ST7 SOFTWARE LIBRARY

USER MANUAL

November 2005

1877

®

Ref: DOC-ST7SOFT-LIB

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED.

STMicroelectronics PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN
LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF STMi-

croelectronics. As used herein:

1.Life support devices or systems are those which
(a) are intended for surgical implant into the body,
or (b) support or sustain life, and whose failure to
perform, when properly used in accordance with
instructions for use provided with the product, can
be reasonably expected to result in significant in-
jury to the user.

2. A critical component is any component of a life
support device or system whose failure to perform
can reasonably be expected to cause the failure
of the life support device or system, or to affect its
safety or effectiveness.

1S73

USER MANUAL

ST7 FAMILY
ST7 SOFTWARE LIBRARY

1 INTRODUCTION

This document describes the features, the files structure, examples, module drivers and
guidelines for using the ST7 software library package.

1.1 ABBREVIATIONS USED

* SCI

* ADC

* SPI
*12C

* CAN

* WDG

* EEPROM
*ITC
*1/0

* PWM

* ART

* TBU

* TIMER
* TIMERS
LT

* LART

* STVD7
* MCD

1.2 NAMING CONVENTIONS

Serial Communication Interface
Analog to Digital Converter
Serial peripheral Interface

Inter Integrated Circuit
Controller Area Network
Watchdog

Electrically Erasable Prog. Read Only Memory
Interrupt Controller
Input/Output Ports

Pulse Width Modulation

Auto Reload Timer

Time Base Unit

16-bit Timer

8-bit Timer

Lite Timer

Lite Auto Reload Timer

ST Visual Debug 7
Microcontroller Division

Periph. All names starting with Periph are referring to the name of the peripheral.

November 2005

Rev. 4.0

Table of Contents

TINTRODUCTION . .. e e e e e e e e 3
1.1 ABBREVIATIONS USED e e e 3
1.2 NAMING CONVENTIONS ... e 3

2 OVERVIEW . . 7
2.1 FUNCTIONAL SCOPE e e i 7
2.2 FEATURES 7

3GETTING STARTED WITH TOOLS e e e e e e 8
3.1 SOFTWARE TOOLS ... e 8
3.2 HARDWARE TOOLS . . . e e e 8
3.3 TECHNICAL LITERATURE e 8
3.4 HOW TO INSTALL THE LIBRARY e 9

4 LIBRARY STRUCTURE e e e 10
4. L ST7 LIBX o e 10
4.2 STTLIB_CONFIG.H . . e 10

4.2.1 Userpartofthe ST7lib_config.h 11
4.2.2 Non-User part of the ST7lib_config.h 11

4.3 PERIPHERALS LIBRARY . .o e 11
4.3.1 Peripheralsdirectory 11
4.3.2 Periph direCtory 11
4.3.21 CdIreCtOrY . ..ottt 12

4.4 DEVICES ... 12
4.5 DOCUMENTATION ... e e 13
4.6 DEMO e 13

D EXAMPLE . . e 14
5.1 SOURCES FOLDER e e 14
5.2 WORKSPACE . .. 15

5.2.1 STVDT _2X ottt 15

41235 172

Table of Contents

5.2.2 STV D7 38X t vt 15

5.2.3 winIDEA (only for ST72F561 and CAN peripheral) 15

6 HOW TO USE THE LIBRARY . .. e e e 16
6.1 STANDARD PROCEDURE FOR ALL PERIPHERALS 16
6.2 USING THE COMMUNICATION PERIPHERALS LIBRARY 17
B.2.1 SCl . 17

6.2.2 SPl ... 18

B.2.3 12 . e 19

6.2.4 CAN ..o 21
6.2.4.1 DESCRIPTION e 22

6.2.4.2 DATASTRUCTURES s 22

6.2.4.3 DATA TYPES 23

6.2.4.4 MEMORY USAGE e 23

6.2.4.5 PARAMETER CONFIGURATION 23

6.24.6 TX&RXBUFFERUSAGE 25

6.2.4.7 IMPLEMENTATIONHINTS 25

6.3 OTHER PERIPHERALS e e 26
6.3.1 TIMER ... 26

6.3.2 O . 26

6.4 MEMORY MODELS e 26
6.5 PORTING APPLICATIONS FROM LIBRARY VERSION 1.0 26

7 PRESENTATION OF LIBRARY FUNCTIONS e 27
7.1 LIBRARY REFERENCES e e 27

8 RELEASE INFORMATION et e e e et e e e e 28
8.1 PERIPHERALS 28
8.2 DEVICES 29

9 FUNCTION DESCRIPTIONS e e 30
9.1 GENERAL PURPOSE PERIPHERALS i 30
0.1, ADC . 30

0.1.2 SCl o e 34

0.1.3 SPl . 59

9.1.4 12CMASTERo 81

9.1.5 12C SLAVE 107

5/235 172

Table of Contents

9.1.6 16-bit TIMER (TIMER) e 124
9.1.7 B8-bitTIMER (TIMERS8) e 137
9.1.8 LITETIMER (LT) .o e e e 150
9.1.9 PWMART .. e 159
9.1.10 LITE AUTO-RELOAD TIMER (LART) i 171
9.1.11 TBU .. 187
9.1.12 WG ..o e 192
0.0.13 T C .. e 196
9.1.14 MCC .. 208
9.1.15 EEPROM e 214
9.1.16 1O .. e 219

9.2 APPLICATION SPECIFIC PERIPHERALS 227
9.2.1 CANLIBRARY FUNCTION LIST e 227
9.2.1.1 Initialization-Services 227

9.2.1.2 TransSmit-SEerVviCeS it e 228

9.2.1.3 Sleep/Wakeup ServiCesuuuuinnnnnns 230

9.2.1.4 Status Information Service 231

9.2.1.5 Transmit/Receive Task Services 231

9.2.1.6 Interrupt SErviCest 232

10 APPENDIX A oo e 233
10.1SUPPORTED DEVICES AND THEIR PERIPHERALS 233
11 REVISION HISTORY ..o e e e e 234

6/235

4

Overview

2 OVERVIEW

2.1 FUNCTIONAL SCOPE

ST7 library is a software package consisting of device drivers for all standard ST7 peripherals.
Each device driver has a set of functions covering the functionality of the peripheral. The
source code, developed in ‘C’ is fully documented and thoroughly tested.

This library has been developed to make it easy for you to develop ST7 applications. A basic
knowledge of C programming is required. With ST7 library, you can use any ST7 device in
your application without having to study each peripheral specification in-depth. As a result,
using this library can save you a lot of coding time and save part of the cost of developing and
integrating your application.

2.2 FEATURES

— NEW: Supports new devices ST72325 and ST7232A
— NEW: Provided workspace for both STVD7 version 3.x and 2.x

— The ST7 library package consists of device driver library files, the configuration and setup
files.

— With each peripheral, application example code is provided. This is an application tailored to
a specific ST7 device, which uses the library functions to drive the peripheral. You can use
it without modification in an ST development kit.

— A detailed function reference is provided for each peripheral

— The functional behaviour and input/output parameters of each function are described in de-
tail in the user manual

— The functions are coded in 'C’ and are compatible with Metrowerks & Cosmic compilers
— The ST7 library is MISRA compliant
— Registry Key is added to provide information on installation path and version

4

71235

Getting Started with Tools

3 GETTING STARTED WITH TOOLS

3.1 SOFTWARE TOOLS

The library functions have been debugged with the ST7 software toolset. The ST7 software
toolset can be found on the MCU CD-ROM or can be downloaded from the ST website:
http://www.st.com/mcu

The following versions of the C compilers are used:
— METROWERKS C toolchain version 4.2.5

— COSMIC C toolchain version 4.4d

A valid license has to be purchased for Metrowerks and Cosmic compilers. Free versions with
code limitations may also be available, check the websites of the two providers for further in-
formation.

Note: Since Metrowerks was previously known as Hiware, both C compilers are compatible.

3.2 HARDWARE TOOLS

Hardware tools are not required for using the library, you can use the STVD7 simulator if it
supports the target device (check with the latest device documentation). However you can use
the following Hardware tools for development support:

—ICD based debugging tools (like InDart from Softec or R-Link ST from Raisonance)
— ST Emulators (EMU or DVP)

— ST7232x - SK/ RAIS (Starter Kit by Raisonance)

— ST evaluation boards / starter kits (for example ST7232x-EVAL)

— ST7-STICK - ST in-circuit communication kits

—ICC socket boards - these complement any tool that has ICC programming capabilities
(like ST7-STICK, InDART, R-Link, DVP, EMU, etc.)

— Third party emulators (from Hitex or iSYSTEM)
— Engineering Programming Board (EPB) or Gang Programmer

3.3 TECHNICAL LITERATURE

As well as reading the ST7 device datasheet, you should also read the following documents
before using the library. All the documents and the device datasheets are available on the ST
website and on the MCU CD ROM.

ST7 Software library user manual

Application note: AN978: Key features of the STVD7 ST7 Visual debug package
Application note: AN989: Getting started with the ST7 Hiware C Toolchain
Application note: AN983: Key features of the Cosmic ST7 C- Compiler package
Application note: AN1064: Writing Optimized Hiware C Language for ST7
Application note: AN1938: Visual Develop for ST7 Cosmic C Toolset Users
Application note: AN1939: Visual Develop for ST7 Metrowerks C Toolset Users

4

8/235

Getting Started with Tools

3.4 HOW TO INSTALL THE LIBRARY

The library is supplied in a zip package. Extraction of this zip file will give the setup file
ST7LibxSetup.exe, where x represents the latest numeric version of the library. Click on the
setup file to install the library on the host system.

4

9/235

Library Structure

4 LIBRARY STRUCTURE

4.1 ST7_LIBX

Location: \Root directory

Description: The ST7_libx (where x represents the latest numeric version of the library) is in-
stalled by default in the root directory. It is comprised of five main components: the ST7library
configuration file, the Peripherals (Device driver) library folder, the devices configuration files
folder, documentation on the package and the demo folder. The location of these components
is described in this section and shown in the figure given below.

Note: The Example directory is shown in Figure 2 on page 14.
Figure 1. Main Directory structure

ST7_LIBx
|
| | | | |
ST7lib_config.h Peripherals Devices Documentation Demo
— Periph 1 — Device 1
|
—— Periph 2 |
, — Device n
Periph14 |
device_reg.h
device_reg.c
C Folder device_periph.h
’ —Metrowerks
|
Example — Cosmic
periph.c
periph.h
periph_hr.h

4.2 ST7LIB_CONFIG.H

Location: ST7_libX\ST7lib_config.h

Description: ST7lib_config.h is the entry point for the user. You have to include this file in your
application (main.c). This file is used to define specific labels for example, to define the mode
of transmission of communication peripherals, cpu frequency, etc.

10/235 172

Library Structure

St7lib_config.h is divided into two major sections:

4.2.1 User part of the ST7lib_config.h

— You can customize this portion to your application requirement

— You can define your own labels and macros here

— You can change the CPU clock value (default is 8MHz)

— For the ST72F264 device you can select whether to use Port C as €i0 or eil
— The target ST7 device file (st72xxx_periph.h) has to be included in this file

Note: An error message “No Valid ST7 MCU Configuration” will be generated by the compiler
if no device file has been included.

4.2.2 Non-User part of the ST7lib_config.h

This part contains the labels for METROWERKS and COSMIC compilers. It contains the com-
piler definitions as follows:

#if (defined _ HIWARE__ | defined _ MWERKS_)
#define HIWARE_
#else

#ifdef _ CSMC___

#define _COSMIC_

#else #error “Unsupported Compiler!” /* Compiler defines not found */
#endif

#endif

The labels __MWERKS__ (__HIWARE__) and __CSMC__ are automatically set by the
Metrowerks and cosmic compilers respectively. If none of these two compilers are selected
then an error message “Unsupported Compiler!” appears on the debugger window.

Macros definitions in ST7lib_config.h:
ST7lib_Config.h file also contains a list of macros. They are as follows.

1. Enablelnterrupts: You can use this macro to reset the interrupt mask, this macro is equiva-
lent to the RIM instruction in assembly.

2. Nop: No operation. This is equivalent to the nop instruction in assembly

3. Disablelnterrupts: You can use this macro to set the interrupt mask, this macro is equivalent
to the SIM instruction in assembly.

4. Waitforlnterrupt: This is equivalent to the “wfi” instruction in assembly.

4.3 PERIPHERALS LIBRARY

4.3.1 Peripherals directory

Location: ST7_libxX\Peripherals
Description: This directory contains subdirectories by the name of the peripheral.

Subdirectory names: ADC, EEPROM, I12C, 12CSlave, 10, ITC, LART, LT, MCC, PWMART,
SCI, SPI, TBU, TIMER, TIMERS8, WDG, CAN.

4.3.2 Periph directory
Location: ST7_libX\Peripherals\Periph\sources

172 11/235

Library Structure

Description: Each subdirectory contains a ‘C’ sub folder which contains peripheral library files.
4.3.2.1 C directory

Location: ST7_libx\Peripherals\Periph\sources\C

Description: Each subdirectory contains the source files, header files and an example folder
showing the usage of the functions.

Files: Periph.c, Periph.h, Periph_hr.h

Periph.c

Inclusion of periph_hr.h, periph.h, ST7lib_config.h. It contains the Peripheral functions with
some conditional compilation options.

Periph.h:

This contains the (typedef enum) parameters for each peripheral, prototypes of functions de-
fined in Peripheral.c and definition of Peripheral constant definitions.

Periph_hr.h

This file contains the bit mapping of the hardware registers used for the peripherals.

4.4 DEVICES

Location: ST7_LIBX\Devices
Description:

1. Contains the files which define all registers for each device and includes the file which
is used to select peripherals for the application. This register file is included in the
ST7lib_config.h.

The folder ST7_LIBx\Devices\ST7xx contains st7xx_reg.h, st7xx_reg.c and
st7xx_periph.h files.
st7xx_reg.h: This file contains a declaration of the register variables of st7xx for
Metrowerks and definitions of the register variables for the Cosmic compiler.
st7xx_reg.c: This file contains definitions of the register variables of st7xx device.
st7xx_periph.h: This file is used to select which peripherals of st7xx device are used in
the application.

2. Contains the generic configuration files both Metrowerks and Cosmic compilers.

Metrowerks: Contains the mapping file (ST72xxx.prm) for all the hardware registers in de-
vice, Make file (ST72xxx.mak) to build the application and the default.env which defines
all the useful paths and options for the application.

COSMIC: make file to build the application (ST72xxx.mak), link file (ST72xxx.lkf) used to
link the device and the interrupt mapping file (vector_xxx.c) for the target device.

Notes:

1. This software covers 13 main devices and their subsets. You have to include the file from
the main device section in order to support the related subsets.

2. The register files in the ST7 library are different from those provided with the STVD7 ver 3.x.
Take care to include the correct one.

4

12/235

Library Structure

Table 1. Supported devices

Main device Subsets
ST72F62 ST72F621, ST72F622, ST72F623, ST72F611
ST72F63B ST72F63BK1, ST72F63BK2, ST72F63BK3
ST72F65 ST72F65
ST72F521 ST72F521, ST72F321,ST72F324
ST72325 ST72F325(C/J/K)4, ST72F325(AR/C/J/K)6/7/9
ST7232A ST72F32AK2
ST7FLITEO ST7FLITEO5, ST7FLITE09
ST7FLITE1 ST7FLITE10, ST7FLITE15, ST7FLITE19, ST7FLITE1B
ST7FLITE2 ST7FLITE20, ST7FLITE25, ST7FLITE29
ST7FLITES ST7FLITE3

ST72F260G1, ST72F262G1, ST72F262G2,

ST72F264 ST72F264G1, ST72F264G2
ST72F561 ST72F561(R/J/K)9, ST72F561(R/J/K)6
ST7SUPERLITE ST7FLITES2, ST7FLITES5

4.5 DOCUMENTATION

Location: ST7_LIBxX\Documentation

Description: This directory contains the global user manual describing each peripheral library
and its use in detail.

Files: user manual.pdf

4.6 DEMO

Location: ST7_LIBXADEMO

Description: This directory contains an application program which demonstrates the use of the
ST7LIB on the devices ST72F521, ST72F62, ST7FLITEO, ST7FLITE2, ST7SUPERLITE,
ST72F561 and ST72325. The program uses all the peripheral libraries together for a particular
application. The purpose of the demo is to help to develop an application using the software li-
brary.

4

13/235

Example

5 EXAMPLE

Location: ST7_LIBX\Peripherals\Periph\sources\C\Example

Description: Contains the example application code for each peripheral individually. The code
has been developed using the peripheral library functions exercises the functionality of that
peripheral. The configuration and workspace has been provided for users of both STVD7
ver2.x and 3.x. The example has been compiled and tested using both Metrowerks and
Cosmic compilers and configuration files are provided.

Subdirectories: Sources, workspace

Figure 2. Example directory structure

STVD7_3x

periph_mwerks.stw
periph_mweks.stp
interrupt_vector.c

periph_csmc.stw
periph_csmc.stp

Example
|
l |
Sources workspace
‘ |
main.c | |
st7lib_config.h
st72xx_petriph.h STVD7_2x
Config periph_mwerks.wsp Object
I periph_csmc.wsp |
| | vector.c
| Cosmic | [Metrowerks | [Cosmic | | Metrowerks |
st72xxx.mak st72xxx.mak periph .map periph.map
st72xxx.lkf st72xxx.prm periph.elf periph.abs
vector_xxx.c default.env periph.o periph.o
main.o main.o
periph_hr.0 periph_hr.0
periph.st7 periph.s19
vector_xxx.o
periph.s19

5.1 SOURCES FOLDER

Description: Contains the ST7lib_config.h, the main application file and the peripheral source

files needed to run the application

14/235

4

Example

5.2 WORKSPACE

This folder contains configuration and workspace files for both STVD7 ver2.x and 3.x as per
the directory structure shown in figure 2.

Note:
1. For ST72F561 demo and CAN peripheral, winIDEA workspace is also available.
2. For ST72325 and ST7232A demo STVD7_3X workspace is only available.

5.2.1 STVD7_2x

This folder contains relevant configuration files for ST7 Visual Debug ver 2.x. Subdirectories:
Config, Object

Config Folder: Contains the configuration files for both Metrowerks and Cosmic compilers.

metrowerks: Contains the mapping file (ST72xxx.prm) for all the hardware registers in the de-
vice, the Make file (ST72xxx.mak) for building the application and the default.env file which
defines all the useful paths names and options for the application.

COSMIC: Contains the make file for building the application (ST72xxx.mak), the link file
(ST72xxx.lkf) used to link the device and the interrupt mapping file (vector_xxx.c) for the target
device.

Object Folder:

These folders are used for temporary storage of object and executable files generated by the
compiler in respective directories - metrowerks and cosmic.

5.2.2 STVD7_3x

This folder contains relevant Cosmic and Metrowerks workspace for ST7 Visual Debug ver
3.X, as the configuration files are automatically generated.

5.2.3 winIDEA (only for ST72F561 and CAN peripheral)
This folder contains relevant configuration files for winIDEA.
Subdirectories: Config, Object

For details related to Subdirectories refer to Section 5.2.1

4

15/235

How to use the library

6 HOW TO USE THE LIBRARY

The next section gives the standard procedure to be followed for all the peripherals. Some
specific instructions are given in the section 7.2 which have to be followed if you use the com-
munication peripherals.

6.1 STANDARD PROCEDURE FOR ALL PERIPHERALS

Note: This section is only applicable if you are using STVD7 v2.x.
1. Install ST7_LIBx in one directory as per the installation procedure.
2. When starting for the first time, copy the structure from the demo directory.

3. Choose the target device and copy the configuration files (for Metrowerks or Cosmic) from
the devices directory into the user configuration directory.

4. Update the useful paths and link the chosen peripherals files. The source path will refer to
the directory where ST7_LIBx is installed. For example, assuming that you have installed
ST7_LIBxin D:\

a) The following paths will be updated for Metrowerks in the Default.env:
ST7LIB_PT: Change this path to installation of library
TOOL_PT: Change this path to Metrowerks toolchain path

Depending on the peripherals required for the application update the object list in *.prm and
*.mak files.

b) The following paths will be updated for Cosmic in *.mak file
— Update the source path

PATHC: Change this path to cosmic toolchain installation path
LIB_PT: Change this path to library installation path

SRx_PT = $(LIB_PT)\peripherals\periph\C

where x is the no. of source path for each peripheral

where periph is the name of the peripheral used in the application
— Update the include path

CFLAGS = +mods +debug -co $(OBJ_PT) -i $(SRx_PT)

where x is the no. of source path for each peripheral (give the path of all the peripherals
present in the particular device)

— Update the source list

SRC_LIST = $(OBJ_PT)\..\..\source\main.c $(SRx_PT)
where x is the no. of peripheral used

5. Modify ST7lib_config.h file to include the target device, CPU frequency and the communi-
cation mode if any of the communication peripherals is used.

6. Include ST7lib_config.h in main.c

4

16/235

How to use the library

7. Write the application program using the library functions given in the user manual for each
peripheral and compile.

Caution: Only the ST7lib_config.h and the files contained in the configuration subdirectory of
the examples folder are user-modifiable, the rest of the source files are write protected.
Changing peripheral source files and header files may adversely affect the library operations
and this will be complicated to update when there are new library releases.

6.2 USING THE COMMUNICATION PERIPHERALS LIBRARY

6.2.1 SCI

This part of the user manual contains the detailed description of all the functions for the SCI.
An example ‘C’ program has been given at the end.

You can select either of the two Transmission/Reception modes of SCI implemented inside
the library. For selecting any of the possible modes described below you need to select the
corresponding #define statement inside the ST7lib_Config.h file

Polling:

With this mechanism the data can be transmitted or received by polling the status of the cor-
responding flag. Here both the single as well as continuous Transmission/Reception is pos-
sible. In continuous Transmission/Reception, control will be inside the function until all the re-
quested data is Transmitted/Received and hence the application software has the risk of
losing control if there is a breakdown in communication (the SCI mode is disabled). To avoid
this risk, you can use the single byte transmission with some time out protection inside this
mechanism. This mechanism can only be used with the SCI in half duplex mode. To use this
mode you must have selected the following # define labels inside the ST7lib_config.h file:

SCI_POLLING_TX -- For Transmission mode

SCI_POLLING_RX -- For Reception mode
For SCI2 in ST72F561 device the labels are:

SCI2_POLLING_TX -- For Transmission mode

SCI2_POLLING_RX -- For Reception mode

Interrupt driven without communication buffer:

With this method data can be Transmitted/Received either in single or continuous mode using
interrupts. In continuous mode the user data is directly being read/written from/to the ad-
dresses passed by the user. After each byte of data transfer an interrupt is acknowledged and
the control goes to the interrupt subroutine. The main advantage of using interrupts rather
than polling is that control does not stay in the function till the last data is Transmitted/Re-
ceived and hence the SCI can be used in full duplex mode. Here, you should take care not to
read/write the user buffer until the Transmission/Reception is complete. To use this mode you
must select the following # define labels in the ST7lib_config.h file:

SCI_ITDRV_WITHOUTBUF_TX -- For Transmission
SCL_ITDRV_WITHOUTBUF_RX -- For Reception

For SCI2 in ST72F561 device the labels are:
SCI2_ITDRV_WITHOUTBUF_TX -- For Transmission on SCI2
SCI2_ITDRV_WITHOUTBUF_RX -- For Reception on SCI2

172 17/235

How to use the library

6.2.2 SPI

SPI: This part of the user manual contains the detailed description of all the functions for the
SPI. An example C program has been given at the end.

The SPI can be used as Single master (multiple slaves) and multi master systems in full du-
plex mode. This can be configured by using parallel port pins to control the SS pin by software.
The transfer of master or slave control can be implemented using a handshake method
through the 1/O ports or by an exchange of code messages through the serial peripheral inter-
face system.

In order to respect the SPI protocol, you must define the configuration setting
SPI_SLAVE_CONFIG in ST7lib_config.h file as shown below, in order to be able to transmit
data in software slave mode. #define SPI_SLAVE_CONFIG To select any of the possible
communication modes described below you need to select the corresponding #define state-
ment inside the ST7lib_config.h file. These modes are applicable for all communication pe-
ripherals (SPI, SCI and 12C).

Polling:

With this mechanism the data can be transmitted or received by polling the status of the cor-
responding flag. Both single and continuous Transmission/Reception is possible. In the case
of continuous Transmission/Reception the function keeps control until all the requested data is
Transmitted/Received and hence the application software has the risk of losing control if there
is a breakdown in communication (the SCI mode is disabled). To avoid the risk, you can use
the single byte transmission with some timeout protection inside this mechanism. This mech-
anism can only be used with the SPI in half duplex mode. To use this mode, you must have se-
lected the following # define labels inside the ST7lib_config.h file:

SPI_POLLING_TX -- For Transmission mode
SPI_POLLING_RX -- For Reception mode
Interrupt driven without communication buffer:

Data can be Transmitted/Received both in single as well as continuous mode through the in-
terrupt driven mechanism. In the continuous mode the user data is directly being read/written
from/to the addresses passed by the user. After each byte of data transfer an interrupt is ac-
knowledged and the control goes to the interrupt subroutine. The main advantage of using in-
terrupts rather than polling is that control does not stay in the function till the last data is Trans-
mitted/Received and hence the SPI can be used in full duplex mode. Here you should take
care not to read/write the user buffer until the Transmission/Reception completion. To use this
mode you must select the following # define labels inside the ST7lib_config.h file:

SPI_ITDRV_WITHOUTBUF_TX -- For Transmission
SPI_ITDRV_WITHOUTBUF_RX -- For Reception
Notes:

1. If both SPI_ ITDRV_WITHOUTBUF_TX and SPI_ITDRV_WITHOUTBUF_RX are defined
in full duplex mode, then the program will perform either transmission or reception (only trans-
mission as per the present structure) since, the peripheral has a single interrupt for both
Transmission and Reception completion. Because of this correct full duplex communication
will be prevented. In order to operate the SPI in Full Duplex Mode, it is required that either the

18/235 172

How to use the library

Transmission or Reception is performed in Polling Mode and the other in Interrupt Driven
Mode. So, you can use any one of the following combinations in full duplex mode.

SPI_POLLING_TX -- For Transmission mode
SPI_ITDRV_WITHOUTBUF_RX -- For Reception

(or)
SPI_ITDRV_WITHOUTBUF_TX -- For Transmission
SPI_POLLING_RX -- For Reception mode

6.2.3 12C

This part of the user manual contains the detailed description of all the functions for 12C. An
example C program has been given at the end. You can select either of the two Transmission/
Reception modes implemented in the library. To select any of the possible modes described
below, you need to select the corresponding #define statement inside the ST7lib_config.h file.

Polling:

With this mechanism the data can be transmitted or received by polling the status of the cor-
responding flag. Either single or continuous Transmission/Reception is possible. In contin-
uous Transmission/Reception control stays inside the function until all the requested data is
Transmitted/Received and hence the application software risks losing control if there is a
breakdown in communication (if the 12C mode is disabled). To avoid the risk, the appplication
can use single byte transmission with some timeout protection. This mechanism can only be
used with the 12C in half duplex mode. To use this mode, you must have selected the following
define labels in the ST7lib_config.h file:

[2C_POLLING_TX -- For Transmission mode
[2C_POLLING_RX -- For Reception mode
Interrupt driven without communication buffer

Data can be Transmitted/Received both in single as well as continuous mode through the in-
terrupt driven mechanism. In continuous mode the user data is directly read/written from/to the
addresses passed by the user. After each byte of data transfer an interrupt is acknowledged
and the control goes to the interrupt subroutine. The advantage of using interrupts rather than
polling is that control does not stay in the function till the last data is Transmitted/Received.
Here, care should be taken not to read/write the user-buffer until the Transmission/Reception
completes. To use this mode, you must select the following # define labels inside the
ST7lib_config.h file:
[2C_ITDRV_WITHOUTBUF_TX -- For Transmission
I2C_ITDRV_WITHOUTBUF_RX -- For Reception
Master Receiver Communication Methodology:
In Master receiver mode, to close the communication the STOP bit must be set to generate a
stop condition, before reading the last byte from the DR register. In order to generate the non-
acknowledge pulse after the last received data, the ACK bit must be cleared just before
reading the second last byte. The following flowchart shows the management of the ACK and
STOP bits, when the master is receiving.

172 19/235

How to use the library

For Example, if ‘N’ Bytes to be received,

When‘N-2’ byte
is received

When ‘N-1’ byte
is received

When ‘N’th byte
is received

'

Read 12CDR
Wait for BTF = 1

Clear ACK in I2CCR
Read I2CDR
Wait for BTF =1

\

Set STOP in I2CCR
Read 12CDR

In 12C_GetBuffer, the ACK and STOP bits are automatically managed inside the function. In
I12C_GetByte you must manage the ACK and STOP bits as shown below, in order to receive

only one byte.

20/235

4

How to use the library

Figure 3. Flow-Chart for single byte reception in Master mode

12C_Load_Address
(send slave address)

Waiting for completion of
event EV6 (wait for EVF=1)

Read 12CSR1

Clear ACK in I12CCR register
by using the function 12C_ACK

Wait for BTF = 1

'

Set STOP in [2CCR

'

12C_GetByte

6.2.4 CAN

This Section gives an overview of the user guidelines for the CAN Library. The library provides
the software routines to use the CAN peripheral for ST72F561 device. The library is based on
the HIS / Vector CAN driver specification. The implemented function list is a subset of the func-
tions described in the HIS / Vector CAN driver specification document.

21/235

4

How to use the library

6.2.4.1 DESCRIPTION
Files
Can.c - This file contains the CAN driver source code.

Can.h - This file contains the data structure, data type definitions and function prototypes for
the driver functions.

Can_hr.h - This file contains the #define statements for the driver functions.

User.c - This file contains the Global data declaration which is used by both driver as well as
application. For example - Tx & Rx buffers, Tx & Rx Id, Confirmation & Indication flags etc.

User.h - This file contains all user configurable parameters. For example- size of Tx & Rx
buffers, Number of Tx & Rx messages, hardware registers initialization values etc.

Note: User.c and User.h can be configured by the user depending on the application.

6.2.4.2 DATA STRUCTURES
Init Structure

Init structure contains the initialization values for the CAN controller registers. The user appli-
cation may have more than one Init Structures which is configured by the parameter
NO_OF_INIT_HANDLES. The init handle is used as an index for the init structure.

Transmit Structure

The transmit structure contains the information about the transmitted message, for example
tx_Id, tx_dlc, tx_buffer. There is a separate table each for Id, dic, pointer to tx_buffer. The
number of transmit structures depends on the number of messages to be transmitted in an ap-
plication. It is configured by the parameter NO_OF_TX_HANDLES. The tx_handle is used as
an index for each transmit structure. The tx_identifier has two tables: one table each for
standard and extended identifiers. The tx_id, tx_dlc tables are configured by the user as per
the message to be transmitted. There is a single bit confirmation flag for each transmit mes-
sage.

Receive Structure

The receive structure contains the information about the received message, for example
rx_ld, rx_dlc, rx_buffer. There is separate table each for Id, dlc, pointer to rx_buffer. The
number of receive structures depends up on number of messages to be received in an appli-
cation. It is configured by the parameter NO_OF_RX_HANDLES. The rx_handle is used as an
index for each receive structure. The rx_identifier has two tables: one table each for standard
and ex tended identifiers. The identifier for the received message is stored inside this table by
the driver. The rx_dlc is configured by the user as per the length of the message. There is a
single bit indication flag and overflow flag for each received message.

4

22/235

How to use the library

6.2.4.3 DATA TYPES

The following are the data types used by the driver-

canuint8 8-bit unsigned integer

canuint16 16-bit unsigned integer

There are some data types referenced while calling driver function -

CanlinitHandle 8-bit unsigned integer (application-specific, depends on the number of con-
figured initialization modes).

CanTransmitHandle 8-bit unsigned integer (application-specific, depends on the number of

transmit objects).

tCanMsgObject typedef volatile struct
{
canuintl6 stdid;
canuintlé extid;
canuint8 dlc;
canuint8 datal8];

}
This is a transmit message structure referenced for the CAN driver service
CanMsgTransmit().
6.2.4.4 MEMORY USAGE
Constants

This includes the initialization values inside the Init Structure for the CAN controller registers,
transmit message information(tx_id, tx_dlc) inside the transmit structure, and receive mes-
sage information(rx_dic). These are stored in ROM.

Global Variables

These include the transmit & receive buffers, confirmation & indication flags, pointers to the Tx
& Rx buffers, and receive message id’s(rx_id).

6.2.4.5 PARAMETER CONFIGURATION

There are certain parameters that you have to configure depending on the application. These
parameters are configured inside the files user.c & user.h.

The following are the parameters that must be configured in the file user.h -

1. NO_OF_TX_HANDLES - This parameter defines the number of messages to be trans-
mitted by the application.

2. NO_OF_RX_HANDLES- The number of messages to be received by the application which
depends on the number of messages configured in the filter registers.

3. NO_OF_INIT_HANDLES- The number of initialization structures required in an application.
By default, its value is set to 1.

172 23/235

How to use the library

4. TX_MSGx_STDID - The standard id part for the MSGx to be transmitted, where x = transmit
message number.

5. TX_MSGx_EXTID - The extended id part for the MSGx to be transmitted, where x =
transmit message number.

6. TX_MSGx_DLC - The length for the MSGx to be transmitted, where x = transmit message
number. The maximum length that can be defined is 8.

7. RX_MSGx_DLC - The length for the MSGx to be received, where x = receive message
number. The maximum length that can be defined is 8.

8. REG_INITx_VALUE - The register initialization value for the CAN controller register, where
REG - register name, x = init structure number.

The following are the parameters that must be configured in the file user.c -

1. MSGx_Tx_Buffer - This declares the buffer for the MSGx to be transmitted. The length of
the buffer is the same as defined by the parameter TX_MSGx_DLC in the file user.h. The
number of such buffers to be declared is the same as defined by the parameter
NO_OF_TX_HANDLES in the file user.h.

2. tx_stdid[] - This table stores the standard id value/s for the message/s to be transmitted.
The length of the table is the same as defined by the parameter NO_OF_TX_HANDLES and
the value/s stored inside is/are the same as defined by the parameter TX_MSGx_STDID in
the file user.h. If the message to be transmitted is Extended then above has to logical-ORed
with the EXT_ID_MASK(IDE bit), EXID17 & EXID16 bit values. As a result, the values stored
inside the table are in the same format as of MIDRO & MIDR1 registers.

3. tx_extid[] - This table stores the extended id value/s for the message/s to be transmitted.
The length of the table is the same as defined by the parameter NO_OF_TX_HANDLES and
the value/s stored inside the table is/are the same as defined by the parameter
TX_MSGx_EXTID in the file user.h. It stores the values into the same format as of MIDR2 &
MIDRS registers.

4. tx_dIc[] - This table stores the length for the message/s to be transmitted. The length of the
table is the same as defined by the parameter NO_OF_TX_HANDLES and the value/s stored
inside the table is/are the same as defined by the parameter TX_MSGx_DLC in the file user.h.

5. tx_data_ptr[] - This pointer table stores the address of transmit buffer/s (MSGx_Tx_buffer).
The length of the table is the same as defined by the parameter NO_OF_TX_HANDLES in the
file user.h.

6. MSGx_Rx_Buffer - This declares the buffer for the MSGx to be received. The length of the
buffer is the same as defined by the parameter RX_MSGx_DLC in the file user.h. Number of
such buffers to be declared is the same as defined by the parameter NO_OF_RX_HANDLES
in the file user.h.

24/235 ﬁ

How to use the library

7. rx_stdid - This declares the memory for storing the standard id part of the message to be re-
ceived. The length of the table is the same as defined by the parameter
NO_OF_RX_HANDLES in the file user.h.

8. rx_extid - This declares the memory for storing the extended id part of the message to be re-
ceived. The length of the table is the same as defined by the parameter
NO_OF_RX_HANDLES in the file user.h.

9. rx_dlc[] - This table stores the length for the message/s to be received. The length of the
table is the same as defined by the parameter NO_OF_RX_HANDLES and the value/s stored
inside the table is/are the same as defined by the parameter TX_MSGx_DLC in the file user.h.

10. rx_data_ptr[] - This pointer table stores the address of receive buffer/s
(MSGx_Rx_Buffer). The length of the table is the same as defined by the parameter
NO_OF_RX_HANDLES in the file user.h.

6.2.4.6 Tx & Rx BUFFER USAGE

Data can be accessed through the Tx & Rx buffers using the tx_handle & rx_handle as an
index. For example, data can be written into the MSGx_Tx_Buffer using the pointer
tx_data_ptr[x], where x = tx_handle for the message. Similarly, data can be received from
MSGx_Rx_Buffer using the pointer rx_data_ptr[x], where x = rx_handle for the message.

6.2.4.7 IMPLEMENTATION HINTS

— CanSleep() service must not be called when message transmission is in progress otherwise
sleep mode is not entered and service returns KCANFAILED. Also CanTransmit() service
shall not be called while the CAN driver is in sleep mode.

— Confirmation flag is set by the driver after the successful transmission of a message and flag
has to be cleared by the application. Application must call CaninterruptDisable() and Can-
InterruptRestore() services when clearing the confirmation flag in order to avoid CAN inter-
rupt.

— Indication flag is set by the driver for a message received and this flag has to be cleared by
the application. Application must call CanlinterruptDisable() and CanlinterruptRestore()
services when clearing the indication flag in order to avoid CAN interrupt.

— Overflow flag is set by the driver if the indication flag is not cleared by the application or mes-
sage is not copied by the application from the global buffer into the application buffer.

If the overflow is set it means that the new message has been overwritten over the previous

message. Overflow flag has to be cleared by the application. Application must call Canlinter-

ruptDisable() and CanlinterruptRestore() services when clearing the overflow flag in order to
avoid CAN interrupt.

— While copying data from receive buffer, application must call CaninterruptDisable() and
CanlinterruptRestore() services in order to avoid a CAN interrupt. Similarly, while copying

172 25/235

How to use the library

data into the transmit buffer, application must call CanlinterruptDisable() and
CanlnterruptRestore() services to avoid an interrupt.

6.3 OTHER PERIPHERALS

6.3.1 TIMER

TIMERA and TIMERB can both be used simultaneously, depending on the TIMER selected.
You have to define USE_TIMERA and/or USE_TIMERB in ST7lib_config.h. Each function
name in the user manual contains TIMERXx where x can be A or B depending on whether it is
for TIMERA or TIMERB. This is also explained in the example given at the end of the TIMER
library.

6.3.21/0

You must select the following parameters as per the device package.

#define 10_521_80PIN - Select this for an 80-pin package for ST72F521 device in
ST7lib_config.h file.

#define 10_62_42PIN - Select this for a 42-pin package for ST72F62 device in
ST7lib_config.h file.

#define 10_62_32PIN - Select this for a 32-pin package for ST72F62 device in
ST7lib_config.h file.

If you are using other device packages, you must comment out these declarations in
ST7lib_config.h file.

6.4 MEMORY MODELS

Limitation: in Cosmic, you are not allowed to use the same function in both the main program
and interrupt subroutine. This will give the error of Reentrant function in all memory models ex-
cept mods and modsl.

6.5 PORTING APPLICATIONS FROM LIBRARY VERSION 1.0

Applications can be ported easily from ST7 Library Version 1.0 to ST7 Llbrary Version 2.0 by
making the following changes:

— Change the configuration files st7lib_config.h, default.env, .mak, .prm, and .lkf

— Add device_reg.o in compile list and link list in .mak, .prm and .Ikf files

— Remove inclusion of periph_hr.h files from main to access device registers directly
— Replace use of TIMERA, TIMERB macros with USE_TIMERA, USE_TIMERB

— Replace ITC_EXT_ITSensitivity with ITC_Configurelnterrupt

— Refer to the Release Notes for the list of changes in new version

4

26/235

Presentation of library functions

7 PRESENTATION OF LIBRARY FUNCTIONS

7.1 LIBRARY REFERENCES

Functions are described in the format given below:

Function name
Function prototype
Behaviour Description
Input Parameters
Output Parameters
Required preconditions
Functions called

Post conditions

See also

Note

Caution

Code example

4

Peripheral name and main functionality covered
Prototype declaration

Brief explanation of how the functions are executed
Description of the parameters to be passed

Value returned by the function

Specific requirements to run the function

Library Functions called

Function required to call immediately after this function
Related functions for user reference

Important points that you must take into consideration
Important points to be considered to avoid any failures

Example to show the proper way to use the library func-
tions

27/235

Release Information

8 RELEASE INFORMATION

This release supports the following peripherals and devices.

8.1 PERIPHERALS

— ADC (8-bit and 10bit): The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit,
successive approximation converter with internal sample and hold circuitry.

— SCI (with/without extended Baud Rate Pre scalar): The Serial Communications Interface
(SCI) offers a flexible means of full-duplex data exchange with external equipment requiring
an industry standard NRZ asynchronous serial data format.

— SPI: The Serial Peripheral Interface (SPI) allows fullduplex, synchronous, serial communi-
cation with external devices.

— 12C single/multi master: The Inter-Integrated Circuit Bus Interface serves as an interface be-
tween the microcontroller and the serial 12C bus.

—12C Slave

— 16-bit Timer: The timer consists of a 16-bit free-running counter driven by a programmable
prescaler.

— 8-bit Timer: The timer consists of a 8-bit free-running counter driven by a programmable
prescaler.

— 8-bit Lite timer: The Lite Timer can be used for general-purpose timing functions.

