵	1		μιιπαλ	Digital Inputs = $0 \text{ V of } DV_{DD}$	
Normal Mode	12		mW max		
INOTHIAI IVIOUE	12			$V_{DD} = 5 V$	
Cl M. 4.	4.5		mW max	$V_{DD} = 3 \text{ V}$	
Sleep Mode	5 3		μW max	$V_{DD} = 5 \text{ V}$; CLK IN = 0 V or DV _{DD}	
	1 4		μW max	$V_{DD} = 3 \text{ V}$; CLK IN = 0 V or DV _{DD}	

NOTES

Specifications subject to change without notice.

-2- REV. B

¹Temperature ranges as follows: A Version: –40°C to +85°C.

²The AD7470 functionally works at 2.35 V. Typical specifications @ 25°C for SNR (100 kHz) = 59 dB; THD (100 kHz) = -84 dB; INL ±0.8 LSB.

³The AD7470 will typically maintain A-grade performance up to 125°C, with a reduced CLK of 20 MHz @ 5 V and 16 MHz @ 3 V. Typical sleep mode current @ 125°C is 700 nA.

⁴Sample tested @ 25°C to ensure compliance.

 $^{^5\}mbox{See}~\mbox{\sc Power}$ vs. $\mbox{\sc Throughput}$ Rate section.

AD7472—SPECIFICATIONS¹

(V_DD = 2.7 V to 5.25 V², REF IN = 2.5 V, A and B Versions: f_{CLKIN} = 26 MHz @ 5 V and 20 MHz @ 3 V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted.)

