SCHS353 - JANUARY 2004

- 8-Bit Serial-In, Parallel-Out Shift
- Wide Operating Voltage Range of 2 V to 6 V
- High-Current 3-State Outputs Can Drive Up To 15 LSTTL Loads
- Low Power Consumption, 80-μA Max I_{CC}
- Typical t_{pd} = 14 ns
- ±6-mA Output Drive at 5 V
- Low Input Current of 1 μA Max
- Shift Register Has Direct Clear

DW, E, M, NS, OR SM PACKAGE (TOP VIEW) Q_B 16**∏** V_{CC} Q_C [15 Q_A Q_D [] 3 14 SER 13 OE Q_{E} Q_F [12 RCLK Q_G L 11 SRCLK 10 SRCLR Q_H [] 9∏ Q_{H′} GND [

description/ordering information

The CD74HC595 device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3-state outputs. Separate clocks are provided for both the shift and storage registers. The shift register has a direct overriding clear (SRCLR) input, serial (SER) input, and serial output for cascading. When the output-enable (OE) input is high, the outputs are in the high-impedance state.

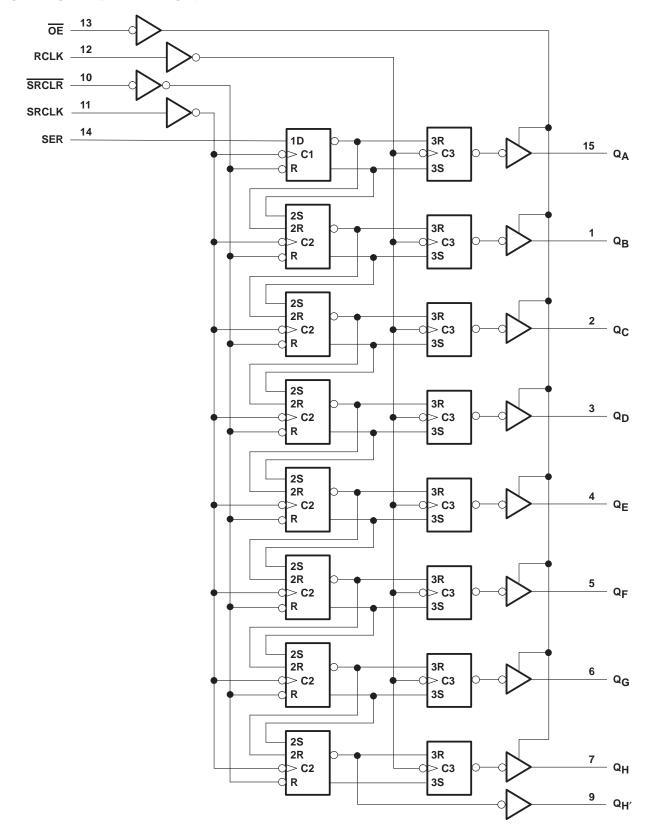
Both the shift register clock (SRCLK) and storage register clock (RCLK) are positive-edge triggered. If both clocks are connected together, the shift register always is one clock pulse ahead of the storage register.

ORDERING INFORMATION

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	PDIP – E	Tube of 25	CD74HC595E	CD74HC595E	
	SOIC - DW	Tube of 40	CD74HC595DW	LICEOEM	
	SOIC - DW	Reel of 2000	CD74HC595DWR	HC595M	
		Tube of 40	CD74HC595M		
−55°C to 125°C	SOIC - M	Reel of 2500	CD74HC595M96	HC595M	
		Reel of 250	CD74HC595MT		
	SOP - NS	Reel of 2000	CD74HC595NSR	HC595M	
	SSOP – SM	Tube of 80	CD74HC595SM	111505	
	330P - 3W	Reel of 2000	CD74HC595SM96	HJ595	

