

Is Now Part of



# **ON Semiconductor®**

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to Fairchild <a href="guestions@onsemi.com">guestions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer



August 2024

# FSUSB30 Low-Power, Two-Port, High-Speed USB 2.0 (480Mbps) Switch

#### **Features**

- 2 Low On Capacitance: 3.7pF (Typical)
- 2 Low On Resistance: 6.5Ω (Typical)
- 2 Low Power Consumption: 1µA (Maximum)
  - 10µA Maximum I<sub>CCT</sub> over an Expanded Control Voltage Range (V<sub>IN</sub> = 2.6V, V<sub>CC</sub> = 4.3V)
- ? Wide -3dB Bandwidth, >720MHz
- ? 8kV ESD Protection
- Power-Off Protection when V<sub>CC</sub> = 0V; D+/D- Pins can Tolerate up to 5.5V
- ? Packaged in:
  - 10-lead MicroPak™ (1.6 x 2.1mm)
  - 10-lead MSOP
  - 10-lead UMLP (1.4 x 1.8mm)

## **Applications**

? Cell phone, PDA, Digital Camera, and Notebook LCD Monitor, TV, and Set-top Box

## **Related Application Notes**

2 AN-6022 Using the FS JSB30 / FSUSB31 to Comply with USB 2.0 Fault Condition Requirements

## Description

The FSUSB30 is a low-power, two-port, high-speed USB 2.0 switch. Configured as a double-pole double-throw (DPDT) switch, it is optimized for switching between two high-speed (480Mbps) sources or a Hi-speed and Full-Speed (12Mbps) source. The FSUSB30 is compatible with the requirements of USB2.0 and features an extremely low on capacitance ( $C_{\rm ON}$ ) of 3.7pF. The wide bandwidth of this device (720MHz), exceeds the bandwidth needed to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to-channel crosstalk minimizes interference.

The FSUSB30 contains special circuitry on the D+/D-pins which allows the device to withs and an overvoltage condition when powered off. This device is also designed to minimize current consumption even when the control voltage applied to the S pin, is lower than the supply voltage (V<sub>CC</sub>). This feature is especially valuable to ultraportable applications such as cell phones, allowing for direct interface with the general purpose I/Os of the basehand processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

# **Ordering Information**

| Order<br>Number | Package<br>Number | Product Code<br>Top Mark | Package Description                                                       |
|-----------------|-------------------|--------------------------|---------------------------------------------------------------------------|
| FSUSB30L10X     | MAC010A           | *FJ                      | 10-Lead MicroPak, 1.6 x 2.1mm                                             |
| FSUSB30MUX      | MUA10A            | FSUSB30                  | 10-Lead Molded Small Outline Package (MSOP), JEDEC MO-<br>187, 3.0mm Wide |
| FSUSB30UMX      | MLP010A           | GJ                       | 10-Lead, Quad, Ultrathin, MLP (UMLP) 1.4 x 1.8mm                          |

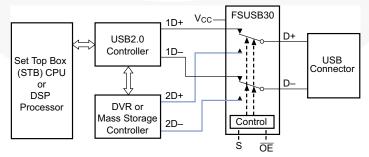
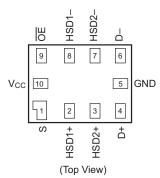
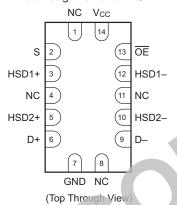
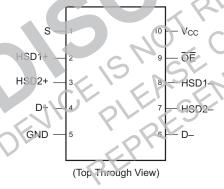



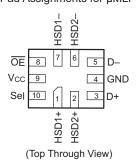

Figure 1. Typical Application


MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

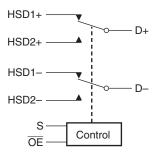
# **Connection Diagrams**


Pad Assignments for MicroPak




Pad Assignments for DQFN




Pin Assignment for MSOP



## Pad Assignments for µMLP



# **Analog Symbol**



# **Pin Descriptions**

| Pin Name             | Description       |
|----------------------|-------------------|
| ŌĒ                   | Bus Switch Enable |
| S                    | Select Input      |
| D+, D-, HSDn+, HSDn- | Data Ports        |
| NC O                 | No Connect        |