Parameter	A Version	\mathbf{n}^1	B Versio	\mathbf{n}^1	Unit	Test Conditions/Comments
DYNAMIC PERFORMANCE Signal to Noise + Distortion (SINAD)	5 V 69 68	3 V 69 68	5 V 69 68	3 V 69 68	dB typ dB min	$f_S = 1.5$ MSPS @ 5 V, $f_S = 1.2$ MSPS @ 3 V $f_{IN} = 500$ kHz Sine Wave $f_{IN} = 100$ kHz Sine Wave
Signal-to-Noise Ratio (SNR)	70 68	70 68	70 68	70 68	dB typ dB min	$f_{IN} = 100 \text{ kHz Sine Wave}$ $f_{IN} = 500 \text{ kHz Sine Wave}$ $f_{IN} = 100 \text{ kHz Sine Wave}$
Total Harmonic Distortion (THD)	-83 -83	-78 -84	-83 -83	-78 -84	dB typ dB typ	$f_{IN} = 100 \text{ kHz Sine Wave}$ $f_{IN} = 500 \text{ kHz Sine Wave}$ $f_{IN} = 100 \text{ kHz Sine Wave}$
Peak Harmonic or Spurious Noise	-75	-75	-75	- 75	dB max	$f_{IN} = 100 \text{ kHz Sine Wave}$
(SFDR)	-86 -86 -76	-81 -86 -76	-86 -86 -76	-81 -86 -76	dB typ dB typ dB max	$f_{\rm IN}$ = 500 kHz Sine Wave $f_{\rm IN}$ = 100 kHz Sine Wave $f_{\rm IN}$ = 100 kHz Sine Wave
Intermodulation Distortion (IMD) Second-Order Terms	-77	-77	-77	-77	dB typ	f _{IN} = 500 kHz Sine Wave
Third-Order Terms	-86 -77	-86 -77	-86 -77	-86 -77	dB typ	$f_{IN} = 100 \text{ kHz Sine Wave}$ $f_{IN} = 500 \text{ kHz Sine Wave}$
Aperture Delay	-86 5 15	-86 5	-86 5 15	-86 5	dB typ ns typ	$f_{IN} = 100 \text{ kHz Sine Wave}$
Aperture Jitter Full Power Bandwidth	20	15 20	20	15 20	ps typ MHz typ	@ 3 dB
DC ACCURACY Resolution	12	12	12	12	Bits	f _S = 1.5 MSPS @ 5 V, f _S = 1.2 MSPS @ 3 V
Integral Nonlinearity Differential Nonlinearity	±2 ±1.8	±2 ±1.8	±1 ±0.9	±1 ±0.9	LSB max	Guaranteed No Missed Codes to 11 Bits (A Version) Guaranteed No Missed Codes to 12 Bits
Offset Error	±10	±10	±10	±10	LSB max	(B Version)
Gain Error	±2	±2	±2	±2	LSB max	
ANALOG INPUT Input Voltage Ranges	0 to REF IN	0 to REF IN ±1		0 to REF IN	V uA may	
DC Leakage Current Input Capacitance	33	33	±1 33	±1 33	μA max pF typ	
REFERENCE INPUT REF IN Input Voltage Range	2.5	2.5	2.5	2.5	V	±1% for Specified Performance
DC Leakage Current Input Capacitance	±1 10/20	±1 10/20	±1 10/20	±1 10/20	μA max pF typ	Track-and-Hold Mode
LOGIC INPUTS						
Input High Voltage, V _{INH} Input Low Voltage, V _{INL}	2.4 0.4	2.4 0.4	2.4 0.4	2.4 0.4	V min V max	
Input Current, I_{IN} Input Capacitance, C_{IN}	±1 10	±1 10	±1 10	±1 10	μA max pF max	Typically 10 nA, $V_{IN} = 0 \text{ V or } V_{DD}$
LOGIC OUTPUTS Output High Voltage, V _{OH}	V _{DRIVE} – 0.2	V _{DDDW} = 0.2	V _{DRIVE} – 0.2	V _{DRIVE} – 0.2	V min	I _{SOURCE} = 200 μA
Output Low Voltage, V _{OL}	0.4 ±10	0.4	0.4	0.4	V max	I _{SINK} = 200 μA V _{DD} = 2.7 V to 5.25 V
Floating-State Leakage Current Floating-State Output Capacitance	10	±10 10	±10 10	±10 10	μA max pF max	V _{DD} - 2.7 V to 5.25 V
Output Coding	Straight (Nat	ural) Binary	Straight (Nat	ural) Binary		
CONVERSION RATE Conversion Time	14	14	14	14	CLK IN Cycles (max)	
Track-and-Hold Acquisition Time Throughput Rate	135 1.5	135 1.2	135 1.5	135 1.2	ns min MSPS max	Conversion Time + Acquisition Time
POWER REQUIREMENTS						
$rac{{ m V_{DD}}}{{ m I_{DD}}^4}$	+2.7/+5.25		+2.7/+5.25		V min/max	Digital Inputs = 0 V or DV _{DD}
Normal Mode	2.4		2.4		mA max	$V_{DD} = 4.75 \text{ V}$ to 5.25 V; Typ 2 mA; $f_S = 1.5 \text{ MSPS}$
Quiescent Current Normal Mode	900		900 1.5		μA max mA max	$V_{\rm DD} = 4.75 \text{ V to } 5.25 \text{ V}; f_{\rm S} = 1.5 \text{ MSPS}$ $V_{\rm DD} = 2.7 \text{ V to } 3.3 \text{ V}; \text{ Typ } 1.3 \text{ mA}; f_{\rm S} = 1.2 \text{ MSPS}$
Quiescent Current	800		800		μA max	$V_{DD} = 2.7 \text{ V to } 3.3 \text{ V}$, Typ 1.3 lift, $I_S = 1.2 \text{ MSPS}$
Sleep Mode	1		1		μA max	CLK IN = 0 V or DV_{DD}
Power Dissipation ⁴ Normal Mode	12		12		mW max	Digital Inputs = 0 V or DV_{DD} $V_{DD} = 5 V$
Sleep Mode	4.5 5		4.5 5		mW max μW max	$V_{DD} = 3 \text{ V}$ $V_{DD} = 5 \text{ V}$; CLK IN = 0 V or DV _{DD}
Sicep Mode	3		3		μW max	$V_{DD} = 3 \text{ V}$; CLK IN = 0 V or DV _{DD}

NOTES

REV. B –3–

 $^{^1}Temperature$ ranges as follows: A and B Versions: $-40\,^{\circ}C$ to +85 $^{\circ}C.$

 $^{^2}$ The AD7472 functionally works at 2.35 V. Typical specifications @ 25°C for SNR (100 kHz) = 68 dB; THD (100 kHz) = -84 dB; INL \pm 0.8 LSB.

³Sample tested @ 25°C to ensure compliance.

⁴See Power vs. Throughput Rate section.

Specifications subject to change without notice.

AD7470/AD7472

$\textbf{AD7472} \textbf{—SPECIFICATIONS}^{1} \overset{(V_{DD} = 2.7 \text{ V to } 5.25 \text{ V}^2, \text{ REF IN} = 2.5 \text{ V,Y Version: } f_{\text{CLKIN}} = 20 \text{ MHz } @ 5 \text{ V and } 14 \text{ MHz } @ 3 \text{ V; } T_A = T_{\text{MIN}} \text{ to } T_{\text{MAX}}, \text{ unless otherwise noted.)}$

Parameter	Y Version ¹		Unit	Test Conditions/Comments	
DYNAMIC PERFORMANCE	5 V	3 V		f _S = 1.2 MSPS @ 5 V, f _S = 875 kSPS @ 3 V	
Signal to Noise + Distortion (SINAD)	69	69	dB typ	$f_{IN} = 500 \text{ kHz Sine Wave}$	
Signal to Noise + Distortion (SINAD)	68	68	dB typ	$f_{IN} = 100 \text{ kHz Sine Wave}$	
Signal-to-Noise Ratio (SNR)	70	70	dB typ	$f_{IN} = 100 \text{ kHz Sine Wave}$ $f_{IN} = 500 \text{ kHz Sine Wave}$	
Signal-to-moise Ratio (SINK)				$f_{IN} = 100 \text{ kHz Sine Wave}$ $f_{IN} = 100 \text{ kHz Sine Wave}$	
T. III 'D' (TID)	68	68	dB min		
Total Harmonic Distortion (THD)	-83	-78	dB typ	$f_{IN} = 500 \text{ kHz Sine Wave}$	
	-83 -75	-84	dB typ	$f_{IN} = 100 \text{ kHz Sine Wave}$	
D 111	-75	-75	dB max	$f_{IN} = 100 \text{ kHz Sine Wave}$	
Peak Harmonic or Spurious Noise (SFDR)	-86	-81	dB typ	$f_{IN} = 500 \text{ kHz Sine Wave}$	
	-86	-86	dB typ	$f_{IN} = 100 \text{ kHz Sine Wave}$	
	-76	-76	dB max	f_{IN} = 100 kHz Sine Wave	
Intermodulation Distortion (IMD)					
Second-Order Terms	-77	-77	dB typ	f_{IN} = 500 kHz Sine Wave	
	-86	-86	dB typ	$f_{IN} = 100 \text{ kHz Sine Wave}$	
Third-Order Terms	-77	-77	dB typ	f_{IN} = 500 kHz Sine Wave	
	-86	-86	dB typ	$f_{IN} = 100 \text{ kHz Sine Wave}$	
Aperture Delay	5	5	ns typ		
Aperture Jitter	15	15	ps typ		
Full Power Bandwidth	20	20	MHz typ	@ 3 dB	
			TILLE Cyp		
DC ACCURACY			D:	$f_S = 1.2 \text{ MSPS } @ 5 \text{ V}; f_S = 875 \text{ kSPS } @ 3 \text{ V}$	
Resolution	12	12	Bits		
Integral Nonlinearity	±2	± 2	LSB max		
Differential Nonlinearity	±1.8	± 1.8	LSB max	Guaranteed No Missed Codes to 11 Bits	
Offset Error	±10	± 10	LSB max		
Gain Error	±2	±2	LSB max		
ANALOG INPUT					
Input Voltage Ranges	0 to REF IN	0 to REF IN	V		
DC Leakage Current	±1	±1	uA max		
Input Capacitance	33	33	pF typ		
	33		pr. typ		
REFERENCE INPUT					
REF IN Input Voltage Range	2.5	2.5	V	±1% for Specified Performance	
DC Leakage Current	±1	±1	μA max		
Input Capacitance	10/20	10/20	pF typ	Track-and-Hold Mode	
LOGIC INPUTS					
Input High Voltage, V _{INH}	2.4	2.4	V min		
Input Low Voltage, V _{INI}	0.4	0.4	V max		
Input Current, I _{IN}	±1	±1	μA max	Typically 10 nA, $V_{IN} = 0 \text{ V or } V_{DD}$	
Input Capacitance, C _{IN} ³	10	10	pF max	Typically 10 ini, $v_{IN} = 0$ $v_{IN} = 0$	
	10	10	primax		
LOGIC OUTPUTS					
Output High Voltage, V _{OH}	$V_{DRIVE} - 0.2$	$V_{DRIVE} - 0.2$	V min	$I_{SOURCE} = 200 \mu\text{A}$	
Output Low Voltage, V _{OL}	0.4	0.4	V max	$I_{SINK} = 200 \mu\text{A}$	
Floating-State Leakage Current	±10	± 10	μA max	$V_{\rm DD} = 2.7 \text{ V to } 5.25 \text{ V}$	
Floating-State Output Capacitance	10	10	pF max		
Output Coding	Straight (Natu	ıral) Binary			
CONVERSION RATE		·			
Conversion Time	14	14	CLK IN Cycles (max)		
Track-and-Hold Acquisition Time	140	140	ns min		
Throughput Rate	1200	875	kSPS max	Conversion Time + Acquisition Time	
	1200	013	KSI S IIIax	Conversion Time + Acquisition Time	
POWER REQUIREMENTS					
$V_{ m DD}$	+2.7/+5.25		V min/max		
${ m I_{DD}}^4$				Digital Inputs = $0 \text{ V or } DV_{DD}$	
Normal Mode	2.4		mA max	$V_{DD} = 4.75 \text{ V to } 5.25 \text{ V}; f_S = 1.2 \text{ MSPS}; \text{Typ } 2 \text{ mA}$	
Quiescent Current	900		μA max	$V_{\rm DD}$ = 4.75 V to 5.25 V; $f_{\rm S}$ = 1.2 MSPS	
Normal Mode	1.5		mA max	$V_{DD} = 2.7 \text{ V to } 3.3 \text{ V; } f_S = 875 \text{ kSPS; Typ } 1.3 \text{ mA}$	
Quiescent Current	800		μA max	$V_{DD} = 2.7 \text{ V to } 3.3 \text{ V; } f_S = 875 \text{ kSPS}$	
Sleep Mode	2		μA max	$CLK IN = 0 V or DV_{DD}$	
Power Dissipation ⁴				Digital Inputs = 0 V or DV_{DD}	
Normal Mode	12		mW max	$V_{DD} = 5 \text{ V}$	
110111111 112040	4.5		mW max	$V_{DD} = 3 \text{ V}$	
Sleep Mode	10		μW max	$V_{DD} = 5 \text{ V}$; CLK IN = 0 V or DV _{DD}	
Steep Mode	6		μW max	$V_{DD} = 3 \text{ V}$; CLK IN = 0 V or DV _{DD}	
	l 0		μ νν IIIαλ	I VDD - 3 V, CLICITY - 0 V OI DVDD	

NOTES

-4- REV. B

 $^{^{1}}Temperature$ ranges as follows: Y Version: $-40^{\circ}C$ to $+125^{\circ}C.$

²The AD7472 functionally works at 2.35 V. Typical specifications @ 25° C for SNR (100 kHz) = 68 dB; THD (100 kHz) = -84 dB; INL $\pm 0.8 \text{ LSB}$.

³Sample tested @ 25°C to ensure compliance.

⁴See Power vs. Throughput Rate section.

Specifications subject to change without notice.

$\hline \textbf{TIMING SPECIFICATIONS}^1 \text{ (V}_{DD} = 2.7 \text{ V to } 5.25 \text{ V, REF IN} = 2.5 \text{ V; } T_A = T_{MIN} \text{ to } T_{MAX} \text{, unless otherwise noted.)}$

	Limit at T _{MIN} , T _{MAX}			
Parameter	AD7470	AD7472	Unit	Description
f _{CLK} ²	10	10	kHz min	
	30	26	MHz max	
t _{CONVERT}	436.42	531.66	ns min	$t_{CLK} = 1/f_{CLK IN}$
t_{WAKEUP}	1	1	μs max	Wake-Up Time
t_1	10	10	ns min	CONVST Pulse Width
t_2				CONVST to BUSY Delay,
	10	10	ns max	V_{DD} = 5 V, A and B Versions
		15	ns max	$V_{\rm DD}$ = 5 V, Y Version
	30	30	ns max	$V_{\rm DD}$ = 3 V, A and B Versions
		35	ns max	$V_{\rm DD}$ = 3 V, Y Version
t_3	0	0	ns max	BUSY to CS Setup Time
t_3 t_4	0	0	ns max	CS to RD Setup Time
	20	20	ns min	RD Pulse Width
t ₅ t ₆ ³ t ₇ ⁴	15	15	ns min	Data Access Time After Falling Edge of RD
t_7^4	8	8	ns max	Bus Relinquish Time After Rising Edge of RD
t ₈	0	0	ns max	CS to RD Hold Time
t ₉				Acquisition Time
	135	135	ns max	A and B Versions
		140	ns max	Y Version
t ₁₀	100	100	ns min	Quiet Time

NOTES

Specifications subject to change without notice.

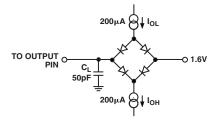


Figure 1. Load Circuit for Digital Output Timing Specifications

REV. B _5_

¹Sample tested at 25°C to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of V_{DD}) and timed from a voltage level of 1.6 V.

²Mark/Space ratio for the CLK inputs is 40/60 to 60/40. First CLK pulse should be 10 ns min from falling edge of CONVST.

³Measured with the load circuit of Figure 1 and defined as the time required for the output to cross 0.8 V or 2.0 V.

⁴t₇ is derived from the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 1. The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the time, t₇, quoted in the timing characteristics, is the true bus relinquish time of the part and is independent of the bus loading.

AD7470/AD7472

ABSOLUTE MAXIMUM RATINGS1

 $(T_A = 25^{\circ}C \text{ unless otherwise noted.})$

7
AV_{DD} to $AGND/DGND$ 0.3 V to +7 V
DV_{DD} to AGND/DGND0.3 V to +7 V
V_{DRIVE} to AGND/DGND
AV_{DD} to DV_{DD}
V_{DRIVE} to DV_{DD} 0.3 V to DV_{DD} + 0.3 V
AGND to DGND0.3 V to +0.3 V
Analog Input Voltage to AGND \dots -0.3 V to AV _{DD} + 0.3 V
Digital Input Voltage to DGND \dots -0.3 V to DV _{DD} + 0.3 V
REF IN to AGND -0.3 V to AV _{DD} + 0.3 V
Input Current to Any Pin Except Supplies ² ±10 mA
Operating Temperature Range
Commercial (A and B Versions)40°C to +85°C
Industrial (Y Version)40°C to +125°C
Storage Temperature Range65°C to +150°C

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
θ_{JC} Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C
ESD

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

Model	Temperature Range	Resolution (Bits)	Package Options ¹	Package Description
AD7470ARU	−40°C to +85°C	10	RU-24	TSSOP
AD7470ARU-REEL	−40°C to +85°C	10	RU-24	TSSOP
AD7470ARU-REEL7	-40°C to +85°C	10	RU-24	TSSOP
AD7472AR	−40°C to +85°C	12	R-24	SOIC
AD7472AR-REEL	-40°C to +85°C	12	R-24	SOIC
AD7472AR-REEL7	-40°C to +85°C	12	R-24	SOIC
AD7472ARU	-40°C to +85°C	12	RU-24	TSSOP
AD7472ARU-REEL	-40°C to +85°C	12	RU-24	TSSOP
AD7472ARU-REEL7	−40°C to +85°C	12	RU-24	TSSOP
AD7472BR	-40°C to +85°C	12	R-24	SOIC
AD7472BR-REEL	-40°C to +85°C	12	R-24	SOIC
AD7472BRU	−40°C to +85°C	12	RU-24	TSSOP
AD7472BRU-REEL	−40°C to +85°C	12	RU-24	TSSOP
AD7472BRU-REEL7	−40°C to +85°C	12	RU-24	TSSOP
AD7472YR	-40°C to +125°C	12	R-24	SOIC
AD7472YR-REEL	-40°C to +125°C	12	R-24	SOIC
AD7472YRU	-40°C to +125°C	12	RU-24	TSSOP
AD7472YRU-REEL	-40°C to +125°C	12	RU-24	TSSOP
AD7472YRU-REEL7	-40°C to +125°C	12	RU-24	TSSOP
EVAL-AD7470CB ²				Evaluation Boar
EVAL-AD7472CB ²				Evaluation Boar
EVAL CONTROL BRD2 ³				Controller Board

NOTES

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD7470/AD7472 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

–6– REV. B

²Transient currents of up to 100 mA will not cause SCR latch-up.

 $^{{}^{1}}R = SOIC; RU = TSSOP.$

²This can be used as a standalone evaluation board or in conjunction with the EVAL-CONTROL BOARD for evaluation/demonstration purposes.

³This board is a complete unit allowing a PC to control and communicate with all Analog Devices evaluation boards ending in the CB designators.

To order a complete evaluation kit, you need to order the specific ADC evaluation board, for example, EVAL-AD7472CB, the EVAL CONTROL BRD2, and a 12 V ac transformer. See the relevant evaluation board application note for more information.