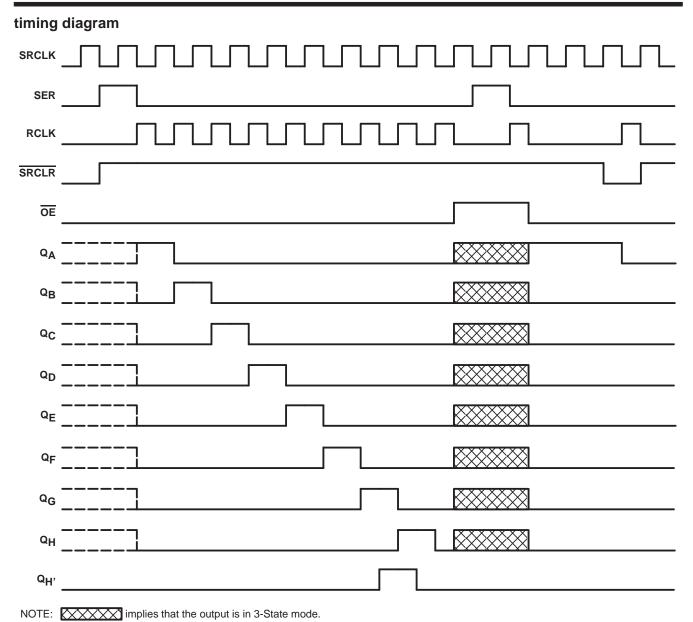
TPackage drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


CD74HC595 8-BIT SHIFT REGISTERS WITH 3-STATE OUTPUT REGISTERS SCHS353 - JANUARY 2004

FUNCTION TABLE

		INPUTS			FUNCTION
SER	SRCLK	SRCLR	RCLK	OE	FUNCTION
Х	Х	Х	Х	Н	Outputs Q _A –Q _H are disabled.
Х	Χ	X	Χ	L	Outputs Q _A –Q _H are enabled.
Х	Χ	L	Χ	Χ	Shift register is cleared.
L	1	Н	Х	Х	First stage of the shift register goes low. Other stages store the data of previous stage, respectively.
Н	1	Н	Х	Х	First stage of the shift register goes high. Other stages store the data of previous stage, respectively.
Х	Х	Х	1	Х	Shift-register data is stored in the storage register.


logic diagram (positive logic)

CD74HC595 8-BIT SHIFT REGISTERS WITH 3-STATE OUTPUT REGISTERS

SCHS353 - JANUARY 2004

SCHS353 - JANUARY 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		–0.5 V to 7 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see	ee Note 1)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CO}	C) (see Note 1)	±20 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	-	±35 mA
Continuous current through V _{CC} or GND		±70 mA
Package thermal impedance, θ _{JA} (see Note 2)	: E package	67°C/W
	DW package	57°C/W
	M package	73°C/W
	NS package	64°C/W
	SM package	82°C/W
Storage temperature range, T _{stg}		65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		2	5	6	V	
		V _{CC} = 2 V	1.5				
VIH	High-level input voltage	$V_{CC} = 4.5 \text{ V}$	3.15			V	
		$V_{CC} = 6 V$	4.2				
		V _{CC} = 2 V			0.5		
VIL	Low-level input voltage	V _{CC} = 4.5 V			1.35	V	
		V _{CC} = 6 V			1.8		
VI	Input voltage		0		VCC	V	
VO	Output voltage		0		VCC	V	
		V _{CC} = 2 V			1000		
Δt/Δv‡	Input transition rise/fall time	V _{CC} = 4.5 V			500	ns	
		VCC = 6 V			400		
TA	Operating free-air temperature		-55		125	°C	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

[‡] If this device is used in the threshold region (from V_{IL}max = 0.5 V to V_{IH}min = 1.5 V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at t_t = 1000 ns and V_{CC} = 2 V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

CD74HC595 8-BIT SHIFT REGISTERS WITH 3-STATE OUTPUT REGISTERS SCHS353 - JANUARY 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		v _{cc}	Т	A = 25°C	;	T _A = -55		T _A = -40 85°		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
			2 V	1.9	1.998		1.9		1.9		
		$I_{OH} = -20 \mu\text{A}$	4.5 V	4.4	4.499		4.4		4.4		
			6 V	5.9	5.999		5.9		5.9		
∨он	VI = VIH or VIL	$Q_{H'}$, $I_{OH} = -4 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84		V
		Q_A-Q_H , $I_{OH} = -6 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84		
		$Q_{H'}$, $I_{OH} = -5.2 \text{ mA}$	6 V	5.48	5.8		5.2		5.34		
		$Q_{A}-Q_{H}$, $I_{OH} = -7.8 \text{ mA}$	6 V	5.48	5.8		5.2		5.34		
			2 V		0.002	0.1		0.1		0.1	
		OL	4.5 V		0.001	0.1		0.1		0.1	
			6 V		0.001	0.1		0.1		0.1	
VOL	VI = VIH or VIL	$Q_{H'}$, $I_{OL} = 4 \text{ mA}$	4.5 V		0.17	0.26		0.4		0.33	V
		Q_A-Q_H , $I_{OL} = 6 \text{ mA}$	4.5 V		0.17	0.26		0.4		0.33	
		$Q_{H'}$, $I_{OL} = 5.2 \text{ mA}$	6.17		0.15	0.26		0.4		0.33	
		Q_A-Q_H , $I_{OL} = 7.8 \text{ mA}$	6 V		0.15	0.26		0.4		0.33	
lį	$V_I = V_{CC}$ or 0		6 V		±0.1	±100		±1000		±1000	nA
loz	$V_O = V_{CC}$ or 0,	Q_A-Q_H	6 V		±0.01	±0.5		±10		±5	μΑ
Icc	$V_I = V_{CC}$ or 0,	IO = 0	6 V			8		160		80	μΑ
Ci			2 V to 6 V		3	10		10		10	pF

