OP240 Series OP245 Series

Electronics

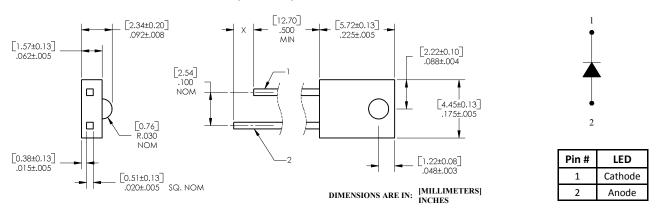
Features:

- Wide irradiance pattern
- Side-looking package for space-limited applications
- Wavelength matched to silicon's peak response
- Mechanically and spectrally matched to other OPTEK products

Description:

Each device in this series is a high intensity gallium aluminum arsenide infrared emitting diode that is suited for use as a PCBoard mounted slotted switch or an easy mount PCBoard interrupter.

Each dome lens **OP240** and **OP245** device is an 890 nm diode that is molded in an IR-transmissive clear epoxy side-looking package. *OP240 is mechanically and spectrally matched to the OP550 and OP560 series of phototransistors. OP245 is mechanically and spectrally matched to the OP555 and OP565 series devices.*


Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

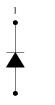
Applications:

- Space-limited applications
- PCBoard mounted slotted switch
- · PCBoard interrupter

Ordering Information									
Part Number	LED Peak Wavelength	Lens Type	Total Beam Angle	Lead Length					
OP240A			40°	0.50" minimum					
OP240B		Dome							
OP240C	890 nm	Dome							
OP240D	890 11111								
OP245A		Recessed							
OP245B		Recessed							

OP240 (A, B, C, D)

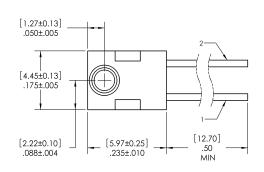
OP245 CONTAINS POLYSULFONE

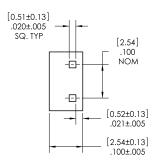

To avoid stress cracking, we suggest using
ND Industries' Vibra-Tite for thread-locking.

Vibra-Tite evaporates fast without causing structural failure in
OPTEK'S molded plastics.

General Note

OP240 Series




Pin #	LED		
1	Cathode		
2	Anode		

CONTAINS POLYSULFONE

To avoid stress cracking, we suggest using ND Industries' Vibra-Tite for thread-locking. Vibra-Tite evaporates fast without causing structural failure in OPTEK'S molded plastics.

OP245 (A, B, C, D)

DIMENSIONS ARE [MILLIMETERS INCHES

Issue B 07/2016 Page 2

OP240 Series

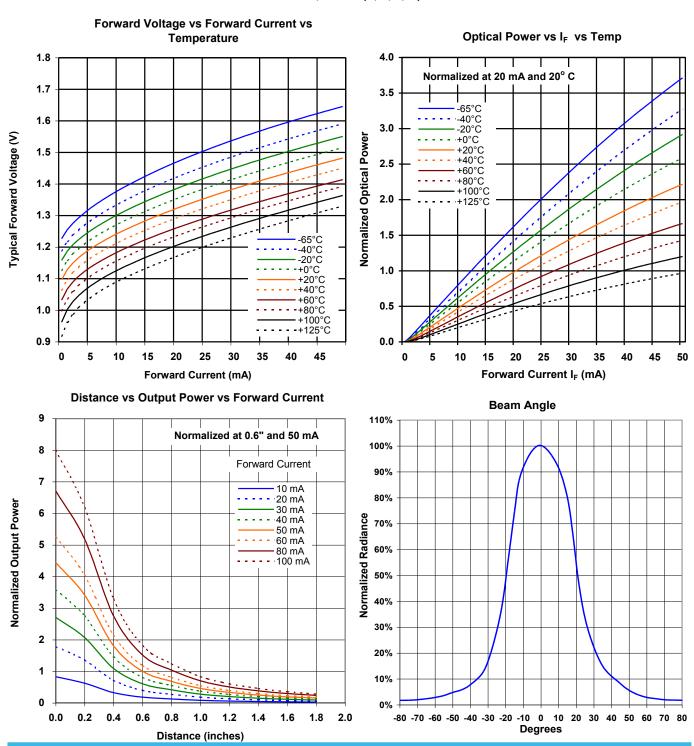
Electrical Specifications

Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)				
Storage and Operating Temperature Range	-40° C to +100° C			
Reverse Voltage	2.0 V			
Continuous Forward Current	50 mA			
Peak Forward Current	3.0 A			
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C ⁽¹⁾			
Power Dissipation	100 mW ⁽²⁾			

Electrical Characteristics (T_A = 25° C unless otherwise noted)

<u> </u>									
SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS			
Input Diode									
E _{E (APT)}	Apertured Radiant Incidence OP240A, OP245A OP240B, OP245B OP240C OP240D	0.60 0.40 0.20 0.05	- - -	- 1.20 0.86 -	mW/ cm²	I _F = 20 mA ⁽³⁾			
V _F	Forward Voltage	-	-	1.80	V	I _F = 20 mA			
I _R	Reverse Current	-	-	100	μΑ	V _R = 2.0 V			
λ_{P}	Wavelength at Peak Emission	-	890	-	nm	I _F = 10 mA			
В	Spectral Bandwidth between Half Power Points	-	80	-	nm	I _F = 10 mA			
$\Delta \lambda_P / \Delta T$	Spectral Shift with Temperature	-	±0.18	-	nm/°C	I _F = Constant			
ӨнР	Emission Angle at Half Power Points	-	40	-	Degree	I _F = 20 mA			
t _r	Output Rise Time	-	500	-	ns	I _{F(PK)} =100 mA, PW=10 μs, and D.C.=10.0%			
t _f	Output Fall Time	-	250	-	ns	l _{F(PK)} =100 mA, PW=10 μs, and D.C.=10.0%			

Notes:


- 1. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to the leads when soldering.
- 2. Derate linearly 1.33 mW/° C above 25° C.
- 3. E_{E(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.180" (4.57 mm) in diameter perpendicular to and centered on the mechanical axis of the lens and 0.653" (6.60 mm) from the lens tip. E_{E(APT)} is not necessarily uniform within the measured area.

Issue B 07/2016 Page 3

OP240 Series

Performance OP240, OP245 (A, B, C, D)

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.