# Truth Table

| S    | OE C | Function          |
|------|------|-------------------|
| X    | HIGH | Disconnect        |
| LOW  | LOW  | D+, D- = $HSD1_n$ |
| HIGH | LOW  | D+, D- = $HSD2_n$ |

# **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol             | Parameter                                        |                                |  | Minimum | Maximum         | Unit |
|--------------------|--------------------------------------------------|--------------------------------|--|---------|-----------------|------|
| V <sub>CC</sub>    | Supply Voltage                                   |                                |  | -0.5    | +5.5            | V    |
| V <sub>CNTRL</sub> | DC Input Voltage <sup>(1)</sup>                  |                                |  | -0.5    | V <sub>CC</sub> | V    |
|                    |                                                  | HSDnX                          |  | 0.5     | V <sub>CC</sub> | V    |
| $V_{SW}$           | V <sub>SW</sub> DC Switch Voltage <sup>(1)</sup> | D+,D- when V <sub>CC</sub> > 0 |  | 0.5     | V <sub>CC</sub> | V    |
|                    |                                                  | D+,D- when $V_{CC} = 0$        |  | -0.50   | V <sub>CC</sub> | V    |
| I <sub>IK</sub>    | DC Input Diode Current                           |                                |  | -50     |                 | mA   |
| I <sub>OUT</sub>   | DC Output Current                                |                                |  |         | 50              | mA ) |
| T <sub>STG</sub>   | Storage Temperature                              |                                |  | -65     | +150            | °C   |
| ESD                | Human Body Model                                 | All Pins                       |  |         | 8               | kV   |
| LOD                | Truman body Wodel                                | I/O to GND                     |  |         | 8               | kV   |

#### Note:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

# **Recommended Operating Conditions**

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the clatasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings. (2)

| Symbol          | Parameter C                     | Minimum | Maximum         | Unit |
|-----------------|---------------------------------|---------|-----------------|------|
| V <sub>CC</sub> | Supply Voltage                  | 3.0     | 4.3             | V    |
| V <sub>IN</sub> | Control Input Voltage           | 0       | V <sub>CC</sub> | V    |
| V <sub>SW</sub> | Switch Input Voltage            | 0       | V <sub>CC</sub> | V    |
| T <sub>A</sub>  | Operating Temperature           | -40     | +85             | °C   |
| ΘJ <sub>A</sub> | Thermal Resistance, 10 MicroPak |         | 250             | °C/W |

#### Note

2. Control input must be held HIGH or LOW and it must not float.

## **DC Electrical Characteristics**

All typical values are at 25°C unless otherwise specified.

| Symbol                   | Parameter                                               | Conditions                                                                 | V <sub>CC</sub> (V) | T <sub>A</sub> = - | 40°C to | +85°C | Unit |
|--------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|---------------------|--------------------|---------|-------|------|
| Symbol                   | i arameter                                              | Conditions                                                                 | <b>VCC (V)</b>      | Min.               | Тур.    | Max.  | J    |
| V <sub>IK</sub>          | Clamp Diode Voltage                                     | I <sub>IN</sub> = -18mA                                                    | 3.0                 |                    |         | -1.2  | V    |
| V <sub>IH</sub>          | Input Voltage HIGH                                      |                                                                            | 3.0 to 3.6          | 1.3                |         |       | V    |
| VIH                      | input voltage rilori                                    |                                                                            | 4.3                 | 1.7                |         |       | V    |
| V <sub>IL</sub>          | Input Voltage LOW                                       |                                                                            | 3.0 to 3.6          |                    |         | 0.5   | V    |
| ۷IL                      | Input voltage LOVV                                      |                                                                            | 4.3                 |                    |         | 0.7   | V    |
| I <sub>IN</sub>          | Control Input Leakage                                   | $V_{SW} = 0.0V$ to $V_{CC}$                                                | 4.3                 | -1.0               |         | 1.0   | μΑ   |
| $I_{OZ}$                 | OFF State Leakage                                       | $0 \le Dn$ , $HSD1_n$ , $HSD2_n \le V_{CC}$                                | 4.3                 | -2.0               |         | 2.0   | μΑ   |
| I <sub>OFF</sub>         | Power OFF Leakage<br>Current (D+, D-)                   | $V_{SW} = 0V$ to 4.3V, $V_{CC} = 0V$                                       | 0                   | -2.0               | V       | 2.0   | μА   |
| D.                       | Switch On Resistance <sup>(3)</sup>                     | $V_{SW} = 0.4V, I_{ON} = -8mA$                                             | 3.0                 |                    | 6.5     | 10.0  | Ω    |
| R <sub>ON</sub>          | Switch On Resistance                                    | $V_{SW} = 0V$ , $I_O = 30$ mA at 25°C                                      | 3.6                 |                    | 10      | 7.0   | Ω    |
| $\Delta R_{ON}$          | Delta R <sub>ON</sub> <sup>(4)</sup>                    | V <sub>SW</sub> = 0.4V, I <sub>ON</sub> = -8mA                             | 3.0                 | 0                  | 0.35    |       | Ω    |
| R <sub>ON</sub> Flatness | R <sub>ON</sub> Flatness <sup>(3)</sup>                 | V <sub>SW</sub> = 0.0V - 1.0V<br>I <sub>ON</sub> = -8mA                    | 3.0                 | Dic                | 2.0     |       | Ω    |
| I <sub>CC</sub>          | Quiescent Supply Current                                | $V_{\text{CNTRL}} = 0.0 \text{ V or } V_{\text{CC}},$ $I_{\text{OUT}} = 0$ | 4.3                 | ns                 | آک      | 1.0   | μΑ   |
| I <sub>CCT</sub>         | Increase in I <sub>CC</sub> Current per Control Voltage | V <sub>CNTRL</sub> (control input) = 2.6V                                  | 4.3                 | R                  | 11.     | 10.0  | μΑ   |

