

High Current Axial Plastic Rectifier

Major Ratings and Characteristics

$I_{F(AV)}$	6.0 A
V_{RRM}	50 V to 800 V
I_{FSM}	400 A
V_F	0.9 V, 0.95 V
I_R	5.0 μ A
T_j max.	150 °C

Case Style P600

Features

- Low forward voltage drop
- Low leakage current, I_R less than 0.1 μ A
- High forward current capability
- High forward surge capability
- Solder Dip 260 °C, 40 seconds

Mechanical Data

Case: P600, void-free molded epoxy body

Epoxy meets UL-94V-0 Flammability rating

Terminals: Matte tin plated (E3 Suffix) leads, solderable per J-STD-002B and JESD22-B102D

Polarity: Color band denotes cathode end

Typical Applications

For use in general purpose rectification of power supplies, inverters, converters and freewheeling diodes application.

(Note: These devices are not Q101 qualified. Therefore, the devices specified in this datasheet have not been designed for use in automotive or Hi-Rel applications.)

Maximum Ratings

($T_A = 25$ °C unless otherwise noted)

Parameter	Symbol	GI750	GI751	GI752	GI754	GI756	GI758	Unit
Maximum repetitive peak reverse voltage	V_{RRM}	50	100	200	400	600	800	V
Maximum RMS voltage	V_{RMS}	35	70	140	280	420	560	V
Maximum DC blocking voltage	V_{DC}	50	100	200	400	600	800	V
Maximum non-repetitive peak reverse voltage	V_{RSM}	60	120	240	480	720	1200	V
Maximum average forward rectified current at $T_A = 60$ °C, P.C.B. mounting (fig. 1) $T_L = 60$ °C, 0.125" (3.18 mm) lead length (fig. 2)	$I_{F(AV)}$	6.0 22						A
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load	I_{FSM}	400						A
Operating junction and storage temperature range	T_J, T_{STG}	- 50 to + 150						°C

GI750 thru GI758

Vishay General Semiconductor

Electrical Characteristics

($T_A = 25^\circ\text{C}$ unless otherwise noted)

Parameter	Test condition	Symbol	GI750	GI751	GI752	GI754	GI756	GI758	Unit
Maximum instantaneous forward voltage at: 100 A	6.0 A 100 A	V_F		0.90	1.25		0.95	1.30	V
Maximum DC reverse current at rated DC blocking voltage	$T_A = 25^\circ\text{C}$ $T_A = 100^\circ\text{C}$	I_R		5.0	1.0				μA mA
Typical reverse recovery time	at $I_F = 0.5 \text{ A}$, $I_R = 1.0 \text{ A}$, $I_{rr} = 0.25 \text{ A}$	t_{rr}		2.5					μs
Typical junction capacitance	at 4.0 V, 1 MHz	C_J		150					pF

Thermal Characteristics

($T_A = 25^\circ\text{C}$ unless otherwise noted)

Parameter	Symbol	GI750	GI751	GI752	GI754	GI756	GI758	Unit
Typical thermal resistance ⁽¹⁾	$R_{\theta JA}$ $R_{\theta JL}$		20	4.0				$^\circ\text{C/W}$

Notes:

(1) Thermal resistance from junction to ambient and from junction to lead at 0.375" (9.5 mm) lead length, P.C.B. mounted with 1.1" x 1.1" (30 x 30 mm) copper pads

Ratings and Characteristics Curves

($T_A = 25^\circ\text{C}$ unless otherwise noted)

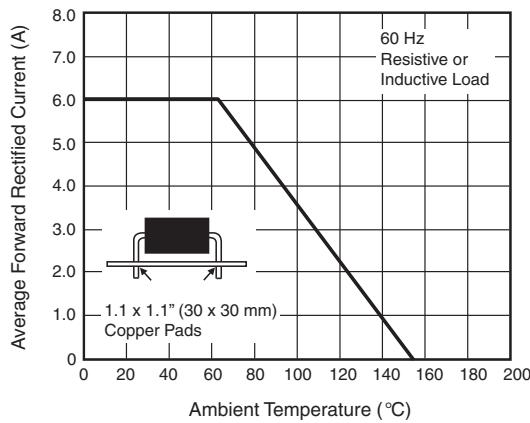


Figure 1. Maximum Forward Current Derating Curve

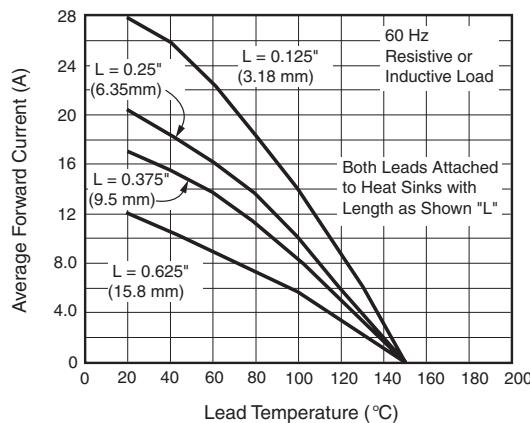


Figure 2. Maximum Forward Current Derating Curve

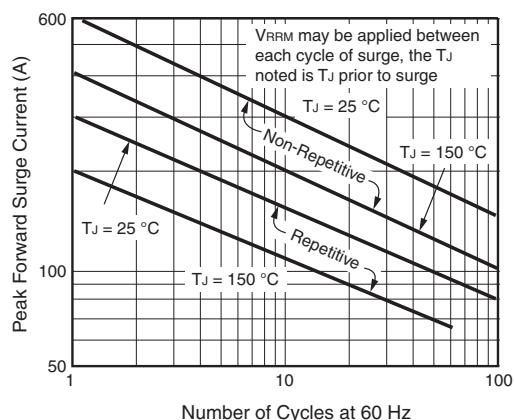


Figure 3. Maximum Peak Forward Surge Current

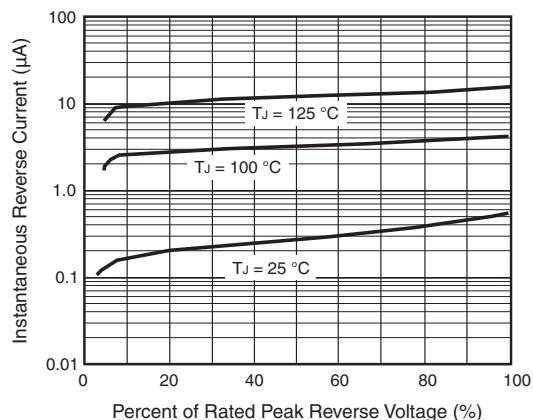


Figure 5. Typical Reverse Characteristics

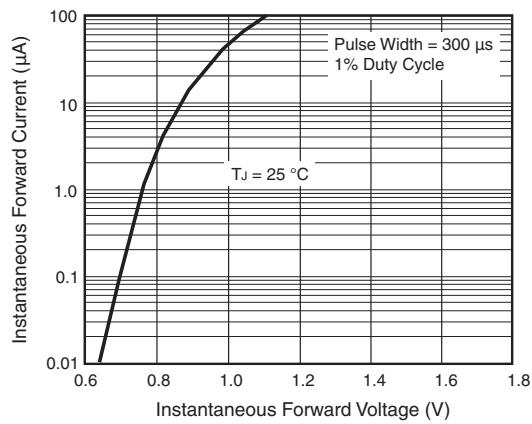


Figure 4. Typical Instantaneous Forward Characteristics

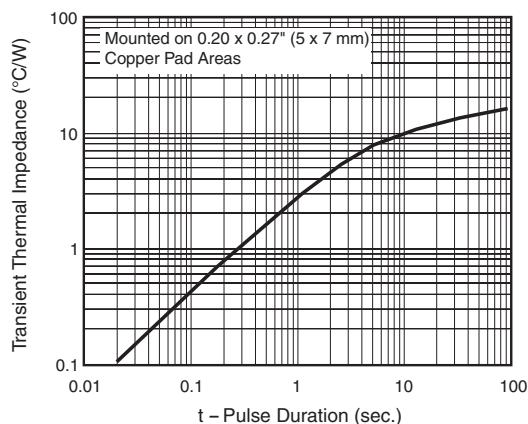
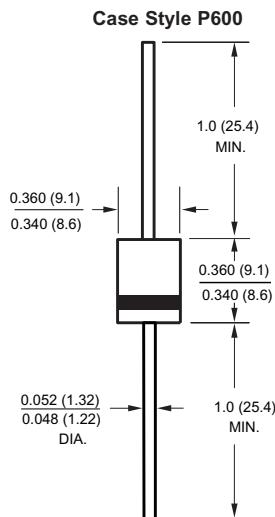



Figure 6. Typical Transient Thermal Impedance

Package outline dimensions in inches (millimeters)

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.