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			vcc	T _A = 1	25°C	T _A = -55		T _A = -40°C TO 85°C		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
			2 V		6		4.2		5	
fclock	Clock frequency		4.5 V		31		21		25	MHz
			6 V		36		25		29	
			2 V	80		120		100		
		SRCLK or RCLK high or low	4.5 V	16		24		20		
	Dodge down Con		6 V	14		20		17		
t_W	Pulse duration		2 V	80		120		100		ns
		SRCLR low	4.5 V	16		24		20		
			6 V	14		20		17		
		2 V	100		150		125			
		SER before SRCLK↑	4.5 V	20		30		25		
			6 V	17		25		21		
			2 V	75		113		94		
		SRCLK↑ before RCLK↑†	4.5 V	15		23		19		
_			6 V	13		19		16		
t _{su}	Setup time		2 V	50		75		65		ns
		SRCLR low before RCLK↑	4.5 V	10		15		13		
			6 V	9		13		11		
			2 V	50		75		60		
		SRCLR high (inactive) before SRCLK↑	4.5 V	10		15		12		
			6 V	9		13		11		
		•	2 V	0		0		0		ns
th	Hold time, SER a	fter SRCLK↑	4.5 V	0		0		0		
			6 V	0		0		0		

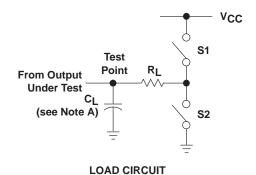
[†] This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

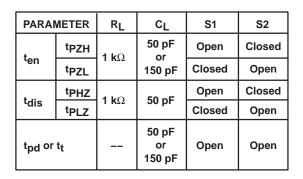
SCHS353 - JANUARY 2004

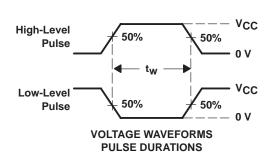
switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

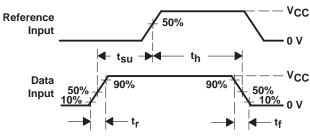
PARAMETER	FROM	TO (OUTPUT)	VCC	T,	4 = 25°C	;	T _A = -55		T _A = -40		UNIT
	(INPUT)	(001701)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
			2 V	6	26		4.2		5		
f _{max}			4.5 V	31	38		21		25		MHz
			6 V	36	42		25		29		
			2 V		50	160		240		200	
	SRCLK	Q _H ′	4.5 V		17	32		48		40	
4 .			6 V		14	27		41		34	
^t pd			2 V		50	150		225		187	ns
	RCLK	Q _A -Q _H	4.5 V		17	30		45		37	
			6 V		14	26		38		32	
	SRCLR		2 V		51	175		261		219	
t _{PHL}		Q _H ′	4.5 V		18	35		52		44	ns
			6 V		15	30		44		37	
		E Q _A -Q _H	2 V		40	150		225		187	ns
t _{en}	ŌĒ		4.5 V		15	30		45		37	
			6 V		13	26		38		32	
			2 V		42	200		300		250	
^t dis	ŌĒ	Q _A -Q _H	4.5 V		23	40		60		50	ns
			6 V		20	34		51		43	
			2 V		28	60		90		75	
		Q _A –Q _H	4.5 V		8	12		18		15	
			6 V		6	10		15		13	ns
t _t			2 V		28	75		110		95	
		$Q_{H'}$			8	15		22		19	
			6 V		6	13		19		16	

switching characteristics over recommended operating free-air temperature range, C_L = 150 pF (unless otherwise noted) (see Figure 1)