#### Notes:

- 3. Measured by the voltage drop between Dn,  $HSD1_n$ ,  $HSD2_n$  pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two ports.
- 4. Guaranteed by characterization.

# **AC Electrical Characteristics**

All typical values are for  $V_{CC}$  = 3.3V at 25°C unless otherwise specified.

| Symbol Parameter |                                   | Conditions                                                                                                                                                             | V <sub>CC</sub> (V) | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ |      | Unit | Figure  |                      |
|------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------|------|------|---------|----------------------|
| Cynnoon          | Tarameter                         | Soliditions                                                                                                                                                            | • 66 (•)            | Min.                                          | Тур. | Max. | Oilit   | Number               |
| t <sub>ON</sub>  | Turn-On Time S,  OE to Output     | $HD1_n$ , $HD2_n = 0.8V$ , $R_L = 50\Omega$ , $C_L = 5pF$                                                                                                              | 3.0 to 3.6          |                                               | 13   | 30   | ns      | Figure 9             |
| t <sub>OFF</sub> | Turn-Off Time S  OE to Output     | $\begin{aligned} &\text{HD1}_{\text{n}},  \text{HD2}_{\text{n}} = 0.8 \text{V}, \\ &\text{R}_{\text{L}} = 50 \Omega,  \text{C}_{\text{L}} = 5 \text{pF} \end{aligned}$ | 3.0 to 3.6          |                                               | 12   | 25   | ns      | Figure 9             |
| t <sub>PD</sub>  | Propagation Delay <sup>(4)</sup>  | $R_L = 50\Omega$ , $C_L = 5pF$                                                                                                                                         | 3.3                 |                                               | 0.25 |      | ns      | Figure 7<br>Figure 8 |
| t <sub>BBM</sub> | Break-Before-Make                 | $R_L = 50\Omega, C_L = 5pF,$ $V_{IN} = 0.8V$                                                                                                                           | 3.0 to 3.6          | 2.0                                           |      | 6.5  | ns      | Figure 10            |
| O <sub>IRR</sub> | Off Isolation<br>(Non-Adjacent)   | $f = 240MHz, R_T = 50\Omega$                                                                                                                                           | 3.0 to 3.6          |                                               | -30  |      | dB      | Figure 13            |
| Xtalk            | Non-Adjacent Channel<br>Crosstalk | $R_T = 50\Omega$ , $f = 240MHz$                                                                                                                                        | 3.0 to 3.6          |                                               | -45  |      | dB      | Figure 14            |
| BW               | –3dB Bandwidth                    | $R_T = 50\Omega$ , $C_L = 0pF$                                                                                                                                         | 3.0 to 3.6          |                                               | 720  |      | MHz     | Figure 12            |
| DW               | odb ballawidill                   | $R_T = 50\Omega$ , $C_L = 5pF$                                                                                                                                         | 3.0 10 3.0          |                                               | 550  |      | 1411 12 | rigule 12            |

# **USB Hi-Speed Related AC Electrical Characteristics**

| Symbol             | Parameter                                                            | Parameter Conditions                                                                         |                     | $T_A = -40$ °C to +85°C |      |      | Units | Figure                |
|--------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|-------------------------|------|------|-------|-----------------------|
|                    | i arameter                                                           | Conditions                                                                                   | V <sub>CC</sub> (V) | Min.                    | Тур. | Max. | Units | Number                |
| t <sub>SK(O)</sub> | Channel-to-Channel<br>Skew <sup>(5)</sup>                            | $R_L = 50\Omega$ , $C_L = 5pF$                                                               | 3.0 to 3.6          |                         | 50   |      | ps    | Figure 7<br>Figure 11 |
| t <sub>SK(P)</sub> | Skew of Opposite<br>Transitions of the<br>Same Output <sup>(5)</sup> | $R_L = 50\Omega$ , $C_L = 5pF$                                                               | 3.0 to 3.6          |                         | 20   |      | ps    | Figure 7<br>Figure 11 |
| t <sub>J</sub>     | Total Jitter <sup>(5)</sup>                                          | $R_L = 50\Omega$ , $C_L = 5pF$ ,<br>$t_R = t_F = 500ps$ at 480 Mbps<br>$(PRBS = 2^{15} - 1)$ | 3.0 to 3.6          |                         | 200  |      | ps    |                       |

#### Note:

5. Guaranteed by characterization.

# Capacitance

| Symbol           | Parameter                                             | Conditions                                | T <sub>A</sub> = - | 10°C to +85°C  Typ. Max. | Units | Figure<br>Number |
|------------------|-------------------------------------------------------|-------------------------------------------|--------------------|--------------------------|-------|------------------|
| C <sub>IN</sub>  | Control Pin Input Capacitance                         | V <sub>CC</sub> = 0V                      |                    | 1.5                      | ρF    | Figure 16        |
| C <sub>ON</sub>  | D1 <sub>n</sub> , D2 <sub>n</sub> , Dn On Capacitance | $V_{CC} = 3.3, \overline{OE} = 0V$        |                    | 3.7                      | pF    | Figure 15        |
| C <sub>OFF</sub> | D1 <sub>n</sub> , D2 <sub>n</sub> Off Capacitance     | V <sub>CC</sub> and $\overline{OE} = 3.3$ | 10/2               | 2.5                      | ρF    | Figure 16        |

# **Typical Characteristics**

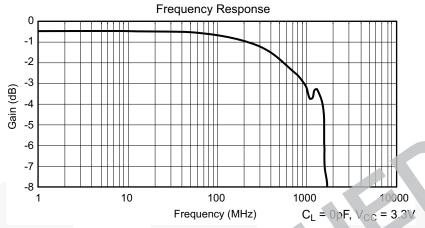



Figure 2. Gain vs. Frequency

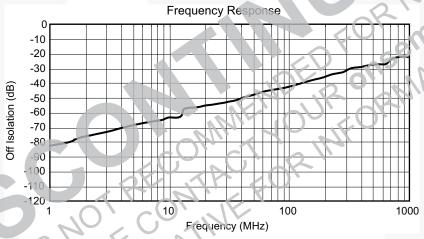
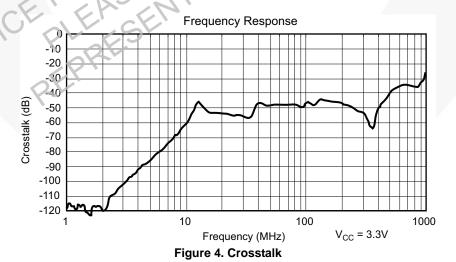




Figure 3. Off Isolation



# **Test Diagrams**

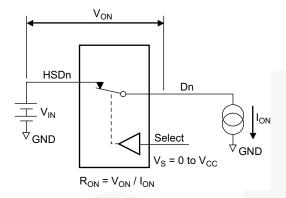
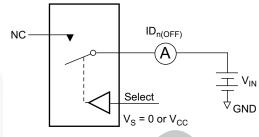
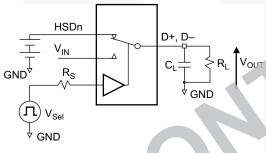





Figure 5. On Resistance



Each switch port is tested separately.

Figure 6. Off Leakage



 $R_{L},\,R_{S},\, \text{and}\,\, C_{L}$  are functions of the application environment (see AC Electrical tables for specific values).

C<sub>L</sub> includes test fixture and stray capacitance.

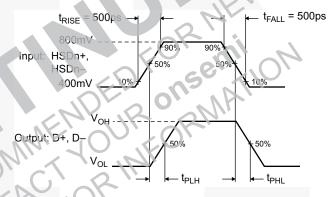



Figure 7. AC Test Circuit Load

Figure 8. Switch Propagation Delay Waveforms

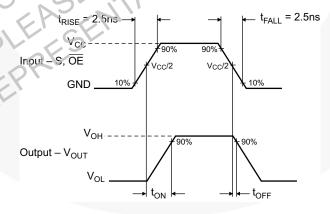



Figure 9. Turn-On / Turn-Off Waveform

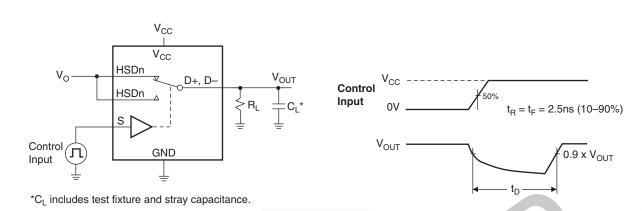



Figure 10. Break-Before-Make (t<sub>BBM</sub>)

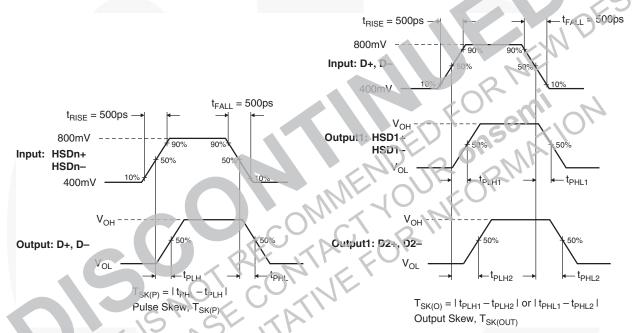



Figure 11. Switch Skew Tests

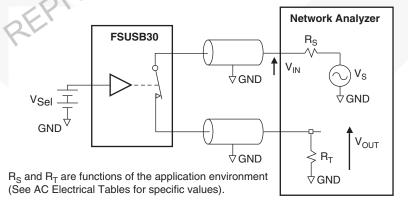



Figure 12. Bandwidth

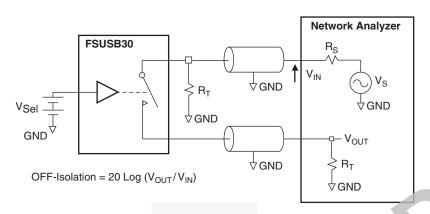



Figure 13. Channel Off Isolation

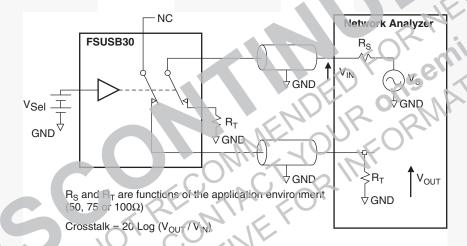



Figure 14. Non-Adjacent Channel-to-Channel Crosstalk

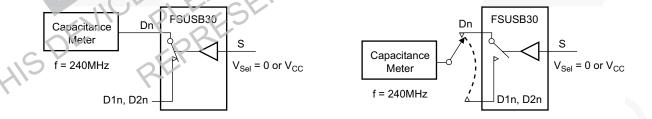



Figure 15. Channel On Capacitance

Figure 16. Channel Off Capacitance

# **Application Guidance: Meeting USB 2.0 Vbus Short Requirements**

In section 7.1.1 of the USB 2.0 specification, it notes that USB devices must be able to withstand a Vbus short to D+ or D- when the USB devices is either powered off or powered on. The FSUSB30 can be successfully configured to meet both these requirements.

#### **Power-Off Protection**

For a Vbus short circuit, the switch is expected to withstand such a condition for at least 24 hours. The FSUSB30 has specially designed circuitry which prevents unintended signal bleed through as well as guaranteed system reliability during a power-down, overvoltage condition. The protection has been added to the common pins (D+, D-).