— PWM ART 8-bit: The Pulse Width Modulated Auto-Reload Timer on-chip peripheral consists
of an 8-bit auto reload counter with compare/capture capabilities and of a 7-bit prescaler
clock source.

— AR 12-bit timer: The 12-bit Autoreload Timer can be used for general-purpose timing func-
tions.

— TBU: The Timebase unit (TBU) can be used to generate periodic interrupts.
— WDG: The Watchdog timer is used to detect the occurrence of a software fault.

— ITC: The Interrupt Controller manages the hardware and software interrupts with flexible in-
terrupt priority and level configuration.

— MCC: The Main Clock Controller consists of a programmable CPU clock prescaler, a clock-
out signal to supply external devices and a real time clock timer with interrupt capability.

— EEPROM: The Electrically Erasable Programmable Read Only Memory can be used as a
non volatile backup for storing data.

—1/0s: An I/O port contains up to 8 pins. Each pin can be programmed independently as digital
input (with or without interrupt generation) or digital output.

— CAN: The Controller area Network peripheral allows communication over a CAN network.

4

28/235

Release Information

8.2 DEVICES

— ST72F62

- ST72F63B
- ST72F65

— ST72F521
— ST7FLITEO
— ST7FLITEA
— ST7FLITE2
— ST7FLITES
— ST72F264
— ST72F561
— ST7SUPERLITE
- ST72325

— ST7232A

29/235

4

Function Descriptions

9 FUNCTION DESCRIPTIONS

9.1 GENERAL PURPOSE PERIPHERALS

9.1.1 ADC

This software library consists of the following functions for 8-bit and 10-bit ADC.
Function Name ADC _Init
Function Prototype Void ADC_lInit (Typ_ADC_InitParameter InitValue)

Initialization of the ADC, sets by default, channel to AINO,
speed to default value of the device, ADC off, amplifier off,
Behaviour Description interrupt disable and Continous conversion mode. You
can pass one or more input parameters by logically ORing
them together to change the default configuration.

ADC_SPEED "

Fadc=Fcpu/4 or Fcpu/2 or Fcpu, depending upon the de-
vice selected.

ADC_SLOW 2

It is used together with ADC_SPEED to configure ADC
clock for device.

ADC_ONESHOT ®)

One shot conversion active
ADC_AMPLIFIER_ON ¥

Amplifier on

ADC_DEFAULT

sets ADC in default configuration.
ADC_IT_ENABLE %

Interrupt enable for end of conversion.
Output Parameters None

1. Configure 10 properly.

2. Selection of the right ADC in the file ST7lib_config.h

Input Parameters

Required Preconditions

Functions called None
Postconditions ADC correctly configured
See also ADC_Enable and ADC_Select_Channel

1)Speed bit is present in ST72F561, ST72F62, ST72F264, ST72F521, ST72325, ST7232A,
ST7DALI, ST7FLITEO/1/2/3 and ST7SUPERLITE.

2)Slow bit is present in ST72F561, ST72F264, ST7DALI, ST7FLITE0/1/2/3 and
ST7SUPERLITE.

3)Feature present only in ST72F62.

4)Amplifier present in ST7DALI, ST7FLITE0/1/2 and ST7SUPERLITE.

4

30/235

Function Descriptions

Table 2. ADC_Select_Channel

Function Name

ADC_Select_Channel

Function Prototype

Void ADC_Select_Channel (unsigned char ADC_AIN)

Behaviour Description

Selects the conversion channel by passing the channel
number as input parameter

Input Parameters

ADC_AIN
ADC_AIN is in the range [0:15]

The channel number depends on the device, please refer
to the corresponding datasheet.

Output Parameters

None

Required Preconditions

1. ‘ADC_Init’ must have been called.

2. The selected channel must be configured as floating in-
put.

Functions called None
Postconditions ADC channel selected
See also ADC_Enable
Table 3. ADC_Enable
Function Name ADC_Enable

Function Prototype

Void ADC_Enable (void)

Behaviour Description

Switches on the ADC to start conversion on the selected
channel.

Input Parameters

None

Output Parameters

None

Required Preconditions

ADC_Select_Channel must have been called.

Functions called

None

Postconditions

ADC conversion started

See also

ADC_Disable

4

31/235

Function Descriptions

Table 4. ADC_Test_Conversn_Complete

Function Name

ADC_Test_Conversn_Complete

Function Prototype

BOOL ADC_Test_Conversn_Complete (void)

Behaviour Description

Returns the latest status of conversion

Input Parameters

None

Output Parameters

TRUE: conversion completed
FALSE: conversion not completed

Required Preconditions

ADC_Enable must have been called.

Functions called

None

Postconditions

If TRUE, ADC conversion is complete and you can call the
ADC_Conversn _Read.

If FALSE, ADC conversion not completed.

This function can be looped until the conversion is com-
plete.

See also

ADC_Disable, ADC_Conversn_Read

Table 5. ADC_Conversn_Read

Function Name

ADC_Conversn_Read

Function Prototype

For 10-bit ADC,

unsigned int ADC_Conversn_Read (void)
For 8-bit ADC,

unsigned char ADC_Conversn_Read (void)

Behaviour Description

Reads the converted digital value from the data register.

Input Parameters

None

Output Parameters

Data Register value (it depends upon the device selected,
please refer to the corresponding data sheet).

Required Preconditions

ADC_Test_Conversn_Complete must have been called.

Functions called

None

Postconditions

1. EOC flag is cleared.

2. Equivalent digital value available in the data register is
returned.

See also

None

Note: The EOC flag may be set again during the execution of this function, this depends on

the conversion time.

32/235

4

Function Descriptions

Table 6. ADC_Disable

Function Name ADC_Disable
Function Prototype Void ADC_Disable (void)
Behaviour Description Stops ADC conversion on the selected channel.
Input Parameters None
Output Parameters None
Required Preconditions ADC is switched on
Functions called None
Postconditions ADC switched off
See also ADC_Enable
Example:

The following C program shows the use of the ADC functions.
Program description:
This program converts the analog value on channel 5 of the ST72F62 device to a digital value.

/* Program start */
#include “st71ib_config.h” /* Select st72F62 device */
voidmain (void) ;

void main (void)

{

}

unsigned int Conv_Datal; /* Variable to get the converted digital value */
unsigned char channel =5;

ADC_Init ((unsigned char)ADC_SPEED | (unsigned char)ADC_ONESHOT) ; /* FADC= FCPU/4 */

ADC_Select_Channel (channel) ; /* Channel 5 selected */
ADC_Enable () ; /* Start conversion */
while (ADC_Test_Conversn_Complete () == FALSE) ;

Conv_Datal = ADC_Conversn_Read () ; /* Read the converted value */
ADC_Disable () ;

Nop; /* Macro defined in st71ib_config.h */

/* Program end */

4

33/235

Function Descriptions

9.1.2 SCI

This Library supports 2 SCI of ST72F561 device and 1 SCI on all other devices.
For devices with only one SCI no suffix “x” is used in the function names.
For 2nd SCI of ST72F561 you must replace suffix “x” in the function names with 2.

Function Name SCIx_Init

Void SCIx_Init (SCI_Type_Param1 Init_Value1,
SCI_Type_Param2 Init_Value2)

Function Prototype

Initialization of SCI, sets by default receiver sleep off, no break
character will be transmitted, wakeup from sleep by idle frame
detection, Parity disabled, 8-bit transmission mode and Receiver
in active mode. You can select the parity, 9-bit transmission
mode, Receiver wakeup, Receiver Mute and Break Enable fea-
ture through properly selecting the Init_Value1 and Init_Value2.

SCI_ODPARITY_SELECT
Select odd Parity
SCI_EVPARITY_SELECT
Select even parity
SCI_WAKEUP_ADDR

Input Parameter 1 Receiver wake up from mute mode while address mark is detect-
ed(i.e MSBiIt of the data transmitted should be 1)

SCI_WORDLENGTH_9
Select 9-bit transmission

SCI_DEFAULT_PARAM1
Load the register with the default value(0x00)

SCI_MUTE_ENABLE

Receiver in mute mode
SCI_BREAK_ENABLE

Transmit break characters
SCI_DEFAULT_PARAM2

Load the register with the default value(0x00)

Behaviour Description

Input Parameter 2

Output Parameter None
Required Preconditions SCI port pin should be configured properly.
34/235 IS7]

Function Descriptions

Table 7. SCIx_Compute_Baudrate

Function Name

SCIx_Compute_Baudrate

Function Prototype

Void SCIx_Compute_Baudrate(unsigned int
BaudRate_Tx, unsigned int BaudRate_Rx)

Behaviour Description

Selects Transmitter/ Receiver baudrate for the SCI without
extended prescaler.

Input Parameter 1

BaudRate_Tx*
You can select any possible baudrate for transmission.

Input Parameter 2

BaudRate_Rx*
You can select any possible baudrate for reception.

Output Parameter

None

Required Preconditions

1. SCIx_Init, must have been called.
2. fcpu must have been defined in ST7lib_Config.h

Functions called

None

Postconditions

None

Note:

— This function takes a large ROM area as calculations for TR, RR and PR are done inside the
function. However, you can choose to pass the baudrate directly.

— If the selected baudrate speed is not possible, the closest possible value will be used.

— If there is no common prescalar factor for receiver and transmitter baudrates, then you will
get the nearest possible receiver baudrate, at the prescalar division factor selected for the

transmitter.

— In half Duplex mode you can pass the same transmitter and receiver baudrates to get the
exact Tx/Rx baudrate (whichever mode you are using)

4

35/235

Function Descriptions

Table 8. SCIx_Select_Baudrate

Function Name

SCIx_Select_Baudrate

Function Prototype

Void SCIx_Select_Baudrate (SCI_Baudrate_Type
Baudrate_Prescaler)

Behaviour Description

Selects Transmit/Receive baudrate for SCI without ex-
tended baudrate prescaler. You have to define all the
prescaler parameters corresponding to the desired
baudrate speed. You have to pass the three input param-
eters by logically ORing them to select the baudrate.

Input Parameters

SCI_PR_X
X=1,3, 4,13
SCLLTR_Y
Y=1,2,4,8,16,32,64,128
SCI_RR_Z
Z=1,2,4,8,16,32,64,128

Output Parameter

None

Required Preconditions

1.SCIx_Init must have been called

2. You have to specify the PR, RR and TR values for the
desired baudrate

Functions called

None

Postconditions

Refer to the table below.

SCI_PR_X SCLTR_Y SCILRR_Z Transm:::; I;audrate Recelvse;ebea:judrate
SCI_PR_13 SCI_TR_1 SCI_RR_1 38400 38400
SCI_PR_13 SCI_TR_2 SCI_RR_2 19200 19200
SCI_PR_13 SCI_TR_4 SCI_RR_4 9600 9600
SCI_PR_13 SCI_TR_8 SCI_RR_8 4800 4800
SCI_PR_13 SCI_TR_16 SCI_RR_16 2400 2400
SCI_PR_13 SCI_TR_32 SCI_RR_32 1200 1200

Note: This function saves the ROM area but you have to pass the values for the TR,PR RR.

36/235

4

Function Descriptions

Table 9. SCIx_Extend_ Baudrate

Function Name

SCIx_Extend_Baudrate

Function Prototype

Void SCIx_Extend_Baudrate (SCI_Baudrate_Type
Baudrate_Prescaler, unsigned char EPTR, unsigned char
EPRR)

Behaviour Description

Selects Transmit/Receive baudrate for SCI with extended
baudrate prescaler. You have to define all the prescaler
parameters corresponding to the desired baudrate speed.

Input Parameter 1

SCI_PR_X
X=1,3, 4,13
SCLLTR_Y
Y=1,2,4,8,16,32,64,128
SCI_RR_Z
Z=1,2,4,8,16,32,64,128

Input Parameter 2

EPTR
Select any value from 0 to 255

Input Parameter 3

EPRR
Select any value of EPRR from 0 to 255

Output Parameter

None

Required Preconditions

1.SClIx_Init must have been called

2. You have to specify the PR, RR and TR values for the
desired baudrate

Functions called

None

Postconditions

Refer to the table below.

Transmitter Receiver
SCI_PR_X TR_Y RR_Z EPTR EPRR baudrate
baudrate speed
Speed
SCI_PR_13 SFC: I;T SCI—1RR 1 1 38400 38400
SCI_PR_13 SCIT SCI_RR 2 2 9600 9600
R_2 2
SCI_PR_13 SCLT SCI_RR 3 3 3200 3200
R_4 _4
SCI_PR_13 SCIT SCI_RR 4 4 1200 1200
R_8 _8
SCIL_T SCI_RR
SCI_PR_13 R 16 16 5 5 480 480
SCI_T SCI_RR
SCI_PR_13 R 32 32 6 6 200 200
[y[37/235

Function Descriptions

Table 10. SCIx_IT_Enable

Function Name

SCIx_IT_Enable

Function Prototype

Void SCIx_IT_Enable (SCI_IT_Type SCI_IT_Param)

Behaviour Description

Selects SCl interrupts

Input Parameters

SCI_IDLE_LINE

Enable interrupt due to idle frame reception.
SCI_RECEIVE_OVERRUN

Enable interrupt due to data reception or overrun error.
SCI_TRANSMIT_REGISTER_READY

Enable interrupt when transmit data register is ready to
load.

SCI_FRAME_TRANSMITTED

Enable Interrupt due to Transmission completetion.
SCI_PARITY_ERROR

Enable Interrupt due to Parity Error.

Output Parameter

None

Required Preconditions

1. SCIx_ComputeBaudrate or SCIx_SelectBaudrate must
have been called.

2. You should reset the interrupt mask with Enablelnter-
rupts.

Functions called None
Postconditions None
See also None
38/235 177

Function Descriptions

Table 11. SCIx_IT_Disable

Function Name

SCIx_IT_Disable

Function Prototype

Void SCIx_IT_Disable (SCI_IT_Type SCI_IT_Param)

Behaviour Description

Disables SCI interrupts

Input Parameters

SCI_IDLE_LINE

Disable interrupt due to idle frame reception.
SCI_RECEIVE_OVERRUN

Disable interrupt due to data reception or overrun error.
SCI_TRANSMIT_REGISTER_READY

Disable interrupts triggered when transmit data register is
ready to load.

SCI_FRAME_TRANSMITTED

Disable Interrupt due to Transmission completion.
SCI_PARITY_ERROR

Disable Interrupt due to Parity Error.

Output Parameters None
Required Preconditions. The baudrate must have been selected
Functions called None
Postconditions None
See also None
Table 12. SCIx_Mode
Function Name SCIx_Mode

Function Prototype

Void SCIx_Mode (SCI_Mode_Type SCI_Mode_Param)

Behaviour Description

Enables Transmitter/Receiver mode of SCI.

Input Parameter

SCL_TX_ENABLE

Enable the Transmitter mode.
SCI_RX_ENABLE

Enable the Receiver mode.

Output Parameter

None

Required Preconditions

SCIx_IT_Enable must have been called for interrupt mode

Functions called

None

Postconditions

None

See also

None

Note: To disable the SCI Mode, select the SCIx_Init function.

4

39/235

Function Descriptions

Table 13. SCIx_PutByte

Function Name SCIx_PutByte

Function Prototype Void SCIx_PutByte (unsigned char Tx_Data)

Behaviour Description Tr?nsmlts a single byte of data polling mode or interrupt
driven mode.
Tx_Data

Input Parameters .
Data byte to be transmit.

Output Parameters None

1. SCIx_Mode must have been called.

2. SCIx_IsTransmitCompleted must have been called
(Refer to example on page 53 for more details).

3. You must enable the interrupt due to Transmit Com-
plete/Transmit Data Ready Flag for the Interrupt driven
mode

4. You must select Polling or Interrupt driven Transmis-
sion mode in ST7lib_config.h

Required Preconditions

Functions called None

Postconditions None

See also None
Notes:

— You can use some timeout protection while using this function.
— This function is for Polling or Interrupt driven mode.

Table 14. SCIx_IsTransmitCompleted

Function Name SCIx_IsTransmitCompleted

Function Prototype BOOL SCix_IsTransmitCompleted (void)
Checks for the completion of current byte transmission.

Behaviour Description Returns TRUE if byte transmission is completed otherwise
returns FALSE.

Input Parameters None

Output Parameters Boolean

Required Preconditions SCIx_PutByte must have been called.

Functions called None

Postconditions None

See also None

Note: This function is for Polling mode.

4

40/235

Function Descriptions

Table 15. SCIx_PutBuffer

Function Name SCIx_PutBuffer

Void SCIx_PutBuffer(const unsigned char *PtrToBuffer,
unsigned char NbOfBytes)

Starts transmission from the user buffer. The data trans-

Function Prototype

Behaviour Description mission will be driven either in Polling or Interrupt driven
mode depending on the mode you selected.

Input Parameter 1 “PtrToBufter
Start address of the user buffer

Input Parameter 2 NbOTBytes
Number of bytes to be transmitted

Output Parameter None

1. SClx_Mode must have been called.

2. You must enable the interrupt due to Transmit Data
Ready Flag for the Interrupt driven mode

Required Preconditions 3. You must select the Polling or Interrupt driven trans-
mission mode in ST7lib_Config.h file.

4. The SCIx_IT_Function must have been called inside
the SCI interrupt subroutine.

Functions called SCIx_lsTransmitCompleted
Postconditions None
See also None

Note: This function is for Polling or Interrupt driven mode.

Caution:

— The application can lose control if the SCI is disabled while using this function in polling
mode.

— Take care not to access the user buffer until transmission is complete.

4

41/235

Function Descriptions

Table 16. SCIx_PutString

Function Name SCIx_PutString

Function Prototype Void SCIx_PutString (const unsigned char *PtrToString)
Starts transmission of a string passed by the user. The

Behaviour Description data transmission will be through polling or interrupt driven

modes depending on the mode you selected.
*PtrToString

Start address of the user string

Output Parameters None

1. SCIx_Mode must have been called.

2. You must enable the interrupt due to Transmit Data
Ready Flag for Interrupt driven mode.

Required Preconditions 3. You must select the transmission mode Polling or In-
terrupt driven in ST7lib_Config.h.

4. SCIx_IT_Function must have been called inside the SCI
interrupt subroutine.

Input Parameters

Functions called SCIx_lsTransmitCompleted
Postconditions None
See also None

Note: This function is for Polling or Interrupt driven mode.

Caution:

— The application can lose control if the SCl is disabled while using this function in polling
mode.

— Take care not to access the string until transmission is complete.

Table 17. SCIx_IsTransmitCompleted

Function Name SCIx_IsTransmitCompleted

Function Prototype BOOL SCix_IsTransmitCompleted (void)
Checks for the completion of data transmission. It returns

Behaviour Description FALSE till all the data bytes have been transmitted and
TRUE when the request is over.

Input Parameters None

Output Parameters Boolean

Required Preconditions Transmission must have been requested.

Functions called None

Postconditions SCIx_PutByte/SCIx_.PutBuffer/SCIx_PutString must be
called after this function

See also None

Note: This function is for Interrupt driven mode.

4

42/235

Function Descriptions

Table 18. SCIx_9thBit_TxRx

Function Name

SCIx_9thBit_TxRx

Function Prototype

BOOL SCIx_9thBit_TxRx (BOOL Bit9_Val)

Behaviour Description

This function configures the 9th bit to be transmitted as 0
or 1 for 9-bit transmission. Also it returns the status of the
9th bit in the 9-bit reception mode.

Input Parameters

TRUE

If 1 is to be transmitted as 9th bit.
FALSE

If 0 is to be transmitted as 9th bit.

Output Parameters

TRUE

If 9th bit received is 1.
FALSE

If 9th bit received is 0.

Required Preconditions

1.SCI must be configured in 9 bit mode.

2.For reception function SCIx_GetString/SCIx_GetBuffer/
SCIx_GetByte must have been called before this function.

Functions called

None

Postconditions

For transmission SCIx_PutByte/SCIx_PutBuffer/
SCIx_PutString must be called after this function.

See also

None

Notes:

— In transmission, the return value of the function is ignored. In reception, the input parameter

is not significant.

— You must call this function while using 9 bit mode.

— The Status of the 9th bit remains same during the complete buffer/string transmission.

— You can change the status of 9th bit in the next request.

4

43/235

Function Descriptions

Table 19. SCIx_GetByte

Function Name

SCIx_GetByte

Function Prototype

Unsigned char SCIx_GetByte (void)

Behaviour Description

Returns the most recent Byte received in Polling or Inter-
rupt driven mode.

Input Parameters

None

Output Parameters

Unsigned char
Received data byte

Required Preconditions

1. The SCIx_Mode must have been called

2. You must have called SCIx_IsReceptionCompleted to
check the reception status.

3. You must enable the interrupt due to Receive Data
Ready flag for Interrupt driven mode.

4. You must select Polling or Interrupt driven Reception
mode in ST7lib_Config.h.

5. For Interrupt driven mode SCIx_IT_Function must
have been called inside the SCI interrupt subroutine.

Functions called

None

Postconditions None
See also None
Notes:

— You can use some timeout protection while using this function.

— This function can be used in Polling or Interrupt driven mode.

44/235

4

Function Descriptions

Table 20. SCIx_GetBuffer

Function Name

SCIx_GetBuffer

Function Prototype

SCI_RxError_t SCIx_GetBuffer (unsigned char *PtrTo-
Buffer, unsigned char NbOfBytes)

Behaviour Description

Receives a number of data bytes and stores them in the
user buffer. The reception stops as soon as an error oc-
curs and error status is returned. The data reception is
controlled by polling.

Input Parameter 1

*PtrtoBuffer
Start address of the user buffer

Input Parameter 2

NbOfBytes
Total number of bytes to be received

Output Parameters

SCI_NOISE_ERR

Noise error occurred during transmission.
SCI_OVERRUN_ERR

Overrun error occurred during reception
SCI_FRAMING_ERR

Framing error occurred during reception
SCI_PARITY_ERR

Parity error occurred during reception
SCI_RECEIVE_OK

Error free reception

Required Preconditions

1.The SCIx_Mode must have been called.

2.You must select Polling reception mode in
ST7lib_Config.h

Functions called

None

See also

SCIx_GetBuffer (Interrupt driven mode)

Note: This function is only for Polling mode
Caution: The application can lose control if the SCI is disabled while using this function in poll-

ing mode.

4

45/235

Function Descriptions

Table 21. SCIx_GetString

Function Name

SCIx_GetString

Function Prototype

SCI_RxError_t SCIx_GetString (unsigned char *PtrTo-
String)

Behaviour Description

Receives and stores the data in the user-defined string.
The reception stops as soon as an error occurs and error
status is returned. The data reception is controlled by poll-

ing.

Input Parameters

*PtrToString
Start address of the String

Output Parameters

SCI_NOISE_ERR

Noise error occurred during reception.
SCI_OVERRUN_ERR

Overrun error has occurred during reception
SCI_FRAMING_ERR

Framing error occurred during reception
SCI_RECEIVE_OK

Error free reception

SCI_PARITY_ERR

Parity error occurred during reception

Required Preconditions

1. SCIx_Mode must have been called

2. You must select Polling reception mode in
ST7lib_Config.h

Functions called

None

Postconditions

None

See also

SCIx_GetString (Interrupt driven mode)

Note: This function is only for Polling mode
Caution: The application can lose control if the SCl is disabled while using this function in poll-

ing mode.

46/235

4

Function Descriptions

Table 22. SCIx_GetBuffer

Function Name

SCIx_GetBuffer

Function Prototype

Void SCIx_GetBuffer (unsigned char *PtrToBuffer, un-
signed char NbOfBytes)

Behaviour Description

Starts reception of the bytes and stores it into the user-
buffer in interrupt driven mode.

*PtrToBuffer
Input Parameter 1
Start address of the user buffer
NbOfBytes
Input Parameter 2 .
Total number of bytes to be received
Output Parameters None

Required Preconditions

1. The SCIx_Mode must have been called

2. You must enable the interrupt due to Receive Data
Ready flag.

3. You must select the Interrupt driven reception mode in
ST7lib_Config.h

4. SCIx_IT_Function must have been called inside the SCI
interrupt subroutine.

Functions called

None

Postconditions

You must call SCIx_IsReceptionCompleted after this func-
tion to check the reception status.

See also

SCix_GetBuffer (Polling mode)

Note: This function is only for Interrupt driven mode.

Caution:

— Take care not to access the user buffer until reception is completed.

— Any data received before calling this function is ignored

— The data reception will stop as soon as an error occurs.

4

47/235

Function Descriptions

Table 23. SCIx_GetString

Function Name

SCIx_GetString

Function Prototype

Void SCIx_GetString (unsigned char *PtrToString)

Behaviour Description

Reception of data string starts through interrupt driven
mode

Input Parameters

*PtrToString
Start address of the location where string is to be placed.

Output Parameters

None

Required Preconditions

1. SCIx_Mode must have been called

2. You must enable the interrupt due to Receive Data
Ready flag.

3. You must select the Interrupt driven reception mode in
ST7lib_Config.h.

4. SCIx_IT_Function must have been called inside the SCI
interrupt subroutine.

Functions called

None

Postconditions

You must call SCIx_IsReceptionCompleted after this func-
tion to check the reception status.

See also

SCIx_GetString (Polling mode)

Note: This function is only for Interrupt driven mode.

Caution:

— Take care not to access the user buffer until reception is completed

— Any data received before calling this function is ignored

— The data reception will stop as soon as an error occurs.

48/235

4

Function Descriptions

Table 24. SCIx_IsReceptionCompleted

Function Name SCIx_IsReceptionCompleted
Function Prototype SCI_RxError_t SCIx_lsReceptionCompleted(void)

In Interrupt driven mode, this function checks for the
completion of reception of a set of data or the occurrence
of an error and returns the reception status.

In both Polling and Interrupt driven modes, the function
checks if a single byte of data is received and ready for
processing. It returns SCI_RX_DATA_EMPTY until the
data byte is received and returns the reception status af-
terwards.

Input Parameter None

SCI_BUFFER_ONGOING "

User buffer is not full
SCI_STRING_ONGOING ")

Complete string is not received in the user buffer
SCI_NOISE_ERR

Noise error occurred during reception.
SCI_OVERRUN_ERR

Overrun error occurred during reception
SCI_FRAMING_ERR

Framing error occurred during reception
SCI_RECEIVE_OK

Error free data is stored in the user buffer
SCI_PARITY_ERR

Parity error occurred during reception
SCI_RX_DATA_EMPTY 2

No data byte is received.

Required Preconditions None

Functions called None

For single byte reception, if the byte is received, then
SCIx_GetByte can be called after this function.

Behaviour Description

Output Parameters

Postconditions

1) These Parameters are returned in Interrupt driven mode only.
2) This Parameter is returned in case of single byte reception only, for both Polling and Inter-
rupt driven modes.

Notes:

— If this function is called before any reception request is made, it will check for single byte re-
ception, and will return SCI_RX_DATA_EMPTY until the data byte is received, and returns
the reception status afterwards.

4

49/235

Function Descriptions

— If a reception request for a set of data is over, this function will return the error status of that
request only once. If this function is called again (before making next reception request), then
the function will check for single byte reception.

— In Polling mode, this function is used in conjunction with SCIx_GetByte only.

Table 25. SCIx_Forced_Clear_Flag

Function Name

SCIx_Forced_Clear_Flag

Function Prototype

Void SCIx_Forced_Clear_Flag(void)

Behaviour Description

Clears all the status and Error flags (TC, TDRE, RDRF,
IDLE, OR, NF, FE, PE) in SCI Status register(SCISR).

Input Parameters

None

Output Parameters

None

Required Preconditions.

Transmission or Reception must have taken place.

Functions called

None

Postconditions

None

See also

None

Note: You can call this function whenever you want to force the error and status flags be

cleared.

Caution: Do not call this function if a reception request is ongoing as it will corrupt the recep-
tion status by clearing all the flags and you will not receive any error status.

Table 26. SCIx_IT_Function

Function Name

SCIx_IT_Function

Function Prototype

Void SCIx_IT_Function (void)

Behaviour Description

Transmits or receives data in Interrupt driven mode. You
must call this function inside the interrupt service routine.

Input Parameters

None

Output Parameters

None

Required Preconditions.

You must have called transmission or reception function in
Interrupt driven mode.

Functions called

None

Postconditions

Communication is started inside the interrupt subroutine.

See also

None

Note: Only use this function in the Interrupt service routine.

Caution: Special care must be taken, while you write your own code along with this function
in the interrupt service routine, otherwise, data transfer synchronisation could be affected,

which may lead to data corruption.

50/235

4

Function Descriptions

Table 27. SCI2_Clkout_Enable

Function Name SCI2_Clkout_Enable
Function Prototype Void SCI2_Clkout_Enable (void)

This function enables the ClockOutput of SCI2 of
ST72F561 device.

Behaviour Description

Input Parameters None
Output Parameters None
Required Preconditions. None
Functions called None
Postconditions SC.I clock is availaible at a dedicated pin during communi-
cation.
See also None
ﬁ 51/235

Function Descriptions

Table 28. SCI2_ClkConfigure

Function Name

SCI2_ClkConfigure

Function Prototype

Void SCI2_ClkConfigure(SCI_PO_PH_t
SCI_PO_PH_Param, SCI_LBCL_t SCI_LBCL_Param)

Behaviour Description

Configures the Polarity, Phase and numbers of Clock
pulses for the SCI2 Clock out.

Input Parameter 1

SCI_PO_LOW_PH_LOW

Default value on CLK pin low

CLK activated at the in the middle of data bit
SCI_PO_LOW_PH_HIGH

Default value on CLK pin low

CLK activated at the beginning of data bit
SCI_PO_HIGH_PH_LOW

Default value on CLK pin High

CLK activated in the middle of data bit
SCI_PO_HIGH_PH_HIGH

Default value on CLK pin high

CLK activated at the beginning of data bit

Input Parameter 2

SCI_LBCL_DISABLE

The CLK pulse of last data bit is not output to the pin
SCI_LBCL_ENABLE

The CLK pulse of last data bit is output to the pin

Output Parameters

None

Required Preconditions.

None

Functions called

None

Postconditions

SCl clock is availaible at a dedicated pin during communi-
cation.

See also

None

52/235

4

Function Descriptions

EXAMPLE:
The following C program shows how the SCI functions are used.

This program runs the following sequence for an SCI without extended baudrate prescaler for
polling or interrupt driven mode:

— transmits a single byte passed by the user
— transmits the 20 bytes of data at the baudrate 9600
— receives 20 bytes of data at a baud rate of 9600.

Note: You must define the communication mode and cpu speed (Fcpu) in the ST7lib_config.h
file.

You can select any of the communication speeds from the following list :

SCI_POLLING_TX -- For Transmission mode
SCI_POLLING_RX -- For Reception mode
SCLITDRV_WITHOUTBUF_TX -- For Transmission
SCL_ITDRV_WITHOUTBUF_RX -- For Reception

/* You can use a timeout function to handle the fault in which the control will get stuck in side
a loop.This function should have the Boolean return, i.e it should return TRUE if the expected
wait Time is not elapsed and FALSE if it is elapsed.*/

Software Control

P

Wait loop User timeout
Function
/*======================—===—====—===—=—===—=—===—=—==—=—================% /
The following variables are declared in main.h file.
main.h:
#ifndef MAIN
#define MAIN
void Userfunction (void) ; /*Declaration of user function*/

BOOL User_Timeout_Function (void) ;
void sci_rt (void) ;

#endif

4

53/235

Function Descriptions

/* Program start */
#include "ST71ib_Config.h" /*List of all ST7 devices and communication mode*/
#include "main.h" /*Declaration of all the functions used inmain.c*/

#define Buf_Size ((unsigned char)20)

void main (void) ;
static unsigned int Timeoutcount;
unsigned char Buff_Rcv[20]= {" "}

voidmain (void)
{
unsigned char Rx_Data = 0;
unsigned char NbOfBytes = 20;
unsigned char Tx_Data = 51;
unsigned int BaudRate_Tx = 9600;
unsigned int BaudRate_Rx = 9600;
SCI_RxError_t Err =0;
unsigned char Buff [Buf_Size]= "SCI DRIVERS TESTING"; /*userbuffer*/
unsigned char new[] = "\n\r";
BOOL Bool_Templ ;
BOOL Bool_Temp?2 ;
Timeoutcount = 0;
SCI_Init (SCI_DEFAULT_PARAM1, SCI_DEFAULT_PARAM2) ;
SCI_Compute_Baudrate (BaudRate_Tx, BaudRate_RxXx) ;
/*Selects the transmission reception baudrate as 9600%*/
// SCI_Extend_ Baudrate (SCI_PR_13+SCI_TR_2+SCI_RR_2,0x02,0x02);
/* Selects transmission reception baudrate as 9600*/
EnableInterrupts

)
Transmission through Polling mechanism
___ */
#ifdef SCI_POLLING_TX /*Selects polling mode for transmission*/
SCI_Mode (SCI_TX_ENABLE) ;
SCI_PutByte (Tx_Data) ; /*Single Byte transmission*/

Bool_Templ = (SCI_IsTransmitCompleted()) ;
/* this function causes a volatile variable to change, hence it cannot be
put as a right side operand in a conditional stmt */

while ((User_Timeout_Function()) && (! (Bool_Templ)));

SCI_PutBuffer (Buff,NbOfBytes) ; /*Continuous buffer transmission*/
#endif
/* ___
Reception Through Polling mechanism
___ */
#ifdef SCI_POLLING_RX /*Selects polling mode for reception*/

SCI_Mode (SCI_RX_ ENABLE) ; /* Enable the receiver mode of SCI*/
[Single Byte Reception-----------------"———————~ */

do /*Wait for data reception*/

Err = SCI_IsReceptionCompleted() ;

54/235 ‘ﬁ

Function Descriptions

4

} while ((User_Timeout_Function()) && (Err == SCI_RX_DATA_EMPTY));

if (User_Timeout_Function()) /*Byte received before Timeout */
{
if (Err == SCI_RECEIVE_OK)

{
Rx_Data = SCI_GetByte() ; /*Correct Data Byte received*/
Nop
}
else
{
if ((unsigned char)Err & SCI_NOISE_ERR)
{
Userfunction () ;
if ((unsigned char)Err & SCI_OVERRUN_ERR)
{
Userfunction () ;
if ((unsigned char)Err & SCI_FRAMING_ERR)
{
Userfunction () ;
if ((unsigned char)Err & SCI_PARITY_ ERR)
{
Userfunction () ;
}
Rx_Data = SCI_GetByte(); /*Corrupted Data Byte received*/
}
} /*Timeout elapsed*/
else
{
while (1) ; /*Transmitter or Receiver having problem */
}
———————————————————————— Buffer Reception----------------—-—-—-—--—-—-———_%/

Err = (SCI_GetBuffer (Buff_Rcv, (unsigned char)19));
/*Reception of data in user buffer*/

if (Err == SCI_RECEIVE_OK) /*Checks the error status*/
{

Nop /* Reception OK*/
}
else /*Error Ocurred during reception*/
{

if ((unsigned char)Err & SCI_NOISE_ERR)
{
Userfunction () ;
if ((unsigned char)Err & SCI_OVERRUN_ERR)

Userfunction () ;

if ((unsigned char)Err & SCI_FRAMING_ERR)
{

55/235

Function Descriptions

Userfunction () ;

if ((unsigned char)Err & SCI_PARITY_ ERR)

{
Userfunction () ;
}
}

#endif
/* ___
Transmission through Interrupt Driven without Buffer mode
___ */
#ifdef SCI_ITDRV_WITHOUTBUF_TX /*Selects interrupt mode for transmission*/

/*Interrupt enable when TDRE flag is set */
SCI_Mode (SCI_TX_ENABLE) ;

if (SCI_IsTransmitCompleted())
{
SCI_PutByte((unsigned char)55) ;
while (! (SCI_IsTransmitCompleted()));
SCI_PutString (Buff) ; /*user pointer is copied to the global pointer*/
/* Here,user can perform other tasks or operations except transmission till the
time transmission is complete,after which user can perform transmission again*/

while (! (SCI_IsTransmitCompleted()));

}
#endif
/* ___
Reception through Interrupt driven without Buffer mechanism
___ */
#ifdef SCI_ITDRV_WITHOUTBUF_RX /* Selects interrupt mode for transmission */

/*Interrupt enable when RDR register is ready to read*/
SCI_IT_Enable((unsigned char)SCI_RECEIVE_OVERRUN) ;
SCI_Mode (SCI_RX_ENABLE) ;

Err = SCI_TIsReceptionCompleted() ;
}while ((User_Timeout_Function()) && (Err == SCI_RX_DATA_EMPTY)) ;

/* Wait for the completion of current data byte reception*/
i1f (User_Timeout_Function())

{
if (Err == SCI_RECEIVE_OK)

/*Reception OK */

Nop
Rx_Data = SCI_GetByte();
Nop

}

else

{

if ((unsigned char)Err & SCI_NOISE_ERR)
Userfunction () ;
if ((unsigned char)Err & SCI_OVERRUN_ERR)

{

56/235

4

Function Descriptions

4

Userfunction () ;
if ((unsigned char)Err & SCI_FRAMING_ERR)
{

Userfunction () ;

if ((unsigned char)Err & SCI_PARITY_ERR)

{
Userfunction () ;
}
Rx_Data = SCI_GetByte() ; /*User will receive the corrupted data */
}
}
else
{
while (1) ; /*Transmitter or Receiver having problem */
}
——————————————————————————— Buffer Reception-----=-----------—---——~———————_%/

SCI_GetBuffer (Buff_Rcv, (unsigned char)19) ;
/* Any data received before calling this function is ignored*/
/* Here, user can perform other tasks or operations except reception till the
time the function SCI_TIsReceptionCompleted() returns RECEIVE_OK,
after which user can perform reception again */

do
Err = SCI_IsReceptionCompleted() ;
}while (Err == SCI_BUFFER_ONGOING) ;

/* To be sure that the communication by this point has been completed */

if (Err == SCI_RECEIVE_OK)
{

Nop /*ReceptionOK */
}
else
{
if ((unsigned char)Err & SCI_NOISE_ERR)
{
Userfunction () ;
if ((unsigned char)Err & SCI_OVERRUN_ERR)
{
Userfunction () ;
if ((unsigned char)Err & SCI_FRAMING_ERR)
{
Userfunction () ;
if ((unsigned char)Err & SCI_PARITY_ ERR)
{
Userfunction () ;
}
}

57/235

Function Descriptions

#endif
Nop
}

/**

Interrupt Subroutine

****************************‘k‘k‘k***/

#ifdef _HIWARE_
#pragma TRAP_PROC SAVE_REGS
#else
#ifdef _COSMIC_
@interrupt
#else
#error"Unsupported Compiler!"
#endif
#endif
void sci_rt (void)
{
SCI_IT Function();

/* Test for HIWARE Compiler */
/* Additional registers will be saved */

/* Test for Cosmic Compiler */
/* Cosmic interrupt handling */

/* Compiler Defines not found! */

/*Interrupt function of the library*/

/*******************************End OF ISR************************************/

/*__*_‘k_*k_*_*_*_*_‘k_*k_*k_‘k_*k_*k_*k_*k_*k_*_‘k_*_*k_‘k_*_*_*_*_*_*_*_*_*_*_*_*k_‘k_*k_*k_‘k*k/

void Userfunction (void)
{
SCI_Forced_Clear_Flag();

BOOL User_Timeout_Function (void)

{
while (Timeoutcount < 50000)

{
Timeoutcount++ ;
return (TRUE) ;
}
return (FALSE) ;
}
58/235

4

Function Descriptions

9.1.3 SPI
Following are the functions related to SPI:

Function Name SPIL_Init

Void SPI_Init (SPI_Init_Parameter1 Init_Value1,
SPI_Init_Parameter2 Init_Value2)

Initialization of the SPI. By default the SPI is put in slave
mode (hardware selected), baudrate Fcpu/8, the SPI pe-
ripheral is not connected to the external pins (SPE=0), al-
ternate function of SPI output enabled (SOD=0) and
interrupts are disabled. You can change the default config-
uration by selecting input parameters given below.

You can pass one or more parameters by ‘OR’ing them.
SPI_DEFAULT

Reset Value

SPI_ENABLE

Enables the serial peripheral output (SPI alternate func-
tions connected to pins).

SPI_ENABLE_IT
Enables the Interrupt

Function Prototype

Behaviour Description

Selects the clock baudrate by selecting one of the below
parameters.

For SPI_BAUDRATE_4,Clock baudrate is Fcpu/4

For SPI_BAUDRATE_8, Clock baudrate is Fcpu/8, (De-
fault baudrate value)

For SPI_BAUDRATE_16, Clock baudrate is Fcpu/16.
For SPI_BAUDRATE_32, Clock baudrate is Fcpu/32.
For SPI_BAUDRATE_64, Clock baudrate is Fcpu/64.
For SPI_BAUDRATE_128, Clock baudrate is Fcpu/128.

Input Parameter 1

Selects the clock polarity and clock phase by selecting one
of the below parameters.

SPI_CLK_PP_0, For CPOL=0, CPHA =0 (Default clock
polarity and phase)

SPI_CLK_PP_1, For CPOL=0, CPHA =1
SPI_CLK_PP_2, For CPOL=1, CPHA =0
SPI_CLK_PP_3, For CPOL=1, CPHA =1

4

59/235

Function Descriptions

Input Parameter 2

You can select master/ slave in hardware/ software mode
by selecting one of the below parameters.

SPI_MSTR_SW

Selects Master in software mode
SPI_SLAVE_SW

Selects Slave in software mode
SPI_HW

Selects hardware mode. You have to manage the SS pin
accordingly for selecting Master/Slave.

