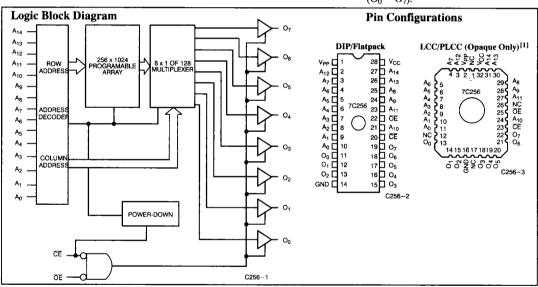


32K x 8 PROM Power Switched and Reprogrammable

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
 - 45 ns (commercial)
 - 55 ns (military)
- Low power
 - -250 mW (commercial)
 - -300 mW (military)
- Super low standby power
 - Less than 75 mW when deselected
- EPROM technology 100% programmable
- Direct replacement for bipolar PROMs


 Capable of withstanding >2001V static discharge

Functional Description

The CY7C256 is a high-performance 32,768-word by 8-bit CMOS PROM. When disabled (\$\overline{CE}\$ HIGH), the CY7C256 automatically powers down into a low-power stand-by mode. The CY7C256 is packaged in the industry standard 600-mil package. The CY7C256 is available in a cerDIP package equipped with an erasure window to provide for reprogrammability. When exposed to UV light, the PROM is erased and can be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.

The CY7C256 offers the advantage of lower power and superior performance and programming yield. The EPROM cell requires only 12.5V for the super voltage, and low current requirements allow for gang programming. The EPROM cells allow each memory location to be tested 100% because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.

Reading the CY7C256 is accomplished by placing active LOW signals on \overline{OE} and \overline{CE} . The contents of the memory location addressed by the address lines $(A_0 - A_{14})$ will become available on the output lines $(O_0 - O_7)$.

Selection Guide

		7C256-45	7C256-55
Maximum Access Time (ns)		45	55
Maximum Operating Current (mA) ^[2]	Commercial	50	50
Current (mA) ^[2]	Military	60	60
Standby Current (mA)	Commercial	15	15
	Military	20	20
Chip Select Time (ns)		45	55
Output Enable (ns)		15	20

Notes:

- For PLCC only: Pins 1 and 17 are common and tied to the die attach pad. They must therefore be DU (don't use) for the PLCC package.
- 2. Add 2 mA/MHz for AC power component.

Maximum Ratings

Latch-Up Current	>200 mA
UV Exposure 7258	Wsec/cm ²

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ±10%
Industrial ^[3]	-40°C to +85°C	5V ±10%
Military ^[4]	-55°C to +125°C	5V ±10%

Electrical Characteristics Over the Operating Range^[5]

				7C256-	- 45, 55	
Parameter	Description	Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ m/s}$	A	2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 16.0 \text{ mA}^{[}$	6]		0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical Hi All Inputs	IGH Voltage for	2.0	V_{CC}	V
$V_{\rm IL}$	Input LOW Level	Guaranteed Input Logical LO' Inputs	Guaranteed Input Logical LOW Voltage for All Inputs		0.8	V
I _{IX}	Input Current	$GND \le V_{IN} \le V_{CC}$		- 10	+10	μA
I _{OZ}	Output Leakage Current	$GND \le V_{OUT} \le V_{CC}$, Output Disabled		- 40	+40	μА
I _{OS}	Output Short Circuit Current ^[7]	$V_{CC} = Max., V_{OUT} = GND$		- 20	- 90	mA
I_{CC}	Power Supply Current ^[2]	$V_{CC} = Max., V_{IN} = 2.0V,$ $I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL},$	Commercial		50	mA
		$\overline{OE} = V_{IH}$	Military		60	1
I_{SB}	Standby Supply Current	$V_{CC} = Max., \overline{CE} = V_{IH},$	Commercial		15	mA
		$I_{OUT} = 0 \text{ mA}$	Military		20	1
V _{PP}	Programming Supply Voltage	.,		12	13	V
I _{PP}	Programming Supply Current				50	mA
V_{IHP}	Input HIGH Programming Voltage			3.0		V
V _{ILP}	Input LOW Programming Voltage				0.4	V

Capacitance^[8]

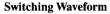
Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

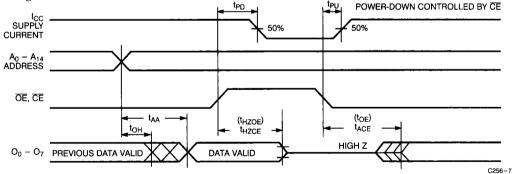
Notes:

- Contact a Cypress representative for information on industrial temperature range specifications.
- 4. TA is the "instant on" case temperature.
- See the last page of this specification for Group A subgroup testing information.
- 6. I_{OL}=12.0 mA for military devices.
- For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
- See Introduction to CMOS PROMs in this Data Book for general information on testing.

