



## MAX9945 Evaluation Kit

### General Description

The MAX9945 evaluation kit (EV kit) provides a proven design to evaluate the MAX9945 low-noise, MOS-input, low-power op amp in an 8-pin  $\mu$ MAX® package. Various test points are provided for easy evaluation. The EV kit circuit is preconfigured as a transimpedance amplifier (TIA), but can easily be adapted to act as a noninverting, inverting, or differential amplifier by changing a few components. MOS-input bias currents, low input-voltage noise, and rail-to-rail output stage make this device ideal for photodiode transimpedance amplifiers, piezo buffers, and audio line out applications. The components have pads that accommodate 0805 packages, making them easy to solder and replace. The MAX9945 EV kit PCB comes with a MAX9945AUA+ installed. Note that the MAX9945 is also available in a 3mm x 3mm TDFN package.

**Evaluates:** **MAX9945**

### Features

- ◆ Accommodates Multiple Op-Amp Configurations
- ◆ Wide Input Supply Range
- ◆ 0805 Components
- ◆ Lead(Pb)-Free and RoHS Compliant
- ◆ Proven PCB Layout
- ◆ Fully Assembled and Tested

### Ordering Information

| PART          | TYPE   |
|---------------|--------|
| MAX9945EVKIT+ | EV Kit |

+Denotes lead(Pb)-free and RoHS compliant.

### Component List

| DESIGNATION | Qty | DESCRIPTION                                                                                   |
|-------------|-----|-----------------------------------------------------------------------------------------------|
| C1, C3      | 2   | 0.1 $\mu$ F $\pm$ 10%, 50V X7R ceramic capacitors (0805)<br>TDK C2012X7R1H104K                |
| C2, C4      | 2   | 4.7 $\mu$ F $\pm$ 10%, 25V X5R ceramic capacitors (0805)<br>Murata GRM21BR6E475K              |
| C5, C6, C7  | 0   | Not installed, ceramic capacitors (0805)                                                      |
| D1, D2      | 2   | Not installed, pico-amp diodes<br>Linear Integrated Systems SSTPAD (provided with the EV kit) |

| DESIGNATION             | Qty | DESCRIPTION                                                         |
|-------------------------|-----|---------------------------------------------------------------------|
| R1, R2, R3, R5          | 4   | 0 $\Omega$ $\pm$ 5% resistors (0805)                                |
| R4                      | 1   | 100k $\Omega$ $\pm$ 1% resistor (0805)                              |
| TP1, TP2, TP5, TP6, TP7 | 5   | Red multipurpose test points                                        |
| TP3, TP4                | 2   | Black multipurpose test points                                      |
| U1                      | 1   | 38V, low-noise, MOS-input op amp (8 $\mu$ MAX)<br>Maxim MAX9945AUA+ |
| —                       | 1   | PCB: MAX9945 EVALUATION KIT+                                        |

### Component Suppliers

| SUPPLIER                         | PHONE        | WEBSITE                                                                      |
|----------------------------------|--------------|------------------------------------------------------------------------------|
| Murata Electronics North America | 770-436-1300 | <a href="http://www.murata-northamerica.com">www.murata-northamerica.com</a> |
| TDK Corp.                        | 847-803-6100 | <a href="http://www.component.tdk.com">www.component.tdk.com</a>             |

**Note:** Indicate that you are using the MAX9945 when contacting these component suppliers.

$\mu$ MAX is a registered trademark of Maxim Integrated Products, Inc.



Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at [www.maxim-ic.com](http://www.maxim-ic.com).

# MAX9945 Evaluation Kit

## Quick Start

### Required Equipment

- MAX9945 EV kit
- $\pm 15V$ , 10mA DC power supply (PS1)
- $\pm 1V$  precision voltage source
- External  $10k\Omega$  and  $20k\Omega$  resistors
- Digital multimeter (DMM)

### Procedure

The MAX9945 EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- 1) Connect the positive terminal of the  $+15V$  supply to VCC (TP1) and the GND terminal to GND (TP4). Connect the negative terminal of the  $-15V$  supply to VEE (TP2) and the GND terminal to GND (TP3). The power supply should be off.
- 2) Connect the positive terminal of the precision voltage source to INM (TP5) through an external  $10k\Omega$  series resistor. Connect the negative terminal of the precision voltage source to INP (TP6). TP6 is shorted to the board GND through an on-board  $0\Omega$  resistor.
- 3) With the  $100k\Omega$  feedback resistor and external  $10k\Omega$  series resistor, the gain is  $-10$  (inverting configuration). Connect the DMM to monitor the voltage on OUTA (TP7).
- 4) Turn on the  $\pm 15V$  power supply.
- 5) Apply  $100mV$  from the precision voltage source. Observe the output at OUTA (TP7) on the DMM. OUTA should read approximately  $-1V$ .
- 6) Replace the external  $10k\Omega$  resistor with a  $20k\Omega$  resistor. The gain is now  $-5$ . OUTA should read approximately  $-500mV$ .

### Detailed Description of Hardware

The MAX9945 EV kit provides a proven layout for the MAX9945 low-noise op amp. The MAX9945 accepts a single-supply voltage from  $+4.75V$  to  $+38V$  or dual supply from  $\pm 2.4V$  to  $\pm 19V$ . The IN+ trace completely wraps the IN- trace for shielding against parasitic leakage. Optional low-leakage pico-amp diodes are included on the EV kit, but not installed. Various test points are included for easy evaluation.

### Op-Amp Configurations

#### Transimpedance Application

The MAX9945 EV kit comes preconfigured as a transimpedance amplifier (TIA) to interface to a photodiode. MOS inputs on the MAX9945 ensure extremely low input bias currents ( $50fA$  typ) that channel nearly all of the photodiode output current into the feedback resistor (R4). The output voltage of the TIA is the photodiode current multiplied by the feedback resistor:

$$V_{OUT} = I_{PD} \times R4 + V_{OS}$$

where R4 comes installed as a  $100k\Omega$  resistor, IPD is defined as photodiode current, and V<sub>OS</sub> is the input offset voltage of the op amp.

When the photodiode is located at a distance from the op amp (e.g., at the end of a cable), it is sometimes advantageous to place the photodiode between the IN+ and IN- terminals of the op amp, instead of referencing it to GND. For good common-mode noise rejection in this scenario, replace R1 with a  $100k\Omega$  resistor as well. The output voltage is then given by the following equation:

$$V_{OUT} = I_{PD} \times (R1 + R4) + V_{OS}$$

Use capacitor C6 (and C5, if applicable) to stabilize the op amp by rolling off high-frequency gain due to a large photodiode capacitance or cable capacitance.

#### Inverting Configuration

To configure the MAX9945 EV kit as an inverting amplifier, replace R2 with the desired 1% gain-setting resistor and feed a voltage V<sub>IN</sub> between TP5 and GND. The output voltage is given by the following equation:

$$V_{OUT} = \frac{R4}{R2} \times (V_{IN} + V_{OS})$$

The offset voltage V<sub>OS</sub> can be either positive or negative.

#### Differential Amplifier

To configure the MAX9945 EV kit as a differential amplifier, replace R1–R4 with appropriate resistors. Make sure R1 = R4 and R2 = R3. The resulting output voltage and gain are shown in the equations below. The CMRR of the differential amplifier will be determined by the matching of the resistor ratios R4/R2 and R1/R3:

$$V_{OUT} = \text{Gain} \times (\text{INP} - \text{INN})$$

where

$$\text{Gain} = \frac{R4}{R2} = \frac{R1}{R3}$$

# MAX9945 Evaluation Kit

**Evaluates: MAX9945**

## Differential Pico-Amp Protection Diodes

The PCB layout provides pads on the bottom of the PCB for two back-to-back pico-amp diodes that can be used for differential-voltage protection of the op amp, if necessary. These low-leakage diodes ensure that the extremely low bias currents of the MAX9945 are not seriously degraded. The pico-amp diodes are not installed on the EV kit board.

## Capacitive Loads

Some applications require driving large capacitive loads. To improve the stability of the amplifier in such cases, replace R5 with a suitable resistor value to improve amplifier phase margin. The R5/C7 filter can also be used as an anti-alias filter or to limit amplifier output noise by reducing its output bandwidth.