Output Parameters

None

Required Preconditions

1. SS pin must be GND for default slave mode.

2. In hardware mode, if slave has to transmit, the SS pin of
the slave has to be released and made HIGH before writing
in SPIDR and reput to GND to avoid write collision error.

3. Fcpu must be defined in ST7lib_config.h.
4. SPI port pin must be configured correctly in hardware.

Functions called

SPI_Clear_Flags

Postconditions

If you want to enable the interrupt, the SPI_ENABLE_IT pa-
rameter has to be passed in the SPI_Init function. After the
SPI_Init function is called, you should use the macro Ena-
bleInterrupts macro to reset the Interrupt mask.

See also

SPI_Output_Disable

Note: If you want to select the Interrupt driven communication mode, you must enable inter-

rupts during initialization.

Table 29. SPI_Output_Disable

Function Name

SPI_Output_Disable

Function Prototype

Void SPI_Output_Disable (void)

Behaviour Description

Disables the alternate function of the SPI output.

Input Parameters

None

Output Parameters None
Required Preconditions None
Functions called None

Postconditions

If you want to enable the SPI output again, you must call
SPI_Init and pass the ‘SPI_DEFAULT parameter.

See also

SPIL_Init

60/235

4

Function Descriptions

Table 30. SPI_PutByte

Function Name SPI_PutByte

Function Prototype Void SPI_PutByte (unsigned char Tx_Data)

Transmits a single byte of data in SPI Polling or SPI Inter-

Behaviour Descripti .
ehaviour Description rupt driven modes.

Tx_Data
Input Parameters .
Data byte to be transmitted.
Output Parameters None

1. SPI should be configured correctly.

2. You must define the Transmission mode (SPI Polling or
SPI Interrupt driven)

3. You must enable interrupts for SPI Interrupt driven
mode.

4. For SPI Interrupt driven mode,
SPI_IsTransmitCompleted must have been called to en-
sure that there are no pending requests.

5. For SPI Interrupt driven mode, SPI_IT_Function must
have been called in the Interrupt service routine.

Required Preconditions

Functions called None

Call SPI_IsTransmitCompleted after this function to get

Postconditions the transmission status.

See also SPI_IsTransmitCompleted

Notes:
— The above function is only for SPI Polling or SPI Interrupt driven modes.

— It is recommended to add timeout protection when using this function.

— For transmission in software slave mode, you must define SPI_SLAVE_CONFIG in
ST7lib_config.h.

4

61/235

Function Descriptions

Table 31. SPI_PutString

Function Name

SPI_PutString

Function Prototype

SPI_TxErrCode_t SPI_PutString (const unsigned char
*PtrToString)

Behaviour Description

Transmits data string from the user defined address for
SPI Polling mode. The data transmission will stop if any
error occurs during transmission. The transmission status
will be returned.

Input Parameters

*PtrToString
Start address of the user string.

Output Parameters

SPI_TX_WCOL

If write collision error occurs.
SPI_TX_MODF

If master mode fault occurs.
SPI_TRANSMIT_OK

If there is no error in transmission.

Required Preconditions

1. SPI should be configured correctly.
2. You must define ‘SPI Polling’ mode in ST7lib_config.h.

Functions called

None

Postconditions

None

See also

SPI_PutString (SPI Interrupt driven mode)

Notes:

— The above function is only for SPI Polling mode.

— For transmission in software slave mode, you must define SPI_SLAVE_CONFIG in

ST7lib_config.h.

Caution: The application can lose control if the SPI is disabled while using this function in poll-

ing mode.

62/235

4

Function Descriptions

Table 32. SP1_PutBuffer

Function Name

SPI_PutBuffer

Function Prototype

SPI_TxErrCode_t SPI_PutBuffer (const unsigned char
*PtrToBuffer, unsigned char NbOfBytes)

Behaviour Description

Transmits data bytes from the user defined area for SPI
Polling mode. The data transmission will stop if any error
occurs during transmission. The transmission status will
be returned.

Input Parameter 1

*PtrToBuffer
Start address of the user buffer.

Input Parameter 2

NbOfBytes
Number of data bytes to be transmitted.

Output Parameters

SPI_TX_WCOL

If write collision error occurs.
SPI_TX_MODF

If master mode fault occurs.
SPI_TRANSMIT_OK

If there is no error in transmission.

Required Preconditions

1. SPI should be configured correctly.

2. You must define SPI Polling transmission mode in
ST7lib_config.h.

Functions called

None

See also

SPI_PutBuffer (SPI Interrupt driven mode)

Notes:

— The above function is only for SPI Polling mode.

— For transmission in software slave mode, you must define SPI_SLAVE_CONFIG in

ST7lib_config.h.

Caution: The application can lose control if the SPI is disabled while using this function in poll-

ing mode.

4

63/235

Function Descriptions

Table 33. SPI_PutString

Function Name

SPI_PutString

Function Prototype

Void SPI_PutString (const unsigned char *PtrToString)

Behaviour Description

Starts transmission of data string in the interrupt service
routine, from the user defined area for SPI Interrupt driv-
en mode.

Input Parameters

*PtrToString
Start address of the user string.

Output Parameters

None

Required Preconditions

1. The SPI should be configured correcily.

2. You must define SPI Interrupt driven mode in
ST7lib_config.h.

3. You must enable interrupts for this mode.

4. For SPI Interrupt driven mode, SPI_IT_Function must
have been called in the Interrupt service routine.

Functions called

None

Postconditions

SPI_IsTransmitCompleted can be called after this function
to get the transmission status.

See also

SPI_IsTransmitCompleted, SPI_PutString (SPI Polling
mode)

Notes:

— The above function is only for SPI Interrupt driven mode.

— For software slave mode transmission, you must define SPI_SLAVE_CONFIG in

ST7lib_config.h.
Caution:

— Do not access the string until transmission is completed

— Data transmission will stop if any error occurs during transmission.

64/235

4

Function Descriptions

Table 34. SP1_PutBuffer

Function Name

SPI_PutBuffer

Function Prototype

Void SPI_PutBuffer (const unsigned char *PtrToBuffer,
unsigned char NbOfBytes)

Behaviour Description

Starts transmission of data in the interrupt service routine,
from the user defined area for SPI Interrupt driven mode.

Input Parameter 1

*PtrToBuffer
Start address of the user buffer.

NbOfBytes
Input Parameter 2 .
Number of data bytes to be transmitted.
Output Parameters None

Required Preconditions

1. The SPI should be configured correctly.

2. You must define the transmission mode as SPI Inter-
rupt driven in ST7lib_config.h.

3. You must enable interrupts for this mode.

4. For SPI Interrupt driven mode, SPI_IT_Function must
have been called in the Interrupt service routine.

Postconditions

You can call ‘SPI_IsTransmitCompleted’ after this function
to get the transmission status.

See also

SPI_IsTransmitCompleted, SPI_PutBuffer (SPI Polling
mode)

Notes:

— The above function is only for SPI Interrupt driven mode.

— For transmission in software slave mode, you must define SPI_SLAVE_CONFIG in

ST7lib_config.h.
Caution:

— Do not access the string until transmission is completed.

— Data transmission will stop if any error occurs during transmission.

4

65/235

Function Descriptions

Table 35. SPI_IsTransmitCompleted

Function Name

SPI_IsTransmitCompleted

Function Prototype

SPI_TxErrCode_t SPI_IsTransmitCompleted (void)

Behaviour Description

Checks for errors, checks for pending requests and re-
turns the transmission status.

Input Parameters

None

Output Parameters

SPI_TX_WCOL

If write collision error occurs.
SPI_TX_MODF

If master mode fault occurs.
SPI_TRANSMIT_OK

If there is no error in transmission and all data bytes are
transmitted.

SPI_TX_BUFFER_ONGOING "

If all the data bytes from user buffer are not transmitted.
SPI_TX_STRING_ONGOING ")

If the complete string is not transmitted.

Required Preconditions None
Functions called None
Postconditions None
See also None

1) These Parameters are returned in SPI Interrupt driven mode only.

Notes:

— The above function is for SPI Polling and SPI Interrupt driven modes.

—In “‘SPI Polling’ mode, this function is called only after SPI_PutByte function.

66/235

4

Function Descriptions

Table 36. SPI_GetByte

Function Name

SPI_GetByte

Function Prototype

Unsigned char SPI_GetByte (void)

Behaviour Description

Returns the most recent Byte received in SPI Polling or SPI
Interrupt driven mode.

Input Parameters

None

Output Parameters

Unsigned char
Returns the received data byte.

Required Preconditions

1. The SPI should be configured correctly.

2. You must define SPI Polling or SPI Interrupt driven mode
in ST7lib_config.h.

3. You must enable interrupts for SPI Interrupt driven mode.
4. In both SPI Polling and SPI Interrupt driven modes you

must call SPI_IsReceptionCompleted before this function to
check the reception status.

5. For SPI Interrupt driven mode, SPI_IT_Function must
have been called in the Interrupt service routine.

Functions called

None

Postconditions

None

See also

SPI_IsReceptionCompleted

Notes:

— The above function is for SPI Polling or SPI Interrupt driven mode.

— It is recommended to add a timeout protection when using this function.

4

67/235

Function Descriptions

Table 37. SPI_GetString

Function Name

SPI_GetString

Function Prototype

SPI_RxErrCode_t SPI_GetString (unsigned char *PtrTo-
String)

Behaviour Description

Receives the data string in SPI Polling mode and stores
itin a user defined area. The data reception will stop if any
error occurs during reception. The reception status will be
returned.

Input Parameters

*PtrToString
Start address of the String

Output Parameters

SPI_RX_MODF

If master mode fault occurs.
SPI_RX_OVR

If overrun condition occurs.
SPI_RECEIVE_OK

If there is no error in reception.

Required Preconditions

1. The SPI must be configured correctly.
2. You must define SPI Polling mode in ST7lib_config.h.

Functions called

None

Postconditions

None

See also

SPI_GetString (SPI Interrupt driven mode)

Note: The above function is only for SPI Polling mode.
Caution: The application can lose control if the SPI is disabled while using this function in poll-

ing mode.

68/235

4

Function Descriptions

Table 38. SP1_GetBuffer

Function Name

SPI_GetBuffer

Function Prototype

SPI_RxErrCode_t SPI_GetBuffer (unsigned char *PtrTo-
Buffer, unsigned char NbOfBytes)

Behaviour Description

Receives a number of data bytes in SPI Polling mode and
stores them in a user defined area. The data reception will
stop if any error occurs during reception. The reception
status will be returned.

Input Parameter 1

*PtrToBuffer
Start address of the user buffer.

Input Parameter 2

NbOfBytes
Number of bytes to be received.

Output Parameters

SPI_RX_MODF

If master mode fault occurs.
SPI_RX_OVR

If overrun condition occurs.
SPI_RECEIVE_OK

If there is no error in reception.

Required Preconditions

1. The SPI should be configured correctly.
2. You must define SPI Polling mode in ST7lib_config.h.

Functions called

None

See also

SPI_GetBuffer (SPI Interrupt driven mode)

Note: The above function is only for SPI Polling mode.
Caution: The application can lose control if the SPI is disabled while using this function in poll-

ing mode.

4

69/235

Function Descriptions

Table 39. SPI_GetString

Function Name

SPI_GetString

Function Prototype

Void SPI_GetString (unsigned char *PtrToString)

Behaviour Description

Starts reception of a data string in SPI Interrupt driven
mode in the interrupt service routine and stores it in a user
defined area.

Input Parameters

*PtrToString

Start address of the location where the string is to be
placed.

Output Parameters

None

Required Preconditions

1. The SPI should be configured correctly.

2. You must define SPI Interrupt driven reception mode
in ST7lib_config.h.

3. You must enable interrupts for this mode.

4. For SPI Interrupt driven mode, SPI_IT_Function must
have been called in the Interrupt service routine.

Functions called

None

Postconditions

You must call SPI_IsReceptionCompleted after this, to
check the reception status.

See also

SPI_IsReceptionCompleted, SPI_GetString (SPI Polling
mode)

Note: The above function is only for SPI Interrupt driven mode.

Caution:

— Take care not to access the string until reception is complete.

— Any data received before calling this function is ignored.

— The data reception will stop if any error occurs during reception.

70/235

4

Function Descriptions

Table 40. SP1_GetBuffer

Function Name

SPI_GetBuffer

Function Prototype

Void SPI_GetBuffer (unsigned char *PtrToBuffer, un-
signed char NbOfBytes)

Behaviour Description

Starts reception of data in the interrupt service routine and
stores it in user defined area for SPI Interrupt driven
mode.

Input Parameter 1 “PtrToBufter

Start address of the user buffer.
Input Parameter 2 NbOTBytes

Number of bytes to be received.
Output Parameters None

Required Preconditions

1. The SPI should be configured correctly.

2. You must define the SPI Interrupt driven reception
mode in ST7lib_config.h.

3. You must enable interrupts for this mode.

4. For SPI Interrupt driven mode, SPI_IT_Function must
have been called in the Interrupt service routine.

Functions called

None

Postconditions

You must call SPI_IsReceptionCompleted after this to
check the reception status.

See also

SPI_IsReceptionCompleted, SPI_GetBuffer (SPI Polling
mode)

Note: The above function is only for SPI Interrupt driven mode.

Caution:

— Take care not to access the string until reception is complete.

— Any data received before calling this function is ignored

— The data reception will stop if any error occurs during reception.

4

71/235

Function Descriptions

Table 41. SPI_IsReceptionCompleted

Function Name

SPI_IsReceptionCompleted

Function Prototype

SPI_RxErrCode_t SPI_IsReceptionCompleted (void)

Behaviour Description

For reception of a set of data in SPI Interrupt driven
mode, this function checks for the completion of the recep-
tion or the occurrence of an error and returns the reception
status.

For reception of single byte of data in either SPI Polling or
SPI Interrupt driven mode, it checks if a data byte has
been received and is ready for processing. It returns
SPI_RX_DATA_EMPTY until the data byte is received
and returns the reception status afterwards.

Input Parameters

None

Output Parameters

SPI_RX_MODF

If master mode fault occurs.

SPI_RX_OVR

If overrun condition occurs.

SPI_RECEIVE_OK

If the reception is completed without any error.
SPI_RX_BUFFER_ONGOING "

If the buffer is not full.

SPI_RX_STRING_ONGOING "

If the complete string is not received in the user buffer.

SPI_RX_DATA_EMPTY 2
If no data byte is received.

Required Preconditions

None

Functions called

None

Postconditions

1.For single byte reception, if the byte is received, then
SPI_GetByte can be called after this function.
2.SPI_Clear_Flags can be called to clear the error and
status flags, if required.

See also

None

1) These Parameters are returned in SPI Interrupt driven mode only.
2) This Parameter is returned in case of single byte reception only, for both SPI Polling and SPI

Interrupt driven modes.
Notes:

— In SPI Polling mode, this function is used in conjunction with SPI_GetByte only.

— If this function is called before any reception request is made, it will check for single byte re-
ception, and will return SPI_RX_DATA_EMPTY until the first data byte is received, and re-
turns the reception status when reception is complete.

If a reception request is over, this function will return the error status of that request only
once. If this function is called again (before making next reception request), then the function

will check for single byte reception.

72/235

(572

Function Descriptions

Table 42. SP1_IT_Function

Function Name

SPL_IT_Function

Function Prototype

Void SPI_IT_Function (void)

Behaviour Description

Transmits or receives data in SPI Interrupt driven mode.
You must call this function in the interrupt service routine.

Input Parameters

None

Output Parameters

None

Required Preconditions

You must have called transmission or reception function in
SPI Interrupt driven mode before this.

Functions called None
Postconditions None
See also None

Note: You must use this function only in the Interrupt service routine.

Caution: Special care must be taken, while you write your own code along with this function
inside the interrupt service routine. Otherwise, data transfer synchronisation will be affected,
which may lead to data loss or overrun error.

Table 43. SPI_Clear_Flags

Function Name

SPI_Clear_Flags

Function Prototype

Void SPI_Clear_Flags (void)

Behaviour Description

Clears the SPI error (WCOL, MODF and OVR bits of
SPICSR register) and status (SPIF bit of SPICSR) flags.

Input Parameters

None

Output Parameters

None

Required Preconditions

Transmission or Reception must have taken place.

Functions called

None

Postconditions

None

See also

SPI_IsTransmitCompleted SPI_lsReceptionCompleted

Note: You can call this function whenever you want to force the error and status flags to be

cleared.

Caution: Do not call this function if a reception request is ongoing as it will corrupt the recep-
tion status by clearing all the flags and you will not receive any error status.

4

73/235

Function Descriptions

EXAMPLE:
The following C program shows the use of SPI functions.
Program Description:

This program runs the following sequence for the SPI for SPI Polling and SPI Interrupt
driven modes:

1. Transmits a single byte passed by the user and receives single byte of data,
2. Transmits and receives the 10 bytes of data,

You can select one pair of the following communication modes, for transmission and reception
respectively:

SPI_POLLING_TX -- For Transmission mode
SPI_POLLING_RX -- For Reception mode
SPI_ITDRV_WITHOUTBUF_TX - For Transmission mode
SPI_ITDRV_WITHOUTBUF_RX -- For Reception mode

/* User can use a time out function to handle the fault in which the control will get stuck in
side a loop.This function should have the Boolean return, i.e it should return TRUE if the

expected wait Time is not elapsed and FALSE if it is elapsed.*/

Software Control

Wait loop User defined time out function
/*==::=:====:::====::=====::==:=::===:=:=====::=====:=====::==~k/
The following variables are declared in main.h file.
main.h:
#ifndef MAIN
#define MAIN
BOOL User_Timeout_Function (void) ; /* Prototypes of user function */

void User_Function (void) ;
void SPI_User_IT Routine (void);//newly added

/* Declaration of all global variables used inmain.c */
#define buf_size 0x0A
#define My_Data (unsigned char) 0x55

static unsigned int Timeoutcount;

#endif

74/235

4

Function Descriptions

/* Program Start */

#include "ST71ib_config.h" /*List of all ST7 devices and communication mode */
#include "main.h"

/* Declaration of prototypes of user defined functions used inmain.c */

void main (void) ;

void main (void)

{

4

unsigned char NbOfBytes_get = 10;

unsigned char NbOfBytes_put = 10;

unsigned char Rx_Data;

unsigned char Buff_Test[buf_size];

unsigned char Buff [buf_size] ={0x00, 0x55, 0xAA, OXFF, 0x00, 0x55, 0xAA, OxXFF, 0x00, 0x55};
SPI_TxErrCode_t Templ= 0x00 ;

SPI_RxErrCode_t Temp2= 0x00 ;

SPI_Init ((((unsigned char)SPI_DEFAULT | ((unsigned char)SPI_ENABLE |
((unsigned char)SPI_ENABLE_IT| ((unsigned char)SPI_BAUDRATE_A |
((unsigned char)SPI_CLK_PP_0)))))), SPI_MSTR_SW) ;

/* SPI Initialised in master software mode, Serial peripheral output
enabled, Interrupt enabled, CPOL=0, CPHA=1 and baudrate is 2MHz */

EnableInterrupts /* Interrupt mask is reset for enabling interrupt */
/*===
Transmission through ‘Polling’ mode
—==% /
#ifdef SPI_POLLING_TX
/* Single byte data transmission */
SPI_PutByte (My_Data) ;
Templ = SPI_IsTransmitCompleted() ;
while ((! (User_Timeout_Function())) && (Templ != SPI_TRANSMIT_OK))
{
Templ = SPI_IsTransmitCompleted() ;
if (! (User_Timeout_Function()))
{
switch (Templ)
{
case (SPI_TX_MODF + SPI_TX_WCOL) :
case (SPI_TX_MODF) :
case (SPI_TX_WCOL) :
User_Function() ; /* Error Management */
break;
default: /* I1f none of the above condition is met */
User_Function() ;
break;
}
}
/* Transmission of 10 data bytes fromuser buffer */
switch (SPI_PutBuffer (Buff, (unsigned char)10))
{
case (SPI_TX_MODF + SPI_TX_WCOL) :
75/235

Function Descriptions

case (SPI_TX_ MODF) :
case (SPI_TX_ WCOL) :

User_Function() ; /* Error Management */
break;

case SPI_TRANSMIT_ OK: /*Transmission is successful */
break;

default: /* I1f none of the above condition is met */

User_Function() ;
break;

}

#endif

#ifdef SPI_POLLING_RX
/* Single byte data reception */
Temp2 = SPI_IsReceptionCompleted() ;
while ((User_Timeout_Function()) && (Temp2 == SPI_RX_DATA_EMPTY))
{ /* Waits for data byte reception */
Temp2 = SPI_IsReceptionCompleted() ;

/* Waiting for data byte reception */
if (User_Timeout_Function())
{
switch (Temp2)
{
case (SPI_RX_MODF + SPI_RX_OVR) :
case (SPI_RX_MODF) :
case (SPI_RX_OVR) :

User_Function() ; /* Exrror Management */
Rx_Data = SPI_GetByte () ; /* Corrupted data byte received */
break;
case SPI_RECEIVE_OK: /* Reception successful */
Rx_Data = SPI_GetByte () ;
break;
default: /* If none of the above condition is met */
User_Function() ;
break;
}
}
else
{
while (1) ;
/* Handle time out as Transmitter/Receiver is having some problem */
}

/* Reception of set of data */
switch ((SPI_GetBuffer (Buff_Test, (unsigned char)10)))
{
case (SPI_RX_MODF + SPI_RX_OVR) :
case (SPI_RX_ MODF) :
case (SPI_RX_OVR) :

User_Function() ; /* Error Management */
break;

case SPI_RECEIVE_OK: /* Reception is successful */
break;

76/235 ‘ﬁ

Function Descriptions

4

default: /* If none of the above condition is met */
User_Function() ;
break;
}
#endif
) ¥===

#ifdef SPI_ITDRV_WITHOUTBUF_TX
/* Single byte transmission */
SPI_PutByte (My_Data) ;

/* Here, user can perform other tasks or operations except transmission
till the time transmission is complete, after which user can perform
transmission again */

Templ = SPI_IsTransmitCompleted() ;
while((Templ == SPI_TX_BUFFER_ONGOING) && (Templ == SPI_TX_ STRING_ONGOING))
/* Wait for transmission completion */

Templ = SPI_IsTransmitCompleted() ;
}
switch (Templ)
{
case (SPI_TX_MODF + SPI_TX_WCOL) :
case (SPI_TX_ MODF) :
case (SPI_TX_WCOL) :
User_Function() ; /* Error Management */
break;
case SPI_TRANSMIT_ OK: /* Transmission is successful */
break;
default: /* I1f none of the above condition is met */
User_Function() ;
break;

/* Transmission of 10 data bytes fromuser buffer */
/* User pointer is copied to the global pointer */
SPI_PutBuffer (Buff, NbOfBytes_put) ;

/* Here, user can perform other tasks or operations except transmission
till the time transmission is complete, after which user can perform
transmission again */

Templ = SPI_TIsTransmitCompleted() ;
while ((User_Timeout_Function())&& (Templ == SPI_TX_BUFFER_ONGOING))
{
Templ = SPI_IsTransmitCompleted() ;
} /* To be sure that the communication by this point has been completed */
if (User_Timeout_Function())
{
switch (Templ)
{
case (SPI_TX_MODF + SPI_TX_WCOL) :
case (SPI_TX_MODF) :
case (SPI_TX_WCOL) :

77/235

Function Descriptions

User_Function() ; /* Error Management */
break;

case SPI_TRANSMIT OK: /* Transmission successful */
break;

default: /* I1f none of the above condition is met */

User_Function() ;

break;
}
}
else
{
while (1) ;
/* Time-Out elapsed without transmission completion. Error in
communication and user should handle the case */
}
#endif
)/*===

#ifdef SPI_ITDRV_WITHOUTBUF_RX
/* Single byte reception
Temp2 = SPI_IsReceptionCompleted() ;
while ((User_Timeout_Function())&& (Temp2 == SPI_RX_DATA_ EMPTY))
/* Waits for data byte reception

Temp2 = SPI_IsReceptionCompleted() ;
if (User_Timeout_Function())

{
switch (Temp2)

*/

{
case (SPI_RX_MODF + SPI_RX_OVR) :
case (SPI_RX_MODF) :
case (SPI_RX_OVR) :
User_Function() ; /* Error Management */
Rx_Data = SPI_GetByte () ;
/* User will get the corrupted data */
break;
case SPI_RECEIVE_OK: /* Reception successful */
Rx_Data = SPI_GetByte () ;
break;
default: /* If none of the above condition is met */
User_Function() ;
break;
}
}
else
{
while (1) ;
/* Time-Out elapsed without reception completion. Error in
communication and user should handle the case */
}

/* Reception of the data in the user buffer */

SPI_GetBuffer (Buff_Test,NbOfBytes_get) ;

78/235

/* Any data received before calling this function is ignored */

(572

Function Descriptions

/* Here, user can perform other tasks or operations except reception till
the time re-ception is complete, after which user can perform reception
again */

Temp2 = SPI_TIsReceptionCompleted() ;
while ((User_Timeout_Function()) && (Temp2 == SPI_RX_BUFFER_ONGOING))
{
Temp2 = SPI_IsReceptionCompleted() ;
} /* To be sure that the communication by this point has been completed */

if (User_Timeout_Function())

{
switch (Temp2)

{
case (SPI_RX_MODF + SPI_RX_OVR) :
case (SPI_RX_MODF) :
case (SPI_RX_OVR) :
User_Function() ; /* Error Management */
break;
case SPI_RECEIVE_OK: /* Reception successful */
break;
default: /* I1f none of the above condition is met */
User_Function() ;
break;
}
}
else
{
while (1) ;
/* Time-Out elapsed without reception completion. Error in
communication and user should handle the case */
}
#endif
}
)R
ROUTINE NAME : SPI_User_IT Routine
INPUT : None
OuUTPUT : None

DESCRIPTION : Control comes into this routine when an interrupt is generated.
User can use the SPI interrupt service routine function or he
can write his own code inside this routine at his own risk. The
data transfer syncronisation may be affected if user includes
his own code along with SPTI ISR function.

COMMENT'S : None
___ */

#ifdef _HIWARE_ /* Test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else

#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt /* Cosmic interrupt handling */
#else

#error"Unsupported Compiler!" /* Compiler Defines not found! */
#endif

172 79/235

Function Descriptions

#endif

void SPI_User_IT_Routine (void)
{
SPI_IT_Function () ;

BOOL User_Timeout_Function (void)
{
while (Timeoutcount < 50000)

{

Timeoutcount++ ;
return (TRUE) ;

}

return (FALSE) ;

void User_Function (void)

{
SPI_Clear_Flags ();

80/235

/* SPI Interrupt service routine function */

/* Time-out not elapsed */

/* Time-out elapsed */

/* Clears error and status flags */

4

Function Descriptions

9.1.4 12C MASTER

Following are the functions related to both Single master and multi master 12C.

Function Name

12C_Init

Function Prototype

Void 12C_Init (12C_Init_Param Init_Value)

Behaviour Description

Initialization of 12C. By default, I12C peripheral is enabled,
acknowledge and interrupts are disabled. If single master
I12C device is selected, 12C will be idle. You can change
the default configuration by selecting the input parameters
given below. You can pass one or more parameters by
logically ‘OR’ing them.

Input Parameters

12C_DEFAULT_PARAM1

Load all 12C registers with default value. Only 12C periph-
eral is enabled (PE bit is set).

I2C_ENABLE_ACK
Enables acknowledge.

I2C_IT_ENABLE
Enables interrupt
Output Parameters None

Required Preconditions

1. 1/0 port should be configured correctly.

2. If you want to configure single master 12C, the ST72F65
device must be selected.

Functions called

None

Postconditions

1. If you want to enable interrupts, the 12C_IT_ENABLE
parameter has to be passed in the 12C_Init function. After
the 12C_lInit function is called, you should use the Ena-
blelnterrupts macro to reset the Interrupt mask.

2. For single master 12C, to configure 12C in master mode,
you have to call 12C_Generate_Start after this function .

See also

None

Note: If you select I2C Interrupt driven communication mode, interrupts must be enabled dur-

ing initialization.

4

81/235

Function Descriptions

Table 44. 12C_MultiMaster_Config

Function Name

12C_MultiMaster_Config

Function Prototype

Void 12C_MultiMaster_Config (void)

Behaviour Description

Configures 12C as multimaster 12C device

Input Parameters

None**

Output Parameters

None

Required Preconditions

1. ST72F521/ ST72F63B/ ST72325 devices must be se-
lected for multimaster 12C.

2. 12C_Init must have been called

Functions called

None

Postconditions

I2C is configured in slave mode. To configure in master
mode, you have to call 12C_Generate_Start after this.

See also

None

*This is only valid for ST72F521/ ST72F63B/ ST72325 devices.
**The input parameter, which was available in earlier versions of ST7 library, has been removed.

82/235

4

Function Descriptions

Table 45. 12C_Select_Speed

Function Name

12C_Select_Speed

Function Prototype

Void I12C_Select_Speed (12C_Speed_Param
Speed_Value, unsigned int 12C_Speed)

Behaviour Description

Selects the 12C clock speed both in standard and fast
speed modes.

Input Parameter 1

I2C_DEFAULT_PARAM2
Sets standard speed mode
I2C_FASTSPEED

Sets fast speed mode

Input Parameter 2

12C_Speed

You can select any value from 0 to 400.
Standard speed mode range: 0 to 100 kHz
Fast speed mode range: 101 to 400 kHz

Output Parameters

None

Required Preconditions

1. 12C_Init must have been called.
2. Fcpu must be defined in ST7lib_config.h.

3. For multimaster 12C configuration the
[12C_MultiMaster_Config function must have been called.

4. If you enter speed ranges from 101 to 400 kHz, the pa-
rameter ‘12C_FASTSPEED’ must be selected in input pa-
rameter 1.

Functions called None
Postconditions None
See also None

Note: I2C speed is strongly dependant on the R and C wired on the lines, F,, and Vyq values,
and not solely on the value programmed in I2CCCR register. So you must take account of
the R and C values. You must not pass the speed value less than the minimum speed limit.
(For ex., minimum speed limit for F¢,,, = 8MHz is 16 kHz).

4

83/235

Function Descriptions

Table 46. 12C_Generate_Start

Function Name

12C_Generate_Start

Function Prototype

Void I12C_Generate_Start (void)

Behaviour Description

Generates start condition.

Input Parameters

None

Output Parameters

None

Required Preconditions

1. 12C_Select_Speed must have been called.

2. In I12C Interrupt driven mode, 12C_IT_Function must
have been called in the Interrupt service routine.

Functions called

None

Postconditions

[12C_IsTransmitCompleted should be called after this to
ensure that start condition is generated correctly.

See also

None

Notes:

— A start condition is not generated unless 12C_lInit or 12C_Generate_Stop is called before this

function.

— When start condition is generated for ST72F65/ST72F521/ ST72F63B/ ST72325 devices,
the 12C switches over from ldle/Slave modes to Master mode.

84/235

4

Function Descriptions

Table 47. 12C_Load_Address

Function Name I2C_Load_Address

Void 12C_Load_Address (unsigned char Addr_Byte,
12C_Mode_Param Mode_Value)

In master mode, transmits the address byte to select the
slave device.

Addr_Byte
You can select any value from 00 to FFh.
You have to pass one of the below parameters.

Function Prototype

Behaviour Description

Input Parameter 1

12C_TX_MODE
Enters into transmitter mode after slave address is trans-
mitted.

Input Parameter 2 12C_RX_MODE
Enters into receiver mode after slave address is transmit-
ted.
12C_SUB_ADD

You must pass this parameter, if slave sub-address has to
be transmitted.

Output Parameters None
1. 12C_Generate_Start must have been called.
Required Preconditions 2. In 12C Interrupt driven mode, 12C_IT_Function must
have been called in the Interrupt service routine.
Functions called None

If you want to transmit the sub-address (the slave address
where the transmitted data to be received, in case of trans-

Postconditions mission or the slave address from where data to be trans-
mitted, in case of reception), this function has to be called
again.

See also None

4

85/235

Function Descriptions

Table 48. 12C_PutByte

Function Name 12C_PutByte

Function Prototype Void 12C_PutByte (unsigned char Tx_Data)

Transmits a single byte of data in I12C Polling or I12C Inter-

Behaviour Description rupt driven mode.

Tx_Data
Input Parameters .
Data byte to be transmitted.
Output Parameters None

1. 12C_Load_Address must have been called (If I12C is
configured in master transmitter mode).

2. You must define I12C Polling or I12C interrupt driven
transmission mode in ST7lib_config.h.

3. You must enable interrupts in I2C interrupt driven
Required Preconditions mode.

4. In I12C interrupt driven mode
[12C_IsTransmitCompleted must have been called to en-
sure that there are no pending requests.

5. In I12C Interrupt driven mode, 12C_IT_Function must
have been called in the Interrupt service routine.

Functions called None

I12C_lsTransmitCompleted can be called after this function

Postconditions to get the transmission status.

See also None

Notes:
— The above function is for I2C Polling or I12C Interrupt driven mode.

— It is recommended to add a timeout protection when using this function.

86/235

4

Function Descriptions

Table 49. 12C_PutString

Function Name

12C_PutString

Function Prototype

[2C_TxErrCode_t 12C_PutString (const unsigned char
*PtrToString)

Behaviour Description

Transmits data string in I2C Polling mode from the user
defined area. Data transmission will stop if any error oc-
curs during transmission. The transmission status will be
returned.

Input Parameters

*PtrToString
Start address of the user string.

Output Parameters

I2C_TX_AF

If Acknowledge failure has occurred.
I2C_TX_ARLO*

If Arbitration lost is detected.
12C_TX_BERR*

If misplaced start or stop condition detected.
I2C_DATA_TX_OK

If there is no error in transmission.

Required Preconditions

1. 12C_Load_Address must have been called (If I12C is
configured in master transmitter mode).

2. You must define I12C Polling mode in ST7lib_config.h.

Functions called

None

Postconditions

None

See also

[12C_PutString (12C Interrupt driven mode)

* This is applicable only in multimaster 12C.
Note: The above function is only for I2C Polling mode.
Caution: The application can lose control if the 12C is disabled while using this function.

4

87/235

Function Descriptions

Table 50. 12C_PutBuffer

Function Name

12C_PutBuffer

Function Prototype

[2C_TxErrCode_t 12C_PutBuffer (const unsigned char
*PtrToBuffer, unsigned char NbOfBytes)

Behaviour Description

Transmits data string in I2C Polling mode from the user
defined area. The data transmission will stop if any error
occurs during transmission. The transmission status will
be returned.

Input Parameter 1

*PtrToBuffer
Start address of the user buffer.

Input Parameter 2

NbOfBytes
Number of data bytes to be transmitted.

Output Parameters

I2C_TX_AF

If Acknowledge failure has occurred.
I2C_TX_ARLO*

If Arbitration lost is detected.
I2C_TX_BERR*

If misplaced start or stop condition detected.
I2C_DATA_TX_OK

If sub-address is successfully transmitted or there is no er-
ror in data transmission.

Required Preconditions

1. 12C_Load_Address must have been called (If I12C is
configured in the master transmitter mode).

2. You must define I12C Polling mode in ST7lib_config.h.

Functions called

None

Postconditions

None

See also

[12C_PutBuffer (I12C Interrupt driven mode)

* This is applicable only in multimaster 12C.
Note: The above function is only for I2C Polling mode.
Caution: The application can lose control if 12C is disabled when using this function in 12C

Polling mode.

88/235

4

Function Descriptions

Table 51. 12C_PutString

Function Name

12C_PutString

Function Prototype

Void 12C_PutString (const unsigned char *PtrToString)

Behaviour Description

Starts transmission of a data string in I2C interrupt driven
mode from the user defined area.

Input Parameters

*PtrToString
Start address of the user string.

Output Parameters

None

Required Preconditions

1. 12C_Load_Address must have been called (If I12C is
configured in master transmitter mode).

2. You must define I2C interrupt driven mode in
ST7lib_config.h.

3. 12C_IsTransmitCompleted must have been called to en-
sure that there are no pending requests.

4. You must enable interrupt for this mode.

5. 12C_IT_Function must have been called in the Interrupt
service routine.

Functions called

None

Postconditions

12C_lsTransmitCompleted can be called after this function
to get the transmission status.

See also

[12C_PutString (I2C Polling mode)

Note: The above function is only for I2C Interrupt driven mode.

Caution:

— Take care not to access the string until transmission is complete.

— The data transmission will stop if any error occurs during transmission.

4

89/235

Function Descriptions

Table 52. 12C_PutBuffer

Function Name

12C_PutBuffer

Function Prototype

Void 12C_PutBuffer (const unsigned char *PtrToBuffer,
unsigned char NbOfBytes)

Behaviour Description

Starts transmission of data from the user defined area for
12C interrupt driven mode.

*PtrToBuffer
Input Parameter 1
Start address of the user buffer.
NbOfBytes
Input Parameter 2 .
Number of data bytes to be transmitted.
Output Parameters None

Required Preconditions

1. 12C_Load_Address must have been called (If 12C is
configured in master transmitter mode).

2. You must define I12C interrupt driven mode in
ST7lib_config.h.

3. 12C_IsTransmitCompleted must have been called to en-
sure that there are no pending requests.

4. You must enable interrupts for this mode.

5. In I2C Interrupt driven mode, 12C_IT_Function must
have been called in the Interrupt service routine.

Functions called

None

Postconditions

12C_lsTransmitCompleted can be called after this function
to get the transmission status.

See also

[12C_PutBuffer (12C Polling mode)

Note: The above function is only for I2C Interrupt driven mode.

Caution:

— Take care not to access the string until transmission is complete.

— The data transmission will stop if any error occurs during transmission.

90/235

4

Function Descriptions

Table 53. 12C_lIsTransmitCompleted

Function Name 12C_IsTransmitCompleted
Function Prototype 12C_TxErrCode_t I12C_IsTransmitCompleted (void)

Checks for any error during transmission and returns the
error status. It also checks for any pending requests.

Input Parameters None

I2C_TX_AF

If Acknowledge failure has occurred.
I2C_TX_ARLO ")

If Arbitration lost is detected.

I2C_TX_BERR ")

If misplaced start or stop condition detected.
I2C_ADD_TX_OK

If there is no error in transmission of address bytes.
I2C_HEADERADD_TX_OK ")

If there is no error in transmission of header byte.
I2C_START_OK

If there is no error in start condition generation
I2C_DATA_TX_OK

If there is no error in transmission and all data bytes are
transmitted.

I2C_TX_BUFFER_ONGOING 2

If all the data bytes from user buffer are not

transmitted.

[2C_TX_STRING_ONGOING 2

If the complete string is not transmitted.

Required Preconditions None

Functions called None

12C_Error_Clear can be called to clear the error and status
flags, if required.

See also None

Behaviour Description

Output Parameters

Postconditions

1) This is applicable only in multimaster 12C device.
2) These Parameters are returned in I2C interrupt driven mode only.

Notes:
— The above function is for I2C Polling or I12C Interrupt driven mode.

— In I2C Polling mode, this function is used in conjunction with 12C_PutByte only.

4

91/235

Function Descriptions

Table 54. 12C_GetByte

Function Name 12C_GetByte
Function Prototype Unsigned char 12C_GetByte (void)

Returns the most recent Byte received in 12C Polling or
12C interrupt driven mode.

Input Parameters None
Unsigned char
Returns the received data byte.

1. 12C_Load_Address must have been called if master re-
ceiver.

2. You must define I2C Polling or I12C interrupt driven re-
ception mode in ST7lib_config.h.

3. 12C_IsReceptionCompleted must have been called to
Required Preconditions ensure that there are no pending requests and also to
check if data byte has been received or not.

4. You must enable interrupts for I2C interrupt driven
mode.

5. In I12C Interrupt driven mode, 12C_IT_Function must
have been called in the Interrupt service routine.

Behaviour Description

Output Parameters

Functions called None

Postconditions None

See also None
Notes:

— The above function is for I2C Polling or I12C Interrupt driven mode.
— It is recommended to use a timeout protection when using this function.

— To terminate communication after receiving one byte using 12C_GetByte, you have to man-
age ACK bit and STOP generation as shown in the introduction.

4

92/235

Function Descriptions

Table 55. 12C_GetBuffer

Function Name

12C_GetBuffer

Function Prototype

12C_RxErrCode_t 12C_GetBuffer (unsigned char *PtrTo-
Buffer, unsigned char NbOfBytes)

Behaviour Description

Receives number of data bytes and stores it in user de-
fined area for I2C Polling mode. The data reception will
stop if any error occurs during reception. The reception
status will be returned.

Input Parameter 1

*PtrToBuffer
Start address of the user buffer.

Input Parameter 2

NbOfBytes
Number of bytes to be received.

Output Parameters

I2C_RX_AF

If Acknowledge failure has occurred.
12C_RX_ARLO*

If Arbitration lost is detected.
12C_RX_BERR*

If misplaced start or stop condition detected.
I2C_DATA_RX_OK

If there is no error in reception.

Required Preconditions

1. 12C_Load_Address must have been called (If I12C is
configured in the master receiver mode).

2. You must define I12C Polling mode in ST7lib_config.h.

Functions called

None

Postconditions

None

See also

12C_GetBuffer (I12C Interrupt driven mode)

* This is applicable only in multimaster 12C.

Notes:

— The above function is only for I2C Polling mode.

— ACK bit is managed automatically inside this routine.

— STOP bit is set automatically inside this routine, before the last byte is read. So there is no
need to call 12C_Generate_Stop after this.

Caution: The application can lose control if 12C is disabled when using this function in 12C

Polling mode.

4

93/235

Function Descriptions

Table 56. 12C_GetBuffer

Function Name 12C_GetBuffer

Void 12C_GetBuffer (unsigned char *PtrToBuffer, un-

Function Prototype signed char NbOfBytes)

Starts reception of data and stores it in user defined area

Behaviour Description for I12C Interrupt driven mode.

*PtrToBuffer
Input Parameter 1
Start address of the user buffer.
NbOfBytes
Input Parameter 2 .
Number of bytes to be received.
Output Parameters None

1. 12C_Load_Address must have been called (If I12C is
configured in master receiver mode).

2. You must define I12C Interrupt driven mode in
ST7lib_config.h.

Required Preconditions 3. 12C_IsReceptionCompleted must have been called to
ensure that there are no pending requests.

4. You must enable interrupts for this mode.

5. In I2C Interrupt driven mode, 12C_IT_Function must
have been called in the Interrupt service routine.

Functions called None

12C_lsReceptionCompleted must be called after this func-

Postconditions tion to get the status of reception.

See also 12C_GetBuffer (12C Polling mode)

Notes:
— The above function is only for I2C Interrupt driven mode.
— ACK bit is managed automatically inside this routine.

— STOP bit is set automatically inside this routine, before the last byte is read. So there is no
need to call 12C_Generate_Stop after this.

Caution:

— Take care not to access the string until reception completion.

— Any data received before calling this function is ignored.

— The data reception will stop if any error occurs during reception.

— In String reception, the NULL character must be taken into account.

4

94/235

Function Descriptions

Table 57. 12C_lIsReceptionCompleted

Function Name 12C_IsReceptionCompleted
Function Prototype I2C_RxErrCode_t I12C_IsReceptionCompleted (void)

For reception of a set of data in 12C Interrupt driven
mode, the function checks for the completion of the recep-
tion or the occurrence of the error and returns the recep-
tion status.

For reception of single byte of data in both I2C Polling and
12C Interrupt driven modes, it checks if a data byte is re-
ceived and ready for processing. It returns
[2C_RX_DATA_EMPTY until the data byte is received
and returns the reception status when reception is com-
plete.

Input Parameters None

I2C_RX_ARLO "

If Arbitration lost is detected.

I2C_RX_BERR ")

If misplaced start or stop condition is detected.
12C_RX_AF

If Acknowledge failure has occurred.
12C_DATA_RX_OK

If the data reception is completed without any error.
I2C_RX_BUFFER_ONGOING ?

User buffer is not full.
I2C_RX_DATA_EMPTY 9

If no data byte is received.

Required Preconditions None

Functions called None

1.For single byte reception, if the byte is received, then
12C_GetByte can be called after this function.

2.12C_Error_Clear can be called to clear the error and sta-
tus flags, if required.

See also None

Behaviour Description

Output Parameters

Postconditions

1) This is applicable only in multimaster 12C devices.

2) These Parameters are returned in I2C Interrupt driven mode only.

3) This Parameter is returned in case of single byte reception only, for both I2C Polling and 12C
Interrupt driven modes

Notes:
— The above function is for I2C Polling or I12C Interrupt driven mode.

—In I12C Polling mode, this function is used in conjunction with 12C_GetByte only.

— If this function is called before any reception request is made, it will check for a single byte
reception, and will return 12C_RX_DATA_EMPTY, until the first data byte is received, and

172 95/235

Function Descriptions

returns the reception status afterwards.
If a reception request is over, this function will return the error status of that request only
once. If this function is called again (before making next reception request), then the function

will check for single byte reception.

Table 58. 12C_IT_Function

Function Name

12C_IT_Function

Function Prototype

Void 12C_IT_Function (void)

Behaviour Description

Transmits or receives data in I2C interrupt driven mode.
You must call this function in the interrupt service routine.

Input Parameters

None

Output Parameters

None

Required Preconditions

You must have called transmission or reception function in
12C interrupt driven mode.

Functions called None
Postconditions None
See also None

Note: You must use this function only inside the Interrupt service routine.

Caution: Special care must be taken, when you write your own code along with this function
inside the interrupt service routine. As all I12C interrupt driven functions rely on this function,
you are advised to call only this function in Interrupt service routine. Otherwise, data transfer
synchronisation will be affected, which may lead to data loss or errors.

Table 59. 12C_Error_Clear

Function Name

12C_Error_Clear

Function Prototype

Void I12C_Error_Clear (void)

Behaviour Description

Clear the error flags, if there are any.

Input Parameters

None

Output Parameters

None

Required Preconditions

Transmission or Reception should have taken place, be-
fore calling this function.

Functions called None
Postconditions None
See also None

Note: You can call this function whenever the error flags are required to be cleared forcibly.

Caution: Do not call this function if a reception request is ongoing as it will corrupt the recep-
tion status by clearing all the flags and you will not receive any error status.

96/235

4

Function Descriptions

Table 60. 12C_ACK

Function Name

I2C_ACK

Function Prototype

Void I2C_ACK (I12C_ACK_Param ACK_Value)

Behaviour Description

Enables or disables acknowledge bit depending on the in-
put.

Input Parameters

I2C_ACK_ENABLE
Enables the acknowledge bit.
12C_ACK_DISABLE
Disables the acknowledge bit.

Output Parameters None
Required Preconditions None
Functions called None
Postconditions None
See also None

Table 61. 12C_Peripheral_Disable

Function Name

12C_Peripheral_Disable

Function Prototype

Void 12C_Peripheral_Disable (void)

Behaviour Description

Disables the peripheral.

Input Parameters None
Output Parameters None
Required Preconditions None
Functions called None

Postconditions

You must call 12C_lInit after this to enable peripheral.

See also

None

Note: When the peripheral is disabled, all I2C register bits except the stop bit and speed se-

lection bits are cleared.

4

97/235

Function Descriptions

Table 62. 12C_Generate_Stop

Function Name

12C_Generate_Stop

Function Prototype

Void I12C_Generate_Stop (void)

Behaviour Description

Generate stop condition.

Input Parameters

None

Output Parameters

None

Required Preconditions

Transmission or Reception must have taken place.

Functions called

None

Postconditions

None

See also

None

Note: In master mode, you must call this function to end data transfer.
Caution: In order to generate the non-acknowledge pulse after the last received data byte, the

ACK bit must be cleared just before reading the second last byte. You must call
12C_GetBuffer before calling the 12C_Generate_Stop function or you have to manage non-

acknowledge pulse.

Table 63. 12C_Generate_9Stops

Function Name

12C_Generate_9Stops

Function Prototype

Void 12C_Generate_9Stops (void)

Behaviour Description

Generate 9 consecutive stop bits to re-synchronize 12C
bus in a indefinite state.

Input Parameters

None

Output Parameters

None

Required Preconditions

When there are problems in communication and 12C bus
is in indefinite state.

Functions called

None

Postconditions

You must call 12C_Init after this to start I2C operation.

See also

None

Note: This function is used only as a recovery measure. If the 12C slaves are powered sepa-
rately or the MCU was reset during an 12C transmission, the 12C bus can be in an unknown
state. In this case, this function can be used to re-synchronise the I12C. This routine must be
called only one time after the MCU was reset.

Caution: The port register values of SDA and SCL pins changes if user calls this function. So,
you must take the port register values into account.

98/235

4

Function Descriptions

EXAMPLE:
The following C program shows the uses of the 12C functions.

Program Description:

This program runs the following sequence for multimaster 12C (ST72F521 device) for 12C

Polling and I12C Interrupt driven communication modes:

1. Transmits a single byte passed by the user and receives single byte of data in 7 bit ad-

dressing mode,
2. Transmits and receives the10 bytes of data in 7 bit addressing mode.

The following modes are used for transmission and reception,
7 bit Tx - 7 bit master transmitter,
7 bit Rx - 7 bit master receiver,

You can select one pair of the following communication modes, for transmission
and reception respectively:

[2C_POLLING_TX -- For Transmission mode
[2C_POLLING_RX -- For Reception mode
[2C_ITDRV_WITHOUTBUF_TX -- For Transmission mode
I2C_ITDRV_WITHOUTBUF_RX -- For Reception mode

/* You can use a timeout function to handle the fault in which the control will get
stuck inside a loop.This function should have the Boolean return, i.e it should return
TRUE if the expected wait Time is not elapsed and FALSE if it is elapsed.*/

Software Control

Wait loop User defined time out function

The following variables are declared in main.h file.

main.h:
#ifndef MAIN
#define MAIN

void main (void) ;
void I2C_User_IT_ _Routine (void) ;

(572

99/235

Function Descriptions

BOOL User_Timeout_Function (void) ; /* Prototypes of user function */
void User_Function (void) ;

/* Declaration of all global variables used inmain.c */
#define size_buff ((unsigned char) 0x0A)
#define My_Data ((unsigned char) 0x55)
#define Addr_Byte_Tx ((unsigned char) 0xA0)
#define Sub_Byte_Tx ((unsigned char) 0x50)

static unsigned int Timeoutcount;

#endif

/* Program Start */
#include "ST71ib_config.h" /* List of all ST7 devices and communication mode */
#include "main.h"

/* Declaration of prototypes of user defined functions used inmain.c */

void main (void)
{
unsigned char Rx_Data;
unsigned char Buff_ Test[size_buff];
unsigned char Buff[size_buff] = {0, 1, 2, 5, 50, 10, 100, 200, 225, 255};
I2C_TxErrCode_t Templ ;
I2C_RxErrCode_t Temp?2 ;
Templ = Temp2 = 0x00 ;
I2C_Init ((unsigned char)I2C_ENABLE_ACK | (unsigned char)I2C_IT ENABLE) ;
/* Enable acknowledge and interrupts */

EnableInterrupts; /* Interrupt mask is reset for enabling interrupt */
I2C_MultiMaster_Config (); /* Configure I2C asmultimaster I2C device */
I2C_Select_Speed (I2C_FASTSPEED, (unsigned int)200) ;

/* Selects fast speed mode, Speed is 200KHz */
I2C_Generate_Start () ;
while (! (I2C_IsTransmitCompleted()== I2C_START_OK)) ;

/* Communication mode defined as POLLING_TX in ST71ib_config.h */
#ifdef I2C_POLLING_TX
I2C_Load_Address (Addr_Byte_Tx, I2C_TX_MODE) ;
Templ = I2C_IsTransmitCompleted() ;
while ((User_Timeout_Function()) && (Templ != I2C_ADD_TX_ OK))
{
Templ = I2C_IsTransmitCompleted() ;

}
switch (Templ) /* To check transmission status */
{
case I2C_TX_AF:
User_Function() ;
break;
default:
break;
}

100/235

4

Function Descriptions

4

/* Single byte data transmission */
I2C_PutByte (My_Data) ;
Timeoutcount =0 ;
Templ = I2C_IsTransmitCompleted() ;
while ((User_Timeout_Function()) && (Templ != I2C_DATA_TX_OK))
{
Templ = I2C_IsTransmitCompleted() ;
}
switch (Templ) /* To check transmission status */
{
case I2C_TX_AF:
case I2C_TX_ARLO:
case I2C_TX_BERR:
User_Function() ; /* Exrror Management */
break;
default: /* None of the above condition is true */
User_Function() ;
break;

/* Transmission of 10 data bytes fromuser buffer */
switch(I2C_PutBuffer (Buff, (unsigned char)10))
{

case I2C_TX_AF:

case I2C_TX_ARLO:

case I2C_TX_BERR:

User_Function() ; /* Error Management */
break;
case I2C_DATA_TX_ OK:
break;
default: /* None of the above condition is true */
User_Function() ;
break;
}
I2C_Generate_Stop () ; /* Transmission Stopped */
while (! (I2C_IsStopGen ())) ;
#endif
/¥==

/* Communication mode defined as POLLING_RX in ST71ib_config.h */
/* Single byte data reception */
#ifdef I2C_POLLING_RX
I2C_Generate_Start () ;
while (! (I2C_IsTransmitCompleted()== I2C_START_OK)) ;
I2C_Load_Address (Addr_Byte_Tx, I2C_RX_MODE) ;
Timeoutcount = 0 ;
Templ = I2C_IsTransmitCompleted() ;
while ((User_Timeout_Function()) && (Templ != I2C_ADD_TX_OK))
{

Templ = I2C_IsTransmitCompleted() ;
}
switch (Templ) /* To check reception status */
{

case I2C_TX_AF:

User_Function() ;

101/235

Function Descriptions

102/235

break;
default:
break;
}
Timeoutcount =0 ;
Temp2 = I2C_TIsReceptionCompleted() ;
while ((User_Timeout_Function()) && (Temp2 == I2C_RX_DATA_EMPTY))
{
Temp2 = I2C_IsReceptionCompleted() ;

/* Waits for data byte reception */
if (User_Timeout_Function())
{
switch (Temp2)
{
case I2C_RX_ARLO:
case I2C_RX_BERR:

Rx_Data = I2C_GetByte() ; /* Corrupted data byte received */
User_Function() ; /* Error Management */
break;

case I2C_DATA_RX_OK: /* Reception successful */
Rx_Data = I2C_GetByte() ;
break;

default: /* None of the above condition is true */

User_Function () ;

break;
}
}
else
{
/* Handle time out as Transmitter/Receiver is having some problem */
}

/* Reception of a set of data */
switch(I2C_GetBuffer (Buff_Test, (unsigned char)10))
{
case I2C_RX_ARLO:
case I2C_RX_BERR:
User_Function() ; /* Exrror Management */
break;
case I2C_DATA_RX_OK:
break;
default: /* None of the above condition is met */
User_Function () ;
break;
}
#endif

/* Communication mode defined as ITDRV_WITHOUTBUF_TX in
ST71ib_config.h */

/* Single byte transmission */

#ifdef I2C_ITDRV_WITHOUTBUF_TX

if ((I2C_IsTransmitCompleted()) == I2C_DATA_TX_OK)

4

Function Descriptions

4

switch

{

/* Ensure that there are no pending requests */

I2C_Generate_Start ();
while (! ((I2C_IsTransmitCompleted())== I2C_START_OK)) ;
I2C_Load_Address (Addr_Byte_Tx, I2C_TX_MODE) ;
Timeoutcount = 0 ;
Templ = I2C_IsTransmitCompleted() ;
while ((User_Timeout_Function()) && (Templ != I2C_ADD_TX_OK))
{

Templ = I2C_IsTransmitCompleted() ;
}
switch (Templ) /* To check transmission status */
{

case I2C_TX_AF:

User_Function() ;

break;
default:
break;
}
I2C_PutByte (My_Data) ; /* User data is copied to global variable */

/* Here, user can perform other tasks or operations except

transmission till the time transmission is complete, after which

user can perform transmission again */

(I2C_TIsTransmitCompleted()) /* To check transmission status */

case I2C_TX_AF:
case I2C_TX_ARLO:
case I2C_TX_BERR:

User_Function() ; /* Error Management */
break;

case I2C_DATA_TX_ OK:
break;

default: /* I1f none of the above condition is true */

User_Function() ;
break;

/* Transmission of set of data from the user buffer */
I2C_PutBuffer (Buff, (unsigned char)10) ;
/* User pointer is copied to global pointer */
/* Here, user can perform other tasks or operations except
transmission till the time transmission is complete, after which
user can perform transmission again */
Timeoutcount =0 ;
Templ = I2C_IsTransmitCompleted() ;
while ((User_Timeout_Function())&& ((Templ) == I2C_TX_ BUFFER_ONGOING))
{
Templ = I2C_IsTransmitCompleted() ;
} /* To be sure that the communication by this
point has been completed */
if (User_Timeout_Function())

switch (Templ)

{
case I2C_TX_AF:
case I2C_TX_BERR:

103/235

Function Descriptions

User_Function() ; /* Error Management */
break;

case I2C_DATA_TX_OK: /* Transmission successful */
break;

default: /* If none of the above condition is true */

User_Function() ;
break;

}

I2C_Generate_Stop () ;

while (! (I2C_IsStopGen ())) ;
}
#endif

/* Communication mode defined as ITDRV_WITHOUTBUF_RX in
ST71ib_config.h */
/* Single byte reception */
#ifdef I2C_ITDRV_WITHOUTBUF_RX
I2C_Generate_Start () ;
while (! ((I2C_IsTransmitCompleted())== I2C_START_OK)) ;
I2C_Load_Address (Addr_Byte_Tx, I2C_RX_MODE) ;
Timeoutcount =0 ;
Templ = I2C_IsTransmitCompleted() ;
while ((User_Timeout_Function()) && (Templ != I2C_ADD_TX_OK))
{
Templ = I2C_IsTransmitCompleted() ;
}
switch (Templ) /* To check address transmission status */
{
case I2C_TX_AF:
User_Function() ;
break;
default:
break;
}
Timeoutcount =0 ;
Temp2 = I2C_IsReceptionCompleted() ;
while ((User_Timeout_Function()) && ((Temp2) == I2C_RX_DATA_EMPTY))
{
Temp2 = I12C_IsReceptionCompleted() ;

/* Waits for data byte reception */
if (User_Timeout_Function())
{
switch (Temp2)
{
case I2C_RX_ARLO:
case I2C_RX_BERR:
Rx_Data =I2C_GetByte () ;
User_Function() ;
break;
case I2C_DATA_RX_OK:

4

104/235

Function Descriptions

}

Rx_Data =I2C_GetByte () ;
break;
default: /* None of the above condition is true */
User_Function () ;
break;

/* Reception of set of data in the user buffer */
I2C_GetBuffer (Buff_Test, (unsigned char) 10); /* Any data received before calling

this function is ignored */

/* Here, user can perform other tasks or operations except reception till
the time reception is complete, after which user can perform reception

again */

Timeoutcount =0 ;
Temp2 = I2C_IsReceptionCompleted() ;
while ((User_Timeout_Function()) && ((Temp2) == I2C_RX_BUFFER_ONGOING))

{

Temp2 = I2C_IsReceptionCompleted() ;

}

/* To be sure that the communication by this point has been completed */

if (User_Timeout_Function())

{

switch (Templ)

{

}
#endif

case I2C_RX_BERR:
case I2C_RX_BUFFER_ONGOING:

User_Function () ; /* Exrror Management */
break;

case I2C_DATA RX OK: /* Reception successful */
break;

default: /* If none of the above condition is true */
break;

ROUTINE NAME : I2C_User_IT Routine

/* ________________
INPUT : None
OUTPUT : None

DESCRIPTION : Control comes into this routine when an interrupt is generated.
User can use the I2C interrupt service routine function or he

can write his own code inside this routine at his own risk. The

data transfer syncronisation may be affected if user includes

his own code along with I2C ISR function.

COMMENTS : None
___ */

#ifdef _HIWARE_ /* Test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else

#ifdef _COSMIC_ /* Test for Cosmic Compiler */

@interrupt

(572

/* Cosmic interrupt handling */

105/235

Function Descriptions

#else
#error"Unsupported Compiler!"
#endif
#endif

void I2C_User_IT_Routine (void)
{
I2C_IT Function () ;

BOOL User_Timeout_Function (void)
{
while (Timeoutcount < 50000)
{
Timeoutcount++ ;
return (TRUE) ;

}
return (FALSE) ;

void User_Function (void)
{
I2C_Error_Clear () ;

106/235

/* Compiler Defines not found! */

/* I2C Interrupt service routine function */

/* Time-out not elapsed */

/* Time-out elapsed */

/* Clears error and status flags */

4

Function Descriptions

9.1.512C SLAVE

This section contains the description of all the functions for 12C slave. You can select either
of the Transmission/Reception modes of 12C implemented inside the library by using the cor-
responding #define statement.

Figure 4. General Flow Chart For I12C -Slave (Polling Mode)

-4

Initialize 12C

- ——

Wait for Address
Select Event

'

Wait for BTF =1

Transmitter routine
with or without
buffer

Receiver routine
with or without

buffer

Stop Condition

n

Stop
Condition

Note: This is a general flow part. Error management is not shown here for the purpose of sim-

plicity.

(572

107/235

Function Descriptions

Table 64. 12C Slave Functions:

Function Name

12Cs_Init

Function Prototype

Void 12Cs_lInit(I2Cs_Control_Param InitParam,unsigned
char 12Cs_OAR1Value,unsigned char 12Cs_OAR2Value)

Behaviour Description

By default, Acknowledge and General Call are disabled.
You can change the default configuration by selecting in-
put parameters given below. You can pass one or more
parameters by logically ORing them. I2C peripheral is also
enabled.

Input Parameter 1

12Cs_DEFAULT_PARAM

Load I2C control registers with default value
12Cs_ENABLE_ACK

Enables acknowledge.
12Cs_ENABLE_ENGC
Enables General Call

Input Parameter 2

12Cs_OAR1Value
Load the OAR1 address.

Input Parameter 3

12Cs_OAR2Value

Load 10 bit higher address bits and also sets FRi bits ac-
cording to the value of Fcpu.

Output Parameters

None

Required Preconditions

I/O port should be configured correctly.

Functions called None

Postconditions None

See also None
Notes:

— For ST72F63B device there is only one address register I2COAR (It does not support 10 bit
addressing). Here I2COAR will get the value of 12Cs_OAR1Value and the value of

12Cs_OAR2Value will be neglected.

— If single master I2C device is selected, I12C will remain idle as in this case I12C can not behave

as slave.

— When slave is in the interrupt mode. That is,
if #ifdef I2C_ITDRV_WITHOUTBUF_TX Or,
ifdef 1I2C_ITDRV_WITHOUTBUF_RX are defined then ITE bit is also set in control register
automatically. There is no separate parameter for enabling the ITE bit.

Caution:

— If ITE bit is forcibly modified in the User routine using the hardware register then the behav-
iour of the 12C slave library is unpredictable.

— If you are using the 12C as both transmitter and receiver, then both should be configured in
the same mode (Polling/ Interrupt driven).

108/235

(572

Function Descriptions

Table 65. 12Cs_GetCommMode

Function Name

12Cs_GetCommMode

Function Prototype

12Cs_Mode 12Cs_GetCommMode(void)

Behaviour Description

It will return 12Cs_DEFAULT mode before first BTF event
and, will return 12Cs_TX_MODE or 12Cs_RX_MODE
mode after that.

Input Parameters

None

Output Parameters

12Cs_TX_MODE
Slave is transmitter
12Cs_RX_MODE
Slave is receiver
12Cs_DEFAULT
The default mode

Required Preconditions

I12Cs_lsReceptionCompleted

Functions called None

Postconditions None

See also None
Notes:

1. In 12Cs_DEFAULT mode, you should use 12Cs_IsReceptionCompleted to detect the start
condition. As by default the slave is considered as a receiver.

2. You can directly call this function to get the mode of communication after getting Address
matched condition irrespective of whether it is 7-bit or 10-bit address detection.

3. If you are calling this function in a loop for detecting the mode of communication then control
will not come out of this loop till the first BTF condition occurs. So if BTF is never set then the
program will lose control in the above loop. In this case you can use note (1) to tackle this
problem to detect the error condition inside the loop.

4

109/235

Function Descriptions

Table 66. 12Cs_PutBuffer

Function Name 12Cs_PutBuffer

Function Prototype

12Cs_ErrCode_t 12Cs_PutBuffer(unsigned char *PtrTo-
Buffer, unsigned char MaxSize)

Behaviour Description

Transmits data buffer from the user defined area for
I2C_POLLING_TX mode. The data transmission will dis-
continue, if any error occurs during transmission and the
error status will be returned.

Input Parameter 1

*PtrToBuffer
Start address of the user buffer

MaxSize
Input Parameter 2

The maximum no of bytes to be transmitted

I2Cs_BERR

ed correctly.

buffer.

An bus error has occurred

I2Cs_ADDRESS_DETECTED

If the device address is matched
12Cs_GENERAL_CALL

If the general call is detected

Output Parameters 12Cs_TX_DATA_OK

If there is no error in data transmission and stop is detect-

12Cs_OVERFLOW_TX

If transmission has taken place correctly but the some
byte transmitted will be dummy bytes (OxFF). As the no of
bytes transmitted are more than the maximum size of the

Required Preconditions

1. You must define 12C_POLLING_TX mode in
ST7lib_config.h

2. 12C communication mode must be detected through the
[12Cs_GetCommMode

Functions called None

Postconditions None

See also mode)

12Cs_GetBuffer, 12Cs_PutBuffer (I12C Interrupt driven

* The maximum size of the buffer is under user control.

Notes:
— This function is only for 12C_POLLING_TX mode.

— Here, an Acknowledge Failure (12Cs_TX_AF) error is not returned as it is handled internally.

Caution: Control can be lost if 12C is disabled while using this function for 12C Polling mode.

Overflow condition: The overflow bytes neglected through dummy bytes (OxFF).

110/235

4

Function Descriptions

Table 67. 12Cs_PutBuffer

‘I12C interrupt driven’

Function Name

12Cs_PutBuffer

Function Prototype

Void 12Cs_PutBuffer(unsigned char *PtrToBuffer, un-
signed char MaxSize)

Behaviour Description

Starts transmission of data from the user defined area by
initializing the transmission buffer for
[2C_ITDRV_WITHOUTBUF_TX mode

Input Parameter 1 “PtrToBuffer

Start address of the user buffer
Input Parameter 2 MaxSize

Size of the buffer
Output Parameters None

Required Preconditions

1. You must define 12C_ITDRV_WITHOUTBUF_TX mode
in ST7lib_config.h

2. 12C communication mode must be detected through the
[12Cs_GetCommMode

Functions called

None

Postconditions

[2Cs_IsTransmitCompleted should be called to know the
current status of transmission

See also

12Cs_PutBuffer (12C Polling mode)

* The maximum size of the buffer is under user control.
Note: The above function is only for [2C_ITDRV_WITHOUTBUF_TX mode.

Caution:

— Any data transmitted before using this function will be neglected through dummy byte

Overflow condition: The overflow bytes are neglected through dummy bytes.

Table 68. 12Cs_PutByte

Function Name

12Cs_PutByte

Function Prototype

Void 12Cs_PutByte (unsigned char Tx_Byte)

Behaviour Description

Transmits single byte on the 12C bus

Tx_Byte
Input Parameter .

The byte to be transmit on the 12C bus
Output Parameters None

Required Preconditions

1) 12Cs_GetCommMode must have been called before
transmitting first byte to check whether the
12Cs_TX_MODE is selected or not

2) Transmission of previous data has been taken success-
fully, which should be checked through the
[2Cs_IsTransmitCompleted

Functions called

None

Postconditions

None

See also

12Cs_GetByte

(572

111/235

Function Descriptions

Table 69. 12Cs_IsTransmitCompleted

Function Name 12Cs_IsTransmitCompleted
Function Prototype 12Cs_ErrCode_t 12Cs_IsTransmitCompleted (void)
Returns the current status of 12C in transmission mode for
Behaviour Description Single Byte (Polling and Interrupt both), and Interrupt
mode Buffer I2C communication
Input Parameters None
Common:
12Cs_TX_AF

If Acknowledge failure condition is detected. Also the SCL
and SDA lines are released inside the function
12Cs_BERR

If misplaced start or stop condition detected
I2Cs_ADDRESS_DETECTED

If Address matched condition is detected
I2Cs_GENERAL_CALL

If the general call is detected

12Cs_DEFAULT_STATUS
No communication event has occurred

Byte Specific:
I2Cs_TX _DATA_OK
Transmission of current byte has taken place successfully

12Cs_STOP_DETECTED
If the stop condition is detected

Output Parameters

Buffer Specific:

12Cs_BUFF_TX_ONGOING

If the transmission of the buffer is ongoing successfully
12Cs_TX_DATA_OK

Transmission has taken place successfully and Stop con-
dition is detected

12Cs_OVERFLOW_TX

Transmission has taken place successfully and stop is de-
tected correctly. But overflow condition has occurred
Check through 12Cs_GetCommMode If 12Cs_TX_MODE
is selected or not

Required Preconditions

Functions called None

Postconditions None

See also I12Cs_lIsReceptionCompleted
Notes:

— The above function is for both polling and Interrupt driven mode. But in I2C_POLLING_TX
mode, this function is used in conjunction with 12Cs_PutByte only.

112/235 ‘ﬁ

Function Descriptions

— SCL and SDA lines are released in this function in case of Acknowledge failure and commu-
nication proceeds according to the 12C protocol. This function should be called again to de-
tect the next event (START / STOP).

Table 70. 12Cs_GetBuffer

Function Name 12Cs_GetBuffer

I12Cs_ErrCode_t 12Cs_GetBuffer(unsigned char *PtrTo-
Buffer, unsigned char MaxSize)

Receives data bytes in 12C_POLLING_RX mode and
stores in the buffer, whose start address is passed as
pointer. The data reception will discontinue, if any error oc-
curs during reception and the error status will be returned .

Function Prototype

Behaviour Description

*PtrToBuffer

Input Parameter 1
Start address of the user buffer
MaxSize

Input Parameter 2 . .
Maximum size of the buffer
12Cs_BERR

Bus error is detected

12Cs_ADDRESS_DETECTED

If address matched condition is detected
12Cs_GENERAL_CALL

If general call is detected

12Cs_RX_DATA_OK

If there is no error in data transmission and stop condition
is detected correctly

12Cs_OVERFLOW_RX

If reception has taken place correctly but overflow condi-
tion has occurred

1. You must define 12C_POLLING_RX mode in
ST7lib_config.h.

2. 12C communication must be detected through the
[2Cs_GetCommMode.

Output Parameters

Required Preconditions

Functions called None
Postconditions None
12Cs_GetBuffer (12C Interrupt driven mode),
See also
12Cs_PutBuffer
Notes:

— The above function is only for 2C_POLLING_RX mode.
— Control from this function comes only after receiving a STOP or any Error condition.
Caution: You can lose the control if I2C is disabled while using this function.

172 113/235

Function Descriptions

Table 71. 12Cs_GetBuffer

‘I12C Interrupt driven’

Function Name

12Cs_GetBuffer

Function Prototype

Void 12Cs_GetBuffer (unsigned char *PtrToBuffer, un-
signed char MaxSize)

Behaviour Description

Starts reception of data from the user defined area by ini-
tializing the reception buffer in the
[2C_ITDRV_WITHOUTBUF_RX mode.

Input Parameter 1 “PtrToBuffer

Start address of the user buffer
Input Parameter 2 MaxSize

Size of the buffer
Output Parameters None

Required Preconditions

1. You mustdefine I2C_ITDRV_WITHOUTBUF_RX mode
in ST7lib_config.h

2. 12Cs_RX_MODE must be detected through
12Cs_GetCommMode before calling this function

Functions called

The status of the reception should be checked through
I12Cs_IsReceptionCompleted function

Postconditions

None

See also

12Cs_GetBuffer (I12C Polling mode)

Note: The above function is only for 12C_ITDRV_WITHOUTBUF_RX mode.

Table 72. 12Cs_GetByte

Function Name

12Cs_GetByte

Function Prototype

Unsigned char 12Cs_GetByte(void)

Behaviour Description

Returns received byte from 12C bus

Input Parameters

None

Output Parameters

Received data byte

Required Preconditions

12Cs_GetCommMode must have been called before re-
ceiving first byte or reception of previous data has taken
successfully, which should be detected through
I12Cs_lIsReceptionCompleted.

Functions called

None

Postconditions

None

See also

12Cs_PutByte

114/235

4

Function Descriptions

Table 73. 12Cs_IsReceptionCompleted

Function Name 12Cs_IsReceptionCompleted
Function Prototype 12Cs_ErrCode_t 12Cs_IsReceptionCompleted(void)
Returns the current status of 12C in reception mode for
Behaviour Description Single Byte (Polling and Interrupt both), and Interrupt
mode Buffer I2C communication
Input Parameters None
Common
12Cs_BERR

If bus error is detected
I2Cs_ADDRESS_DETECTED

If the start condition is detected
12Cs_GENERAL_CALL

If general call is detected
12Cs_EMPTY

The first byte has not received yet
12Cs_DEFAULT_STATUS

No Communication event has occurred after receiving first
byte

Byte Specific

12Cs_RX_DATA_OK

Reception of the current byte has taken place successfully
12Cs_STOP_DETECTED

If the stop condition is detected

Output Parameters

BufferSpecific

12Cs_BUFF_RX_ONGOING

If the reception is ongoing successfully
12Cs_RX_DATA_OK

Reception has taken place successfully and stop is detect-
ed correctly

12Cs_OVERFLOW_RX

Reception has taken place successfully and stop is detect-
ed correctly. But overflow condition has occurred.

Required Preconditions None

Functions called None

Postconditions None

See also 2Cs_IsTransmitCompleted
Notes:

— The above function is for both Polling and Interrupt driven Mode. But in 12C_POLLING_RX
it is used only with 12Cs_GetByte.

172 115/235

Function Descriptions

— If this function is called before any reception request is made then it will return 12C_EMPTY
until the first data byte is received, and returns the reception status thereafter. If a reception
request is over, this function will return the error status of that request only once.

Table 74. 12Cs_ErrorClear

Function Name 12Cs_ErrorClear

Function Prototype Void I12Cs_ErrorClear (void)
Behaviour Description Clears the error flags, if there are any
Input Parameters None

Output Parameters None

Required Preconditions None

Functions called None

Postconditions None

See also None

Note: You can call this function, whenever the error flags are required to be cleared forcibly.

Caution: Do not call this function if a reception request iOs ongoing as it will corrupt the recep-
tion status by clearing all the flags and you will not receive the error status.

Table 75. 12Cs_PeripheralDisable

Function Name 12Cs_PeripheralDisable

Function Prototype Void 12Cs_PeripheralDisable (void)

Behaviour Description Disables the peripheral

Input Parameters None

Output Parameters None

Required Preconditions None

Functions called None

Postconditions You must call I2Cs_lInit after this to reconfigure the periph-
eral.

See also None

Note: When you disable the peripheral, all registers are also cleared except the Stop bit and
address registers. So to reinitiate the communication, the 12C peripheral needs to be initial-
ized again.

4

116/235

Function Descriptions

Table 76. 12Cs_ITFunction

Function Name 12Cs_ITFunction
Function Prototype Void I12Cs_ITFunction (void)

Transmits or receives data in Interrupt mode. You must
call this function inside the interrupt service routine.

Behaviour Description

Input Parameters None

Output Parameters None

Required Preconditions The I.ZC should be configured properly through 12Cs_Init
function

Functions called None

Postconditions None

See also None

Note: You must use this function only inside the Interrupt service routine.

Caution: Special care must be taken when you write code with this function inside the interrupt
service routine. You are advised to call only this function inside Interrupt service routine. Oth-
er wise, data transfer synchronisation will be affected, which may lead to data loss or errors.

EXAMPLE:
The following C program shows the uses of the 12C functions.

Program Description:

This program runs the following sequence for the 12C slave (ST72F63B device) for 12C
Polling and 12C Interrupt driven communication modes:

1. Transmits a single byte passed by the user and receives single byte of data in 7-bit ad-
dressing mode,

2. Transmits and receives the10 bytes of data in 7-bit addressing mode.

The following modes are used for transmission and reception,
7-bit Tx - 7-bit master transmitter,
7-bit Rx - 7-bit master receiver,
You can select any one pair of the following communication modes.

For Polling Mode,

[2C_POLLING_TX -- For Transmission mode

[2C_POLLING_RX -- For Reception mode
For Interrupt Driven Mode,

[2C_ITDRV_WITHOUTBUF_TX -- For Transmission mode

[2C_ITDRV_WITHOUTBUF_RX -- For Reception mode

/* You can use a time out function to handle the fault in which the control will get
stuck inside a loop.This function should have the Boolean return, i.e it should return
TRUE if the expected wait Time is not elapsed and FALSE if it is elapsed.*/

172 117/235

Function Descriptions

Software Control

Wait loop User defined time out function

The following variables are declared in main.h file.

main.h:
#ifndef MAIN
#define MAIN

void I2Cs_User_IT_Routine(void) ;

void main(void) ;

BOOL Time_Out (void) ; /* Prototypes of user function */
void User_Function (void) ;

unsigned int count=0;

#endif

/* Program Start */

/* This example code explains the usage of I2C slave in the transmitter
and receiver mode.First the slave is configured as a transmitter and it
transmits 10 bytes of data from the user buffer.Then it is configured as a
receiver and it reads the same 10 bytes of data and they are compared.

In case of any mismatch control gets struck in a loop*/

#include "ST71ib_config.h"

#include "main.h"

unsigned char Buff_In[9]= {0x00};

unsigned char Buff_oOut[]={1,2,3,4,5,6,7,8,9};

void main (void) /* This is for polling & interrupt driven */

{

unsigned char OAR1Value = 0x30;

unsigned char OAR2Value = 0x00;

unsigned char maxsize = 9,single_byte = 0x05, first_byte = 0x00;
BOOL TX_STATUS = TRUE;

I2Cs_ErrCode_t Error_Status = I2Cs_DEFAULT_STATUS;

I2Cs_Mode Comm_Mode = I2Cs_DEFAULT;

unsigned int i;

EnableInterrupts
I2Cs_Init (((unsigned char) I2Cs_ENABLE_ACK) | ((unsigned char)
I2Cs_ENABLE_ENGC) ,0OAR1Value, OAR2Value) ; /* ACK bit is set */

118/235

(572

Function Descriptions

Error_Status=I2Cs_IsReceptionCompleted() ;
while((!Time_Out ()) && (Error_Status != I2Cs_ADDRESS_DETECTED))
/* Time_out () is bring before to remove side-efffect error */
{
Error_Status=I2Cs_IsReceptionCompleted() ;

Comm_Mode=I2Cs_GetCommMode () ;
while (Comm_Mode == I2Cs_DEFAULT)
{
Comm_Mode=I2Cs_GetCommMode () ; /* checking for communication mode */

/***************** POlllng Mode Transmission ****************************/
if (Comm_Mode == I2Cs_TX_MODE) /* transmitter mode */
{

/* SINGLE BYTE TRANSMISSION */
I2Cs_PutByte (single_byte) ;
Error_Status=I2Cs_IsTransmitCompleted() ;
while((! (Time_Out())) && (Error_Status != I2Cs_TX_DATA_OK))
{
Error_Status=I2Cs_IsTransmitCompleted() ;
}
switch(Error_Status)
{
case I2Cs_TX_AF:
case I2Cs_BERR:
case I2Cs_DEFAULT_STATUS:
case I2Cs_STOP_DETECTED:
case I2Cs_GENERAL_CALL:
case I2Cs_ADDRESS_DETECTED:
User_Function() ;
break;
default:
User_Function() ;
break;

/********** BUFFER TRANSMISSION ****************************/
/******** POLLINGMODE *************************************/
#ifdef I2C_POLLING_TX
Error_Status = I2Cs_PutBuffer (Buff_Out,maxsize);
switch (Error_Status)
{
case I2Cs_TX_DATA_OK:
case I2Cs_OVERFLOW_TX:
break;

case I2Cs_BERR:

case I2Cs_ADDRESS_DETECTED:

case I2Cs_GENERAL_CALL:
User_Function() ;
break;

default:
User_Function() ;

119/235

4

Function Descriptions

break;
}
#endif

J*Rxxxkk*k and Of POLLIng MOAE * * * % % % kk ks %k kkok ok %k kkokk Xk kkkk x k /
/ * & F ok x k%% TNTERRUPT DRIVEN MODE * % % % % % % % s o & % & & % % & ok & % &k ok ok &k kk Xk ok k k& kK /
#ifdef I2C_ITDRV_WITHOUTBUF_TX

I2Cs_PutBuffer (Buff_Out,maxsize) ;
Error_Status=I2Cs_IsTransmitCompleted() ;

while((! (Time_Out())) && ((Error_Status != I2Cs_TX_DATA_OK) && (Error_Status
1= T2Cs_OVERFLOW_TX)))
{
Error_Status=I2Cs_IsTransmitCompleted() ;

switch(Error_Status)
{
case I2Cs_BUFF_TX_ONGOING:
Error_Status=I2Cs_IsTransmitCompleted() ;
while ((Error_Status != I2Cs_TX_DATA_OK) && (Error_Status !=
I2Cs_OVERFLOW_TX))

Error_Status=I2Cs_IsTransmitCompleted() ;
}
break;

case I2Cs_TX_DATA_OK:
case I2Cs_OVERFLOW_TX:
break;

case I2Cs_TX_AF:
case I2Cs_BERR:
case I2Cs_GENERAL_CALL:
case I2Cs_ADDRESS_DETECTED:
case I2Cs_DEFAULT_ STATUS:
User_Function() ;
break;
default:
User_Function() ;
break;
}
#endif
/****************END OF INTERRUPT DRIVENMODE *******************/
}

/***************************‘k‘k‘k*****************************/

/******* RECEIVER ROUTINE ******************/

Error_Status=I2Cs_IsReceptionCompleted() ;
while((! (Time_Out()))&& ((Error_Status != I2Cs_ADDRESS_DETECTED) && (Error_Status
!= I2Cs_GENERAL_CALL)))
{
Error_Status=I2Cs_IsReceptionCompleted() ;

120/235

4

Function Descriptions

}
Comm_Mode=I2Cs_GetCommMode () ;
while ((Comm_Mode == I2Cs_DEFAULT))
{
Comm_Mode=I2Cs_GetCommMode () ;

if (Comm_Mode == I2Cs_RX_MODE) /* POLLING AND INTERRUPT DRIVEN RECEIVER */
{

Error_Status=I2Cs_IsReceptionCompleted() ;

/* ONE BYTE RECEPTION */

while((! (Time_Out())) && (Error_Status != I2Cs_RX_DATA_OK))
{
Error_Status=I2Cs_IsReceptionCompleted() ;
}
switch (Error_Status)
{
case I2Cs_RX_DATA_OK:
first_byte=I2Cs_GetByte();
break;
case I2Cs_STOP_DETECTED:
case I2Cs_BERR:
case I2Cs_GENERAL_CALL:
case I2Cs_ADDRESS_DETECTED:
case I2Cs_EMPTY:
case I2Cs_DEFAULT_ STATUS:
User_Function() ;
break;
default:
User_Function() ;
break;

/**********************BUFFER RECEPTION ***********************/

/*****************POLLINGMODE ********************************/

#ifdef I2C_POLLING_RX
Error_Status=I2Cs_GetBuffer (Buff_In,maxsize);
switch (Error_Status)
{
case I2Cs_RX_DATA_OK:
case I2Cs_OVERFLOW_RX:
break;
case I2Cs_BERR:
case I2Cs_ADDRESS_DETECTED:
case I2Cs_GENERAL_CALL:
User_Function() ;
break;
default:
User_Function() ;
break;
}
#endif

/********* end Of pollingmode **'k'k******************************/

/************INTERRUPT DRIVENMODE *****************************/

172 121/235

Function Descriptions

#ifdef I2C_ITDRV_WITHOUTBUF_RX
Error_Status=I2Cs_IsReceptionCompleted() ;
while ((! (Time_Out())) && (Error_Status != I2Cs_RX_DATA_OK))
{

Error_Status=I2Cs_IsReceptionCompleted() ;

switch (Error_Status)
{
case I2Cs_BUFF_RX_ONGOING:
case I2Cs_OVERFLOW_RX:
case I2Cs_BERR:
case I2Cs_EMPTY:
case I2Cs_ADDRESS_DETECTED:
case I2Cs_GENERAL_CALL:
User_Function() ;
break;
case I2Cs_RX_DATA_OK:
break;
default:
User_Function() ;
break;

I2Cs_GetBuffer (Buff_In,maxsize);

Error_Status=I2Cs_IsReceptionCompleted() ;
while((! (Time_Out())) && (Error_Status != I2Cs_RX_DATA_ OK))
{

Error_Status=I2Cs_IsReceptionCompleted() ;

switch (Error_Status)
{
case I2Cs_BUFF_RX_ONGOING:
case I2Cs_OVERFLOW_RX:
case I2Cs_BERR:
case I2Cs_EMPTY:
case I2Cs_ADDRESS_DETECTED:
case I2Cs_GENERAL_CALL:
User_Function() ;
break;
case I2Cs_RX_DATA_OK:
break;
default:
User_Function() ;
break;

#endif

/****************END OF INTERRUPT DRIVENMODE *******************/

122/235

} /* END OF RECEIVER ROUTINE */

4

Function Descriptions

/**/

/**** COMPARE THE TRANSMITTED AND RECEIVED BYTES ******/

while (single_byte != first_byte);
for (1=0;i<maxsize;1++)
{ //add braces

while(Buff_Out[i] !'=Buff_In[i]);
}
/**/
while (1) ;

} /* End of the main */

/2y
ROUTINE NAME : User_IT_Routine

INPUT : None

OuTPUT : None

DESCRIPTION : Control comes into this routine when an interrupt is generated.
User can use the I2C interrupt service routine function for
slave or he can write his own code inside this routine at his
own risk.The data transfer syncronisation may be affected if
user includes his own code along with I2C ISR function.

COMMENT'S : None
___ */

#ifdef _HIWARE_ /* Test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else

#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt /* Cosmic interrupt handling */
#else

#error"Unsupported Compiler!" /* Compiler Defines not found! */
#endif

#endif

void I2Cs_User_IT Routine (void)
{

I2Cs_ITFunction() ;
}

/***

Time_Out Function
**/

BOOL Time_Out (void)

{
while (count < 5000)
{
count++ ;
return (FALSE) ; /* Time-out not elapsed */
}
return (TRUE) ; /* Time-out elapsed */
}

void User_Function (void)
{
I2Cs_ErrorClear();
/* user can include his code here */

4

123/235

Function Descriptions

9.1.6 16-bit TIMER (TIMER)

This software library for the 16-bit TIMER can be used for both Timer A and Timer B. To use
any of the timers you have to replace x by A or B.

Function Name TIMERX_Init

Function Prototype Void TIMERX_Init(Typ_Timer_InitParameter InitValue)

Initializes the timer control registers and status register to
their default values. Timer clock can be selected as Fcpu/
2, Fcpu/8 and external clock can also be set. Default value
of clock is Fcpu/4.

TIMER_FCPU_2

Timer clock is set to Fcpu/2
TIMER_FCPU_4

Timer clock is set to Fcpu/4
TIMER_FCPU_8

Timer clock is set to Fcpu/8
TIMER_EXCLK_F

Timer counter will be triggered through the falling (trailing)
edge of external clock.

TIMER_EXCLK_R

Timer counter will be triggered through the rising (leading)
edge of external clock.

TIMER_DEFAULT
Reset value (Default value)

Behaviour Description

Input Parameters

Output Parameters None
Required Preconditions None
Functions called None
Postconditions Timer clock is configured correctly.
See also None

Note: Timer B available in ST72F521, ST72F264, ST72325 and ST7232A.

4

124/235

Function Descriptions

Table 77. TIMERXx_IT_Enable

Function Name

TIMERx_IT_Enable

Function Prototype

Void TIMERxX_IT_Enable(Typ_Timer_EITParameter EITVal-
ue)

Behaviour Description

Enables the timer interrupts. One or more input parameters
can be passed by logically ORing them together.

Input Parameters

TIMER_OCMP_IT_ENABLE

Enables the output compare interrupts
TIMER_ICAP_IT_ENABLE "
Enables the input capture interrupts
TIMER_OVF_IT_ENABLE

Enables the timer overflow interrupt

Output Parameters None
Required Preconditions None
Functions called None

Postconditions

Interrupts are enabled for a particular flag. You also have to en-
able the interrupt with instruction ‘rim’.

See also

TIMERx_IT_Disable

1) Not available in ST72F65.

Note: Timer B available in ST72F521, ST72F264, ST72325 and ST7232A.

Table 78. TIMERx_IT_Disable

Function Name

TIMERx_IT_Disable

Function Prototype

Void TIMERX_IT_Disable(Typ_Timer_DITParameter DIT-
Value)

Behaviour Description

Disables the interrupts. One or more input parameters can be
passed by logically ORing them together.

Input Parameters

TIMER_OCMP_IT_DISABLE

Disables the output compare interrupts
TIMER_ICAP_IT_DISABLE "
Disables the input capture interrupts
TIMER_OVF_IT_DISABLE

Disable the timer overflow interrupt

Output Parameters

None

Required Preconditions

Any Interrupts enabled.

Functions called

None

Postconditions

Interrupts are masked due to a particular flag.

See also

TIMERX_IT_Enable

1) Not available in ST72F65.

Note: Timer B available in ST72F521, ST72F264, ST72325 and ST7232A.

(572

125/235

Function Descriptions

Table 79. TIMERx OCMP_Mode

Function Name

TIMERx_OCMP_Mode

Function Prototype

Void TIMERx_OCMP_Mode(Timer_Compare CMP, un-
signed int OCR_VALUE, Timer_Olevel OUTPUT_L)

Behaviour Description

Configures the timer in Output compare or Forced compare
mode, depending upon the input parameter passed. This
function should be called twice in order to get both the com-
pare mode OCMP1 & OCMP2.

Input Parameter 1

TIMER_OCMP_X

X=1, output compare1 mode is selected.
X=2, output compare2 mode is selected.
TIMER_FORCDCMP_Y

Y =1, Forced compare 1 is selected.

Y =2, Forced compare 2 is selected.

Input Parameter 2

OCR_VALUE
You can select this value from 0x0000 to OxFFFF.

Input Parameter 3

TIMER_OUTPUT_F
A low level is reflected at the output compare pin after suc-
cessful comparison.
TIMER_OUTPUT_R

A high level is reflected at the output compare pin after suc-
cessful comparison.

Output Parameters None
Required Preconditions Timer correctly initialized.
Functions called None

Postconditions

Timer starts functioning in either of the above selected
mode and compare flag is set whenever the compare oc-
curs.

See also

None

Note: If you select Forced compare mode, the input parameter 2 will not affect the output
waveform and hence you can pass any value between 0x0000 to OXFFFF.

126/235

4

Function Descriptions

Table 80. TIMERXx ICAP_Mode

Function Name

TIMERx_ICAP_Mode

Function Prototype

Void TIMERXx_ICAP_Mode(Timer_Icap ICAP_I,
Timer_Edge EDGE_SELECT_Y)

Behaviour Description

Configures the timer to Input capture mode. It determines
the type of level transition on input capture pins.This func-
tion should be called twice in order to use both ICAP1 &
ICAP2.

Input Parameter 1

TIMER_ICAP_I

where | can be 1 or 2.

I =1, Input capture 1 is selected.
| = 2, Input capture 2 is selected.

Input Parameter 2

TIMER_EDGE_Y

where Y can be O or 1.

Y= 0, Capture occurs at falling edge.
Y= 1, Capture occurs at the rising edge.

Output Parameter

None

Required Preconditions

1. Input Capture pin used must be configured as floating
input.

2. Only input capture 2 can be used if PWM or OPM is ac-
tive.

Functions called

None

Postconditions

1. Timer configured for input capture mode.

2. To detect the occurrence of valid edge, you can poll the
input capture flag using the function
TIMERXx_Status_Flag. This is in case you have not ena-
bled the input capture interrupt.

See also

TIMERXx_Status_Flag, TIMERx_PWM_Mode,
TIMERx_OPM_Mode, TIMERX_ICAP_Getvalue

1) Function not available in ST72F65.

4

127/235

Function Descriptions

Table 81. TIMERx_PWM_Mode

Function Name

TIMERx_ PWM_Mode "

Function Prototype

Void TIMERx_PWM_Mode(Timer_Olevel
OUTPUT1_L,Timer_Olevel OUTPUT2_L,unsigned int
OCR1_VALUE,unsigned int OCR2_VALUE)

Behaviour Description

Configures the timer in Pulse width modulation mode. It
enables the generation of a signal with frequency and duty
cycle depending upon input parameters given by user. If
both PWM and OPM modes are active then only PWM
works. In PWM mode, ICAP1 pin cannot be used for input
capture function, but ICAP2 can be used.

Input Parameter 1

TIMER_OUTPUT1_F

Low level is reflected at the output compare1 pin after suc-
cessful comparison of output compare1 register with free
running counter.

TIMER_OUTPUT1_R
High level is reflected at the output compare1 pin after

successful comparison of output compare1 register with
free running counter.

Input Parameter 2

TIMER_OUTPUT2_F

Low level is reflected at the output compare1 pin after suc-
cessful comparison of output compare2 register with free
running counter.

TIMER_OUTPUT2_R
High level is reflected at the output compare1 pin after

successful comparison of output compare2 register with
free running counter.

Input Parameter 3

OC1R_VALUE
You can select this value from 0x0000 to OxFFFF.

Input Parameter 4

OC2R_VALUE
You can select this value from 0x0000 to OxXFFFF.

Output Parameters

None

Required Preconditions

1.Timer correctly configured.

2.Timer interrupt due to input capture 1 can be used by en-
abling the input capture interrupt.

Functions called

None

Postconditions

1.Timer is active in Pulse width modulation mode and
waveform can be seen on OCMP1 pin.

2. Output compare interrupt is inhibited.

See also

TIMERx_Init, TIMERx_ICAP_Mode

1) Function not available in ST72F65.
Notes:
— Flags for compare1 & compare 2 can
output compare interrupt is inhibited.

128/235

not be set by hardware in PWM mode, therefore the

(572

Function Descriptions

— The flag due to capturei is set by hardware when counter reaches the output compare 2
register value and can produce the timer interrupt if the input capture interrupt is enabled and
the instruction ‘rim’ is used to clear the ‘I’ bit in CC register.

— By enabling the Forced compare mode or OPM mode while PWM mode is enabled,the po-
larity of the PWM Output waveform may change.

4

129/235

Function Descriptions

Table 82. TIMERx_OPM_Mode

Function Name TIMERx_OPM_Mode "

Void TIMERx_OPM_Mode(Timer_Edge
EDGE_SELECT_Y,Timer_Olevel
OUTPUT1_L,Timer_Olevel OUTPUT2_L, unsigned int
OCR_VALUE)

Configures the timer in One Pulse Mode. It enables the
generation of a pulse when an external event occurs. If
Behaviour Description both PWM and OPM modes are active then OPM will not
work. In OPM,OCMP1 cannot be used for output compare
only OCMP2 is available for output compare.
TIMER_EDGE_X

Input Parameter 1 X =0, input capture1 occurs at falling edge.

X =1, input capture1 occurs at rising edge.
TIMER_OUTPUT1_F

Low level is reflected at the output compare1 pin after suc-
cessful comparison of output comparei register with free
running counter.

TIMER_OUTPUT1_R

High level is reflected at the output compare1 pin after
successful comparison of output compare1 register with
free running counter.

TIMER_OUTPUT2_F

Low level is reflected at the output compare1 pin after suc-
cessfully capturing edge at ICAP1 pin.
TIMER_OUTPUT2_R

High level is reflected at the output compare1 pin after
successfully capturing edge at ICAP1 pin.

Function Prototype

Input Parameter 2

Input Parameter 3

OCR _VALUE
Input Parameter 4 .

You can select this value from 0x0000 to OxFFFF.
Output Parameter None

1. ICAP1 pin used must be configured as floating input.
2. To get OPM active, PWM must be disabled.
Functions called. None

1. Input capturei flag is set.

2.Timer is active in One pulse mode and waveform can be
seen on OCMP1 pin.

3.0nly Input capture 2 function can be used.
See also TIMERXx_PWM_Mode

1) Function not available in ST72F65.
Notes:
— The compare 1 flag can not be set by hardware but the compare interrupt can be generated
when the compare 2 flag is set.

Required Preconditions

Postconditions

130/235 172

Function Descriptions

— To perform the input capture only the ICAP2 pin can be used, not the ICAP1 pin. Take care
that the counter is reset each time a valid edge occurs on ICAP1 pin and that the capture 1
flag can also generate interrupts if the input capture interrupt is enabled and the ‘rim’ instruc-

tion has been used to clear the I-bit.

— When OPM is used, the input capturel register is dedicated to this mode. Similarly output
compare 2 cannot be used as level OLVL2 is dedicated to OPM.

— By enabling the Forced compare mode while OPM mode is enabled, the polarity of the OPM

Output waveform may change.

Table 83. TIMERx_ICAP_Getvalue

Function Name

TIMERx_ICAP_Getvalue "

Function Prototype

Unsigned int TIMERx_ICAP_Getvalue(Timer_Icap
ICAP_I)

Behaviour Description

Returns the input capturel or input capture 2 register val-
ue depending upon the input parameter passed. This
function should be called twice in order to get both input
capture1 and input capture2 register values.

Input Parameters

TIMER_ICAP_I

where | can be 1 or 2.

=1

Input capture 1 register value is returned
=2

Input capture 2 register value is returned

Output Parameters

Input capture 1 or Input capture 2 register value. The re-
turned value can be in the range 0x0000 to OxFFFF.

Required Preconditions

ICF1 and/or ICF2 =1

You have to call this function after the ICF1 and/or ICF2
flag is set, to get the capture value.

Functions called

None

Postconditions

Input capture 1 or Input capture 2 register value is re-
turned.

See also

TIMERX_ICAP_Mode

1) Function not available in ST72F65.

Note: The input capture flag gets cleared if this function is called after the

TIMERx_Status_Flag.

4

131/235

Function Descriptions

Table 84. TIMERXx_Status_Flag

Function Name

TIMERXx_Status_Flag

Function Prototype

Bool TIMERXx_Status_Flag(Timer_Flag FLAG_F)

Behaviour Description

Checks the status of any one of the timer flags depending
upon the input parameter. The function can be called more
than once for checking more than one flag.

Input Parameters

TIMER_FLAG_F
where F can be OCF1, OCF2, ICF1, ICF2 or OVF.
F = OCF1

checks for OCF1 flag
F =OCF2

checks for OCF2 flag
F = ICF1

checks for ICF1 flag)
F =ICF2

checks for ICF2 flag)
F =OVF

check for OVF flag

Output Parameters

TRUE or FALSE
If TRUE: flag is set.
If FALSE: flag is not set.

Required Preconditions

Timer must be configured in any one of the modes.

Functions called

None

Postconditions

If TRUE, timer flag is set and can be cleared by calling
TIMERX_Clear_Flag.

If FALSE, timer flag is not set and this function can be
looped till the flag is set.

See also

TIMERx_Clear_Flag

1) Function not available in ST72F65.

132/235

4

Function Descriptions

Table 85. TIMERXx Mode Disable

Function Name TIMERx_Mode_Disable

Function Prototype Void TIMERx_Mode_Disable(Timer_Mode MODE_M)
Disables the timer mode depending upon Input parameter

Behaviour Description passed. This function should be called more than once to

disable more than one mode.
TIMER_MODE_M

where Mcanbe 1,2, 3,4,5,6,7,8,9.

M=1, Output compare1 mode (OCMP1)
M=2, Output compare 2 mode (OCMP2)
M=3, Input capture 1 mode (ICAP1) ")

Input Parameter M=4, Input capture 2 mode (ICAP2) R

M=5, Pulse width modulation mode (PWM) 1)
M=6, One pulse modulation mode (OPM) ")
M=7, Forced compare1 mode (FORCDCMP1)
M=8, Forced compare2 mode (FORCDCMP2)
M=9, timer prescalar, counter and outputs disabled

Output Parameters None
Required Preconditions Timer active in any of the modes.
Functions called None

Selected timer mode is disabled and the Corresponding
status flag is cleared.

See also None

Postconditions

1) Function not available in ST72F65.

4

133/235

Function Descriptions

Table 86. TIMERx_Clear_Flag

Function Name

TIMERx_Clear_Flag.

Function Prototype

Void TIMERx_Clear_Flag(Timer_Flag FLAG_F)

Behaviour Description

Clears the status flag depending upon the input parameter
passed. This function can be called more than once to
clear more than one flag.

Input Parameters

TIMER_FLAG_F
where F can be ICF1,ICF2,0CF1,0CF2 or OVF
F=ICF1 "

Clears the Input Capture1 Flag.
F=ICF2"

Clears the Input Capture2 Flag.
F = OCF1

Clears the output compare1 Flag.
F = OCF2

Clears the output compare2 Flag.
F = OVF

Clears the timer overflow Flag.

Output Parameters

None

Required Preconditions

ICF1=1 or ICF2=1 or OVF=1 or OCF1=1 or OCF2=1

Functions called

None

Postconditions

Selected status flag is cleared.

See also

TIMERXx_IT_Routine, TIMERx_Status_Flag

1) Function not available in ST72F65.

134/235

4

Function Descriptions

EXAMPLE:

The following C program shows the use of the TIMERX functions. Here, x=A as TIMERA is
used. You must define TIMERA in ST7lib_config.h.

Program description:

It compares the output compare?2 register value with the free running counter, checks the oc-
currence of (event) leading edge at ICAP2 pin. It generates PWM signal with a frequency of
10KHz and a Duty cycle of 33% on the OCMP1 pin, if _Enable_PWM_ is defined in
ST7lib_confi.h or it generates a 5ms pulse at OCMP1 pin, if _Enable_OPM__ is defined in
ST7lib_config.h (Fcpu = 8 MHz).

/* Program start */

#include "st71ib_config.h"

//prototype declaration
void main (void) ;
void TIMERA_IT Routine(void) ;

void main (void)
{
unsigned int OCR_VALUE = 0x2050;
IO_Input (IO_FLOATING,IO_PORT_F, ((unsigned char)IO_PIN_5 \ (unsigned char)

IO_PIN_6)) ;

/* ICAP1,ICAP2 pins asloating input */
TIMERA_Init (TIMER_FCPU_S8) ; /* Timer Clock to Fcpu/8 and reset counter */
EnableInterrupts /* Clear I bit in CC reg */
/* Timer compares 0x2050 with free running counter */
TIMERA_OCMP_Mode (TIMER_OCMP_2, OCR_VALUE, TIMER_OUTPUT R) ;
while (! (TIMERA_Status_Flag (TIMER_FLAG_OCF2)== TRUE)) ;
TIMERA_Clear_Flag (TIMER_FLAG_OCF2) ; /* Clear output compare2 flag */
TIMERA_IT_ Enable (TIMER_ICAP_IT_ENABLE) ; /* Enable capture interrupt */
TIMERA_ICAP_Mode (TIMER_ICAP_2,TIMER_EDGE_1) ; /*Detect rising edge at ICAP2 pin*/
/* Run TIMERA in PWM mode if _Enable_PWM_ is defined */
#ifdef _Enable_PWM_ /* Generate PWM */

TIMERA_PWM_Mode (TIMER_OUTPUT1_F, TIMER_OUTPUT2_R, (unsigned int)0x001C,
(unsigned int) 0x005F) ;

#endif

/* Run TIMERA in OPM mode if _Enable_OPM_ is defined */

#ifdef _Enable_OPM_

TIMERA_Clear_Flag (TIMER_FLAG_ICF1) ; /* Clear Input capturel Flag */
TIMERA_Mode_Disable (TIMER_MODE_5) ; /* Disable PWM */

TIMERA_OPM_Mode (TIMER_EDGE_1, TIMER_OUTPUT1_F, TIMER_OUTPUT2_R,
(unsigned int) 0x1383) ;
#endif /* Bms pulse */
while (1) ; /* For testing only */
}

/* Program end */

/ K
ROUTINE NAME : TIMERA_IT_Routine

INPUT : None

OUTPUT : None

172 135/235

Function Descriptions

DESCRIPTION

COMMENTS

: Interrupt service routine
: This gets automatically executed when any of the timer

interrupt is enabled. If the same functions are called in the

main Tree and the interrupt Tree, the function Re-entrant error
occurs in case COSMIC compiler is used with models other than

stack models.

The timer_hr.h is included as the actual hardware register are

read to clear the flags.For configuring the port pins, I/0O
library is used.

___ */
#ifdef USE_TIMERA
#ifdef _HIWARE_ /* Test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else
#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt
#else
#error "Unsupported Compiler!" /* Compiler Defines not found! */
#endif
#endif
void TIMERA_IT Routine (void)
{
unsigned int CAP2_Value; /* Define local variables */
unsigned char i, Temp;
if (TACSR & 0x10)
/* if (TIMERA_Status_Flag (TIMER_FLAG_ICF1)==TRUE) Call to Check ICF2 */
{
Temp = TACSR; /* Clear ICF2 */
Temp = TAIC2LR;
/* TIMERA_Clear_Flag (TIMER_FLAG_ICF2); Call toclear ICF2 */
/* call to get capture value and also clear ICF2 */
CAP2_Value = TIMERA_ICAP_Getvalue (TIMER_ICAP_2) ;
/* Port PBO pushpull output */
IO0_Output (IO_PUSH_PULL,IO_PORT_B,IO_PIN_O) ;
IO_Write (IO_PORT_B,IO_PIN_O,IO_DATA_HIGH) ; /* Turn ON LED at PBO */
//turn on LED when input capture occurs
for(1=0;1<=250;1++) /* Delay */
{
Nop
}
IO _Write (IO_PORT_B,IO_PIN_O0,IO_DATA_LOW) ; /* Turn ON LED at PCO */

}
#endif

136/235

4

Function Descriptions

9.1.7 8-bit TIMER (TIMERS)

The software library for the 8-bit Timer supports the following function.
Note: Currently Timer8 is only available for ST72F561.

Function Name TIMERS8_Init
Function Prototype Void TIMERS8_Init(Typ_Timer8_InitParameter InitValue)

Initializes the timer8 control registers and status register to
their default values. Timer8 clock can be selected as
Fcpu/2, Fcpu/8 and Fcpu/8000. Default value of clock is
Fcpu/4.

TIMER8_FCPU_2

Timer clock is set to Fcpu/2
TIMER8_FCPU_4

Timer clock is set to Fcpu/4
TIMER8_FCPU_8

Timer clock is set to Fcpu/8
TIMER8_FCPU_8000

Timer clock is set to Fcpu/8000
TIMER8_DEFAULT

Reset value (Default value)

Behaviour Description

Input Parameters

Output Parameters None
Required Preconditions None
Functions called None
Postconditions Timer8 clock is configured correctly.
See also None

4

137/235

Function Descriptions

Table 87. TIMERS8_IT_Enable

Function Name

TIMERS8_IT_Enable

Function Prototype

Void TIMERS_IT_Enable(Typ_Timer8_EITParameter EITVal-
ue)

Behaviour Description

Enables the timer8 interrupts. One or more input parameters
can be passed by logically ORing them together.

Input Parameters

TIMER8_OCMP_IT_ENABLE
Enables the output compare interrupts
TIMERS8_ICAP_IT_ENABLE

Enables the input capture interrupts
TIMER8_OVF_IT_ENABLE

Enables the timer overflow interrupt

Output Parameters None
Required Preconditions None
Functions called None

Postconditions

Interrupt is enabled for a particular flag. You also have to ena-
ble the interrupt with instruction ‘rim’.

See also

TIMERS8_IT_Disable

Table 88. TIMERS8_IT_Disable

Function Name

TIMERS_IT_Disable

Function Prototype

Void TIMERS8_IT_Disable(Typ_Timer8_DITParameter DIT-
Value)

Behaviour Description

Disables the interrupts. One or more input parameters can be
passed by logically ORing them together.

Input Parameters

TIMER8_OCMP_IT_DISABLE
Disables the output compare interrupts
TIMERS_ICAP_IT_DISABLE

Disables the input capture interrupts
TIMER8_OVF_IT_DISABLE

Disable the timer overflow interrupt

Output Parameters None
Required Preconditions Any Interrupts enabled.
Functions called None

Postconditions

Interrupt is masked due to a particular flag.

See also

TIMERS8_IT_Enable

138/235

4

Function Descriptions

Table 89. TIMER8_OCMP_Mode

Function Name

TIMER8_OCMP_Mode

Function Prototype

Void TIMER8_OCMP_Mode(Timer8_Compare CMP, un-
signed char OCR_VALUE, Timer8_Olevel OUTPUT_L)

Behaviour Description

Configures the timer8 in Output compare or Forced com-
pare mode, depending upon the input parameter passed.
This function should be called twice in order to get both the
compare mode OCMP1 & OCMP2.

Input Parameter 1

TIMER8_OCMP_X

X=1, output compare1 mode is selected.
X=2, output compare2 mode is selected.
TIMER8_FORCDCMP_Y

Y =1, Forced compare1 is selected.

Y =2, Forced compare?2 is selected.

Input Parameter 2

OCR_VALUE
You can select this value from 0x00 to OxFC.

Input Parameter 3

TIMER8_OUTPUT_F

A low level is reflected at the output compare pin after suc-
cessful comparison.

TIMER8_OUTPUT_R

A high level is reflected at the output compare pin after suc-
cessful comparison.

Output Parameters None
Required Preconditions Timer correctly initialized.
Functions called None

Postconditions

Timer8 starts functioning in either of the above selected
modes, and the compare flag is set whenever the compare
occurs.

See also

None

Note: When the Forced compare mode is selected, the input parameter 2 will not affect the
output waveform and hence you can pass any value between 0x00 to OxFC.

4

139/235

Function Descriptions

Table 90. TIMER8_ICAP_Mode

Function Name

TIMERS_ICAP_Mode

Function Prototype

Void TIMER8_ICAP_Mode(Timer8_lcap ICAP_I,
Timer8_Edge EDGE_SELECT_Y)

Behaviour Description

Configures the timer8 to Input capture mode. It determines
the type of level transition occurred on input capture pins.
This function should be called twice in order to use both
ICAP1 & ICAP2.

Input Parameter 1

TIMER8_ICAP_I

where | can be 1 or 2.

I =1, Input capture 1 is selected.
| = 2, Input capture 2 is selected.

Input Parameter 2

TIMER8_EDGE_Y

where Y can be 0 or 1.

Y= 0, Capture occurs at falling edge.
Y= 1, Capture occurs at the rising edge.

Output Parameter

None

Required Preconditions

1. Input Capture pin used must be configured as floating
input or pull up without interrupt.

2.0nly input capture2 can be used if PWM or OPM is ac-
tive.

Functions called

None

Postconditions

1. Timer8 configured for input capture mode.

2. To detect the occurrence of valid edge, you can poll the
input capture flag using the function
TIMERS8_Status_Flag. This is in case you have not ena-
bled the input capture interrupt.

See also

TIMERS8_Status_Flag, TIMER8_PWM_Mode,
TIMER8_OPM_Mode, TIMER8_ICAP_Getvalue

140/235

4

Function Descriptions

Table 91. TIMER8_PWM_Mode

Function Name TIMER8_PWM_Mode
Void TIMER8_PWM_Mode(Timer8_Olevel
Function Prototype OUTPUT1_L,Timer8_Olevel OUTPUT2_L,unsigned char

OCR1_VALUE,unsigned char OCR2_VALUE)

Configures the timer8 in Pulse width modulation mode. It
enables the generation of a signal with frequency and duty
cycle depending upon the input parameters you have giv-
en. If PWM and OPM modes are both active then only
PWM works. In PWM mode, the ICAP1 pin cannot be used
for input capture function, but ICAP2 can be used.

TIMER8_OUTPUT1_F

Low level is reflected at the output compare1 pin after suc-
cessful comparison of output compare1 register with free
running counter.

TIMER8_OUTPUT1_R

High level is reflected at the output compare1 pin after
successful comparison of output compare1 register with
free running counter.

TIMER8_OUTPUT2_F

Low level is reflected at the output compare1 pin after suc-
cessful comparison of output compare2 register with free
running counter.

TIMER8_OUTPUT2_R

High level is reflected at the output compare1 pin after
successful comparison of output compare2 register with
free running counter.

Behaviour Description

Input Parameter 1

Input Parameter 2

Input Parameter 3 OCTR_VALUE
You can select this value from 0x00 to OxFC.
Input Parameter 4 OC2R_VALUE
You can select this value from 0x00 to OxFC.
Output Parameters None
1.Timer8 correctly configured.
Required Preconditions 2.Timer8 interrupt due to input capture1 can be used by
enabling the input capture interrupt.
Functions called None
1.Timer8 is active in Pulse width modulation mode and
Postconditions waveform can be seen on OCMP1 pin.
2. Output compare interrupt is inhibited.
See also TIMERS_Init, TIMER8_ICAP_Mode

Notes:
— Flags for compare1 & compare2 can not be set by hardware in PWM mode, therefore the
output compare interrupt is inhibited.

172 141/235

Function Descriptions

— The flag due to capture1 is set by hardware when the counter reaches the output compare2
register value and can produce the timer interrupt if the interrupt for input capture is enabled
and the instruction ‘rim’ is used to clear the ‘I’ bit in CC register.

— By enabling the Forced compare mode or OPM mode while PWM mode is enabled,the po-
larity of the PWM Output waveform may change.

4

142/235

Function Descriptions

Table 92. TIMER8_OPM_Mode

Function Name

TIMER8_OPM_Mode "

Function Prototype

Void TIMER8_OPM_Mode(Timer8_Edge
EDGE_SELECT._Y,Timer8_Olevel
OUTPUT1_L,Timer8_Olevel OUTPUT2_L, unsigned char
OCR_VALUE)

Behaviour Description

Configures the timer8 in One Pulse Mode. It enables the
generation of pulse when an external event occurs. If
PWM and OPM modes are both active then OPM will not
work. In OPM mode, OCMP1 cannot be used for output
compare, only OCMP2 is available for output compare.

Input Parameter 1

TIMER8_EDGE_X
X =0, input capture1 occurs at falling edge.
X =1, input capture1 occurs at rising edge.

Input Parameter 2

TIMER8_OUTPUT1_F

Low level is reflected at the output compare1 pin after suc-
cessful comparison of output comparei register with free
running counter.

TIMER8_OUTPUT1_R
High level is reflected at the output compare1 pin after

successful comparison of output compare1 register with
free running counter.

Input Parameter 3

TIMER8_OUTPUT2_F

Low level is reflected at the output compare1 pin after suc-
cessfully capturing edge at ICAP1 pin.
TIMER8_OUTPUT2_R

High level is reflected at the output compare1 pin after
successfully capturing edge at ICAP1 pin.

OCR _VALUE
Input Parameter 4)

You can select this value from 0x00 to 0xFC.
Output Parameter None

Required Preconditions

1.ICAP1 pin used must be configured as floating input.
2.To get OPM active, PWM must be disabled.

Functions called.

None

Postconditions

1. Input capture1 flag is set.

2.Timer is active in One pulse mode and waveform can be
seen on OCMP1 pin.

3.0nly Input capture2 function can be used.

See also

TIMER8_PWM_Mode

1) Function not available in ST72F65.

Notes:

— Flag due to compare1 cannot be set by hardware but the compare interrupt can be generat-

ed due to the setting of compare2 flag.

(572

143/235

Function Descriptions

— Only the ICAP2 pin can be used to perform input capture, not the ICAP1 pin. Take care that
the counter is reset each time a valid edge occurs on the ICAP1 pin and capture 1 flag can
also generate an interrupt if input capture interrupt is enabled and the instruction ‘rim’ is used
to clear the | bit.

— When OPM is used, input capture1 register is dedicated to this mode. Similarly output
compare2 cannot be used as level OLVL2 is dedicated to OPM.

— By enabling the Forced compare mode while OPM mode is enabled, the polarity of the OPM
Output waveform may change.

Table 93. TIMER8_ICAP_Getvalue

Function Name TIMERS8_ICAP_Getvalue

Unsigned char TIMER8_ICAP_Getvalue(Timer8_lcap
ICAP_I)

Returns the input capture1 or input capture2 register value
depending upon the input parameter passed. This function
should be called twice in order to get both input capture1
and input capture2 register values.

TIMERS_ICAP_I

where | can be 1 or 2.

=1

Input capture1 register value is returned
=2

Input capture2 register value is returned

Input capture1 or Input capture2 register value. The re-
turned value can be in the range 0x00 to OxFC.

ICF1 and/or ICF2 =1

Function Prototype

Behaviour Description

Input Parameters

Output Parameters

Required Preconditions You have to call this function after the ICF1 and/or ICF2
flag is set, to get the capture value.

Functions called None

Postconditions Input capturei or Input capture2 register value is returned.

See also TIMERS8_ICAP_Mode

Note: The input capture flag gets cleared if this function is called after the
TIMERS8_Status_Flag.

4

144/235

Function Descriptions

Table 94. TIMER8_Status_Flag

Function Name TIMERS8_Status_Flag

Function Prototype Bool TIMERS8_Status_Flag(Timer8_Flag FLAG_F)
Checks the status of any one of the timer flags depending

Behaviour Description upon the input parameter. The function can be called more

than once for checking more than one flag.
TIMER8_FLAG_F

where F can be OCF1, OCF2, ICF1, ICF2 or OVF.
F = OCF1

checks for OCF1 flag

F =0OCF2

checks for OCF2 flag

F = ICF1

checks for ICF1 flag

F=ICF2

checks for ICF2 flag

F =OVF

check for OVF flag

TRUE or FALSE

Output Parameters If TRUE: flag is set.

If FALSE: flag is not set.

Required Preconditions Timer8 must be configured in any one of the modes.
Functions called None

If TRUE, timer8 flag is set and can be cleared by calling
TIMERS8_Clear_Flag.

If FALSE, timer8 flag is not set and this function can be
looped till the flag is set.

See also TIMERS8_Clear_Flag

Input Parameters

Postconditions

4

145/235

Function Descriptions

Table 95. TIMER8 Mode Disable

Function Name

TIMER8_Mode_Disable

Function Prototype

Void TIMER8_Mode_Disable(Timer8_Mode MODE_M)

Behaviour Description

Disables the timer8 mode depending upon the Input pa-
rameter passed. This function should be called more than
once in order to disable more than one mode.

Input Parameter

TIMER8_MODE_M

where Mcanbe 1,2, 3,4,5,6,7,8,9.

M=1, Output compare1 mode (OCMP1)
M=2, Output compare2 mode (OCMP2)

M=3, Input capture1 mode (ICAP1)

M=4, Input capture2 mode (ICAP2)

M=5, Pulse width modulation mode (PWM).
M=6, One pulse modulation mode (OPM)
M=7, Forced compare1 mode (FORCDCMP1)
M=8, Forced compare2 mode (FORCDCMP2)
M=9, Timer prescalar, counter and outputs disabled

Output Parameters

None

Required Preconditions

Timer8 active in any of the modes.

Functions called

None

Postconditions

Selected timer8 mode is disabled and the Corresponding
status flag is cleared.

See also

None

146/235

4

Function Descriptions

Table 96. TIMER8_Clear_Flag

Function Name

TIMERS8_Clear_Flag.

Function Prototype

Void TIMERS8_Clear_Flag(Timer8_Flag FLAG_F)

Behaviour Description

Clears the status flag depending upon the input parameter
passed. This function can be called more than once to
clear more than one flag.

Input Parameters

TIMER8_FLAG_F
where F can be ICF1,ICF2,0CF1,0CF2 or OVF
F =ICF1

Clears the Input Capture1 Flag.
F =ICF2

Clears the Input Capture2 Flag.
F = OCF1

Clears the output compare1 Flag.
F = OCF2

Clears the output compare2 Flag.
F = OVF

Clears the timer overflow Flag.

Output Parameters

None

Required Preconditions

ICF1=1 or ICF2=1 or OVF=1 or OCF1=1 or OCF2=1

Functions called

None

Postconditions

Selected status flag is cleared.

See also

TIMERS8_IT_Routine, TIMER8_Status_Flag

4

147/235

Function Descriptions

EXAMPLE:
The following C program shows the use of the TIMERS functions.
Program description:

It compares the output compare?2 register value with the free running counter, checks the oc-
currence of (event) leading edge at ICAP2 pin. It generates PWM signal with 10KHz frequency
and with 33% Duty cycle at the OCMP1 pin if _Enable_PWM__is defined in main.c or it gen-
erates the 0.1ms pulse at OCMP1 pin, if _Enable_OPM_is defined in main.c (Fcpu = 8 MHz).

/* Program start */
#include "st71ib_config.h" /* File for user to select the required device */

//prototype declaration
void main (void) ;
void TIMERS8_IT Routine (void) ;

void main (void)

{
unsigned char TIMER8_OCR_VALUE = 0x50;
/* Configuring the Port Bpin 0 & 2 as floating for ICAP1 and ICAP2 */
IO_Input (IO_FLOATING, IO_PORT_B, ((unsigned char)IO_PIN_0 \ (unsigned char)

IO_PIN_2));
TIMERS8_Init (TIMERS8_FCPU_S8) ; /* Timer8 Clock to Fcpu/8 and reset counter */
EnableInterrupts /* Clear T bit in CC reg */
/* Timer8 compares 0x50 with free running counter */

TIMER8_OCMP_Mode (TIMER8_OCMP_2, TIMER8_OCR_VALUE, TTMER8_OUTPUT_R) ;

while (! (TIMERS8_Status_Flag (TIMERS_FLAG_OCF2)== TRUE)) ;

TIMER8_Clear_Flag (TIMER8_FLAG_OCF2) ; /* Clear output compare2 flag */
TIMER8_IT Enable (TIMER8_ICAP_IT_ENABLE) ; /* Enable capture interrupt */
/*Detect rising edge at ICAP2 pin*/

TIMER8_ICAP_Mode (TIMER8_ICAP_2,TIMER8_EDGE_1) ;

/* Run TIMERS in PWM mode 1f _Enable_ PWM_ is defined */

#ifdef _Enable_PWM_ /* Generate PWM of frequency of 10 KHz */
TIMER8_PWM_Mode (TIMER8_OUTPUTI1_F, TIMER8_OUTPUT2_R, 0x1C, OxX5F) ;

#endif

/* Run TIMERS in OPM mode if _Enable_OPM_ is defined */

#ifdef _Enable_OPM_
TIMER8_Clear_Flag (TIMER8_FLAG_ICF1) ; /* Clear Input capturel Flag */
TIMER8_Mode_Disable (TIMERS8_MODE_5) ; /* Disable PWM */
/* 0.1lms pulse */
TIMER8_OPM_Mode (TIMER8_EDGE_1, TIMER8_OUTPUTI1_F, TIMER8_OUTPUT2_R, 0x5F) ;

#endif

while (1) ; /* For testing only */

}

/* Program end */

4

148/235

Function Descriptions

/* __
ROUTINE NAME : TIMERS8_IT Routine
INPUT : None
OUTPUT : None
DESCRIPTION : Interrupt service routine
COMMENTS : This gets automatically executed when any of the timer8
interrupt is enabled. If the same functions are called in the
main Tree and the interrupt Tree, the function Re-entrant error
occurs in case COSMIC compiler is used with models other than
stack models.For configuring the port pins,I/0 library is used.
__ */
#ifdef _HIWARE_ /* Test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else
#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt
#else
#error "Unsupported Compiler!" /* Compiler Defines not found! */
#endif
#endif
void TIMERS8_IT Routine (void)
{
unsigned int CAP2_Value; /* Define local variables */
unsigned char i, Temp;
1f (T8CSR & 0x10)
/* if (TIMER8_Status_Flag (TIMER8_FLAG_ICF2)==TRUE) Call to Check ICF2 */
{
Temp = T8CSR; /* Clear ICF2 */
Temp = T8IC2R;
/* TIMER8_Clear_Flag (TIMER8_FLAG_ICF2) ; Call toclear ICF2 */
/* call to get capture value and also clear ICF2 */
CAP2_Value = TIMER8_ICAP_Getvalue (TIMER8_ICAP_2);
/* Port PAO pushpull output */
IO_Output (IO_PUSH_PULL, IO_PORT_A,IO_PIN_O0) ;
IO _Write(IO_PORT_A,IO_PIN_0,IO_DATA_HIGH); /* Port PAO made high */
for(1=0;1<=250;1++) /* Delay */
{
Nop
}
IO _Write(IO_PORT_A,IO_PIN _0,IO_DATA_LOW) ; /* Port AO made low */

4

149/235

Function Descriptions

9.1.8 LITE TIMER (LT)

This software library consists of the following functions for LT.

Function Name

LT_Init

Function Prototype

Void LT_Init(Lt_InitParameter InitValue)

Behaviour Description

Initialization of the LT, by default sets Timebase as 1ms,
watchdog and interrupts disabled. It initializes the input
capture flag. To change this default configuration, you can
pass one or more input parameters by logically ORing
them together.

Input Parameter

LT_ICAP_IT_ENABLE
enables input capture interrupt
LT_TB_IT_ENABLE "
enables Timebase interrupt
LT_TB1_IT_ENABLE 2
enables Timebase1 interrupt

LT_TB2_IT_ENABLE?
enables Timebase2 interrupt

LT_DEFAULT

sets default configuration
Output Parameters None
Required Preconditions None
Functions called None
Postconditions LT is configured as desired
See also LT_TB

1) Present in ST7FLITEO and ST7SUPERLITE.
2) Present in ST7FLITE1/2/3 and ST7FDALI.

Note: By default this function also sets the timebase to 1ms. To change the timebase to 2ms,

you can use the LT_TB function.

Table 97. LT_WDG_Enable

Function Name

LT_WDG_Enable

Function Prototype

Void LT_WDG_Enable(void)

Behaviour Description

Enables the watchdog.

Input Parameter None
Output Parameters None
Required Preconditions None
Functions called None

Postconditions

Watchdog is enabled. You can call LT_WDG_Reset to de-
lay or force the watchdog reset.

See also

LT_WDG_Reset

Note: This function works only for ST7FLITEO and ST7SUPERLITE.

150/235

4

Function Descriptions

Table 98. LT _TB

Function Name

LT_TB

Function Prototype

Void LT_TB(Lt_TB_Param TBValue)

Behaviour Description

Sets Timebase to 1ms or 2ms depending upon the input
parameter passed.

LT_SET TB_1

sets Timebase =1ms
Input Parameter 1

LT_SET TB_2

sets Timebase = 2ms
Output Parameters None
Required Preconditions None
Functions called None

Postconditions

Timebase selected is 1ms or 2ms depending upon the in-
put parameter passed.

See also

LT _Init

Table 99. LT_ARR_WriteValue

Function Name

LT_ARR_WriteValue "

Function Prototype

Void LT_ARR_WriteValue(unsigned char)

Behaviour Description

Loads the specified value in the AutoReload Register

Input Parameter

Unsigned char value from 0x00 to OxFF.

Output Parameters None
Required Preconditions None
Functions called None
Postconditions None

See also

LT_ARR_ReadValue

1) This function is present only in ST7FLite 1/2/3 and ST7FDALI.

4

151/235

Function Descriptions

Table 100. LT_ARR_ReadValue

Function Name

LT_ARR_ReadValue 7

Function Prototype

Unsigned char LT_ARR_ReadValue(void)

Behaviour Description

Reads the value from the AutoReload Register

Input Parameter

None

Output Parameters

Unsigned char

Required Preconditions

None

Functions called

None

Postconditions

Reads from the AutoReload Register with the specified
value which is automatically loaded from the Counter Reg-
ister when overflow occurs.

See also

LT_ARR_WriteValue

1) This function is present only in ST7FLite 1/2/3 and ST7FDALI.

Table 101. LT _CNTR_ReadValue

Function Name

LT _CNTR_ReadValue "

Function Prototype

Unsigned char LT_CNTR_ReadValue (void)

Behaviour Description

Reads the value from the Counter Register

Input Parameter None
Output Parameters Unsigned char
Required Preconditions None
Functions called None
Postconditions None

See also

LT_ARR_ReadValue

1) This function is present only in ST7FLite 1/2/3 and ST7FDALI.

152/235

4

Function Descriptions

Table 102. LT_Disable

Function Name

LT_Disable

Function Prototype

Void LT_Disable(Lt_Disable_Param DValue)

Behaviour Description

Disables input capture interrupt or Timebase interrupt or
watchdog or all of these depending upon the input param-
eter passed. More than one parameter can be passed by
logically ORing them together.

Input Parameter

LT_ICAP_IT_DISABLE
disables input capture interrupt
LT_TB_IT_DISABLE "
disables Timebase interrupt
LT_TB1_IT_DISABLE ?
disables Timebase1 interrupt
LT_TB2_IT_DISABLE 2
disables Timebase?2 interrupt
LT_WDG_DISABLE "
disables watchdog

Output Parameters None
Required Preconditions Interrupts or watchdog enabled
Functions called None

Postconditions

Input capture interrupt or Timebase interrupt or watchdog
disabled depending upon the input parameter passed.

See also

LT _Init

1) Present in ST7FLITEO and ST7SUPERLITE.
2) Present in ST7FLITE1/2/3 and ST7FDALI.

4

153/235

Function Descriptions

Table 103. LT_WDG_Reset

Function Name

LT WDG_Reset

Function Prototype

Void LT_WDG_Reset(Lt_Reset_Param WDGValue)

Behaviour Description

Delays or forces watchdog reset depending upon the input
parameter passed.

Input Parameter

LT_DELAY_WDG_RESET
watchdog reset delay by typg "
LT_FORCD_WDG_RESET
force a watchdog reset

Output Parameters None
Required Preconditions Watchdog enabled
Functions called None

Postconditions

Watchdog reset occurred or delayed depending upon the
input parameter passed.

See also

LT _Init

1. twpg = 2ms @ 8 MHz fosc, therefore You have to use this option at regular intervals to pre-

vent a watchdog reset occurring.

Note: The function can be used for ST7FLite0, ST7SUPERLITE and ST7FDALI.

Table 104. LT_ICAP_Getvalue

Function Name

LT_ICAP_Getvalue

Function Prototype

Unsigned char LT_ICAP_Getvalue(void)

Behaviour Description

Returns the input capture register value.

Input Parameters

None

Output Parameters

Input capture register value as unsigned character. The
returned value can be in the range of 0x00 to 0xF9.

Required Preconditions

ICF =1

You have to call this function after the ICF flag is set, to get
the capture value.

Functions called

None

Postconditions

1.Input capture register value is returned.
2.Input capture flag is cleared.

See also

None

154/235

4

Function Descriptions

Table 105. LT_Status_Flag

Function Name

LT_Status_Flag

Function Prototype

BOOL LT_Status_Flag(Lt_Flag FLAG_F)

Behaviour Description

Checks the status of any one of the LT flags depending
upon the input parameter passed. The function can be
called more than once for checking more than one flag.

Input Parameters

LT_FLAG_TBF "

checks for Timebase interrupt flag
LT _FLAG_TB1F?

checks for Timebase1 interrupt flag
LT _FLAG_TB2F?

checks for Timebase2 interrupt flag
LT_FLAG_ICF

checks for input capture flag

LT _FLAG_WDGRF ")

checks for watchdog reset status flag

Output Parameters

TRUE or FALSE
If TRUE: flag is set
If FALSE: flag is not set.

Required Preconditions

LT configured in any one of the modes.

Functions called

None

Postconditions

If the output parameter is TRUE, flag is set.

If the output parameter is FALSE, the flag is not set and
this function can be looped till the flag is set.

See also

None

1) Defined for ST7FLITEO and ST7SUPERLITE.
2) Defined for ST7FLITE1/2/3 and ST7FDALI.

Note: After calling this function for a particular flag, the corresponding flag is cleared when the

TRUE is returned

4

155/235

Function Descriptions

Table 106. LT_Clear_Flag

Function Name LT_Clear_Flag
Function Prototype Void LT_Clear_Flag(Lt_Flag FLAG_F)

Clears the status flag depending upon the input parameter
Behaviour Description passed.This function can be called more than once to

clear more than one flag.
LT_FLAG_TBF "

clears the Timebase interrupt flag
LT _FLAG_TB1F?

clears the Timebase1 interrupt flag
LT _FLAG_TB2F?

clears the Timebase2 interrupt flag
LT _FLAG_ICF?®

clears the input capture flag
LT_FLAG_WDGRF

clears the watchdog reset status flag

Input Parameters

Output Parameters None

Required Preconditions TBF=1 or TB1F=1 or TB2F=1 or ICF=1 or WDGRF=1
Functions called None

Postconditions Selected status flag is cleared.

See also LT_Status _Flag

1) Defined for ST7FLITEO and ST7SUPERLITE.
2) Defined for ST7FLITE1/2/3 and ST7FDALI.
3) Defined for ST7FLITEO and ST7SUPERLITE.
Note: After reset, calling this function with the input parameter FLAG_ICF also initializes the
input capture. The input capture is inhibited if the ICF flag is set.

EXAMPLE:
The following C program example shows the use of the LT functions for the ST7FLiteO device.

Program description:
This program detects an event (rising edge & trailing edge) at the LTIC pin and toggles a LED
every 5 seconds.

/* Program start */

#include "ST71ib_config.h" /* select ST7FLITEQ */
#define LT _WDG

//prototype declaration
void LT _ICAP_IT Routine(void) ;
void LT _TB_IT_Routine(void) ;

4

156/235

Function Descriptions

void main (void) ;

volatile unsigned int count;
voidmain (void)
{
/* PB3 and PB1 as pushpull output */
IO_Output (IO_PUSH_PULL, IO_PORT_ B, ((unsigned char)IO_PIN_3 |
(unsigned char)IO_PIN_1));
/*Set Time base to lms, Input capture and Timebase interrupts enabled */
LT _Init(((unsigned char) LT_ICAP_IT_ENABLE| (unsigned char)LT_TB_IT_ENABLE)) ;
/* Clear I bit in CC register */
EnableInterrupts /* Micro defined in the st71ib_config.h */
#ifdef LT _WDG /* Use of force watchdog reset */
LT_WDG_Enable() ;
LT_WDG_Reset (LT_FORCD_WDG_RESET) ;
#endif /* LT _WDG_ */
while (1) ; /* For Testing only */

/* Program end */

/**

Use of Input capture Interrupt service routine

- User has towrite this function and map the interrupt vector in .prm file in
case of HIWARE or in vector_xxx.c in case of COSMIC.

- An example of LED toggles at port PBl is given, whichwill be executed when
capture occurs.

- This gets automatically executed if the ICAP interrupt of the LT is enabled.
If the same functions are called in the main Tree and the interrupt Tree, the
function Reentrant error occurs in case COSMIC compiler is used with models
other than stack models.

Functions description

- The 1t_hr.h is to be included when the actual hardware register are read to

clear the flags.For configuring the port pins, I/0 library is used.
**/

#ifdef _HIWARE_ /* Test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else

#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt @nostack

#else

#error "Unsupported Compiler!" /* Compiler Defines not found! */
#endif

#endif

void LT_IC_IT_Routine(void)

{
unsigned char ICAP_Value, i;
/* i =LTICR; Clear ICF */

LT Clear_Flag(LT_FLAG_ICF) ; /* Call only to clear ICF */
ICAP_Value = LT_ICAP_Getvalue() ; /* Get capture value and also clear ICF */
IO_Write (IO_PORT_B,IO_PIN_1,IO_DATA_HIGH) ; /* Turn ON LED at PB1 */
for (i=0;1<=100;1i++) /* Delay */
{
Nop
ﬁ 157/235

Function Descriptions

}
IO_Write (IO_PORT_B,IO_PIN_1,IO_DATA_LOW) ;

/* Turn OFF LED at PB1 */

/**

Use of TimebaseInterrupt service routine

- User has towrite this function and map the interrupt vector in .prm file in
case of HIWARE or in vector_xxx.c in case of COSMIC.

- An example of LED toggles after every 5 seconds is given.This routine is

executed when overflow occurs (TBF=1) .

- This gets automatically executed when TBF interrupt of the LT is enabled. If

the same functions are called in the main Tree and the interrupt Tree, the

function Reentrant error occurs in case COSMIC compiler is used with models

other than stack models.

Functions description
- The 1t_hr.h is to be included when the actual hardware register are read to

clear the flags.For configuring the port pins, I/0 library is used.
**/

#ifdef _HIWARE_ /* Test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else

#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt @nostack

#else

#error "Unsupported Compiler!" /* Compiler Defines not found! */
#endif

#endif

void LT TB_IT Routine(void)

{

158/235

unsigned char Temp;
/* i =LTCSR; Clear ICF */
LT_Clear_Flag(LT_FLAG_TBF) ;
/* Routine up to the user */
count++;
if (count == 5000)
{
Temp = TO_Read (IO_PORT_B) ;
if (Temp & 0x08)

{

IO_Write (IO_PORT_B,IO_PIN_3,IO_DATA_LOW) ;
}
else
{

IO_Write (IO_PORT_B,IO_PIN_3,IO_DATA_HIGH) ;
}
count = 0;

/* Call only to clear TBF */

/* TO Toggle PB3 */

/* Turn OFF LED at PB3 */

/* Turn ON LED at PB3 */

4

Function Descriptions

9.1.9 PWMART

This software library for PWMART consists of the following functions:

Function Name

PWMART_Init

Function Prototype

Void PWMART _Init(Typ_Pwmart_InitParameter InitVal-
ue)

Behaviour Description

Initialization of the PWMART, by default sets counter clock
as Fcpu, counter stopped and interrupt disabled. You can
select external clock. One or more input parameters can

be passed by logically ORing them together.

Input Parameter

PWMART_DEFAULT

Reset value (00h)
PWMART_EXCLK

Enable the external clock source
PWMART_OVF_IT_ENABLE
Enable counter overflow interrupt

Output Parameters None
Required Preconditions None
Functions called None

Postconditions

PWMART is configured as desired

See also

PWMART_Counter_Enable

4

159/235

Function Descriptions

Table 107. PWMART_Counter_Enable

Function Name

PWMART_Counter_Enable

Function Prototype

Void PWMART_Counter_Enable(Pwmart_Counter
SELECT_REG,unsigned char Counter_Data,
Pwmart_Clock SELECT_CLK)

Behaviour Description

Initializes the PWM counter. You can select counter fre-
guency.

Input Parameter 1

PWMART_REG_C
where C can be CAR or ARR

If C = ARR; Counter is forced to be loaded with ARR reg-
ister at each overflow, automatically and clears prescaler
register.

If C = CAR; Counter is loaded with CAR register on the fly
and clears prescaler register.

Input Parameter 2

Counter_Data

Data to be loaded in ARR register or CAR register. Data
can be selected from 0x00 to OxFF.

Input Parameter 3

PWMART_CLK_PR
where PR can be 1,2,4,8,16,32,64 or 128

PR=1, fcounter =finput
PR=2, fcounter = finpuTr
PR=4, fcounter = finputa
PR=8, fcounter = finpuTss
PR =16, fcounter = finpuT/te
PR =32, fcounter = finpuT/a2
PR =64, fcounter = finpuT/es

PR =128, fcounTeR = finPuT/128
where lePUT = fCPU by default and

finpuT = fEXT for external clock option.

Output Parameters None

Required Preconditions PWMART_lInit must have been called
Functions called None

Postconditions Counter starts running.

See also PWMART_Init

Notes: To use PWMART as a timebase, use the following procedure:
— Depending upon the time base required, you have to calculate the value of Counter_Data to
be loaded in ARR register. This value can be calculated from the following equation:
Counter_Data = Timebase / Tcounter
where Timebase : time base required by user and Tcounter = 1 / fcounter

OR

—You can use PWMART_OCMP_Timebase function.

160/235

4

Function Descriptions

Table 108. PWMART_OCMP_Mode

Function Name

PWMART_OCMP_Mode

Function Prototype

Void PWMART_OCMP_Mode(Pwmart_Compare OC-
MP,Pwmart_Output POLARITY ,unsigned char
Compare_Data)

Behaviour Description

Configures the timer in Output compare mode. You have
to call this function more than once to enable several out-
put compares.

Input Parameter 1

PWMART_OCMP_O

where O canbe 0, 1, 2, Or 3.

O= 0, Output Compare register 0 value is compared with
counter value.

O= 1, Output Compare register 1 value is compared with
counter value.

O= 2, Output Compare register 2 value is compared with
counter value.

O= 3, Output Compare register 3 value is compared with
counter value.

Input Parameter 2

PWMART_POLARITY_0O

Output level is low, for Counter value > Compare_Data
Output level is high, for Counter value <= Compare_Data
PWMART_POLARITY_1

Output level is high, for Counter value > Compare_Data
Output level is low, for Counter value <= Compare_Data

Input Parameter 3

Compare_Data
Data to be loaded in DCR register (0x00 to OxFF).

Output Parameters

None

Required Preconditions

PWMART_Counter_Enable must have been called

Functions called

None

Postconditions

The output compare waveform is obtained on the corre-
sponding PWM pin.

See also

None

4

161/235

Function Descriptions

Table 109. PWMART_OCMP_Timebase

Function Name

PWMART_OCMP_Timebase

Function Prototype

Void PWMART_OCMP_Timebase(double Tinput,double
Time,Pwmart_Clock SELECT_CLK)

Behaviour Description

Sets the output compare to be used as time base interrupt.
Interrupt is generated after every fixed (time base) inter-
val, depending upon the value of input parameter 2.

Input Parameter 1

Tinput

You have to pass this value in nano-second (ns).
Tinput =1/ Fcpu or

Tinput = 1/ Fext, in case of external clock.

Input Parameter 2

Time
You have to pass this (time base) value in nano-second
(ns).

Input Parameter 3

PWMART_CLK_PR
where PR can be 1,2,4,8,16,32,64 or 128

PR=1, fcounter =finpuT
PR=2, fcounter = finpuTr2
PR=4, fcounter = finputsa
PR=8, fcounter = finpuTss
PR =16, fcounter = finpuT/te
PR =32, fcounter=finpuT/a2
PR =64, fcounter = finpuT/es

PR =128, fcounTer = finpuT/128
where lePUT = fCPU by default and

finpuT = feXT for external clock option.

Output Parameters

None

Required Preconditions

This function does not support floating clock (such as
5.33MHz).

Functions called

None

Postconditions

1. You must enable the interrupt with instruction ‘rim’.
2. Interrupts are generated at the time base you provide.

See also

PWMART_Counter_Enable

Notes: Here are some time base ranges corresponding to the various counter clock frequen-

cies (fcounter):

fcounter=8MHz gives a time base range of [125ns to 31.875ps],
from 1 step to 255 steps (ARR=254 to ARR=0).

counter=4MHz gives a time base range of [250ns to 63.75pus]
fcounter=2MHz gives a time base range of [500ns to 127.5us]
fcounter=1MHz gives a time base range of [1us to 255us]
fcounter=500kHz gives a time base range of [2us to 510ps]
fcounter=250kHz gives a time base range of [4us to 1.02ms]

162/235

4

Function Descriptions

fcounter=125kHz gives a time base range of [8us to 2.04ms]
fcounter=62.5kHz gives a time base range of [16pus to 4.08ms]

Table 110. PWMART_PWM_Mode

Function Name

PWMART_PWM_Mode

Function Prototype

Void PWMART_PWM_Mode(Pwmart_Pwm
SELECT_Pin,Pwmart_Output POLARITY,unsigned char
Dutycycle_Data)

Behaviour Description

Selection of PWM pin, polarity and duty cycle. You have to
call this function more than once to generate several PWM
signals.

Input Parameter 1

PWMART_Pin

Pin=0 PWM signal on PWMO port pin.
Pin=1 PWM signal on PWM1 port pin.
Pin=2 PWM signal on PWM2 port pin.
Pin=3 PWM signal on PWMS port pin.

Input Parameter 2

PWMART_POLARITY_0O

PWM output level is low, for Counter value >
Dutycycle_Data

PWM output level is high, for Counter value <=
Dutycycle_Data

PWMART_POLARITY_1

PWM output level is high, for Counter value >
Dutycycle_Data

PWM output level is low, for Counter value <=
Dutycycle_Data

Input Parameter 3

Dutycycle_Data
Data to be loaded in corresponding OCR register (0x00 to
OxFFh).

Note: This value must be greater than the ARR register
value loaded through PWMART_Enable function. Refer to
the table given below.

Output Parameters

None

Required Preconditions

PWMART_Counter_Enable must have beeb called

Functions called

None

Postconditions

PWM signal is generated on the selected pin.

See also

None

Note: The table given below shows data to be loaded in ARR register for different PWM signal

4

163/235

Function Descriptions

frequency and resolution (0x00 to OxFFh)

ARR value Resolution fowm

0 8-bit 0.244-31.25 KHz
0-127 > 7-bit 0.244-62.5 KHz
128 -191 > 6-bit 0.488-125 KHz
192 - 223 > 5-bit 0.977-250 KHz
224 - 239 > 4-bit 1.953-500 KHz

Table 111. PWMART_ICAP_Mode

Function Name

PWMART_ICAP_Mode

Function Prototype

Void PWMART_ICAP_Mode(Pwmart_lcap
ICAP_l,Pwmart_Sens_IT_Param SENS_IT_Value)

Behaviour Description

Selects the user defined transition on ARTICx pin. This
function can be called twice to make use of both ARTICx
pins. You can pass one or more parameters from input pa-
rameter 2 by Bitwise ORing them together.

Input Parameter 1

PWMART_ICAP_1
Input Capture at ARTIC1 pin is enabled
PWMART_ICAP_2
Input Capture at ARTIC2 pin is enabled

Input Parameter 2

PWMART_SENSITIVITY_F
Falling edge triggers the capture
PWMART_SENSITIVITY_R
Rising edge triggers the capture
PWMART_ICAP1_IT_ENABLE
Enable input capture1 interrupt
PWMART_ICAP2_IT_ENABLE
Enable input capture2 interrupt

Output Parameters

None

Required Preconditions

1. Function PWMART _Counter_Enable must have been
called.

2. The input capture pins used must be configured as float-
ing inputs.

Functions called

None

Postconditions

1. PWMART configured for input capture mode.

2. To detect the occurrence of valid edge, you can poll the
input capture flag using the function
PWMART_Status_Flag. In this case, you should not ena-
ble the input capture interrupt.

See also

PWMART_Status_Flag,
PWMART_ICAP_Getvalue

164/235

4

Function Descriptions

Table 112. PWMART _ICAP_Getvalue

Function Name PWMART_ICAP_Getvalue

Unsigned char PWMART_ICAP_Getvalue(Pwmart_lcap
ICAP_I)

Returns the input capturel or input capture 2 register val-
ue depending upon the input parameter passed. This
function should be called twice in order to get both input
capture1 and input capture2 register values.

PWMART_ICAP_I
PWMART_ICAP_1
Input Parameters Input capture 1 register value is returned
PWMART_ICAP_2
Input capture 2 register value is returned

Input capture 1 or Input capture 2 register value. The re-
turned value can be in the range of 0x00 to oxFF.

ICF1 and/or ICF2=1

Required Preconditions You have to call this function after the ICF1 and/or ICF2
flag is set, to get the capture value.

Function Prototype

Behaviour Description

Output Parameters

Functions called None

1.Input capture1 or Input capture 2 register value is re-
Postconditions turned.

2.Input capture flag is cleared.
See also PWMART_ICAP_Mode

4

165/235

Function Descriptions

Table 113. PWMART_Status_Flag

Function Name

PWMART_Status_Flag

Function Prototype

BOOL PWMART_Status_Flag(Pwmart_Flag FLAG_F)

Behaviour Description

Checks the status of any one of the PWMART flags de-
pending upon the input parameter passed. The function
can be called more than once for checking more than one
flag.

Input Parameters

PWMART_FLAG_F
PWMART_FLAG_ICF1
checks for input capturei flag
PWMART_FLAG_ICF2
checks for inpur capture 2 flag
PWMART_FLAG_OVF
checks for overflow flag

Output Parameters

TRUE or FALSE
If TRUE : flag is set
If FALSE : flag is not set.

Required Preconditions

PWMART must be configured in any one of the mode.

Functions called

None

Postconditions

If the output parameter is TRUE, flag is set and can be
cleared by calling PWMART_Clear_Flag, in case of ICF1
and ICF2. In case of OVF, there is no need to call
PWMART_Clear_Flag.

If the output parameter is FALSE, the flag is not set and
this function can be looped until the flag is set.

See also

None

166/235

4

Function Descriptions

Table 114. PWMART_Clear_Flag

Function Name PWMART_Clear_Flag

Function Prototype Void PWMART_Clear_Flag(Pwmart_Flag FLAG_F)
Clears the status flag depending upon the input parameter

Behaviour Description passed. This function can be called more than once to

clear more than one flag.
PWMART_FLAG_F
PWMART_FLAG_ICF1
clears the input capture1 f lag
Input Parameters PWMART_FLAG_ICF2
clears the input capture 2 flag
PWMART_FLAG_OVF
clears the overflow flag

Output Parameters None

Required Preconditions ICF1=1 or ICF2=1 or OVF=1
Functions called None

Postconditions Selected status flag is cleared.
See also PWMART_Status _Flag

4

167/235

Function Descriptions

Table 115. PWMART_Mode_ Disable

Function Name

PWMART_Mode_Disable

Function Prototype

Void PWMART_Mode_Disable(Pwmart_Dparam MODE)

Behaviour Description

Disables the PWMART mode depending upon Input pa-
rameter passed. This function should be called more than
once in order to disable more than one functionality

Input Parameters

PWMART_PWMO_DISABLE
Disable PWMO output
PWMART_PWM1_DISABLE
Disable PWM1 output
PWMART_PWM2_DISABLE
Disable PWM2 output
PWMART_PWM3_DISABLE
Disable PWM3 output
PWMART_OVF_IT_DISABLE
Disable OVF interrupt
PWMART_ICAP1_IT_DISABLE
Disable ICAP1 interrupt
PWMART_ICAP2_IT_DISABLE
Disable ICAP2 interrupt
PWMART_COUNTER_DISABLE
Disable PWMART counter

Output Parameters None
Required Preconditions PWMART active in any mode
Functions called None

Postconditions

Selected PWMART functionality is disabled

See also

None

168/235

4

Function Descriptions

EXAMPLE:
The following C program shows the use of the PWMART functions.
Program description:

This program detects the event (rising edge) at ARTIC1 pin and generates the PWM signal of
frequency 50KHz with duty cycle 33% on the PWM1 pin for ST72F521 device with a 4MHz ex-

ternal clock. The output compare signal is obtained on the PWM2 pin.

/* Program start */
#include "ST71ib_config.h"

//prototype declaration
void PWMART IT Routine(void) ;
void main (void) ;

void main (void)

{
unsigned char Counter_Data = 0xBO0;
unsigned char Compare_Data = 0xCA;
unsigned char DutyCycle_Data = 0xXCA;

/* Select ST72F521 */

/* ARTIC1,ARTIC2,ARTCLK as floating input */

IO_Input (IO_FLOATING,IO_PORT_ B, ((unsigned char)IO_PIN_4 \
((unsigned char)IO_PIN_5 | (unsigned char)IO_PIN_6)));

/* Initialise the timer with external clock frequency

and overflow interrupt enabled */

PWMART_Init (((unsigned char)PWMART_EXCLK |
(unsigned char) PWMART OVF_IT_ENABLE)) ;

/* clear I bit in CC register */
EnableInterrupts /* Macro defined in st71ib_config.h */
/* Autoload the counter with ARR */
PWMART_Counter_Enable (PWMART_REG_ARR, Counter_Data, PWMART_CLK_1) ;
/* Output compare signal on PWM2 pin */
PWMART_OCMP_Mode (PWMART_OCMP_ 2, PWMART_ POLARITY_O0,Compare_Data) ;
/* To detect rising edge at capturel, capturel interrupt enable */
PWMART_ICAP_Mode (PWMART_ ICAP_1, ((unsigned char) PWMART_ SENSITIVITY_ R |

(unsigned char) PWMART_ ICAP1_IT_ENABLE)) ;

/* PWM signal on PWM1 pin */

PWMART_PWM_Mode (PWMART_1, PWMART_POLARITY_O,DutyCycle_Data) ;

while (1) ;

/* ___
ROUTINE NAME : PWMART IT_Routine

INPUT : None

OUTPUT : None

DESCRIPTION : Interrupt service routine

COMMENTS : This gets automatically executed when any of the PWMART

interrupt is enabled. If the same functions are called in the

(572

/* For testing only */

169/235

Function Descriptions

main Tree and the interrupt Tree, the function Re-entrant error
occurs in case COSMIC compiler is used with models other than
stack models.

___ */
#ifdef _HIWARE_ /* test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* additional registers will be saved */
#else
#ifdef _COSMIC_ /* test for Cosmic Compiler */
@interrupt
#else
#error "Unsupported Compiler!" /* Compiler Defines not found! */
#endif
#endif
void PWMART_IT Routine (void)
{

unsigned char CAP1_Value;

unsigned char i, Temp;

if (PWMART_Status_Flag (PWMART FLAG_OVF) == TRUE)

{

PWMART_Clear_Flag (PWMART_FLAG_OVF) ; /* call only to clear OVF */

}

if (PWMART_Status_Flag (PWMART FLAG_ICF1l)== TRUE)

{

PWMART_Clear_Flag (PWMART_FLAG_ICF1) ; /* call only to clear ICF1l */

/* call to get capture value and also clear ICF1 */
CAP1_Value = PWMART ICAP_Getvalue (PWMART ICAP_1);
/* Routine for user code */
IO_Output (IO_PUSH_PULL,IO_PORT_C,IO_PIN_O) ;

IO_Write (IO_PORT_C,IO_PIN_0,IO_DATA_HIGH) ; /* Turn ON LED at PCO */
for (1=0;1<=250;1++) /* delay */
{

Nop
}
IO_Write (IO_PORT_C,IO_PIN_0,IO_DATA_LOW) ; /* Turn ON LED at PCO */

170/235

4

Function Descriptions

9.1.10 LITE AUTO-RELOAD TIMER (LART)
This software library consists of the following functions for LART.

Function Name

LART_Init

Function Prototype

Void LART _Init(Lart_InitParameter InitValue)

Behaviour Description

Initialization of the LART, by default counter clock is OFF
and interrupts disabled. To change this default configura-
tion, you can pass one or more input parameters by logi-
cally ORing them together.

Input Parameter

LART_COUNTER_CLK_FLT
sets counter clock = f TMeR
LART_COUNTER_CLK_FCPU
sets counter clock = fopy
LART_OVF_IT_ENABLE
enables overflow interrupt
LART_OCMP_IT_ENABLE
enables compare interrupt
LART_DEFAULT

sets default configuration

Output Parameters None
Required Preconditions None
Functions called None
Postconditions LART is configured as desired
See also None

4

171/235

Function Descriptions

Table 116. LART _Disable

Function Name

LART_Disable

Function Prototype

Void LART_Disable(Lart_Disable_Param DValue)

Behaviour Description

Disables overflow interrupt or compare interrupt or makes
counter clock OFF or all of these depending upon the input
parameter passed. More than one input parameter can be
passed by logically ORing them together.

Input Parameter

LART_OVF_IT_DISABLE
disables overflow interrupt
LART_OCMP_IT_DISABLE
disables compare interrupt
LART_COUNTER_CLK_OFF
counter clock OFF
LART_PWM_DISABLE
disables PWMO output

LART_PWMO_DISABLE
disables PWMO output
LART_PWM1_DISABLE ")
disables PWM1 output
LART_PWM2_DISABLE ")
disables PWM2 output
LART_PWM3_DISABLE ")
disables PWM3 output
LART_ICAP_IT_DISABLE V
disables Input Capture interrupt

LART_CTR2_DISABLE 2
disables counter 2, uses counter 1 only

LART_OVF2_IT_DISABLE 2
disables counter 2 overflow interrupt

LART_LONG_ICAP_DISABLE 2
disables long input capture mode

Output Parameters

None

Required Preconditions

Interrupts enabled or counter clock selected

Functions called

None

Postconditions

Overflow interrupt or compare interrupt or counter clock is
OFF depending upon the input parameter passed.

See also

LART_Init

1) Feature available only for ST7FLite1, ST7FLite2, ST7FLite3 and ST7DALI devices.
2) Feature available only on ST7FLite3 device.

Notes: If PWM output is disabled, the Output compare mode is enabled as the OE bit is

cleared.

172/235

4

Function Descriptions

Table 117. LART_PWM_Mode

Function Name LART_PWM_Mode
Void LART_PWM_Mode(unsigned int
Function Prototype Autoreload_Value,Lart_Output POLARITY, unsigned int

Dutycycle_Data)

Generates PWM on PWMO pin. The PWM signal frequen-
cy is controlled by the counter clock period and ATR reg-
ister value. The PWM signal duty cycle depends upon
input parameter 1 and input parameter 3.

This function is used only for LiteO device, for other devic-
es use LART_ConfigurePWM.

Autoreload_Value

This value is loaded in autoreload register (ATR). You can
select this value from 0x000 to OxFFF depending on the
frequency required for the PWM signal.

LART_POLARITY_0

PWM output level is low, for Counter value >
Dutycycle_Data,

PWM output level is high, for Counter value <=
Dutycycle_Data.

LART_POLARITY_1

PWM output level is high, for Counter value >
Dutycycle_Data,

PWM output level is low, for Counter value <=
Dutycycle_Data.

Dutycycle_Data
Data to be loaded in Duty cycle register (0x000 to OxFFF).

Behaviour Description

Input Parameter 1

Input Parameter 2

Input Parameter 3 Note: This value must be greater than the ATR register
value loaded through Input parameter 1 to obtain signal on
PWMO pin.

Output Parameters None

. s LART_Init must have been called to select the counter

Required Preconditions
clock.

Functions called None
PWM signal of required frequency and duty cycle is gen-

Postconditions erated at PWMO pin. The output compare mode is disa-
bled.

See also LART_Init, LART_ConfigurePWM

Notes:
— This function can be used only with ST7FLite0 devices.

— This function is used to keep backward compatibility with previous library. For new develop-
ment LART_ConfigurePWM function should be used with the first parameter LART_PWMO
in place of this function.

172 173/235

Function Descriptions

Table 118. LART_ConfigurePWM

Function Name

LART_ConfigurePWM

Function Prototype

Void LART_ConfigurePWM (Lart_PWMChannel PWM-
Channel, unsigned int Autoreload_Value,
Lart_Output POLARITY,unsigned int Dutycycle_Data)

Behaviour Description

Generates PWM on PWMx pin. The PWM signal frequen-
cy is controlled by counter clock period and ATR register
value (Input parameter 1). The PWM signal duty cycle de-
pends upon input parameter 2 and input parameter 4.

Input Parameter 1

PWMChannel

LART_PWMO

PWM channel 0 is configured
LART_PWM1 ")

PWM channel 1 is configured
LART_PWM2 ")

PWM channel 2 is configued
LART_PWM3 ")

PWM channel 3 is configured

Input Parameter 2

Autoreload_Value

This value is loaded in autoreload register (ATR). You can
select this value from 0x000 to OxFFF depending on the
frequency required for the PWM signal.

Input Parameter 3

LART_POLARITY_0

PWM output level is low, for Counter value >
Dutycycle_Data,

PWM output level is high, for Counter value <=
Dutycycle_Data.

LART_POLARITY_1

PWM output level is high, for Counter value >
Dutycycle_Data,

PWM output level is low, for Counter value <=
Dutycycle_Data.

Input Parameter 4

Dutycycle_Data
Data to be loaded in Duty cycle register (0x000 to OxFFF).

Note: This value must be greater than the ATR register
value loaded through Input parameter 1 to obtain signal on
PWMXx pin.

Output Parameters

None

Required Preconditions

LART_Init must have been called to select the counter
clock.

Functions called

None

174/235

4

Function Descriptions

PWM signal of required frequency and duty cycle is gen-
Postconditions erated at PWMx pin. The output compare mode is disa-
bled.
See also LART_Init

1) Feature available only for ST7FLite1, ST7FLite2, ST7FLite3 and ST7DALI devices.

Note: This function configures only one PWM channel at one time. So to configure multiple
PWM Channels this function should be called multiple times.

Table 119. LART_OCMP_Mode

Function Name LART_OCMP_Mode

Function Prototype Void LART_OCMP_Mode(unsigned int Dutycycle_Data)
Puts timer in Output Compare mode. This mode disables
PWM output.

Behaviour Description
P This function is used for ST7FLite0 only, for other devices

LART_ConfigureOCMP should be used
Dutycycle_Data

Input Parameter Data to be loaded in Duty cycle register (0x000 to OxFFF)
which will be compared with upcounter.

Output Parameters None

. . LART_Init must have been called to select the counter

Required Preconditions
clock.

Functions called None
When the upcounter value reaches the Dutycycle_Data,

Postconditions the CMPFxflag is set and an interrupt is generated if com-
pare interrupt is enabled.

See also LART_Init

Notes:

— This function can be used only with the ST7FLite0 device.

— This function is added for backward compatibility with previous library. For new develop-
ments LART_ConfigurePWM should be used with LART_OCMPO as the first parameter.

4

175/235

Function Descriptions

Table 120. LART_ConfigureOCMP

Function Name

LART_ConfigureOCMP

Function Prototype

Void LART_ConfigureOCMP(Lart_ OCMPChannel OCM-
PChannel, unsigned int Dutycycle_Data)

Behaviour Description

Puts timer in Output Compare mode. This mode disables
PWM output.

Input Parameter 1

OCMPChannel
LART_OCMPO
OCMPO is configured
LART_OCmMP1)
OCMP1 is configured
LART_ocmpP2 ")
OCMP2 is configured
LART_OCMP3 ")
OCMP3 is configured

Input Parameter 2

Dutycycle_Data

Data to be loaded in Duty cycle register (0x000 to OxFFF)
which will be compared with upcounter.

Output Parameters

None

Required Preconditions

LART_Init must have been called to select the counter
clock.

Functions called

None

Postconditions

When the upcounter value reaches the Dutycycle_Data,
the CMPFxflag is set and an interrupt is generated if com-
pare interrupt is enabled.

See also

LART_Init, LART_OCMP_Mode

1) Feature available only for ST7FLite1, ST7FLite2, ST7FLite3 and ST7DALI devices
Note: Take care of the ATR value while using this function.

176/235

4

Function Descriptions

Table 121. LART_Status_Flag

Function Name LART_Status_Flag

Function Prototype BOOL LART_Status_Flag(Lart_Flag FLAG_F)
Checks the status of any one of the LART flags depending

Behaviour Description upon the input parameter passed. The function can be
called more than once for checking more than one flag.
FLAG_F

LART_FLAG_OVF

Checks Overflow flag
LART_FLAG_CMPFO

Checks Output Compare 0 flag
LART_FLAG_CMPF1 ")
Checks Output Compare 1 flag
Input Parameters LART_FLAG_CMPF2 ")
Checks Output Compare 2 flag
LART_FLAG_CMPF3 ")
Checks Output Compare 3 flag
LART_FLAG_ICF ")

Checks Input Capture flag
LART_FLAG_OVF2?

Checks counter 2 overflow flag

TRUE or FALSE
Output Parameters If TRUE: flag is set

If FALSE: flag is not set.
Required Preconditions LART configured in any one of the modes.
Functions called None

If the output parameter is TRUE, flag is set.
If the output parameter is FALSE, the flag is not set and

Postconditions this function can be looped till the flag is set.
LART_Clear_Flag function should be called to clear the
flag.

See also LART_Clear_Flag

1) Feature available only for ST7FLite1, ST7FLite2, ST7FLite3 and ST7DALI devices.
2) Feature available only on ST7FLite3 device.
Note: All flags except LART_FLAG_ICF also get cleared by calling this function so need to
call LART_Clear_Flag function again to clear the flag.

4

177/235

Function Descriptions

Table 122. LART_Clear_Flag

Function Name

LART_Clear_Flag

Function Prototype

Void LART_Clear_Flag(Lart_Flag FLAG_F)

Behaviour Description

Clears the status flag depending upon the input parameter
passed. This function can be called more than once to

clear more than one flag.

Input Parameters

FLAG_F

LART_FLAG_OVF

Clears Overflow flag
LART_FLAG_CMPFO

Clears Output Compare 0 flag
LART_FLAG_CMPF1 ")
Clears Output Compare 1 flag
LART_FLAG_CMPF2 ")
Clears Output Compare 2 flag
LART_FLAG_CMPF3 ")
Clears Output Compare 3 flag
LART_FLAG_ICF ")

Clears Input Capture flag
LART_FLAG_OVF2?
Clears counter 2 overflow flag

Output Parameters None
Required Preconditions Any of LART flags is set
Functions called None

Postconditions

Selected status flag is cleared.

See also

LART_Status _Flag

1) Feature available only for ST7FLite1, ST7FLite2, ST7FLite3 and ST7DALI devices.

2) Feature available only on ST7FLite3 device.

178/235

4

Function Descriptions

Table 123. LART_ICAPMode

Function Name

LART_ICAPMode

Function Prototype

Void LART_ICAPMode(Lart_ICAPInitParams InitPar-
ams)

Behaviour Description

Configures the input Capture mode. This function also en-
ables Input capture interrupt if LART_ICAP_IT_ENABLE
is passed as user parameter.

This function clears the input capture flag.

Input Parameter

InitParams

LART_ICAP_DEFAULT

Input capture function is used in polled mode
LART_ICAP_IT_ENABLE

Input Capture Interrupt is enabled

Output Parameters

None

Required Preconditions

LART_Init must have been called to select the counter
clock.

Functions called

None

Postconditions

Poll Input Capture flag or wait for interrupt to read the Input
Capture value

See also

LART_ICAPGetValue

Note: This function is available only for ST7FLite1, ST7FLite2, ST7FLite3 and ST7DALI de-

vices.

Table 124. LART_ICAPGetValue

Function Name

LART_ICAPGetValue

Function Prototype

Unsigned int LART_ICAPGetValue()

Behaviour Description

Reads the 12-bit Input capture register value

Input Parameter

None

Output Parameters

Returns the 12-bit input capture register value

Required Preconditions

LART_ICAPMode must have been called. This function
should be called only after Input Capture flag is set (flag is
checked either by polling or by enabling Input capture in-
terrupt)

Functions called

None

Postconditions

None

See also

LART_ICAPMode

Note: This function is available only for ST7FLite1, ST7FLite2, ST7FLite3 and ST7DALI de-

vices.

4

179/235

Function Descriptions

Table 125. LART_ConfigureBREAK

Function Name

LART_ConfigureBREAK

Function Prototype

Void LART_ConfigureBREAK (Lart_ BREAKPinState
BREAKPInState, Lart_ BREAK_PWMPattern PWMPat-
tern);

Behaviour Description

This function enables/disables the BREAK pin function
and loads the PWM bit pattern to be generated in BREAK
state

Input Parameter

BREAKPinState:
LART _BREAK_ENABLE

Enables BREAK Pin (Break condition will be generated by
applying low signal to BREAK)

LART_BREAK_DISABLE

Disables BREAK Pin (Break condition generated by soft-
ware)

PWMPattern:

Pattern to be generated on PWM pins. Following parame-
ters are passed as input. These parameters can be logi-
cally ORed to pass multiple parameters.

LART_BREAK_PWMO_HIGH
LART_BREAK_PWMO0_LOW
LART_BREAK_PWM1_HIGH
LART_BREAK_PWM1_LOW
LART_BREAK_PWM2_HIGH
LART_BREAK_PWM2_LOW
LART_BREAK_PWM3_HIGH
LART_BREAK_PWM3_LOW

Output Parameters None
Required Preconditions None
Functions called None

Postconditions

If LART_BREAK_DISABLE mode is selected then
LART_ActivateBREAK and LART_DeactivateBREAK
functions are called to activate and deactivate the BREAK
condition.

See also

LART_ActivateBREAK
LART_DeactivateBREAK

Note: This function is available only for ST7FLite1, ST7FLite2, ST7FLite3 and ST7DALI de-

vices.

180/235

4

Function Descriptions

Table 126. LART_ActivateBREAK

Function Name

LART_ActivateBREAK

Function Prototype

Void LART_ActivateBREAK()

Behaviour Description

Generates the software BREAK condition. Break pattern
is loaded on PWMx pins.

Input Parameter

None

Output Parameters

None

Required Preconditions

Break state PWM pattern is loaded using function
LART_ConfigureBREAK.

Functions called

None

Postconditions

LART_DeactivateBREAK must have been called to deac-
tivate the BREAK condition.

See also

LART_ConfigureBREAK
LART_DeactivateBREAK

Note: This function is available only for ST7FLite1, ST7FLite2, ST7FLite3 and ST7DALI de-

vices.

Table 127. LART_DeactivateBREAK

Function Name

LART_DeactivateBREAK

Function Prototype

Void LART_DeactivateBREAK()

Behaviour Description

Deactivates the the software BREAK condition. All LART
registers are initialized to reset state.

Input Parameter

None

Output Parameters

None

Required Preconditions

Software BREAK is generated using
LART_ActivateBREAK function

Functions called

None

Postconditions

All registers are initialized to Reset state. So Init and other
function required to configure the required LART function-
ality must be called again.

See also

LART_ConfigureBREAK
LART_ActivateBREAK

Note: This function is available only for ST7FLite1, ST7FLite2, ST7FLite3 and ST7DALI de-

vices.

4

181/235

Function Descriptions

Table 128. LART_Counter2Init

Function Name

LART_Counter2Init

Function Prototype

Void LART_Counter2Init(Lart_CTR2InitParams InitPar-
ams, unsigned int ATR2Value);

Behaviour Description

This function enables counter 2 which is used for PWM2,
PWMS3 and loads the autoreload register for counter 2.
This also enables counter 2 overflow interrupt depending
upon the input parameters passed.

Input Parameter

InitParams:
LART_CTR2_OVF_IT_ENABLE
Enables counter 2 overflow interrupt
LART_CTR2_OVF_IT_DISABLE
Disables counter 2 overflow interrupt
ATR2Value:

Value to be loaded in Autoreload register 2 which is used
for counter 2.

Output Parameters None
Required Preconditions None
Functions called None

Postconditions

Counter 2 is configured for PWM2 and PWM3

See also

LART_Disable

Note: This function is available only for the ST7FLite3 device.

Table 129. LART_ReloadATR

Function Name

LART_ReloadATR

Function Prototype

Void LART_ReloadATR(unsigned int AutoReloadVal)

Behaviour Description

This function reloads the autoreload counter. This is used
for generating overflow condition and to customize the API
usage

AutoReloadVal:
Input Parameter . ;
12-Bit value for auto reload register.
Output Parameters None
Required Preconditions None
Functions called None

Postconditions

Auto reload register is loaded with AutoReloadVal

See also

LART_ConfigurePWM

182/235

4

Function Descriptions

Table 130. LART_LongICAPMode

Function Name

LART_LongICAPMode

Function Prototype

Void LART_LongICAPMode(Lart_LonglCAPInitParams
InitParams);

Behaviour Description

Enables the long input capture function of LART. This
function selects the clock source as LiteTimer output, In-
put capture source as LiteTimer input capture and inter-
rupt source as specified in InitParams.

Input Parameter

InitParams:
LART_SELF_ICAP_IT_ENABLE
Enables LART Input Capture interrupt
LART_LT_ICAP_IT_ENABLE

Enables Lite Timer Input Capture interrupt
LART_ICAP_NO_IT_ENABLE

No Input Capture interrupt is enabled

Output Parameters None
Required Preconditions None
Functions called None

Postconditions

Clock source for LART is selected as LiteTimer output and
LiteTimer Input capture is used as input capture source.
LART_LongICAPGetValue is used to read values when
input capture event occurs.

See also

LART_LongICAPGetValue

Notes:

— This function is available only for the ST7FLite3 device.

— This function may affect other functions as it changes the clock source which will also affect
the LiteTimer Input capture functionality because this is used along with LART Input Capture

for this mode.

4

183/235

Function Descriptions

Table 131. LART_LongICAPGetValue

Function Name

LART_LongICAPGetValue

Function Prototype

Void LART_LongICAPGetValue(unsigned char *LTVal-
ue, unsigned int *LARTValue)

Behaviour Description

Enables the long input capture function of LART. This
function selects clock source as LiteTimer output, Input
capture source as LiteTimer input capture and interrupt
source as specified in InitParams.

Input Parameter

None. Parameters are passed as reference to get the out-
put results.

Output Parameters

LTValue:

Value of LiteTimer Input Capture register
LARTValue:

Value of LART Input Capture register

Required Preconditions

LART_LonglCAPMode should be called to configure long
Input Capture mode. Input Capture event must occur be-
fore this function call.

Functions called

None

Postconditions

Input capture flags of LiteTimer and LART are cleared

See also

LART_LongICAPGetValue

Note: This function is available only for the ST7FLite3 device.

Table 132. LART_GenerateDeadTime

Function Name

LART_GenerateDeadTime

Function Prototype

Void LART_GenerateDeadTime(unsigned char DTValue)

Behaviour Description

This function generates a dead time between PWMO and
PWM1. This is required for Half bridge driving.

Input Parameter

DTValue:

7 Bit value for dead time to be inserted between PWMO
and PWM1.

dead time = DTValue * TCounter

Output Parameters

None

Required Preconditions

PWMO and PWM1 are configured by calling
LART_PWM_Mode. Half bridge driving is possible only if
Polarities of PWMO and PWM1 are not inverted otherwise
overlapping signal will be generated

Functions called

None

Postconditions

Dead time is inserted between PWMO and PWM1 signals

See also

LART_PWM_Mode

Note: This function is available only for the ST7FLite3 device.

184/235

4

Function Descriptions

EXAMPLE:The following C program shows the use of the LART functions.

Program description:
This program generates a PWM signal with a 10KHz frequency and with a 30% Duty cycle and
toggles an LED every second (Fcpu=8MHz).

/* Program start */
#include "ST71ib_config.h" /* Select ST7FLITEO */

/* prototype declaration */
void LART OVF_IT_Routine (void) ;
void main (void) ;

static unsigned int count;

void main (void)

{

TIO_Output (IO_PUSH_PULL, IO_PORT_B,IO_PIN_3); /* Port PB3 as pushpull output */
/* Select Fcpu as counter clock & enable overflow interrupts */
LART_Init(((unsignedchar)LART_COUNTER_CLK_FCPU|
(unsigned char) LART_OVF_IT_ENABLE));

/* Clear I bit in CC register */
EnableInterrupts
/* Load ATR and DCR to get PWM signal of 10 KHz and duty cycle of 30% */

/* Generate PWM at PWMO pin */

LART_PWM_Mode ((unsigned int)0xCEO, LART_POLARITY_O0, (unsigned int) 0xDDO) ;

while(1);
}
/ K e
ROUTINE NAME : LART_OVF_IT Routine
INPUT : None
OouTPUT : None
DESCRIPTION : Interrupt service routine for Overflow interrupt
COMMENTS : This gets automatically executed when OVF interrupt of the
LART is enabled. If the same functions are called in the
main Tree and the interrupt Tree, the function Re-entrant error
occurs in case COSMIC compiler is used with models other than
stack models.
For configuring the port pins,I/O library is used.
___ */
#ifdef _HIWARE_ /* Test for Metrowerks Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else
#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt @nostack
#else
#error "Unsupported Compiler!" /* Compiler Defines not found! */
#endif
#endif

172 185/235

Function Descriptions

void LART _OVF_IT_Routine (void)

{

186/235

unsigned char Temp;

LART_Clear_Flag (LART_FLAG_OVF) ; /* Call to clear OVF */
count++;
if (count == 10000)
{
Temp = TO_Read (IO_PORT_B) ; /* TO Toggle PB3 */
if (Temp & 0x08)
{

IO_Write (IO_PORT_B,IO_PIN_3,IO0_DATA_LOW) ; /* Turn OFF LED at PB3 */
}
else
{

IO_Write (IO_PORT_B,IO_PIN_3,IO_DATA_ HIGH) ; /* Turn ON LED at PB3 */
}
count = 0;

4

Function Descriptions

9.1.11 TBU

This software library consists of the following functions for TBU.

Function Name

TBU_Init

Function Prototype

Void TBU_Init (TBU_Init_Param init_value)

Behaviour Description

Initialization of the TBU, sets by default TBU counter fro-
zen, cascading disabled, interrupt disabled and prescaling
factor to 2. You can change the default configuration by
selecting one or more of the following input parameters.

Input Parameters

TBU_DEFAULT
Sets TBU to reset value
TBU_ART_CASCADE

Cascade the TBU and the PWMART timer counters to-
gether

TBU_IT_ENABLE
TBU overflow interrupt enable

Output Parameters None
Required Preconditions None
Functions called None
Postconditions None
See also None

Table 133. TBU_SetPrescCount8

Function Name

TBU_SetPrescCount8

Function Prototype

Void TBU_SetPrescCount 8(TBU_Presc
TBU_Prescvalue_P, unsigned char Counter_Value)

Behaviour Description

Selects the prescaler division factor, sets the counter val-
ue

Input Parameter 1

TBU_Prescvalue_P

where P is the prescalar division factor and it can be 2, 4,
8, 16, 32, 64, 128, 256.

Input Parameter 2

Counter_Value
8 bit counter value.This value can be from 0x00- OxFFh.

Output Parameters

None

Required Preconditions

1. TBU_Init must have been called.

2. You have to calculate the values Prescvalue_P and
Counter_Value for the required delay.

Functions called

None

Postconditions

None

See also

TBU_SetPrescCount16

4

187/235

Function Descriptions

Table 134. TBU_SetPrescCount16

Function Name TBU_SetPrescCount16

Void TBU_SetPrescCount16 (TBU_CasPresc

Function Prototype TBU_CasPrescvalue_P, unsigned int Counter_Value)

Selects the prescalar value for the PWMART timer and the
Behaviour Description counter values to be loaded into the TBU and ART regis-
ters.ART counter is enabled.

TBU_CasPrescvalue_P

Input Parameters where P is the prescalar division factor and it can be 1, 2,
4,8, 16, 32 ,64, 128.

Counter_value

Input Parameters 16 bit counter value. This value can be from 0000 to
FFFFh.
Output Parameters None

1. TBU_Init must have been called.
2. Cascaded mode must be selected

3. You must calculate the TBU_CasPrescValue_P and
Counter_Value for the required delay.

Required Preconditions

TBU_Enable must be called immediately after this func-

Functions called .
tion to get more accurate delay.

Postconditions None
See also TBU_SetPrescCount8
Notes:

— The actual delay obtained using this function will be approximately equal to the calculated
delay.

— For best accuracy and smaller delays, it is recommended to use the TBU_SetPrescCount8
function.

4

188/235

Function Descriptions

Table 135. TBU_Enable

Function Name

TBU_Enable

Function Prototype

Void TBU_Enable(void)

Behaviour Description

TBU is enabled and TBU counter starts running.

Input Parameters

None

Output Parameters

None

Required Preconditions

TBU_SetPrescCount8 or TBU_SetPrescCount16 must
have been called.

Functions called

None

Postconditions

If the TBU interrupt is enabled, the control goes into the In-
terrupt subroutine after the programmed delay time.

See also

None

Table 136. TBU_ReadCounter

Function Name

TBU_ReadCounter

Function Prototype

Unsigned char TBU_ReadCounter (void)

Behaviour Description

Reads the counter register of TBU and returns its current
status.

Input Parameters

None

Output Parameters

Unsigned char
Value of the counter register

Required Preconditions None
Functions called None
Postconditions None
See also None

Table 137. TBU_Disable_IT

Function Name

TBU_Disable_IT

Function Prototype

Void TBU_Disable_IT (void)

Behaviour Description

Disables the Overflow interrupt

Input Parameters None
Output Parameters None
Required Preconditions None
Functions called None
Postconditions None
See also TBU_Init

4

189/235

Function Descriptions

Table 138. TBU_ClearOverflow

Function Name

TBU_ClearOverflow

Function Prototype

Void TBU_ClearOverflow (void)

Behaviour Description

Clears the overflow status flag

Input Parameters

None

Output Parameters None
Required Preconditions TBU_Enable must have been called.
Functions called None
Postconditions None
See also TBU_Enable
Table 139. TBU_Disable
Function Name TBU_Disable
Function Prototype Void TBU_Disable (void)
Behaviour Description Disables the TBU counter and prescaler.
Input Parameters None
Output Parameters None
Required Preconditions None
Functions called None
Postconditions None
See also TBU_Enable
Example

The following C program shows the use of the TBU functions.

Program description:

This program is for an ST2F62 device. It generates an interrupt after 1ms if the
TBU_Standalone label is selected in ST7lib_config.h file or generates an interrupt after 1s if
TBU_Cascade label is selected in ST7lib_config.h file. Also an interrupt subroutine is written
which clears the interrupt flag.

/************************************ Program Start ******************************/

/* example code for tbu ST72F62 device */

#include "ST71ib_config.h"
#define TBU_Standalone

/*Configuration File*/

4

190/235

Function Descriptions

void TBU_IT_Routine (void) ;
void main (void) ;

voidmain (void)

{
unsigned char Counter_Value8 = 224;
unsigned int Counter_Valuel6 = 10330;

unsigned char counter; /*Variable declaration*/
EnableInterrupts /*Reset the interrupt mask*/

/ K o e

For Stand alone mode

___ */

#ifdef TBU_Standalone /*Selects Standalone mode*/
TBU_Init (TBU_DEFAULT+TBU_IT_ENABLE) ; /*Enable overflow interrupt*/
TBU_SetPrescCount8 (TBU_Prescvalue_256,Counter_Value8) ; /*Generates Interrupt

after lms*/
counter = TBU_ReadCounter () ; /*Reads the value of counter*/

/ K e e e

For Cascade Mode

__ */

#else

#ifdef TBU_Cascade /*Selects Cascade mode*/
TBU_Init (TBU_IT_ ENABLE+TBU_ART_CASCADE) ;

/*Enable interrupt and select Cascade mode*/
TBU_SetPrescCountl6 (TBU_CasPrescvalue_128,Counter_Valuelb) ;
/*Generate an interrupt after 1 second */

#endif

#endif
TBU_Enable() ; /*Enable the TBU counter*/
while (1) ;

/***********************************Interrupt Subroutine************************/

#ifdef _HIWARE_ /* test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#telse
#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt /* Cosmic interrupt handling */
#else
#error"Unsupported Compiler!" /* Compiler Defines not found! */
#endif
#endif

void TBU_IT Routine (void)
{
TBU_ClearOverflow() ; /*Clears the Overflow flag*/

191/235

4

Function Descriptions

9.1.12 WDG
Table 140. WDG_Refresh

Function Name

WDG_Refresh

Function Prototype

Void WDG_Refresh (unsigned char Counter_Data)

Behaviour Description

Loads the value of Watchdog counter and activates the
Watchdog.

Input Parameter

Counter_Data

Value which is loaded in the Watchdog counter. This value
must be between 0x40 and 0x7f to avoid an immediate re-
set.

To get an immediate reset this value can be between 0x00
to Ox3f.

Output Parameter

None

Required Preconditions

You must precalculate the value of Counter_Data for the
desired Watchdog timeout.

Functions called

None

Postconditions

1. The Watchdog is activated after this function and can
not be disabled, except by a reset.

2. A Reset is generated after the desired Timeout, when
Watchdog counter rolls over from 0x40 to 0x3f (See Table
141 for some Counter_Data values and corresponding
Watchdog Timeout).

3. For window watchdog, a reset is also generated if this
routine is called when the Watchdog counter value is
greater than the Window register value n,

1) This condition is valid only for Window Watchdog

Notes:

— This function takes less ROM area but you must pass a precalculated Watchdog counter val-

ue.

— To prevent the Watchdog reset this routine must be called when:
1. The Watchdog counter value is greater than Ox3F
2. and lower than the Window register for Window Watchdog.

— The Watchdog for the ST7FLITEO device is integrated with the Lite Timer peripheral.
— Functions for that watchdog are integrated with the Lite Timer library functions.

192/235

4

Function Descriptions

Table 141. Watchdog Timeout for some Counter_Data values at fosc2 = 8MHz for

ST72F521 device

Counter_Data Watchdog Timeout (ms)
0x3f to 0x00 0.0
0x40 1.5
0x50 34
0x60 65
0x70 98
Ox7f 128

Table 142. WDG_ComputeTimeout

Function Name

WDG_ComputeTimeout

Function Prototype

Void WDG_ComputeTimeout (unsigned long
WDG_Timeout)

Behaviour Description

Sets the value of Watchdog counter as per the selected
Timeout and activates the watchdog.

Input Parameter

WDG_Timeout

Required Watchdog Timeout. This value must be entered
in microseconds.

Output Parameter

None

Required Preconditions

You must define Fcpu and Fosc2 in ST7lib_config.h cor-
rectly.

Functions called

None

Postconditions

1.The Watchdog is activated after this function and can
not be disabled, except by a reset.

2.A Reset is generated after a time approximately equal
to WDG_Timeout (If the Watchdog counter is not
changed in between)

3. For window watchdog a reset is generated, also if this
routine is called when the Watchdog counter value is
greater than the Window register value "

1) This condition is valid only for Window Watchdog

Notes:

— This function will give the approximate Timeout. For more accurate results you must do the
calculations as per the formulas given in the datasheet and call the previous function for

loading counter value.

— If the selected Watchdog Timeout is not possible, you will get the next possible value

— To prevent the Watchdog reset this routine must be called when the Watchdog counter val-

ue.:
1. is greater than Ox3F

2. and lower than the Window register for Window Watchdog

(572

193/235

Function Descriptions

Table 143. WDG_ReadCounter

Function Name

WDG_ReadCounter

Function Prototype

Unsigned char WDG_ReadCounter (void)

Behaviour Description

Returns the WDG counter register value

Input Parameter

None

Output Parameter

WDG counter register value

Required Preconditions None
Functions called None
Postconditions None

Table 144. WDG_ReadWindow

Function Name

WDG_ReadWindow

Function Prototype

Unsigned char WDG_ReadWindow (void)

Behaviour Description

Returns the value of the window register

Input Parameter

None

Output Parameter

Window register value

Required Preconditions None
Functions called None
Postconditions None

Caution: This function is valid only for Window Watchdog, if used for normal Watchdog a

compilation error is generated.

Table 145. WDG_WriteWindow

Function Name

WDG_WriteWindow

Function Prototype

Void WDG_WriteWindow (unsigned char)

Behaviour Description

Loads the value of the window register which is compared
with the watchdog counter

Input Parameter

Value to be loaded in the Window register. This value
must be between 0x00 and Ox7F

Output Parameter None
Required Preconditions None
Functions called None

Postconditions

After this function, Watchdog counter value is compared
with the new window value. If watchdog counter is reload-
ed outside this window value, a watchdog reset is gener-
ated.

Caution: This function is valid only for Window Watchdog, if used for normal Watchdog a com-

pilation error is generated.

194/235

(572

Function Descriptions

EXAMPLE:
The following C program shows the use of the WDG library functions.

Program description:

This program generates the watchdog reset for ST72F521 device. The reset timeout period is
configured as 34ms with fosc2 = 8MHz, through function WDG_Refresh with input parameter
“Counter_Data” as 0x50 (See Table 141).

Watchdog reset timeout can also be configured through WDG_ComputeTimeout function
(refer to the example below). Here it is configured for a reset timeout of 20,000us with input
parameter WDG_Timeout given as 20,000.

In Window Watchdog, the reset can be generated by reloading the WDG counter register out-
side the Window. In the example it is generated after 1ms

/******************************** Programstart ‘k‘k*k*******************************/

#include "ST71ib_config.h"

void main (void) ;
void main (void)

{
unsigned int i;
/* ___
WDG_Refresh function to generate a reset after 34ms at fosc2 = 8MHz
___ */
WDG_Refresh (0x50) ; /*Generates reset after 34ms*/
/* ___
WDG_ComputeTimeout function to generate a reset after 20ms (MCC timebase:
4dms, fosc2 = 8MHz)
___ */
/*WDG_ComputeTimeout (50000); */ /*Generates reset after 20ms*/
/* __
Window Watchdog for setting a Refresh Period of 34ms and a Window Size of
18.432ms at fosc2 = 8MHz. Reset is generated after 1lms by reloading the WDG
counter register outside the window.
___ */
#ifdef WDG_72F561
WDG_Refresh (0x50) ; /* Set a Refresh period of 34ms */
WDG_WriteWindow (0x48)
for (1 =0; 1<532; i++) ; /*1ms delay */
WDG_Refresh (0x50) ; /* Generates Reset on execution of this routine */
#endif
while (1) ;

}

K’I 195/235

Function Descriptions

9.1.131ITC
Table 146. ITC_Init

Function Name

ITC_Init

Function Prototype

Void ITC_Init (void)

Behaviour Description

Initializes all the Interrupt software priority registers and
External interrupt controller/status register to their default
values.

Input Parameters None
Output Parameters None
Required Preconditions None
Functions called None
Postconditions None
See also None

Table 147. ITC_SetPriority

Function Name

ITC_SetPriority

Function Prototype

Void ITC_SetPriority (ITC_IT IT, ITC_LEVEL Level)

Behaviour Description

Sets the Interrupt software Priority levels of the selected
interrupts

Input Parameter 1

IT_MCC

Sets the software priority of MCC interrupt

IT_EIO

Sets the software priority of External interruptO

IT_EN

Sets the software priority of External interrupt1

IT_EI2

Sets the software priority of External interrupt2

IT_EI3

Sets the software priority of External interrupt3

IT_CAN

Sets the software priority of CAN peripheral interrupt
IT_SPI

Sets the software priority of SPI peripheral interrupt
IT_TIMERA ?)

Sets the software priority of TIMERA peripheral interrupt
IT_TIMERB ?

Sets the software priority of TIMERB peripheral interrupt
IT_SCI1?

Sets the software priority of SCI peripheral interrupt

196/235

4

Function Descriptions

IT_AVD

Sets the software priority of Auxiliary Voltage detector in-
terrupt

IT_I2C 2
Sets the software priority of 12C peripheral interrupt
IT_PWMART
Sets the software priority of PWMART peripheral interrupt
IT_DTC?
Sets the software priority of DTC peripheral interrupt
IT_PLG
Sets the software priority of Power Management USB
plug/unplug interrupt
Input Parameter 1 IT_ESUSP
Sets the software priority of USB Endsuspend interrupt
IT_USB 2
Sets the software priority of USB peripheral interrupt
IT_TIM
Sets the software priority of TIMER interrupt
IT_ADC
Sets the software priority of A/D End of Conversion Inter-
rupt
IT_CSS
Sets the software priority of Clock Filter Interrupt
IT_SCI1,IT_SCI2
Sets the software priority of SCI interrupts
IT_LEVEL_1
Sets the priority of the selected interrupt as Levell
IT_LEVEL_2
Sets the priority of the selected interrupt as Level2
IT_LEVEL_3
Sets the priority of the selected interrupt as Level3

Output Parameter None

Required Preconditions None

Functions called None

Postconditions None

See also None

1) IT_LEVEL_O can not be written.
2) These Interrupts do not have an Exit from HALT mode capability.

Notes:
— This function is for ST72F521,ST72F561,ST72F65,ST72F62,ST72F264, ST72325 and

ST7232A devices.

Input Parameter 2)

172 197/235

Function Descriptions

— For selecting different priorities for different interrupts you must call the function more than
once. If it is required to set two or more interrupts to same priority level, then you can pass
them together by logically ORing.

— This function is for Nested Interrupts only.

Caution:

— If you select an interrupt which is not present in the Peripheral then you will get an error mes-
sage during compilation.

— If the Priority of the Interrupt is changed while it is being executed then the following behav-
iour has to be considered:
If that interrupt is still pending, and the new software priority is higher than the previous one,
the interrupt is re-entered. Otherwise the software priority stays unchanged until the next in-
terrupt request.

Table 148. ITC_Get_CurrentLevel

Function Name ITC_Get_CurrentLevel
Function Prototype ITC_LEVEL ITC_Get_CurrentLevel (void)
Behaviour Description Returns the Interrupt software priority level of the current
Interrupt.
Input Parameters None
IT_LEVEL_O
Software Priority of the current interrupt is at LevelO
IT_LEVEL_1
Software Priority of the current interrupt is at Levell
Output Parameters
IT_LEVEL_2
Software Priority of the current interrupt is at Level2
IT_LEVEL_3
Software Priority of the current interrupt is at Level3
Required Preconditions None
Functions called None
Postconditions None
See also None

Note: This function is for ST72F521,ST72F561,ST72F65,ST72F62,ST72F264, ST72325 and
ST7232A devices.

4

198/235

Function Descriptions

Table 149. ITC_GetPriority

Function Name

ITC_GetPriority

Function Prototype

ITC_LEVEL ITC_GetPriority (ITC_IT IT)

Behaviour Description

Returns the software priority level of the selected interrupt.

Input Parameter 1

IT_MCC

Returns the software priority of MCC interrupt

IT_EIO

Returns the software priority of External interruptO
IT_EN

Returns the software priority of External interrupt1
IT_EI2

Returns the software priority of External interrupt2
IT_EI3

Returns the software priority of External interrupt3
IT_CAN

Returns the software priority of CAN peripheral interrupt
IT_SPI

Returns the software priority of SPI peripheral interrupt
IT_TIMERA

Returns the software priority of TIMER A peripheral inter-
rupt

IT_TIMERB

Returns the software priority of TIMERB peripheral inter-
rupt

IT_SCI

Returns the software priority of SCI peripheral interrupt
IT_AVD

Returns the software priority of Auxiliary Voltage detector
interrupt

4

199/235

Function Descriptions

IT_I2C

Returns the software priority of 12C peripheral interrupt
IT_PWMART

Returns the software priority of PWMART peripheral inter-
rupt

IT_DTC

Returns the software priority of DTC interrupt

IT_PLG

Returns the software priority of Power Management USB
plug/unplug interrupt

IT_ESUSP

Input Parameter 1 Returns the software priority of USB Endsuspend interrupt
IT_USB

Returns the software priority of USB peripheral interrupt
IT_TIM

Returns the software priority of TIMER interrupt

IT_ADC

Returns the software priority of A/D End of Conversion in-
terrupt

IT_CSS

Returns the software priority of Clock Filter interrupt
IT_SCI1,IT_SCI2

Returns the software priority of SCI interrupts
IT_LEVEL_O

Priority of the selected interrupt is at LevelO
IT_LEVEL_1

Priority of the selected interrupt is at Level1
IT_LEVEL_2

Priority of the selected interrupt is at Level2
IT_LEVEL_3

Priority of the selected interrupt is at Level3
Required Preconditions None

Functions called None

Postconditions None

See also None

Output Parameter

Notes:
— This function is for ST72F521,ST72F561,ST72F65,ST72F62,ST72F264, ST72325 and
ST7232A devices.

— This function is for Nested Interrupts only.

Caution: If you select an interrupt which is not present in the Peripheral then he will get an
error message during compilation.

200/235 ‘ﬁ

Function Descriptions

Table 150. ITC_TRAP

Function Name ITC_TRAP

Function Prototype Void ITC_TRAP (void)
Behaviour Description Generates TRAP interrupt.
Input Parameters None

Output Parameters None

Required Preconditions None

Functions called None

Postconditions None

See also None

Note: This is a Non Maskable Software Interrupt and can interrupt a Level3 program.

4

201/235

Function Descriptions

Table 151. ITC_Configurelnterrupt

Function Name

ITC_Configurelnterrupt

Function Prototype

Void ITC_Configurelnterrupt(ITC_Port Portx, unsigned
char Pin, ITC_Sensitivity Sensitivity)

Behaviour Description

Enables the interrupts and also Sets the Interrupt sensitiv-
ity of the selected Port pin.

Input Parameter 3

IT_Portx
Input Parameter 1
x=A,B,C,D,EF
Pin
Input Parameter 2)
This value must be between 0 to 7
IT_EDGE_F_0

Sets the interrupt sensitivity of the selected pin as falling
edge and Low level.

IT_EDGE_R

Sets the interrupt sensitivity of the selected pin as rising
edge only

IT_EDGE_F

Sets the interrupt sensitivity of the selected pin as falling
edge only

IT_EDGE_FR

Sets the interrupt sensitivity of the selected pin as falling
edge and rising edge

IT_EDGE_R_1

Sets the interrupt sensitivity of the selected pin as rising
edge and high level.

IT_DEFAULT "
Sets the default sensitivity associated with the device.

Required Preconditions

The Port Pin must be configured in Input Interrupt mode.

Functions called

None

Postconditions

None

See also

ITC_Disablelnterrupt

1) This option to be used for ST72F62 and ST72F63B devices only.

Notes:

— This function replaces ITC_EXT_ITSensitivity from Library ver1.0
— External Interrupts are masked when an I/O (configured as input interrupt) of the same inter-

rupt vector is forced to Vss.

— If several input pins of a group connected to same interrupt line are selected simultaneously,

these will be logically ORed
Caution:

— You must refer to the datasheet of the device while selecting the interrupt Pin and the Inter-
rupt sensitivity at that pin. If you select a sensitivity which is not available for that pin, the sen-

sitivity of the pin will not be changed.

202/235

(572

Function Descriptions

— For devices which have pins with fixed sensitivity the option IT_DEFAULT has to be used.
Any other option used also has no effect and the default value is only configured.

— For ST72F264, PortC can be configured as EIO or EI1 using option bytes. For this the con-
stant EXTIT_VALUE in the device_hr.h file has to be changed as 0 or 1 to configure PortC

as EIO or El1 respectively.

Table 152. ITC_Disablelnterrupt

Function Name

ITC_Disablelnterrupt "

Function Prototype

Void ITC_Disablelnterrupt(ITC_Port Portx, unsigned
char Pin)

Behaviour Description

Disables the interrupts at the specified Port & Pin.

Input Parameter 1

IT_Portx
x=A,B,C

Input Parameter 2

Pin
This value must be between 0 to 7

Required Preconditions

The Port Pin must be configured in Input Interrupt mode.

Functions called

None

Postconditions

The external interrupt will be disabled and alternate func-
tion in the pin can be enabled.

See also

ITC_Configurelnterrupt

1) This function is available only in ST72F62 & ST72F63B

Caution: You must refer to the datasheet of the device while selecting the interrupt Pin. If you
select a wrong interrupt pin then the specified interrupt will not be disabled.

Table 153. ITC_Revert_Sensitivity

Function Name

ITC_Revert_Sensitivity

Function Prototype

Void ITC_Revert_Sensitivity (ITC_IT IT)

Behaviour Description

Reverts the sensitivity of the EIO or EI2 interrupt depend-
ing upon the input parameter (See table below).

Input Parameters

IT_EIO
Reverts the sensitivity of External interruptO

IT_EI2
Reverts the sensitivity of External interrupt2
Output Parameters None
Required Preconditions None
Functions called None
Postconditions None
See also None

Note: This function is for ST72F21, ST72325 and ST7232A devices.

(572

203/235

Function Descriptions

Previous Sensitivity

Reverted Sensitivity

Falling edge and low level

Rising edge and high level

Rising edge only

Falling edge only

Falling edge only

Rising edge only

Rising and falling edge

Rising and falling edge

Table 154. ITC_EnableTLI

Function Name ITC_EnableTLlI
Function Prototype Void ITC_EnableTLI (void)
Behaviour Description Enables the TLI capability on the dedicated pin.
Input Parameters None
Output Parameters None
Required Preconditions None
Functions called None
Postconditions None
See also None
Notes:

— This function is for ST72F521, ST72F561 and ST72325 devices.
— This is a Non Maskable Interrupt source and can interrupt a Level3 program.

Table 155. ITC_DisableTLI

Function Name ITC_DisableTLI
Function Prototype Void ITC_DisableTLI (void)
Behaviour Description Disables the TLI capability on the dedicated pin.
Input Parameters None
Output Parameters None
Required Preconditions None
Functions called None
Postconditions None
See also None
Notes:

— This function is for ST72F521, ST72F561 and ST72325 devices.

— A parasitic interrupt can be generated when disabling the TLI, depending upon the status of
the TLI pin.

4

204/235

Function Descriptions

Table 156. ITC_TLISensitivity

Function Name ITC_TLISensitivity

Function Prototype Void ITC_TLISensitivity (ITC_Sensitivity Edge)

Behaviour Description the Input parametor selecied
IT_EDGE_R

Input Parameters TLI pin is made rising edge sensitive
IT_EDGE_F
TLI pin is made falling edge sensitive

Output Parameters None

Required Preconditions ITC_DisableTLI must have been called.

Functions called None

Postconditions None

See also None

Note: This function is for ST72F521, ST72F561 and ST72325 devices.

EXAMPLE:
The following C program shows the use of the ITC library functions.

Program description:

This program is written for the ST72F521 device. It sets the Software priority level for EIO Ex-
ternal interrupt & TIMERA peripheral interrupt to Level2. Then it sets the software priority of
EI2 to Levell. The sensitivity of PAO (EIO interrupt pin in ST72F521) and PFO (EI2) interrupt is
set to falling edge. The TLI interrupt is enabled and the sensitivity of the TLI pin is set to Falling
edge. A falling edge is applied on the PFO pin (configured as input interrupt) to generate an
EI2 interrupt. Immediately after this, a falling edge is applied on the PAO pin. As the priority of
the EIO interrupt is higher than EI2, the EI2 interrupt is interrupted and control goes to EIO.
Then TLI interrupt is generated by applying a falling edge on the TLI pin. The LEDs connected
to the Port D pins are toggled by the interrupt subroutines.

/* Example code for ITC for ST72F521 */
#include "ST71ib_config.h"

//prototype declarations
void TLI_IT_Routine (void) ;
volid EI0O_IT Routine (void) ;
volid EI2_IT Routine (void) ;
void main (void) ;

void main (void)
{

unsigned char Pin =0;

ITC_LEVEL Priority = IT_LEVEL_2; /*Variable Declaration*/
ITC_Init (); /* Initialise ITC */
K’I 205/235

Function Descriptions

EnableInterrupts /*Reset Interrupt mask*/
ITC_SetPriority (((unsigned char)IT TIMERA | ((unsigned char)IT_EIO0)),
IT_LEVEL_2);

/* Sets Interrupt Priority FOR EIO AS LEVEL 2*/
ITC_SetPriority (IT_EI2, IT LEVEL_1);
/* Sets Interrupt Priority FOR EI2 AS LEVEL 1*/
Priority = ITC_GetPriority (IT_EIO); /* Gets Priority */
while (! (ITC_Get_CurrentLevel () == IT_LEVEL_3));
/* Checks Current interrupt priority*/
ITC_ConfigureInterrupt (IT _PortA,Pin, IT_EDGE_F) ;
/*Set falling edge sensitivity for EI0*/
ITC_ConfigureInterrupt (IT _PortB,Pin, IT_EDGE_F) ;
/*Set falling edge sensitivity for EI2*/

ITC_DisableTLI () ; /*Disables TLI interrupt */
ITC_TLISensitivity (IT_EDGE_R) ; /* Sets Rising edge for TLI */
ITC_EnableTLI () ; /* Enables TLI interrupt */

/****'k'k*****'k*****'k'k****'k******'k*****'k'k***********'k'k****************************

Interrupt Subroutine for TLI
***/

#ifdef _HIWARE_ /* Test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else
#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt /* Cosmic interrupt handling */
#else
#error "Unsupported Compiler!" /* Compiler Defines not found! */
#endif
#endif

void TLI_IT Routine (void)

{
unsigned int i;
PDDDR |= 0x04;
PDOR |= 0x04;
PDDR |= 0x04;
for (1 =0; 1 <5000; i++)
{

Nop

}
PDDR &= OxFB;

}

/***

Interrupt Subroutine for EI0
***/

#ifdef _HIWARE_ /* Test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else

#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt /* Cosmic interrupt handling */
#else

#error"Unsupported Compiler!" /* Compiler Defines not found! */

206/235 ﬁ

Function Descriptions

#endif
#endif

void EIO_IT_ Routine (void)

{
unsigned int i;
PDDDR |= 0x01;
PDOR |= 0x01;
PDDR |= 0x01;
for (i =0; 1 <5000; i++)
{

Nop

}
PDDR &= OxFE;

}

/*****‘k**k***‘k******************‘k***k***‘k**k*********************k*k‘k*****‘k‘k****k*k‘k***

Interrupt Subroutine for EI2

*****'k'k*****'k*****'k'k****'k******'k*****'k'k***********'k'k***************************/

#ifdef _HIWARE_ /* Test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else
#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt /* Cosmic interrupt handling */
#else
#error"Unsupported Compiler!" /* Compiler Defines not found! */
#endif
#endif

volid EI2_IT Routine (void)

{
unsigned int i;
PDDDR |= 0x02;
PDOR |= 0x02;
PDDR |= 0x02;
for (1 =0; 1 <5000; i++)
{

Nop

}
PDDR &= 0xFd;

}

4

207/235

Function Descriptions

9.1.14 MCC
Function Name MCC_Init
Function Prototype Void MCC_lInit (MCC_Init Init_Value)

Initialization of MCC. By default, main clock out (MCO) al-
ternate function, beep mode and oscillator interrupt are
Behaviour Description disabled. You can change the default configuration, by se-
lecting input parameters given below. You can pass one or
more parameters by ‘OR’ing them.

MCC_DEFAULT

Load MCC registers with reset value (00h).
MCO_ENABLE

Enables main clock out alternate function.
MCC_IT_ENABLE

Enables oscillator interrupt.

Input Parameters

Output Parameters None
Required Preconditions None
Functions called None
Postconditions None
See also None

Note: If you want to enable interrupts, parameter MCC_IT_ENABLE has to be passed in the
MCC_Init function. You must then use the “Enablelnterrupts” macro to reset the Interrupt
mask.

Caution: The MCO function is stopped during Active-Halt mode.

4

208/235

Function Descriptions

Table 157. MCC_SlowMode

Function Name

MCC_SlowMode

Function Prototype

Void MCC_SlowMode (MCC_Mode Slow_Mode,
MCC_Param Config_Value)

Behaviour Description

Selects fcpy main clock frequency depending on the input.

Input Parameter 1

MCC_SLOW_ENABLE
Enables slow mode.
MCC_SLOW_DISABLE
Disables slow mode.

Input Parameter 2

MCC_CLK_0

Selects clock as fogeo. This parameter is passed when
slow mode is disabled.

MCC_CLK 2 ")

Selects clock as fogco /2.
MCC_CLK 4

Selects clock as fogco /4.
MCC_CLK 8 ")

Selects clock as fogco /8.
MCC_CLK_16 "

Selects clock as foggo /16.
MCC_CLK_ 322

Selects clock as fogc/32.

Output Parameters

None

Required Preconditions

MCC_Init must have been called.

Functions called

None

Postconditions

None

See also

None

1) This parameter is applicable for ST72F521, ST72325 and ST7232A devices, when slow

mode is enabled.

2) This parameter is applicable for ST7FLite0 device, when slow mode is enabled.

4

209/235

Function Descriptions

Table 158. MCC_RTC_Timer

Function Name MCC_RTC_Timer

Function Prototype Void MCC_RTC_Timer (MCC_RTC_Param Timer_Value)

Selects the programmable divider time base. Oscillator in-
terrupts are generated, as per the timebase selection. You
have to select the input values from the table shown be-
low.

Behaviour Description

MCC_RTC_X
x=0,1,2,3.

You have to select values, to decide the time base for os-
cillator interrupt.

Input Parameters

Output Parameters None
Required Preconditions MCC_Init must have been called.
Functions called None
Postconditions None
See also None
Notes:

— The MCC/ RTC interrupt wakes up the MCU from ACTIVE-HALT mode, not from HALT
mode.

— A modification of time base is taken into account at the end of the current period (previously
set), to avoid an unwanted time shift.

Timebase for Timebase for Timebase for Timebase for
MCC_RTC_X

foscz =1MHz fOSCZ =2MHz fOSCZ =4MHz fOSCZ = 8MHz
MCC_RTC_0 16ms 8ms 4ms 2ms
MCC_RTC_1 32ms 16ms 8ms 4ms
MCC_RTC_2 80ms 40ms 20ms 10ms
MCC_RTC_3 200ms 100ms 50ms 25ms

Notes:

The timebase for other fogco can be reached by calculation, as shown below.
For MCC_RTC_0, Timebase = 32000/(2*fogco)-
For MCC_RTC_1, Timebase = 64000/(2*fogco)-
For MCC_RTC_2, Timebase = 160000/(2*fggc2)-
For MCC_RTC_3, Timebase = 400000/(2*fogco)-
For example, if fogco = 5SMHz, for the MCC_RTC_X input values, the timebase values are as
follows.
For MCC_RTC_0, Timebase = 3.2 ms,
For MCC_RTC_1, Timebase = 6.4 ms,
For MCC_RTC_2, Timebase =16 ms,
For MCC_RTC_3, Timebase = 40 ms.

210/235

4

Function Descriptions

Table 159. MCC_ActiveHalt

Function Name

MCC_ActiveHalt

Function Prototype

Void MCC_ActiveHalt (void)

Behaviour Description

Enables oscillator interrupt and enters into ACTIVE-HALT
power saving mode.

Input Parameters None
Output Parameters None
Required Preconditions None
Functions called None
Postconditions None

See also MCC_lInit

Table 160. MCC_Beep
Function Name MCC_Beep

Function Prototype

Void MCC_Beep (MCC_Beep_Param Beep_Value)

Behaviour Description

Selects the Beeper output signal by selecting one of the
below parameters.

Input Parameters

MCC_BEEP_1

Selects beep signal approximately as fogco / 4000 (~50%
duty cycle).

MCC_BEEP_2

Selects beep signal approximately as fogco / 8000 (~50%
duty cycle).

MCC_BEEP_3

Selects beep signal approximately as fogco / 16000
(~50% duty cycle).

Output Parameters None
Required Preconditions MCC_Init must have been called.
Functions called None
Postconditions None
See also None

Note: The beep signal is available in ACTIVE-HALT mode, but has to be disabled to reduce

the consumption.

4

211/235

Function Descriptions

Table 161. MCC_Clear_IT

Function Name

MCC_Clear_IT

Function Prototype

Void MCC_Clear_IT (void)

Behaviour Description

Clears oscillator interrupt flag.

Input Parameters None
Output Parameters None
Required Preconditions None
Functions called None
Postconditions None

See also

MCC_RTC_Timer

Table 162. MCC _IT_Disable

Function Name

MCC_IT Disable

Function Prototype

Void MCC_IT_Disable (void)

Behaviour Description

Disables oscillator interrupt.

Input Parameters

None

Output Parameters None
Required Preconditions None
Functions called None
Postconditions None
See also MCC_Init
212/235 ﬁ

Function Descriptions

EXAMPLE:
The following C program shows the use of the MCC functions.
Program Description:

This program configures fcpy main clock frequency as 2 MHz, oscillator interrupt timebase as
4ms and generates 1 KHz beep signal.

/* Program Start */

#include "ST71ib_config.h"
/* File for user to select device as ST72F521, Fosc2 as 8MHz */

//protoytpe declaration
void MCC_IT_Routine (void) ;
void main (void) ;

voidmain (void)

{
/* MCC initialised. Main clock out and oscillator interrupt enabled */
MCC_Init(((unsignedchar)MCO_ENABLE\ (unsigned char)MCC_IT_ ENABLE)) ;
EnableInterrupts
MCC_SlowMode (MCC_SLOW_ENABLE, MCC_CLK_4) ;
/* Fcpu selected as 2 MHz */
MCC_RTC_Timer (MCC_RTC_1); /* Time base selected as 4ms */
WaitforInterrupt /* Waiting for interrupt */

/****‘k‘k**k***************‘k*************************‘k******************‘k‘k*****‘k**

Interrupt Service Routine:
An example of 1kHz beep signal generation in BEEP pin, is given, whichwill

be executed when RTC interrupt is generated.
**/

#ifdef _HIWARE_ /* Test for HIWARE Compiler */
#pragma TRAP_PROC SAVE_REGS /* Additional registers will be saved */
#else
#ifdef _COSMIC_ /* Test for Cosmic Compiler */
@interrupt /* Cosmic interrupt handling */
#else
#error"Unsupported Compiler!" /* Compiler Defines not found! */
#endif
#endif

void MCC_IT Routine (void)
{

MCC_Clear_IT (); /* Clears the interrupt */
MCC_Beep (MCC_BEEP_2) ; /* Generates 1 KHz beep signal */
}
[’I 213/235

Function Descriptions

9.1.15 EEPROM
Following are the functions related to EEPROM.

Function Name EEPROM._Init
Function Prototype Void EEPROM_Init (void)

Initialization of EEPROM. Loads the EEPROM register
with reset value (00h).

Input Parameters None
Output Parameters None

Selection of the right EEPROM device in the file
“ST7lib_config.h”.

Behaviour Description

Required Preconditions

Functions called None

Postconditions None

See also None
Notes:

— The EEPROM can enter WAIT mode, on execution of the WFI instruction of the microcon-
troller. If programming is in progress, then EEPROM will finish the current cycle and then en-
ter WAIT mode.

— The EEPROM immediately enters HALT mode if the microcontroller executes the HALT in-
struction. Therefore, EEPROM will stop the function in progress and the data may be cor-
rupted.

4

214/235

Function Descriptions

Table 163. EEPROM_Read

Function Name

EEPROM_Read

Function Prototype

For Metrowerks,

void EEPROM_Read (unsigned char * PtrToUsrBuffer,
unsigned char NbOfBytes, unsigned char * far
PtrToE2Buffer)

For Cosmic,

void EEPROM_Read (unsigned char * PtrToUsrBuffer,
unsigned char NbOfBytes, @near unsigned char *
PtrToE2Buffer)

Behaviour Description

Reads data from EEPROM memory and stores it in the
user buffer.

Input Parameter 1

*PtrToUsrBuffer
User address, where data has to be stored.

Input Parameter 2

NbOfBytes
Number of bytes you want to read from EEPROM memory

Input Parameter 3

*PtrToE2Buffer

EEPROM memory address, from where data has to be
read.

Output Parameters None

Required Preconditions None

Functions called None

Postconditions None

See also None
Notes:

— The value of *PtrToE2Buffer can be from 0x1000h to 0x107Fh for LITEOQ/1/2/3,
ST7SUPERLITE and ST7DALI device.

— You have to type-cast parameter PtrToE2Buffer to unsigned char * in the function
EEPROM_Read as shown in example (page 218).

— Because of the limitation of ST7FLite0/1/2/3, STZSUPERLITE and ST7DALI ZRAM and
RAM size (which is 64 bytes each), you must take care while declaring the size of user buffer.

4

215/235

Function Descriptions

Table 164. EEPROM_Write

Function Name EEPROM_Write
For Metrowerks,
void EEPROM_Write (unsigned char * PtrToUsrBuffer,
unsigned char NbOfBytes, unsigned char * far
Function Prototype PtrToE2Buffer)
For Cosmic,
void EEPROM_Write (unsigned char * PtrToUsrBuffer,
unsigned char NbOfBytes, @near unsigned char *
PtrToE2Buffer)
. - Writes up to 32 bytes of data from user buffer to EEPROM
Behaviour Description
memory.
*PtrToUsrBuffer
Input Parameter 1 User address where data exists.
NbOfBytes
Input Parameter 2 Number of bytes you want to write in EEPROM memory.
You can write up to 32 bytes.
Input Parameter 3 *PtrToE2Buffer
EEPROM memory address, where data will be written.
Output Parameters None
Required Preconditions None
Functions called None
Postconditions You must call EEPROM_ Programming after this function.
See also EEPROM_Programming

Notes:

— The value of *PtrToE2Buffer can be from 0x1000h to 0x107Fh for ST7FLite0/1/2/3,
ST7SUPERLITE and ST7DALI device.

— You have to type-cast parameter PtrToE2Buffer to unsigned char * in the function
EEPROM_Write as shown in example (page 218).

— To avoid incorrect programming, take care that all the bytes written between the two pro-
gramming sequences have the same high address: only the four Least Significant Bits of the
address can change.

— Because of the ST7FLite0/1/2/3, ST7ZSUPERLITE and ST7DALI ZRAM and RAM size limi-
tation (which is 64 bytes each), you must take care while declaring the size of user buffer.

4

216/235

Function Descriptions

Table 165. EEPROM_Programming

Function Name

EEPROM_Programming

Function Prototype

Prog_Status EEPROM_Programming (void)

Behaviour Description

Starts writing data bytes from EEPROM latches to EEP-
ROM cells and returns the programming status.

Input Parameters

None

Output Parameters

EEPROM_PROG_COMPLETE

If all data bytes are written from latch to EEPROM cells.
EEPROM_PROG_PROGRESS

If programming cycle is in progress.

Required Preconditions

EEPROM_Write must have been called.

Functions called

None

Postconditions

This function can be looped, until the programming cycle
is complete.

See also

EEPROM_Write

Notes:

— Care should be taken during programming cycle. Writing to the same memory location will
over-program the memory. If a programming cycle is interrupted (by software or a reset ac-
tion), the integrity of the data in memory is not guaranteed.

— Reading the EEPROM memory is not possible when the data writing is in progress.

4

2171235

Function Descriptions

Example
The following C program shows the uses of the EEPROM functions for the LiteO device.

Program Description:

This program writes 5 data bytes in EEPROM memory from one user buffer, Temp1. Then
data bytes are read from the same EEPROM memory and stored in another buffer, Temp2.
The written data and data read from the two buffers are then compared.

/*

*/

/* Program Start */

#include "ST71ib_Config.h" /* File for user to select device as 1ite0 */
#ifdef _HIWARE_
unsigned char ptr_address @ 0x1000;

#endif

#ifdef _COSMIC_
@near unsigned char ptr_address @ 0x1000;

#endif

void main (void) ;

voidmain (void)

{

}

int i;

unsigned char NoofBytes = 5;

unsigned char Templ[5] = {0x55, 0xAA, 0x7F, 0x18, 0x4C};
unsigned char Temp2[5] = {0x00, 0x00,0x00, 0x00, 0x00};
/*@far unsigned char * ptr_write;

@far unsigned char * ptr_read;

ptr_read = &ptr_address;

ptr_write = &ptr_address; */

EEPROM_TInit (); /* A1l EEPROM registers initialised to reset value */
EEPROM_Write (Templ,NoofBytes, &ptr_address) ;
/* Data written from buffer Templ to EEPROM memory address 1000h */
/* EEPROM_Write (Templ, 5, (unsigned char * far)0x1000); */ /* Write function
is called in this way for hiware compiler, when small memory model is used */
while (EEPROM_Programming () != EEPROM_PROG_COMPLETE) ;
/*Waiting till all data bytes programmed from latch to EEPROM cells */

EEPROM_Read (Temp2,NoofBytes, &ptr_address) ;
/* Reads data from EEPROM address 1000h and stores it in buffer Temp2 */
/* EEPROM_Read (Temp2,5, (unsigned char * far) 0x1000); */ /* Read function
is called in this way for hiware compiler, when small memory model is used */

for (1 =0; 1<5;1++)

{ /* Comparison of written data and data read */
if ((*(Templ+i)) != (*(Temp2+i)))
{ /* Mismatch between written data and data read */

while (1) ;

/*Program Stop */

218/235

4

Function Descriptions

9.1.16 I/0
The following are the functions related to Input/Output ports.
Function Name 10_Init
Function Prototype Void IO_Init (void)
Behaviour Description Initialization of 10. Loads IO registers with reset value
(00h).
Input Parameters None
Output Parameters None
Required Preconditions Selection of the right device in the file “ST7lib_config.h”.
Functions called None
Postconditions None
See also None

Note: The bits associated with unavailable pins must always keep their reset value.

4

219/235

Function Descriptions

Table 166. 10_Input

Function Name 10_Input
Void IO_Input (I0_Input_Mode Input_Val, I0_Port
Port_Val1, IO_Pin Pin_Vall)

Configures the 1/O ports in input mode. You can also se-
lect external interrupt function, by selecting the corre-
sponding input parameters. Refer to the datasheet to
select the input mode and input port name.

Select the input mode, by selecting one of the below pa-
rameters.

I0_FLOATING

Selects floating input mode.

I0_FLOATING_IT

Selects floating input mode, with external interrupt.
I0_PULL_UP

Selects pull-up input mode.

I0_PULL_UP_IT

Selects pull-up input mode, with external interrupt.
Selects the port name.

Input Parameter 2 I0_PORT_X

Function Prototype

Behaviour Description

Input Parameter 1

X=A,B,... The port name has to selected with reference to
the datasheet.

Selects port pin number. You can select more than one pin

Input Parameter 3 number, by ‘OR’ing them.
I0_PIN_Y
Y=0to 7.

Output Parameters None

Required Preconditions None

Functions called None

Postconditions None

See also None

Notes:

— You can use this function to configure pins as floating input, when the pins are used as ADC
input.

— If you want to select external interrupt, you should use the “Enablelnterrupts” macro after this
function.

Caution:

— Alternate function must not be activated, while the pin is configured as input with interrupt,
in order to avoid generating spurious interrupts.

— Input pull-up configuration can cause an unexpected value at the input of the alternate pe-
ripheral.

220/235 ‘ﬁ

Function Descriptions

Table 167. 10_Output

Function Name

10_Output

Function Prototype

Void I0_Output (I0_Output_Mode Output_Val,lO_Port
Port_Val2, IO_Pin Pin_Val2)

Behaviour Description

Configures the 1/O ports in output mode. Refer to the da-
tasheet to select the output mode and output port name.

Input Parameter 1

Selects the output mode, by selecting one of the below pa-
rameters.

I0_OPEN_DRAIN

Selects open drain output mode
I0_PUSH_PULL

Selects push-pull output mode

Input Parameter 2

Selects the port name.
IO_PORT_R

R = A,B,... The port name has to selected with reference
to the datasheet

Input Parameter 3

Selects port pin number. Here you can select more than
one pin number, by ‘OR’ing them.

IO_PIN_S

S=0to7.
Output Parameters None
Required Preconditions None
Functions called None

Postconditions

You must call IO_Write after this function, if you want to
write data in the port register.

See also

None

4

221/235

Function Descriptions

Table 168. 10_Read

Function Name

10_Read

Function Prototype

Unsigned char 10_Read (I0_Port Read_Val)

Behaviour Description

Reads the port and returns the value.

Input Parameters

Selects the port name.
I0_PORT_U

U = A,B,... The port name has to selected with reference
to the datasheet.

Output Parameters

Unsigned char Port_Data
Returns the data in the port register.

Required Preconditions None
Functions called None
Postconditions None
See also None

Note: When the 10 port is in input configuration and associated alternate function is enabled
as an output, reading the port (DR) register will read the alternate function output status.

Table 169. 10_ByteWrite

Function Name

10_ByteWrite

Function Prototype

Void 10_ByteWrite (IO_Port Port_Val4,unsigned char
I0_ByteData)

Behaviour Description

Writes data byte into port register.

Input Parameter 1

Selects the port name.
I0_PORT_X

X=A,B,... The port name has to selected with reference to
the datasheet.

10_ByteData
Input Parameter 2 . . .
Data byte to be written into port register
Output Parameters None

Required Preconditions

If you want to write data in output mode, 10_Output must
have been called.

Functions called None
Postconditions None
See also None

Caution: When you write data in a port register in this function, the previous data in the port

is modified.

222/235

4

Function Descriptions

Table 170. 10_Write

Function Name

10_Write

Function Prototype

Void I0_Write (I0_Port Port_Val3,IO_Pin Pin_Val3,
IO_Write_Data Data_Val)

Behaviour Description

Writes the data into the port pins.

Input Parameter 1

Selects the port name.
I0O_PORT_V
V= A,B,... The port name as per datasheet.

Input Parameter 2

Selects port pin number. Here you can select more than
one pin number by ‘OR’ing them.

I0_PIN_W
W=0to7.

Input Parameter 3

Selects the data to be written in the port pin.
I0_DATA_HIGH

Writes logic high in port pin
IO_DATA_LOW

Writes logic low in port pin
I0_DATA_TOGGLE

Toggles port pin

Output Parameters

None

Required Preconditions

To write data in output mode, I0_Output must have been
called.

Functions called None

Postconditions None

See also None
Notes:

— When the I/O port is in output configuration and associated alternate function is enabled as
an input, the alternate function reads the pin status given by the port (DR) register content.

— This function reads DR register, performs the bit operations and writes back DR. This could
give different results in some situations, to avoid this use 10_ByteWrite with shadow register

variables.

4

223/235

Function Descriptions

EXAMPLE:
The following C program shows the use of the 1/O functions.
Program Description:

This program, written for the ST72F521 device, configures all Port D pins in push-pull output
mode. The D5 and D7 port pins are put into logic high state. The port register is read and the
data is compared with the written data. If there is any mismatch between the data read and
data written, the control goes into a ‘while’ loop.

It then configures Port C (C3 & C4) in floating input mode. The C3 and C4 port pins are put into
logic high state by the external input. Then, port C is read. The read value is compared with
expected value, i.e.,0x18. If there is any mismatch between the data read and expected data,
the control goes into a ‘while’ loop.

/* Program Start */
#include "ST71ib_config.h" /* File for user to select device as ST72F521 */

voidmain (void) ;
void main (void)
{
unsigned char Temp = 0x00;

IO0_Init (); /* All I0 registers initialised to reset value (00h) */

IO_Output (IO_PUSH_PULL,IO_PORT_A, ((unsigned char)IO_PIN_1 |
((unsigned char) IO_PIN_2 | ((unsigned char)IO_PIN_3 | ((unsigned char)IO_PIN_4
| ((unsigned char)IO_PIN_5| ((unsigned char)IO_PIN_6 |
((unsigned char)IO_PIN_7))))))));

IO_Output (IO_OPEN_DRAIN, IO_PORT_B, ((unsigned char)IO_PIN_0 |
((unsigned char) IO_PIN_2 | ((unsigned char)IO_PIN_3 | ((unsigned char)
IO_PIN_4/| ((unsigned char)IO_PIN_5]| ((unsigned char)IO_PIN_6 |
((unsigned char)IO_PIN_7))))))));

IO_Output (IO_PUSH_PULL,IO_PORT_C, ((unsigned char)IO_PIN_0 |
((unsigned char)IO_PIN_1 | ((unsigned char)IO_PIN_3 | ((unsigned char)IO_PIN_4
| ((unsigned char)IO_PIN 5| ((unsigned char)IO_PIN 6|
((unsigned char)IO_PIN_7))))))));

IO_Output (IO_OPEN_DRAIN,IO_PORT_D, ((unsigned char)IO_PIN_0 |
((unsigned char)IO_PIN_1 | ((unsigned char)IO_PIN_2 | ((unsigned char)IO_PIN_4
| ((unsigned char)IO_PIN_5| ((unsigned char)IO_PIN_6 |
((unsigned char)IO_PIN_7))))))));

I0_Output (IO_PUSH_PULL,IO_PORT_E, ((unsigned char)IO_PIN_0 |
((unsigned char) IO_PIN_1 | ((unsigned char) IO_PIN_2 | ((unsigned char)
IO_PIN_3| ((unsigned char)IO_PIN_5| ((unsigned char)IO_PIN_6 |
((unsigned char)IO_PIN_7))))))));

I0_Output (IO_OPEN_DRAIN,IO_PORT_F, ((unsigned char)IO_PIN_0 |
((unsigned char)IO_PIN_1| ((unsigned char)IO_PIN_2| ((unsigned char)

4

224/235

Function Descriptions

4

IO_PIN_3| ((unsigned char)IO_PIN_4| ((unsigned char)IO_PIN_6 |
((unsigned char)IO_PIN_7))))))));

IO_Write (IO_PORT_A, ((unsigned char)IO_PIN_ 0| ((unsigned char)IO_PIN_1 |
((unsigned char) IO_PIN_2 | ((unsigned char) IO_PIN_3 | ((unsigned char)
IO_PIN_4| ((unsigned char)IO_PIN_5)))))) ,IO_DATA_HIGH) ;

I0_Write (IO_PORT_B, ((unsigned char)IO_PIN_O0| ((unsigned char)IO_PIN_1 |
((unsigned char)IO_PIN_2| ((unsigned char)IO_PIN_3 | ((unsigned char)
IO_PIN_6 | ((unsigned char)IO_PIN_7)))))),IO_DATA_HIGH) ;

IO_Write (IO_PORT_C, ((unsigned char)IO_PIN_2| ((unsigned char)IO_PIN_3 |
((unsigned char) IO_PIN_4 | ((unsigned char) IO_PIN_5 | ((unsigned char)
TIO_PIN_6 | ((unsigned char)IO_PIN_7)))))),IO_DATA_HIGH) ;

I0_Write (IO_PORT_D, ((unsigned char)IO_PIN_0| ((unsigned char)IO_PIN_1 |
((unsigned char)IO_PIN_2| ((unsigned char)IO_PIN_5 | ((unsigned char)
IO_PIN_6 | ((unsigned char)IO_PIN_7)))))),IO_DATA_HIGH) ;

IO_Write (IO_PORT_E, ((unsigned char)IO_PIN_ 0| ((unsigned char)IO_PIN_1 |
((unsigned char) IO_PIN_4 | ((unsigned char) IO_PIN_5 | ((unsigned char)
TIO_PIN_6 | ((unsigned char)IO_PIN_7)))))),IO_DATA_HIGH) ;

I0_Write (IO_PORT_F, ((unsigned char)IO_PIN_0| ((unsigned char)IO_PIN_1 |
((unsigned char)IO_PIN_2| ((unsigned char)IO_PIN_3 | ((unsigned char)
IO_PIN_6 | ((unsigned char)IO_PIN_7)))))),IO_DATA_HIGH) ;

IO_Write (IO_PORT_B, ((unsigned char)IO_PIN 0| ((unsigned char)IO_PIN_1 |
((unsigned char) IO_PIN_2 | ((unsigned char) IO_PIN_3 | ((unsigned char)

TIO_PIN_6 | ((unsigned char)IO_PIN_7)))))),IO_DATA_LOW) ;

Temp = I0_Read (IO_PORT_B) ; /* Reads the port D contents */
while (Temp != 0x00) ;

Temp = 0x00;

Temp = IO_Read (IO_PORT_A) ; /* Reads the port D contents */
while (Temp != 0x3f);

Temp = 0x00;

Temp = IO0_Read (IO_PORT_C) ; /* Reads the port D contents */
while (Temp != 0x£f8);

Temp = 0x00;

Temp = I0_Read (IO_PORT_D) ; /* Reads the port D contents */
while (Temp != 0xe7) ;

Temp = 0x00;

Temp = IO_Read (IO_PORT_E) ; /* Reads the port D contents */
while (Temp != 0xe3);

Temp = 0x00;

Temp = I0_Read (IO_PORT_F) ; /* Reads the port D contents */

while (Temp != Oxcf);
IO_Input (IO_PULL_UP,IO_PORT_A, ((unsigned char)IO_PIN_2 | ((unsigned char)
IO_PIN_3 | ((unsigned char)IO_PIN_4| ((unsigned char)IO_PIN_5 |
((unsigned char)IO_PIN_6 | ((unsigned char)IO_PIN_7)))))));

IO_Input (IO_FLOATING, IO_PORT_C, ((unsigned char)IO_PIN_2 | ((unsigned char)
IO_PIN_3 | ((unsigned char)IO_PIN_4| ((unsigned char)IO_PIN_5 |

225/235

Function Descriptions

226/235

IO_Bytelrite (())
IO_ByteWrite (())
IO_ByteWrite (IO_PORT_C, (unsigned char) 0xAA) ;

(())

(())

(())

((unsigned char)IO_PIN_6 | ((unsigned char)IO_PIN_7)))))));

IO_Input (IO_FLOATING,IO_PORT_D, ((unsigned char)IO_PIN_2 | ((unsigned char)

IO_PIN_3 | ((unsigned char)IO_PIN_4| ((unsigned char)IO_PIN_5 |
((unsigned char)IO_PIN_6 | ((unsigned char)IO_PIN_7)))))));

IO_Input (IO_PULL_UP,IO_PORT_E, ((unsigned char)IO_PIN_2 | ((unsigned char)

IO_PIN_3 | ((unsigned char)IO_PIN_4| ((unsigned char)IO_PIN_5 |
((unsigned char)IO_PIN_6 | ((unsigned char)IO_PIN_7)))))));

IO_Input (IO_FLOATING,IO_PORT_F, ((unsigned char)IO_PIN_2 | ((unsigned char)

IO_PIN_3 | ((unsigned char)IO_PIN_4| ((unsigned char)IO_PIN_5 |
((unsigned char)IO_PIN_6 | ((unsigned char)IO_PIN_7)))))));

IO_Input (IO_PULL_UP_IT,IO_PORT_B, ((unsigned char)IO_PIN_2 | ((unsigned char)

IO_PIN_3 | ((unsigned char)IO_PIN_4| ((unsigned char)IO_PIN_5 |
((unsigned char)IO_PIN_6 | ((unsigned char)IO_PIN_7)))))));

IO0_Output (IO_PUSH_PULL,IO_PORT_B, ((unsigned char)IO_PIN_1 |

((unsigned char)IO_PIN_2| ((unsigned char)IO_PIN_3| ((unsigned char)
IO_PIN_4| ((unsigned char)IO_PIN_5| ((unsigned char)IO_PIN_6 |
((unsigned char)IO_PIN_7))))))));

IO_Output (IO_OPEN_DRAIN,IO_PORT_A, ((unsigned char)IO_PIN_O0 |

((unsigned char)IO_PIN_2| ((unsigned char)IO_PIN_3| ((unsigned char)
IO_PIN_4| ((unsigned char)IO_PIN_5| ((unsigned char)IO_PIN_6 |
((unsigned char)IO_PIN_7))))))));

I0_Output (IO_PUSH_PULL, IO_PORT_D, ((unsigned char)IO_PIN_O0| ((unsigned char)

IO_PIN_1| ((unsigned char)IO_PIN_3| ((unsigned char)IO_PIN_4| ((unsigned char)
IO_PIN_5| ((unsigned char)IO_PIN_6| ((unsigned char)IO_PIN_7))))))));

I0_Output (IO_OPEN_DRAIN, IO_PORT_C, ((unsigned char)IO_PIN_0 |

((unsigned char)IO_PIN_1| ((unsigned char)IO_PIN_2| ((unsigned char)
IO_PIN_ 4| ((unsigned char)IO_PIN_5| ((unsigned char)IO_PIN_6 |
((unsigned char)IO_PIN_7))))))));

I0_Output (IO_PUSH_PULL, IO_PORT_F, ((unsigned char)IO_PIN_0| ((unsigned char)

IO_PIN_1| ((unsigned char)IO_PIN_2| ((unsigned char)IO_PIN_3| ((unsigned char)
IO_PIN_5]| ((unsigned char)IO_PIN_6| ((unsigned char)IO_PIN_7))))))));

IO_Output (IO_OPEN_DRAIN,IO_PORT_E, ((unsigned char)IO_PIN_0 |

((unsigned char)IO_PIN_1| ((unsigned char)IO_PIN_2 |
((unsigned char)IO_PIN_3| ((unsigned char)IO_PIN_4| ((unsigned char)IO_PIN_6 |
((unsigned char)IO_PIN_7))))))));

IO_PORT_A,
IO_PORT_B,

unsigned char) 0x77
unsigned char) 0x88

IO_ByteWrite (IO_PORT_D, (unsigned char)0x55) ;
IO_ByteWrite (IO_PORT_E, (unsigned char)OxFF) ;
IO_ByteWrite (IO_PORT_F, (unsigned char)0x1C) ;

4

Function Descriptions

9.2 APPLICATION SPECIFIC PERIPHERALS
9.2.1 CAN LIBRARY FUNCTION LIST

This part of the user manual contains the detailed description of all the functions for the CAN
Library.
Note: These functions are only available for the ST72F561 CAN Peripheral.

9.2.1.1 Initialization-Services
Table 171. CaninitPowerOn

Function Name CanlnitPowerOn
Function Prototype void CanlInitPowerOn (void)
Input Parameters None
Output Parameters None
This service initializes the CAN driver internal
Behaviour Description variables. Indication and Confirmation flags are
reset. Tx/Rx buffers are cleared.

Table 172. Canlnit

Function Name Canlinit
Function Prototype void Canlnit (CaninitHandle <initObject>)
initObject - Selected Initialization Mode.

For example- If the value passed is 0, the Can-
Controller will be initialized with the values of init
table (0).

Output Parameters None

This service initializes the CAN Controller regis-
ters with the values stored in the init table corre-
Behaviour Description sponding to the <initObject>. Pending transmit
requests within the CAN controller are deleted.
Receive FIFO is released.

The function shall be called after CanlnitPow-
Required Preconditions erOn() and before any other services of the driv-
er.

Input Parameters

4

2271235

Function Descriptions

9.2.1.2 Transmit-Services
Table 173. CanTransmit

Function Name

CanTransmit

Function Prototype

canuint8 CanTransmit (CanTransmitHandle
<transmitObject>)

Input Parameters

transmitObject - Selected transmit Handle

Output Parameters

KCANTXOK - If the transmit request is accepted
by the CAN driver.

KCANTXFAILED- If the transmit request is not
accepted by the CAN driver.

Behaviour Description

This service initiates the transmission within the
CAN controller for the CAN message referenced
by <transmitObject>. If any transmit mailbox is
empty, the transmit process is initiated and
KCANTXOK is returned. The message informa-
tion (message ID, DLC, data) is taken from the
transmit message table referenced by transmit
handle <transmitObject> and it is copied into the
transmit registers. If message is transmitted suc-
cessfully, the confirmation flag is set for this mes-
sage inside the transmit interrupt routine
(CanTx_ISR). Transmit process is initiated and If
none of the mailbox is empty or the <transmitOb-
ject> is out of range then transmit process is not
initiated and KCANTXFAILED is returned.

Required Preconditions

This service shall not be called when the CAN
driver is in stop or sleep mode.

Table 174. CanCancelTransmit

Function Name

CanCancelTransmit

Function Prototype

void CanCancelTransmit (CanTransmitHandle
<txHandle>)

Input Parameters

txHandle - Selected transmit Handle

Output Parameters

None

Behaviour Description

This service cancels a transmit request by mak-
ing an Abort Request. The message is aborted if
the mailbox is in pending or scheduled state. The
confirmation flag is not set for this message.

228/235

4

Function Descriptions

Table 175. CanMsgTransmit

Function Name CanMsgTransmit

canuint8 CanMsgTransmit (tCanMsgObject* <tx-
Data>)

txData - Pointer to structure which contains CAN-
Id, CAN-DLC, CAN-Frame Data.

KCANTXOK - Request is accepted by CAN driv-
er.

KCANTXFAILED - Request is not accepted by
CAN driver.

This service initiates the transmission for the
message referenced by <txData>. The service
Behaviour Description returns KCANTXOK if the CAN driver accepts the
request. The service returns KCANTXFAILED
otherwise.

This service shall not be called when the CAN
driver is in stop or sleep mode.

Function Prototype

Input Parameters

Output Parameters

Required Preconditions

Table 176. CanCancelMsgTransmit

Function Name CanCancelMsgTransmit
Function Prototype void CanCancelMsgTransmit (void)
Input Parameters None
Output Parameters None
. - This service cancels a transmit request from the
Behaviour Description . .
service CanMsgTransmit().

4

229/235

Function Descriptions

9.2.1.3 Sleep/Wakeup Services
Table 177. CanSleep

Function Name CanSleep
Function Prototype canuint8 CanSleep (void)
Input Parameters None

Output Parameters

KCANFAILED - If Sleep mode not entered
KCANOK - If Sleep mode entered

Behaviour Description

This service puts the controller into the sleep
mode. This reduces the power consumption of
the CAN controller. The service enables the
autowakeup mode of the CAN controller so that
CAN controller automatically performs the wake-
up sequence on detection of CAN bus activity.
You can wakeup the CAN controller using the
CanWakeUp() service. If the sleep mode is en-
tered, the service returns KCANOK. Sleep mode
is not entered if any message transmission is on-
going during call of this service. Then the service
returns KCANFAILED.

Required Preconditions

This service shall not be called while Tx/Rx is in
progress.

Table 178. CanWakeup

Function Name CanWakeup
Function Prototype canuint8 CanWakeup (void)
Input Parameters None

Output Parameters

KCANOK - Sleep Mode left

Behaviour Description

This service puts the CAN controller into the nor-
mal operating mode.

230/235

4

Function Descriptions

9.2.1.4 Status Information Service
Table 179. CanGetStatus

Function Name CanGetStatus
Function Prototype canuint8 CanGetStatus (void)
Input Parameters None

Output Parameters

KCANHWISSLEEP - CAN controller is in sleep
mode

KCANHWISBUSOFF - CAN controller entered
BusOff state

KCANHWISPASSIVE - Error Passive limit has
been reached

KCANHWISWARNING - Error Warning limit has
been reached

Behaviour Description

This service returns the current status of the CAN
controller.

9.2.1.5 Transmit/Receive Task Services
Table 180. CanTx_ISR

Function Name CanTx_ISR

Function Prototype void CanTx_ISR (void)
Input Parameters None

Output Parameters None

Behaviour Description

This service handles the wakeup, error and trans-
mit mailbox empty interrupts. Wakeup and Error
interrupt flags are cleared for wakeup and error
interrupts. In the event of transmit interrupt, the
confirmation flag is set for the message transmit-
ted.

(Note- confirmation is raised for the messages re-
quested by service CanTransmit()).

Table 181. CanRx_ISR

Function Name CanRx_ISR

Function Prototype void CanRx_ISR (void)
Input Parameters None

Output Parameters None

Behaviour Description

This service handles the receive FIFO interrupt.
Received message(CAN-ID, CAN-DATA) is cop-
ied into the Rx buffer corresponding to the mes-
sage received. Rx buffer, into which data is
copied, is identified by the filter match index. The
Indication flag is set for the message received.

4

231/235

Function Descriptions

9.2.1.6 Interrupt Services

Table 182. CanGloballnterruptDisable

Function Name

CanGiloballnterruptDisable

Function Prototype

void CanGiloballnterruptDisable (void)

Input Parameters

None

Output Parameters

None

Behaviour Description

This service disables the interrupt by setting the
global interrupt flag of the microcontroller.

Table 183. CanGloballnterruptRestore

Function Name

CanGiloballnterruptRestore

Function Prototype

void CanGloballnterruptRestore (void)

Input Parameters

None

Output Parameters

None

Behaviour Description

This service enables the interrupt by clearing the
global interrupt flag of the microcontroller.

Table 184. CanCanlinterruptDisable

Function Name

CanCanlnterruptDisable

Function Prototype

void CanCaninterruptDisable (void)

Input Parameters

None

Output Parameters

None

Behaviour Description

This service disables all CAN interrupts by
changing the CAN interrupt control flags.

Table 185. CanCaninterruptRestore

Function Name

CanCaninterruptRestore

Function Prototype

void CanCanlnterruptRestore (void)

Input Parameters

None

Output Parameters

None

Behaviour Description

This service enables all CAN interrupts by chang-
ing the CAN interrupt control flags.

232/235

4

Appendix A

10 APPENDIX A

10.1 SUPPORTED DEVICES AND THEIR PERIPHERALS

J1IMH3dNSLLS

SS3LNALLS |:

[ASENIREVARS]

8-bit

196de.l1S

9b/r/d)19542L1S
6(1/r/d) 19542218

10-bit

v92¢del1S

cov9edeLls

1O¥9242/1S |-

2¢oe9e4eLls
1929¢de/1S
1909¢4¢/1S

10-bit

€31In4.41S

6€31LIM4L1S |:

FENIREVARS]
0€31M4Z1S

10-bit

c¢3alindils

6¢3LIMdLLS |+

GealndZls
[E=NIREVARS)

10-bit

131114418

aL31n4dz1s

613LM4LLS |-

SH3Ln4Z1s
[=NAREVARS]

10-bit

03Lind.1s

603LIT4LLS |

S031IMd.1S
[=ENIREVARS]

8-bit

veedells

erveedells

10-bit

GcedeLlS

y(/r/0)S2edeL1S
6/L/90/1/0/HV)Seed2L1S

10-bit

lesdells

19/1/aveedeLLs
¥2e4eL1S
gleedells
LeedellS
dles4e/1s
lesdells

10-bit

§94¢.1S

§942/1S

8-bit

g€94¢.1S

EMEE942LLS |.

oMge9delLs
IMg€94e/1S

8-bit

c¢9dells

L19del1S

€2942/1S |-

2¢2c94eL1S
12942/1S

10-bit

Awey
92InAa(Qq

SN/d
pauoddng

ADC
SCI

SPI
12C

(Master &
Slave)

Timer (16-bit

timer)

Timer8 (8-bit

Timer)

LT (8-bit
LiteTimer)

PWMART

LART (12-bit

ART)
TBU

WDG

ITC

mcc

EEPROM

/0

CAN

Note:

1. This software library supports only beCAN (basic extended 2.0b active CAN cell) which is

found, for example, in the ST72F561 devices. The ST72F521 device has a pCAN peripheral

(2.0b passive CAN cell) and therefore is not supported.

233/235

&

Revision History

11 REVISION HISTORY

Date Revision Main changes
Support given for ST72325 and ST7232A devices
27-Oct-05 4.0 |Section 3.2 on page 8, new hardware tools added
Support given for WDG in LITES3 devices
234/235 IS73

Revision History

THE PRESENT MANUAL WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMA-
TION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELEC-
TRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RE-
SPECT TO ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A MANUAL AND/OR THE USE MADE BY CUS-
TOMERS OF THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia — Belgium - Brazil - Canada - China — Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

4

235/235

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:
ST7FLITE35U6TR ST7FLITEISM6TR ST7FLITE29F2M6TR ST7FLITE20F1B6 ST7FLITE29F1B6

ST7FLITE3OM6TR

http://www.mouser.com/stmicroelectronics
http://www.mouser.com/access/?pn=ST7FLITE35U6TR
http://www.mouser.com/access/?pn=ST7FLITE15M6TR
http://www.mouser.com/access/?pn=ST7FLITE29F2M6TR
http://www.mouser.com/access/?pn=ST7FLITE20F1B6
http://www.mouser.com/access/?pn=ST7FLITE29F1B6
http://www.mouser.com/access/?pn=ST7FLITE39M6TR

	USER MANUAL
	1 Introduction
	1.1 Abbreviations used
	1.2 naming conventions

	2 Overview
	2.1 functional scope
	2.2 Features

	3 Getting Started with Tools
	3.1 software Tools
	3.2 hardware tools
	3.3 Technical literature
	3.4 How TO INSTALL THE LIBRARY

	4 Library Structure
	4.1 ST7_LIBx
	4.2 ST7lib_config.h
	4.2.1 User part of the ST7lib_config.h
	4.2.2 Non-User part of the ST7lib_config.h

	4.3 Peripherals LIBRARy
	4.3.1 Peripherals directory
	4.3.2 Periph directory

	4.4 Devices
	4.5 Documentation
	4.6 DEMO

	5 Example
	5.1 Sources foldeR
	5.2 WORKSPACE
	5.2.1 STVD7_2x
	5.2.2 STVD7_3x
	5.2.3 winIDEA (only for ST72F561 and CAN peripheral)

	6 How to use the library
	6.1 standard procedure for all peripherals
	6.2 using the communication peripherals library
	6.2.1 SCI
	6.2.2 SPI
	6.2.3 I2C
	6.2.4 CAN

	6.3 Other peripherals
	6.3.1 TIMER
	6.3.2 I/O

	6.4 MEMORY MODELS
	6.5 Porting Applications from Library version 1.0

	7 Presentation of library functions
	7.1 Library references

	8 Release Information
	8.1 peripherals
	8.2 devices

	9 Function Descriptions
	9.1 GENERAL PURPOSE PERIPHERALS
	9.1.1 ADC
	9.1.2 SCI
	9.1.3 SPI
	9.1.4 I2C MASTER
	9.1.5 I2C SLAVE
	9.1.6 16-bit TIMER (TIMER)
	9.1.7 8-bit TIMER (TIMER8)
	9.1.8 LITE TIMER (LT)
	9.1.9 PWMART
	9.1.10 LITE AUTO-RELOAD TIMER (LART)
	9.1.11 TBU
	9.1.12 WDG
	9.1.13 ITC
	9.1.14 MCC
	9.1.15 EEPROM
	9.1.16 I/O

	9.2 APPLICATION SPECIFIC PERIPHERALS
	9.2.1 CAN LIBRARY FUNCTION LIST

	10 Appendix A
	10.1 Supported devices and their peripherals

	11 Revision History