AC Test Loads and Waveforms[8]

Equivalent to:


THÉVENIN EQUIVALENT


100Ω OUTPUT • • 2.00V

C256-6

Switching Characteristics Over the Operating Range^[5,8]

		7C2	7C256-45		7C256-55	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
t _{AA}	Address to Output Valid		45		55	ns
t _{HZOE}	Output Enable Inactive to High Z		15		20	ns
t _{OE}	Output Enable Active to Output Valid		15		20	ns
t _{HZCE}	Chip Enable Inactive to High Z		45		55	ns
t _{ACE}	Chip Enable Active to Output Valid		45		55	ns
t _{PU}	Chip Enable Active to Power Up	0		0		ns
t _{PD}	Chip Enable Inactive to Power Down		45		55	ns
t _{OH}	Output Hold from Address Change	0		0		ns

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the 7C256 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.

The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity multiplied by exposure time) of 25 Wsec/cm². For an ultraviolet lamp with a 12 mW/cm² power rating, the exposure time would be approximately 35 minutes. The 7C256 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if

the PROM is exposed to high-intensity UV light for an extended period of time. 7258 Wsec/cm² is the recommended maximum dosage.

Programming Modes

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1, CY7C256 Mode Selection

		Pin Function ^[9]				
Mode	Read or Output Disable	A ₁₄ - A ₀	ŌĒ	<u>CE</u>	V _{PP}	$O_7 - O_0$
	Other	$A_{14} - A_0$	VFY	PGM	V _{PP}	$D_7 - D_0$
Read		$A_{14} - A_0$	V _{IL}	V _{IL}	Note 10	$O_7 - O_0$
Outpu	t Disable	$A_{14} - A_0$	V_{IH}	X	X	High Z
Power	Down	$A_{14} - A_0$	X	V _{IH}	X	High Z
Progra	ım	$A_{14} - A_0$	V_{IHP}	V _{ILP}	V _{PP}	$D_7 - D_0$
Progra	m Verify	$A_{14} - A_0$	V _{ILP}	V _{IHP}	V _{PP}	$O_7 - O_0$
Progra	m Inhibit	$A_{14} - A_0$	V_{IHP}	V_{IHP}	V _{PP}	High Z

Notes:

10. V_{PP} should not exceed V_{CC} in read mode.

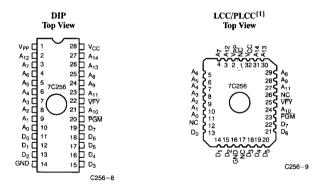


Figure 1. Programming Pinouts

^{9.} X can be V_{IL} (V_{ILP}) or V_{IH} (V_{IHP}).

Ordering Information[11]

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
45	CY7C256-45JC	J65	32-Pin Rectangular Plastic Leaded Chip Carrier	Commercial
	CY7C256-45PC	P15	28-Lead (600-Mil) Molded DIP	1
	CY7C256-45WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C256-45DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C256-45LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C256-45QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C256-45WMB	W16	28-Lead (600-Mil) Windowed CerDIP	
55	CY7C256-55JC	J65	32-Pin Rectangular Plastic Leaded Chip Carrier	Commercial
	CY7C256-55PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C256-55WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C256-55DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C256-55LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C256-55QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C256-55WMB	W16	28-Lead (600-Mil) Windowed CerDIP	

Note:
11. Most of these products are available in industrial temperature range.
Contact a Cypress representative for specifications and product available.

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V_{OL}	1, 2, 3
V_{IH}	1, 2, 3
V_{IL}	1, 2, 3
I_{IX}	1, 2, 3
I_{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I_{SB}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{AA}	7, 8, 9, 10, 11
t _{OE}	7, 8, 9, 10, 11
t _{ACE}	7, 8, 9, 10, 11

Document #: 38-00245