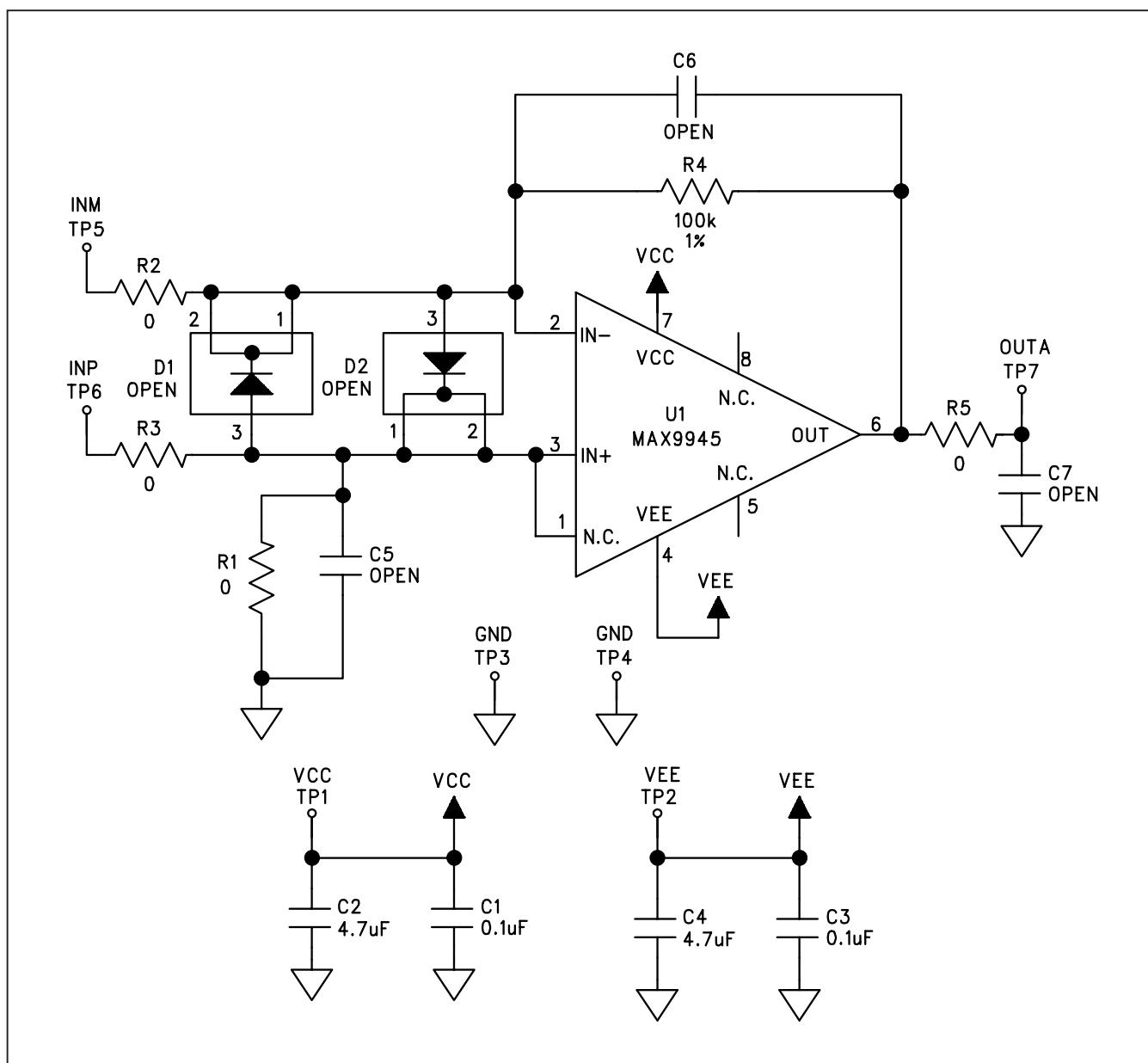



Figure 1. MAX9945 EV Kit Schematic

## Evaluates: MAX9945

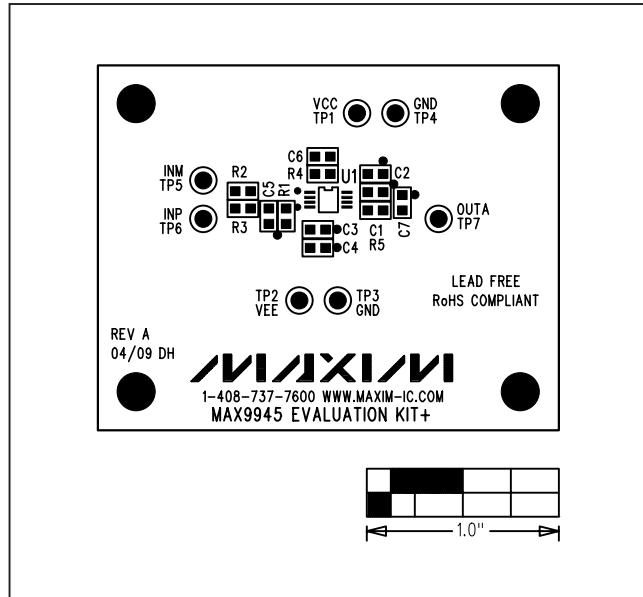



Figure 2. MAX9945 EV Kit Component Placement Guide—Component Side

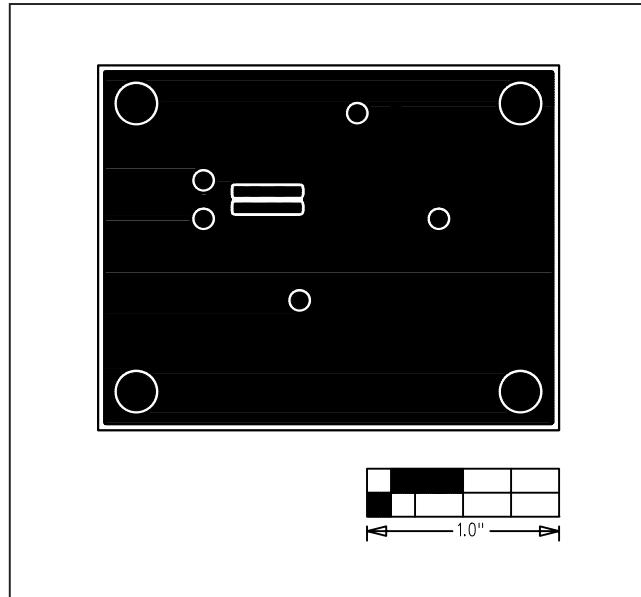



Figure 4. MAX9945 EV Kit PCB Layout—Solder Side

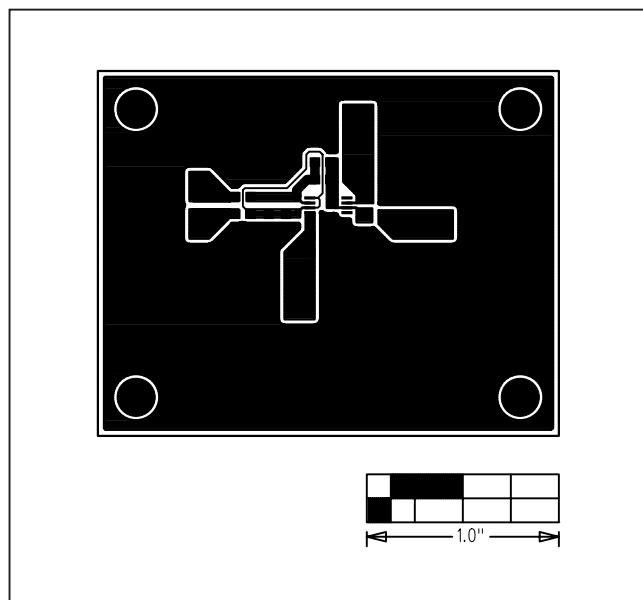



Figure 3. MAX9945 EV Kit PCB Layout—Component Side

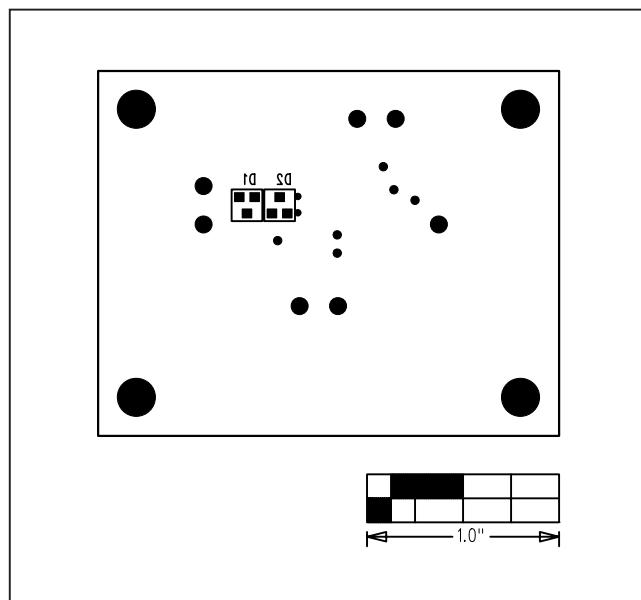



Figure 5. MAX9945 EV Kit Component Placement Guide—Solder Side

# MAX9945 Evaluation Kit

## Revision History

| REVISION NUMBER | REVISION DATE | DESCRIPTION                                      | PAGES CHANGED |
|-----------------|---------------|--------------------------------------------------|---------------|
| 0               | 5/09          | Initial release                                  | —             |
| 1               | 8/09          | Added diode part number in <i>Component List</i> | 1             |

**Evaluates: MAX9945**

*Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.*

**Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600** 5

© 2009 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.