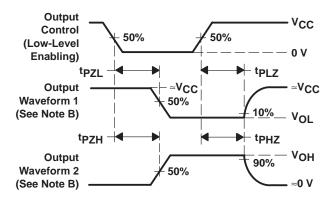

PARAMETER	FROM	TO (OUTPUT)	VCC	T _A = 25°C			T _A = -55°C TO 125°C		T _A = -40°C TO 85°C		UNIT
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
			2 V		60	200		300		250	
t _{pd}	RCLK	Q _A –Q _H	4.5 V		22	40		60		50	ns
, i			6 V		19	34		51		43	
		Q _A –Q _H	2 V		70	200		298		250	
t _{en}	ŌĒ		4.5 V		23	40		60		50	ns
			6 V		19	34		51		43	
			2 V		45	210		315		265	
t _t		Q_A-Q_H	4.5 V		17	42		63		53	ns
			6 V		13	36		53		45	




operating characteristics, $T_A = 25^{\circ}C$


PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd} Power dissipation capacitance	No load	400	pF

PARAMETER MEASUREMENT INFORMATION



VOLTAGE WAVEFORMS
SETUP AND HOLD AND INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

- NOTES: A. C_L includes probe and test-fixture capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 6 ns, t_f = 6 ns.
 - D. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
 - E. The outputs are measured one at a time, with one input transition per measurement.
 - F. tpLz and tpHz are the same as tdis.
 - G. tpzL and tpzH are the same as ten.
 - H. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

com 8-Mar-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD74HC595DW	ACTIVE	SOIC	DW	16	40	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CD74HC595DWR	ACTIVE	SOIC	DW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CD74HC595E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HC595M	ACTIVE	SOIC	D	16	40	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
CD74HC595M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC595MT	ACTIVE	SOIC	D	16	250	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
CD74HC595NS	ACTIVE	SO	NS	16	50	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD74HC595NSR	ACTIVE	SO	NS	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD74HC595SM96	ACTIVE	SSOP	DB	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

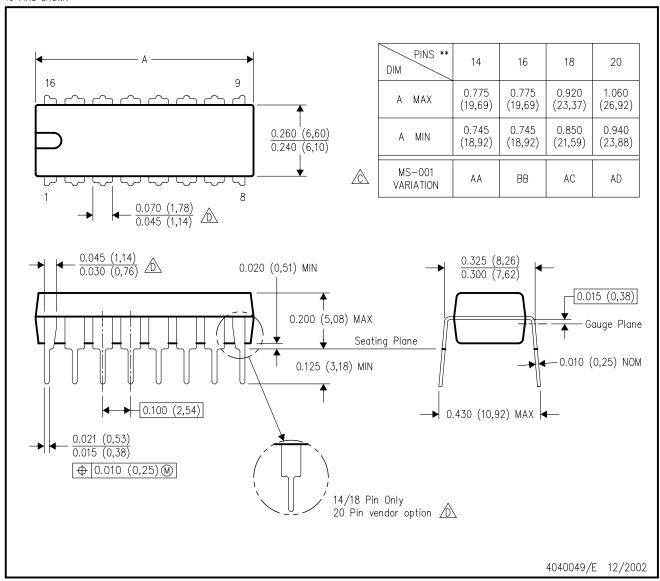
(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pp-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

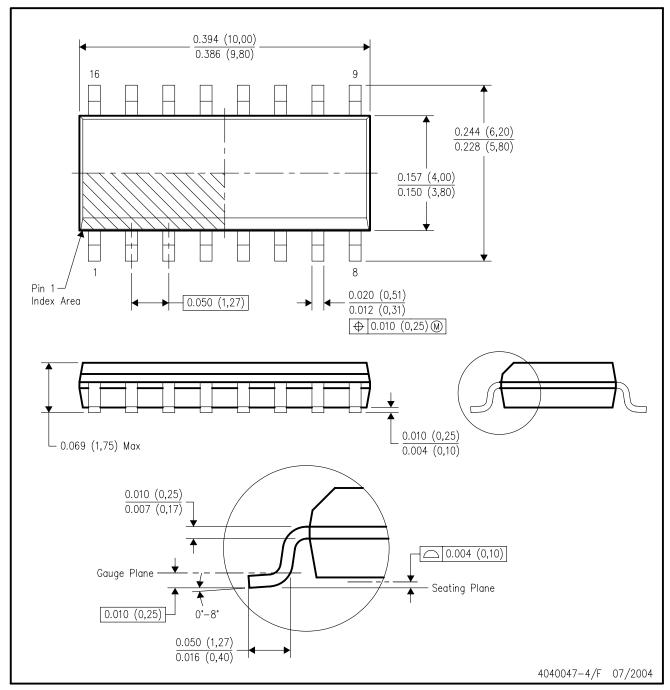

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

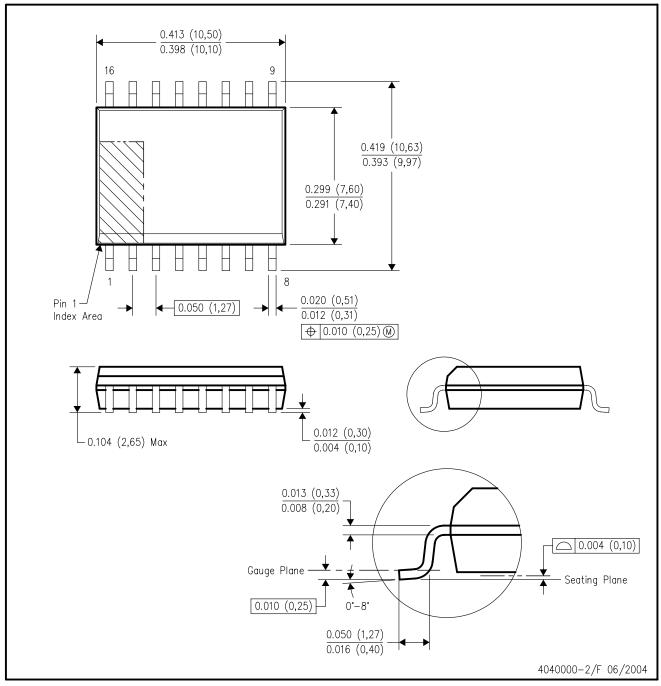
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

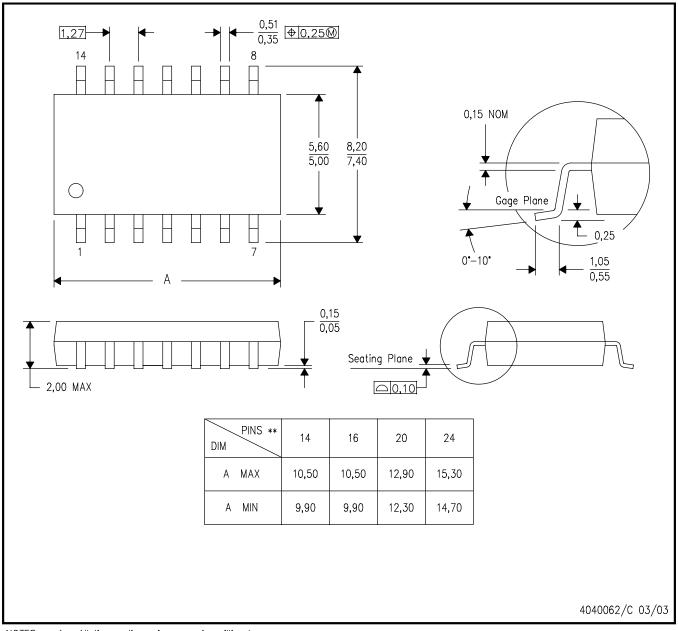


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

DW (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

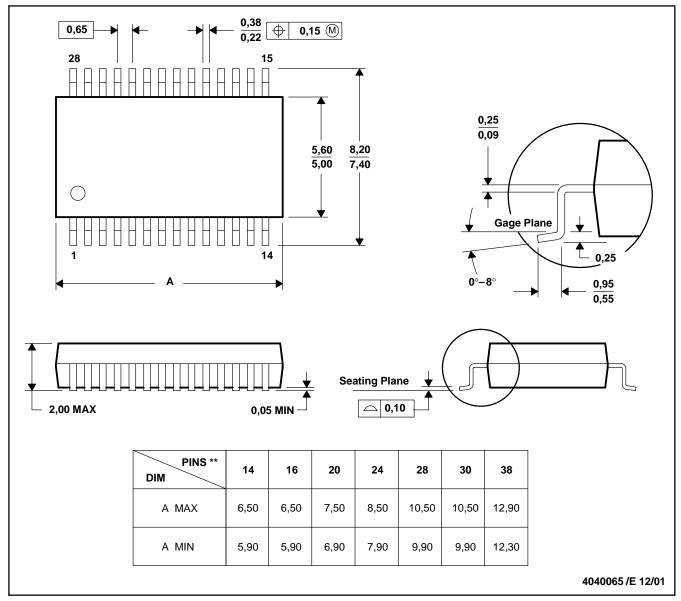


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated