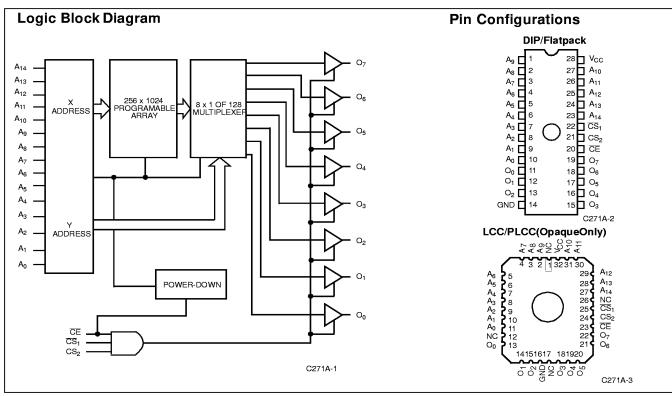
# 32K x 8 Power Switched and Reprogrammable

### **Features**


- · CMOS for optimum speed/power
- · Windowed for reprogrammability
- · High speed
  - -25 ns (commercial)
  - 35 ns (military)
- · Low power
  - 275 mW (commercial)
  - 330 mW (military)
- · Super low standby power
  - Less than 85 mW when deselected
- EPROM technology 100%programmable
- Slim 300-mil package
- Direct replacement for bipolar PROMs
- Capable of withstanding >4001V static discharge

### **Functional Description**

The CY7C271A is a high-performance 32,768-word by 8-bit CMOS PROM. When disabled (CE HIGH), the 7C271A automatically powers down into a low-power stand-by mode. The CY7C271A is packaged in the 300-mil slim package and is available in a cerDIP package equipped with an erasure window to provide for reprogrammability. When exposed to UV light, the PROM is erased and can be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.

The CY7C271A offers the advantages of lower power, superior performance, and programming yield. The EPROM cell requires only 12.5V for the super voltage, and low current requirements allow for gang programming. The EPROM cells allow each memory location to be tested 100% because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.

Reading the 7C271A is accomplished by placing active LOW signals on  $\overline{\text{CS}}_1$  and  $\overline{\text{CE}}$ , and an active HIGH on  $\text{CS}_2$ . The contents of the memory location addressed by the address lines (A<sub>0</sub> - A<sub>14</sub>) will become available on the output lines  $(O_0 - O_7)$ .





### **Selection Guide**

|                                   |          | 7C271A-25 | 7C271A-30 | 7C271A-35 | 7C271A-45 | 7C271A-55 |
|-----------------------------------|----------|-----------|-----------|-----------|-----------|-----------|
| Maximum Access Time (ns)          |          | 25        | 30        | 35        | 45        | 55        |
| Maximum Operating<br>Current (mA) | Com'l    | 75        | 75        | 50        | 50        | 50        |
|                                   | Military |           |           | 85        | 60        | 60        |
| Standby Current                   | Com'l    | 15        | 15        | 15        | 15        | 15        |
| (mA)                              | Military |           |           | 25        | 25        | 25        |

### Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ......-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage to Ground Potential ..... -0.5V to +7.0V DC Voltage Applied to Outputs in High Z State......-0.5V to +7.0V DC Input Voltage .....-3.0V to +7.0V

| Static Discharge Voltage(per MIL-STD-883, Method 3015) | >4001V                    |
|--------------------------------------------------------|---------------------------|
| Latch-Up Current                                       | >200 mA                   |
| UV Exposure                                            | 7258 Wsec/cm <sup>2</sup> |

# **Operating Range**

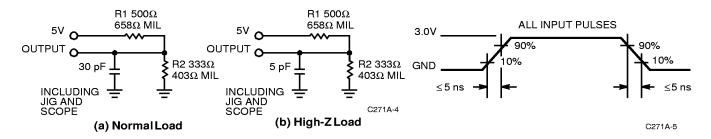
| Range                     | Ambient<br>Temperature | V <sub>cc</sub> |
|---------------------------|------------------------|-----------------|
| Commercial                | 0°C to +70°C           | 5V ±10%         |
| Industrial <sup>[1]</sup> | −40°C to +85°C         | 5V ±10%         |
| Military <sup>[2]</sup>   | −55°C to +125°C        | 5V ±10%         |

# Electrical Characteristics Over the Operating Range [3, 4]

|                 |                                                |                                                                                                            |                                             | 271A-25<br>271A-30 | 7C2             | ?71 <b>A</b> -35 |                 | 71 <b>A-</b> 45<br>71 <b>A-</b> 55 |          |      |
|-----------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|-----------------|------------------|-----------------|------------------------------------|----------|------|
| Parameter       | Description                                    | Test Conditions                                                                                            |                                             | Min.               | Max.            | Min.             | Max.            | Min.                               | Max.     | Unit |
| V <sub>OH</sub> | Output HIGH<br>Voltage                         | $V_{CC} = Min., I_{OH} = -2.$                                                                              | $V_{CC} = Min., I_{OH} = -2.0 \text{ mA}$   |                    |                 | 2.4              |                 | 2.4                                |          | V    |
| V <sub>OL</sub> | Output LOW Voltage                             | V <sub>CC</sub> = Min., I <sub>OL</sub> = 8.0                                                              | mA                                          |                    | 0.4             |                  | 0.4             |                                    | 0.4      | ٧    |
| V <sub>IH</sub> | Input HIGH Level                               | Guaranteed Input Logical<br>HIGH Voltage for All Inputs                                                    |                                             | 2.0                | V <sub>CC</sub> | 2.0              | V <sub>CC</sub> | 2.0                                | $V_{CC}$ | V    |
| V <sub>IL</sub> | Input LOW Level                                | Guaranteed Input Logical<br>LOW Voltage for All Inputs                                                     |                                             |                    | 0.8             |                  | 0.8             |                                    | 8.0      | V    |
| I <sub>IX</sub> | Input Leakage<br>Current                       | $GND \leq V_{IN} \leq V_{CC}$                                                                              |                                             | -10                | +10             | -10              | +10             | -10                                | +10      | μА   |
| l <sub>oz</sub> | Output Leakage<br>Current                      | $\begin{array}{l} \text{GND} \leq \text{V}_{OUT} \leq \text{V}_{CC}, \\ \text{Output Disable} \end{array}$ |                                             |                    | +10             | -10              | +10             | -10                                | +10      | μА   |
| los             | Output Short Circuit<br>Current <sup>[5]</sup> | V <sub>CC</sub> =Max, V <sub>OUT</sub> =GN                                                                 | V <sub>CC</sub> =Max, V <sub>OUT</sub> =GND |                    | -90             | -20              | -90             | -20                                | -90      | mA   |
| Icc             | Power Supply                                   | V <sub>CC</sub> =Max.,                                                                                     | Com'l                                       |                    | 75              |                  | 50              |                                    | 50       | mA   |
|                 | Current                                        | I <sub>OUT</sub> =0 mA,<br>f=10 MHz                                                                        | Mil                                         |                    |                 |                  | 85              |                                    | 60       |      |
| I <sub>SB</sub> | Stand-By Current                               | $\begin{array}{c} V_{CC} = Max., & Com'I \\ \hline CE = V_{IH} & MiI \end{array}$                          |                                             |                    | 15              |                  | 15              |                                    | 15       | mA   |
|                 |                                                |                                                                                                            |                                             |                    |                 |                  | 25              |                                    | 25       | 1    |

# Capacitance<sup>[4]</sup>

| Parameter        | Description        | Test Conditions                         | Max. | Unit |
|------------------|--------------------|-----------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 10   | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = 5.0V$                         | 10   | pF   |


#### Notes:

- Contact a Cypress representative for information on industrial temperature range specifications.

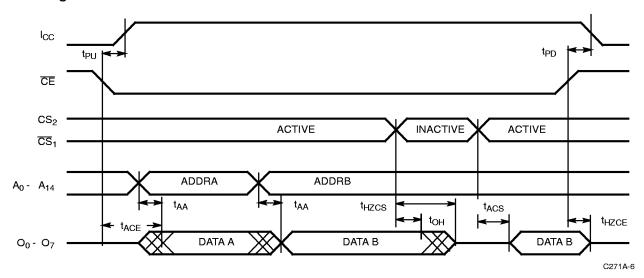
- The issue of the second of the



# **AC Test Loads and Waveforms**



Equivalent to: THÉVENIN EQUIVALENT


 $\begin{array}{c} 200\Omega \\ 250\Omega \; \text{MIL} \\ \text{OUTPUT} \; \bullet \\ \hline \end{array} \qquad \begin{array}{c} 2.00 \text{VCommercial} \\ 1.90 \text{VMIL} \end{array}$ 

# Switching Characteristics Over the Operating Range [3,4]

|                   |                                                            | 7C27 | 1 <b>A</b> -25 | 7C27 | 1 <b>A</b> -30 | 7C27 | 1 <b>A</b> -35 | 7C27 | 1 <b>A</b> -45 | 7C27 | 1A-55 |      |
|-------------------|------------------------------------------------------------|------|----------------|------|----------------|------|----------------|------|----------------|------|-------|------|
| Parameter         | Description                                                | Min. | Max.           | Min. | Max.           | Min. | Max.           | Min. | Max.           | Min. | Max.  | Unit |
| t <sub>AA</sub>   | Address to Output Valid                                    |      | 25             |      | 30             |      | 35             |      | 45             |      | 55    | ns   |
| t <sub>ACS</sub>  | CS <sub>1</sub> /CS <sub>2</sub> Active to<br>Output Valid |      | 12             |      | 18             |      | 18             |      | 18             |      | 20    | ns   |
| t <sub>ACE</sub>  | CE Active to Output Valid                                  |      | 30             |      | 35             |      | 35             |      | 45             |      | 55    | ns   |
| t <sub>HZCS</sub> | CS₁/CS₂ Inactive to High Z                                 |      | 12             |      | 18             |      | 18             |      | 18             |      | 20    | ns   |
| t <sub>HZCE</sub> | CE Inactive to High Z                                      |      | 12             |      | 18             |      | 18             |      | 18             |      | 20    | ns   |
| t <sub>PU</sub>   | CE Active to Power-Up                                      | 0    |                | 0    |                | 0    |                | 0    |                | 0    |       | ns   |
| t <sub>PD</sub>   | CE Inactive to<br>Power-Down                               |      | 30             |      | 35             |      | 40             |      | 40             |      | 50    | ns   |
| t <sub>OH</sub>   | Output Data Hold                                           | 0    |                | 0    |                | 0    |                | 0    |                | 0    |       | ns   |



## **Switching Waveform**



### **Erasure Characteristics**

Wavelengths of light less than 4000 Angstroms begin to erase the CY7C271A in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.

The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity multiplied by exposure time) of 25 Wsec/cm2. For an ultraviolet lamp with a 12 mW/cm<sup>2</sup> power rating, the exposure time would be approximately 35 minutes. The CY7C271A

needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. 7258 Wsec/cm<sup>2</sup> is the recommended maximum dosage.

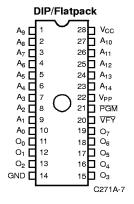
### **Programming Modes**

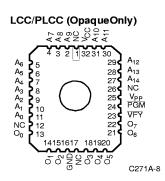
Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Programming Electrical Characteristics.

| Parameter        | Description                    | Min. | Max.            | Unit |
|------------------|--------------------------------|------|-----------------|------|
| V <sub>PP</sub>  | Programming Power Supply       | 12.5 | 13              | V    |
| I <sub>PP</sub>  | Programming Supply Current     |      | 50              | mA   |
| V <sub>IHP</sub> | Programming Input Voltage HIGH | 3.0  | V <sub>CC</sub> | V    |
| V <sub>ILP</sub> | Programming Input Voltage LOW  | -0.5 | 0.4             | V    |
| V <sub>CCP</sub> | Programming V <sub>CC</sub>    | 6.0  | 6.5             | V    |

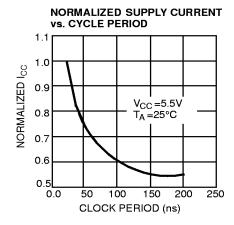


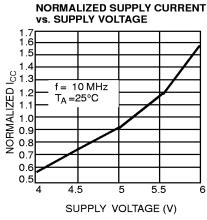

Table 2. Mode Selection.

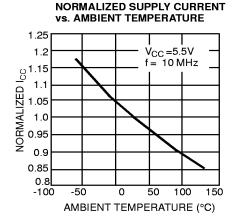

|                 | Pin Function <sup>[6]</sup>      |                      |                  |                  |                                |                                 |  |
|-----------------|----------------------------------|----------------------|------------------|------------------|--------------------------------|---------------------------------|--|
| Mode            | CS <sub>1</sub> /V <sub>PP</sub> | CS <sub>2</sub> /PGM | CE/VFY           | A <sub>0</sub>   | A <sub>9</sub>                 | Data                            |  |
| Read            | V <sub>IL</sub>                  | V <sub>IH</sub>      | V <sub>IL</sub>  | A <sub>0</sub>   | A <sub>9</sub>                 | O <sub>7</sub> - O <sub>0</sub> |  |
| Output Disable  | V <sub>IH</sub>                  | V <sub>IH</sub>      | V <sub>IL</sub>  | A <sub>0</sub>   | A <sub>9</sub>                 | High Z                          |  |
| Output Disable  | V <sub>IL</sub>                  | V <sub>IL</sub>      | V <sub>IL</sub>  | A <sub>0</sub>   | A <sub>9</sub>                 | High Z                          |  |
| Stand-by        | Х                                | Х                    | V <sub>IH</sub>  | A <sub>0</sub>   | A <sub>9</sub>                 | High Z                          |  |
| Program         | V <sub>PP</sub>                  | V <sub>ILP</sub>     | V <sub>IHP</sub> | A <sub>0</sub>   | A <sub>9</sub>                 | D <sub>7</sub> - D <sub>0</sub> |  |
| Program Verify  | V <sub>PP</sub>                  | V <sub>IHP</sub>     | V <sub>ILP</sub> | A <sub>0</sub>   | A <sub>9</sub>                 | O <sub>7</sub> - O <sub>0</sub> |  |
| Program Inhibit | V <sub>PP</sub>                  | V <sub>IHP</sub>     | V <sub>IHP</sub> | Х                | Х                              | X                               |  |
| Signature (MFG) | V <sub>ILP</sub>                 | V <sub>ILP</sub>     | V <sub>ILP</sub> | V <sub>ILP</sub> | V <sub>HV</sub> <sup>[7]</sup> | 34H                             |  |
| Signature (DEV) | V <sub>ILP</sub>                 | V <sub>ILP</sub>     | V <sub>ILP</sub> | V <sub>IHP</sub> | V <sub>HV</sub> <sup>[7]</sup> | 20H                             |  |

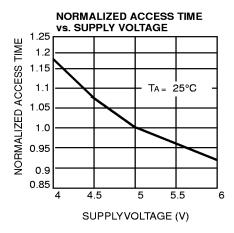
### Notes:

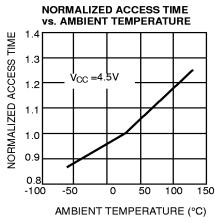
6. X can be V<sub>II</sub> or  $V_{IH}$ . 7.  $V_{HV}$ =12±0.5V

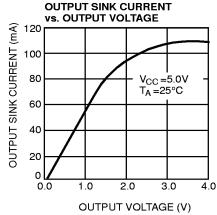

# **Programming Pinouts**

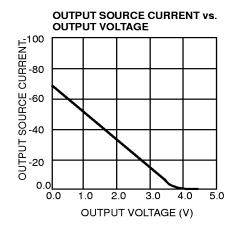




# Typical DC and AC Characteristics














C271A-9



# Ordering Information<sup>[8]</sup>

| Speed<br>(ns) | Ordering Code  | Package<br>Name | Package Type                                      | Operating<br>Range |
|---------------|----------------|-----------------|---------------------------------------------------|--------------------|
| 25            | CY7C271A-25JC  | J65             | 32-Lead Plastic Leaded Chip Carrier               | Commercial         |
| 30            | CY7C271A-30JC  | J65             | 32-Lead Plastic Leaded Chip Carrier               | Commercial         |
|               | CY7C271A-30PC  | P21             | 28-Lead (300-Mil) Molded DIP                      |                    |
|               | CY7C271A-30WC  | W22             | 28-Lead (300-Mil) Windowed CerDIP                 |                    |
| 35            | CY7C271A-35JC  | J65             | 32-Lead Plastic Leaded Chip Carrier               | Commercial         |
|               | CY7C271A-35PC  | P21             | 28-Lead (300-Mil) Molded DIP                      |                    |
|               | CY7C271A-35WC  | W22             | 28-Lead (300-Mil) Windowed CerDIP                 |                    |
|               | CY7C271A-35DMB | D22             | 28-Lead (300-Mil) CerDIP                          | Military           |
|               | CY7C271A-35KMB | K74             | 28-Lead Rectangular Cerpack                       |                    |
|               | CY7C271A-35LMB | L55             | 32-Pin Rectangular Leadless Chip Carrier          |                    |
|               | CY7C271A-35QMB | Q55             | 32-Pin Windowed Rectangular Leadless Chip Carrier |                    |
|               | CY7C271A-35TMB | T74             | 28-Lead Windowed Cerpack                          |                    |
|               | CY7C271A-35WMB | W22             | 28-Lead (300-Mil) Windowed CerDIP                 |                    |
| 45            | CY7C271A-45JC  | J65             | 32-Lead Plastic Leaded Chip Carrier               | Commercial         |
|               | CY7C271A-45PC  | P21             | 28-Lead (300-Mil) Molded DIP                      |                    |
|               | CY7C271A-45WC  | W22             | 28-Lead (300-Mil) Windowed CerDIP                 |                    |
|               | CY7C271A-45DMB | D22             | 28-Lead (300-Mil) CerDIP                          | Military           |
|               | CY7C271A-45KMB | K74             | 28-Lead Rectangular Cerpack                       |                    |
|               | CY7C271A-45LMB | L55             | 32-Pin Rectangular Leadless Chip Carrier          |                    |
|               | CY7C271A-45QMB | Q55             | 32-Pin Windowed Rectangular Leadless Chip Carrier |                    |
|               | CY7C271A-45TMB | T74             | 28-Lead Windowed Cerpack                          |                    |
|               | CY7C271A-45WMB | W22             | 28-Lead (300-Mil) Windowed CerDIP                 |                    |
| 55            | CY7C271A-55JC  | J65             | 32-Lead Plastic Leaded Chip Carrier               | Commercial         |
|               | CY7C271A-55PC  | P21             | 28-Lead (300-Mil) Molded DIP                      |                    |
|               | CY7C271A-55WC  | W22             | 28-Lead (300-Mil) Windowed CerDIP                 |                    |
|               | CY7C271A-55DMB | D22             | 28-Lead (300-Mil) CerDIP                          | Military           |
|               | CY7C271A-55KMB | K74             | 28-Lead Rectangular Cerpack                       |                    |
|               | CY7C271A-55LMB | L55             | 32-Pin Rectangular Leadless Chip Carrier          |                    |
|               | CY7C271A-55QMB | Q55             | 32-Pin Windowed Rectangular Leadless Chip Carrier |                    |
|               | CY7C271A-55TMB | T74             | 28-Lead Windowed Cerpack                          |                    |
|               | CY7C271A-55WMB | W22             | 28-Lead (300-Mil) Windowed CerDIP                 |                    |

### Notes:

8. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.



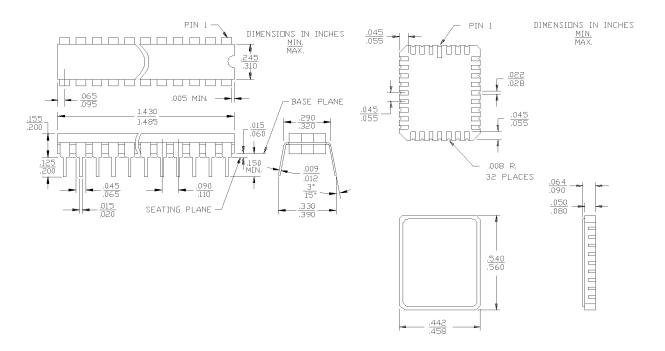
# MILITARY SPECIFICATIONS Group A Subgroup Testing

# **DC Characteristics**

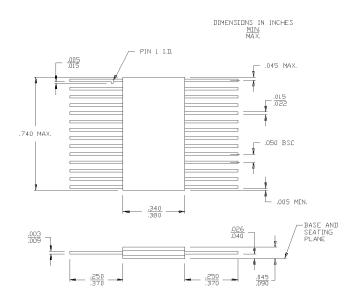
| Parameter       | Subgroups |
|-----------------|-----------|
| V <sub>OH</sub> | 1, 2, 3   |
| V <sub>OL</sub> | 1, 2, 3   |
| V <sub>IH</sub> | 1, 2, 3   |
| V <sub>IL</sub> | 1, 2, 3   |
| lix             | 1, 2, 3   |
| l <sub>OZ</sub> | 1, 2, 3   |
| Icc             | 1, 2, 3   |
| I <sub>SB</sub> | 1, 2, 3   |

# **Switching Characteristics**

| Parameter        | Subgroups       |
|------------------|-----------------|
| t <sub>AA</sub>  | 7, 8, 9, 10, 11 |
| t <sub>ACS</sub> | 7, 8, 9, 10, 11 |
| t <sub>ACE</sub> | 7, 8, 9, 10, 11 |


Document #: 38-00424-A

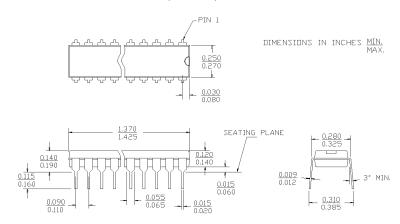



# **Package Diagrams**

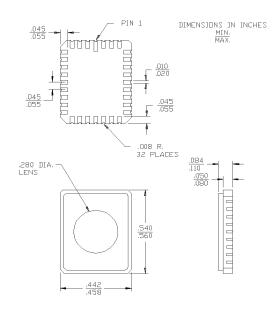
### 28-Lead (300-Mil) CerDip D22 MIL-STD-1835 D-15 Config A

### 32-Pin Rectangular Leadless Chip Carrier L55 MIL-STD-1835 C-12




### 28-Lead Rectangular Cerpack K74 MIL-STD-1835 F-11 Config. A

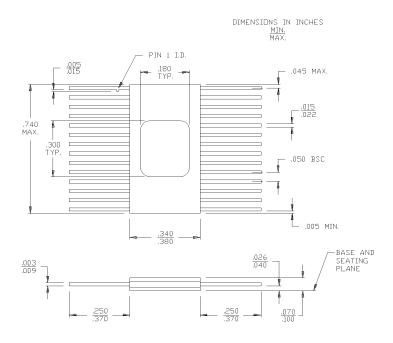




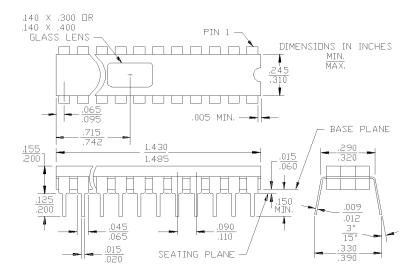

# Package Diagrams (continued)

# 28-Lead (300-MIL) Molded DIP P21




# 32-Pin Windowed Rectangular Leadless Chip Carrier Q55 MIL-STD-1835 C-12






# Package Diagrams (continued)

### 28-Lead Windowed Cerpack T74



### 28-Lead (300-MIL) Windowed CerDIP W22 MIL-STD-1835 D-15 Config A



<sup>©</sup> Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfurnion or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.