#### **Power-On Protection**

The USB 2.0 specification also notes that the USB device should be capable of withstanding a Vbus short during transmission of data. Fairchild recommends adding a  $100\Omega$  series resister between the switch VCC pin and supply rail to protect against this case. This modification works by limiting current flow back into the  $V_{CC}$  rail during the over-voltage event so current remains within the safe operating range. In this application, the switch passes the full 5.25V input signal through to the selected output, while maintaining specified off isolation on the un-selected pins.

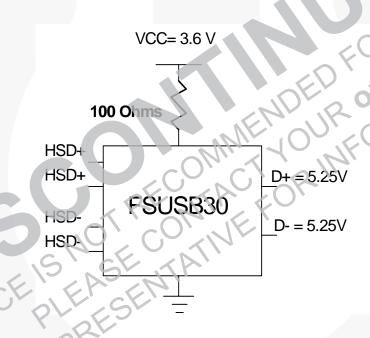
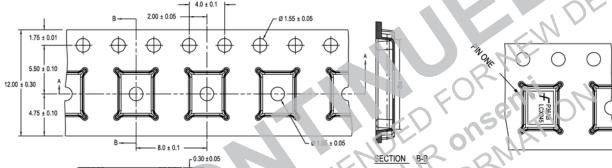
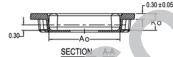



Figure 17. Adding 100 $\Omega$  resistor in series with the V<sub>CC</sub> supply allows the FSUSB30 to withstand a Vbus short when powered up

For more information, see Applications Note *AN-6022 Using the FSUSB30 to Comply with USB 2.0 Fault Condition Requirements* at <a href="https://www.fairchildsemi.com">www.fairchildsemi.com</a>


# **Tape and Reel Specifications**


## **Tape Format for DQFN**

| Package<br>Designator | Tape<br>Section    | Number<br>Cavities |        |        |
|-----------------------|--------------------|--------------------|--------|--------|
|                       | Leader (Start End) | 125 (typ)          | Empty  | Sealed |
| BQX                   | Carrier            | 2500/3000          | Filled | Sealed |
|                       | Trailer (Hub End)  | 75 (typ)           | Empty  | Sealed |

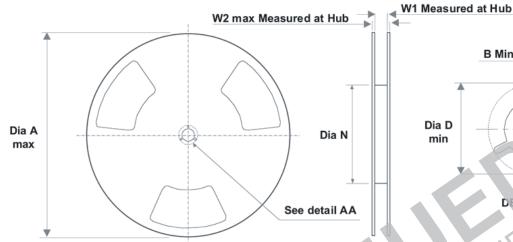
## **Tape Dimensions**

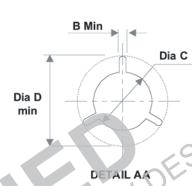
Dimenions are in millimeters unless otherwise specified.





| PKG. SIZE | DIM.Ao        | DIM.Bo        | DIM.Ko        |
|-----------|---------------|---------------|---------------|
| 3.5 X 4.5 | $3.8 \pm 0.1$ | 4.8 ± 0.1     | $0.9 \pm 0.1$ |
| 3.0 X 3.0 | $3.3 \pm 0.1$ | $3.3 \pm 0.1$ | $0.9 \pm 0.1$ |
| 2.5 X 4.5 | $2.8 \pm 0.1$ | 4.8 ± 0.1     | $0.9 \pm 0.1$ |
| 2.5 X 3.5 | 2.8 ± 0.1     | 3.8 ± 0.1     | $0.9 \pm 0.1$ |
| 2.5 X 3.0 | 2.8 ± 0.1     | $3.3 \pm 0.1$ | $0.9 \pm 0.1$ |
| 2.5 X 2.5 | $2.8 \pm 0.1$ | $2.8 \pm 0.1$ | $0.9 \pm 0.1$ |


DIMENSIONS ARE IN MILLIMETERS


## NOTES: unless otherwise specified

- 1. Cumulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span.
- 2. Smallest allowable bending radius.
- 3. Thru hole in side cavity is centered within cavity.
- 4. Tolerance is ±0.002[0.05] for these dimensions on all 12mm tapes.
- 5. Ao and Bo measured on a plane 0 120[0.30] above the bottom of the pocket.
- 6 Ko measured from a place on the inside bottom of the pocket to the top surface of the carrier.
- 7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
- 8. Controlling dimension is millimeter. Diemension in inches rounded.

## **Reel Dimensions for DQFN**

Dimensions are in inches (millimeters) unless otherwise specified.

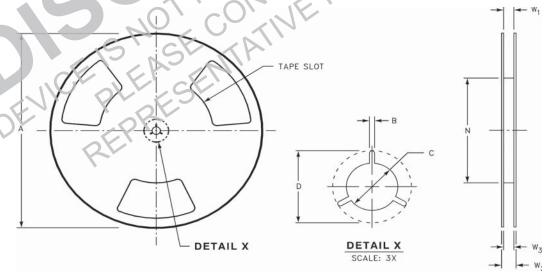




| Tape Size | Α     | В      | С       | D       | N     | W1     | W2     |
|-----------|-------|--------|---------|---------|-------|--------|--------|
|           | 13.0  | 0.059  | 0.512   | 0.795   | 7.008 | 0.488  | 0.724  |
| (12mm)    | (330) | (1.50) | (13.00) | (20.20) | (178) | (12.4) | (18.4) |

## **Tape Dimensions for MSOP**

Dimensions are in inches (millimeters) unless otherwise specified.




#### Notes:

- 1. All dimensions are in millimeters
- 2. Measured from centerline of sprocket hole to centerline of pocket
- 3. Cumulative tolerance of ten sprocket holes is ±0.20mm.
- 4. Other material available.

## Reel Dimensions for MSOP

Dimensions are in inches (millimeters) unless otherwise specified



| Tape Size | Α     | В     | С     | D      | N     | W1     | W2     | W3           |
|-----------|-------|-------|-------|--------|-------|--------|--------|--------------|
| (40)      | 13    | 0.059 | 0.512 | 0.795  | 7.008 | 0.448  | 0.724  | 0.468-0.606  |
| (12mm)    | (330) | (1.5) | (13)  | (20.2) | (178) | (12.4) | (18.4) | (11.9 -15.4) |

# **Physical Dimensions**

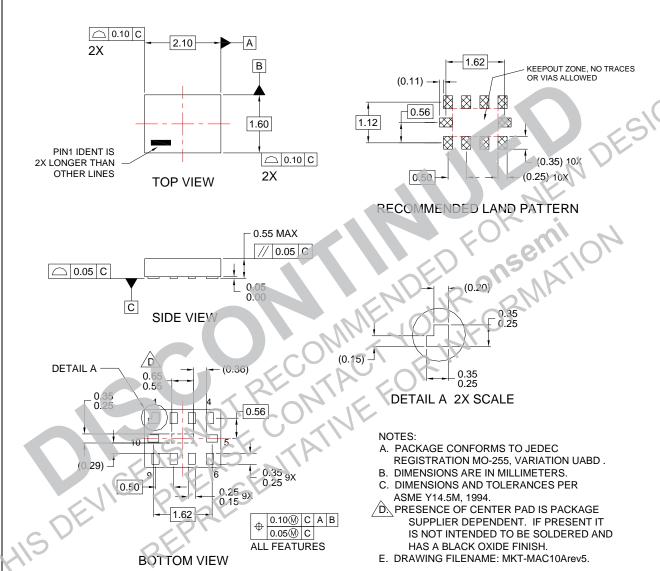
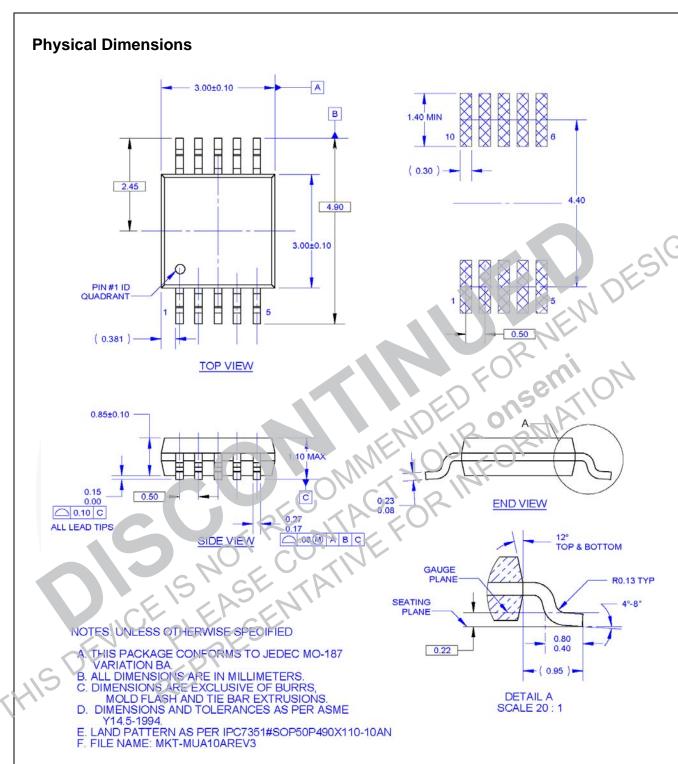
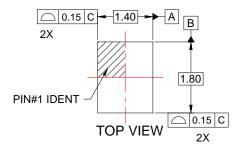
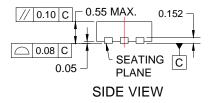


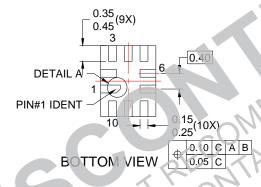

Figure 17. 10-Lead MicroPak, 1.6 x 2.1mm

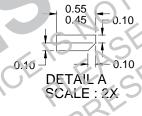
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <a href="http://www.fairchildsemi.com/packaging/">http://www.fairchildsemi.com/packaging/</a>.

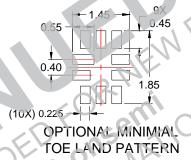


Figure 18. 10-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide


Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

# **Physical Dimensions**












# 0.663 (9X) 0.563 0.40 (10X)0.225 (10X)0.225



#### NOTES.

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- D. LAND PATTERN RECOMMENDATION IS BASED ON FSC DESIGN ONLY.
- E. DRAWING FILENAME: MKT-UMLP10Arev3.

Figure 19. 10-Lead, Quad, Ultrathin Molded Leadless Package (UMLP), 1.4  $\times$  1.8 mm

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <a href="http://www.fairchildsemi.com/packaging/">http://www.fairchildsemi.com/packaging/</a>.



#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ **FPSTM** AccuPower™ F-PFSTM AX-CAP<sup>®</sup> FRFET<sup>®</sup> BitSiC™ Global Power Resource<sup>5</sup> Build it Now™ GreenBridge™ Green FPS™ CorePLUS™ CorePOWER™ Green FPS™ e-Series™ **CROSSVOLT** Gmax<sup>TM</sup> CTLTM GTO<sup>TM</sup> Current Transfer Logic™ IntelliMAX™ **DEUXPEED®** ISOPLANAR™

 Dual Cool™
 Making Small Speakers Sound Louder

 EcoSPARK®
 and Better™

EfficientMax™ MegaBuck™

ESBC™ MICROCOUPLER™

MicroFET™

MicroPak™

Fairchild®

Fairchild Semiconductor®

FACT Quiet Series™

FACT®

FAST®

FastvCore™

FastvCore™

FETBench™

FAST®

OPTOLOGIC®

OPTOPLANAR®

PowerTrench® PowerXS™ Programmable Active Droop™ QFET®

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SMART START™
Solutions for Your Success SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SuperSOT™-8
SuperSOT™-8
SuperSOT™-8
SuperSOT™-8

SyncFET

SmartMax™

SYSTEM
GENERAL®

TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPower™
TinyPower™
TinyWire
Transic™
TRUECURRENT
SerDes™

Sync-Lock™

UHC
UIt a FRFET™
UniFET™
VCX™
Vist a Max™
VoltagePlus™
XS™

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIR CHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CO. PORATION.

#### As used here

- Life support devices or systems are devices or systems v hich, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sale's Support.

Counterfeiting of semiconductor parts is a glowing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purch ase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of ploduction and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### PRODUCT STATUS DEFINITIONS

#### Definition of Terms

| Datasheet Identification | Product Status        | Definition                                                                                                                                                                               |  |  |  |
|--------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                            |  |  |  |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. For Semiconductor reserves the right to make changes at any time without notice to improve do |  |  |  |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                    |  |  |  |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                         |  |  |  |

Rev. 164

<sup>\*</sup> Trademarks of System General Corporation, used under license by Fairchild Semiconductor.



ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative