

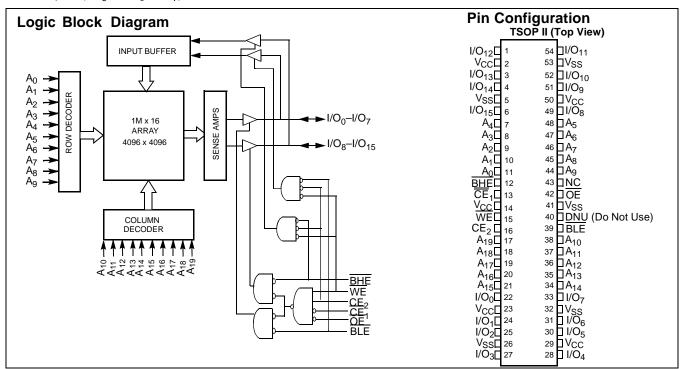
1M x 16 Static RAM

Features

- High speed
 - $-t_{AA} = 8, 10, 12 \text{ ns}$
- · Low active power
 - -1080 mW (max.)
- Operating voltages of 2.5 ± 0.2V
- 1.5V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE₁ and CE₂ features

Functional Description

The CY7C1061AV25 is a high-performance CMOS Static RAM organized as 1,048,576 words by 16 bits.


Writing to the device is accomplished by enabling the chip $(\overline{CE}_1 \text{ LOW})$ and $(\overline{CE}_2 \text{ HIGH})$ while forcing the Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location

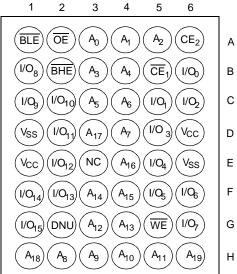
specified on the address pins (A_0 through A_{19}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A_0 through A_{19}).

Reading from the device is accomplished by enabling the chip by taking \overline{CE}_1 LOW and CE_2 HIGH while forcing the Output Enable (\overline{OE}) LOW and the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of Read and Write modes.

The input/output pins (I/O $_0$ through I/O $_{15}$) are placed <u>in a</u> high-impedance state when the device is deselected (\overline{CE}_1 HIGH / \overline{CE}_2 LOW), the outputs are <u>disabled</u> (\overline{OE} HIGH), the BHE and BLE <u>are</u> disabled (\overline{BHE} , BLE HIGH), or during a Write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH, and \overline{WE} LOW).

The CY7C1061AV25 is available in a 54-pin TSOP II package with center power and ground (revolutionary) pinout, and a 48-ball fine-pitch ball grid array (FBGA) package.

Selection Guide


		-8	-10	-12	Unit
Maximum Access Time		8	10	12	ns
Maximum Operating Current	Commercial	300	275	260	mA
	Industrial	300	275	260	
Maximum CMOS Standby Current	Commercial/Industrial	50	50	50	mA

Pin Configurations

48-ball FBGA

(Тор	View)		
3	4	5	6

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage on V_{CC} to Relative $GND^{[1]}$ -0.5V to +3.6V

DC Voltage Applied to Outputs in High-Z State $^{[1]}$ -0.5V to V CC + 0.5V

DC Input Voltage ^[1]	-0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA

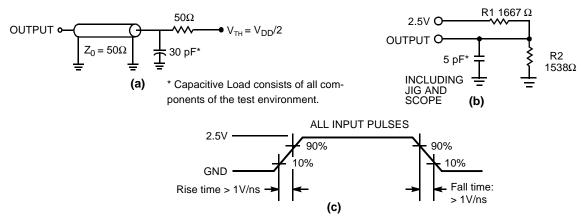
Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	$2.5V \pm 0.2V$
Industrial	–40°C to +85°C	

DC Electrical Characteristics Over the Operating Range

				-	8	-1	10	-1	12	
Parameter	Description	Test Conditi	ions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -1.0 mA		2.0		2.0		2.0		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 1.0 mA			0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage						V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage[1]						0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	$GND \leq V_{I} \leq V_{CC}$				+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	GND $\leq V_{OUT} \leq V_{CC}$, Out	GND ≤ V _{OUT} ≤ V _{CC} , Output Disabled				+1	-1	+1	μΑ
I _{CC}	V _{CC} Operating	$V_{CC} = Max., f = f_{MAX} =$	Commercial		300		275		260	mΑ
	Supply Current	1/t _{RC}	Industrial		300		275		260	mΑ
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$\begin{array}{l} CE_2 <= V_{IL} \\ Max. \ V_{CC}, \ \overline{CE} \geq V_{IH} \\ V_{IN} \geq V_{IH} \ or \\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$	V_{CC} , CE $\geq V_{\text{IH}}$ $V_{\text{IN}} \geq V_{\text{IH}}$ or				100		100	mA
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\begin{split} & \text{CE}_2 <= 0.2 \text{V} \\ & \underline{\text{Max}}. \ \text{V}_{\text{CC}}, \\ & \text{CE} \geq \text{V}_{\text{CC}} - 0.2 \text{V}, \\ & \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{V}, \\ & \text{or} \ \text{V}_{\text{IN}} \leq 0.2 \text{V}, \text{f} = 0 \end{split}$	$E_2 <= 0.2V$ Commercial/ $E_2 <= 0.2V$ Industrial $E_2 <= 0.2V$, $E_3 <= 0.2V$, $E_4 <= 0.2V$		50		50		50	mA

Capacitance^[2]


Parameter	Package	Description	Test Conditions	Max.	Unit
C _{IN}	Z54	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = 2.5V$	6	pF
	BA48			8	pF
C _{OUT}	Z54	I/O Capacitance		8	pF
	BA48			10	pF

Notes:

V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms[3]

PRELIMINARY

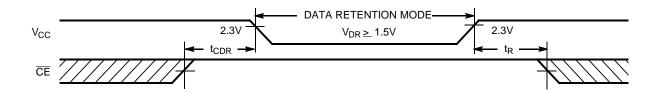
AC Switching Characteristics Over the Operating Range [4]

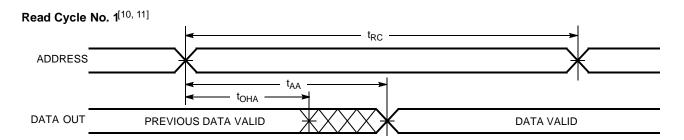
		-8			10	-12		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle			· I		•	•	· II	•
t _{power}	V _{CC} (typical) to the first access ^[5]	1		1		1		ms
t _{RC}	Read Cycle Time	8		10		12		ns
t _{AA}	Address to Data Valid		8		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE ₁ LOW/CE ₂ HIGH to Data Valid		8		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		5		6	ns
t _{LZOE}	OE LOW to Low-Z	1		1		1		ns
t _{HZOE}	OE HIGH to High-Z ^[6]		5		5		6	ns
t _{LZCE}	CE ₁ LOW/CE ₂ HIGH to Low-Z ^[6]	3		3		3		ns
t _{HZCE}	CE ₁ HIGH/CE ₂ LOW to High-Z ^[6]		5		5		6	ns
t _{PU}	CE ₁ LOW/CE ₂ HIGH to Power-up ^[7]	0		0		0		ns
t _{PD}	CE ₁ HIGH/CE ₂ LOW to Power-down ^[7]		8		10		12	ns
t _{DBE}	Byte Enable to Data Valid		5		5		6	ns
t _{LZBE}	Byte Enable to Low-Z	1		1		1		ns
t _{HZBE}	Byte Disable to High-Z		5		5		6	ns
Write Cycle ^[8, 9]	•	•			•	•		•
t _{WC}	Write Cycle Time	8		10		12		ns
t _{SCE}	CE ₁ LOW / CE ₂ HIGH to Write End	6		7		8		ns
Notes:								

Notes:

- Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (2.3V). As soon as 1ms (T_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR}, 1.5V) voltage.
- 4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.1V, input pulse levels of 0 to 2.5V, and output loading of the specified louldness specified transmission line loads. Test conditions for the Read cycle use output loading shown in part a) of the AC test loads, unless specified otherwise.
- 5. This part has a voltage regulator which steps down the voltage from 2.5V to 2V internally. t_{power} time has to be provided initially before a Read/Write operation is started.
- t_{HZOE}, t_{HZOE}, t_{HZWE}, t_{HZBE} and t_{LZOE}, t_{LZWE}, t_{LZWE}, are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ±200 mV from steady-state voltage.
- steady-state voltage.

 These parameters are guaranteed by design and are not tested.
- The internal Write time of the memory is defined by the overlap of CE₁ LOW (CE₂ HIGH) and WE LOW. Chip enables must be active and WE and byte enables must be LOW to initiate a Write, and the transition of any of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
- the signal that terminates the Write.

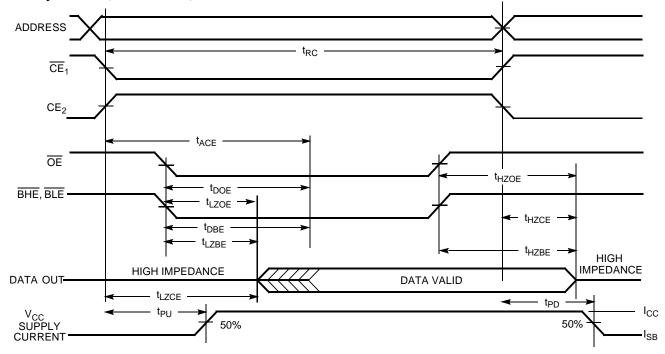

 9. The minimum Write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.


$\label{eq:AC Switching Characteristics} \ \ \text{Over the Operating Range (continued)}^{[4]}$

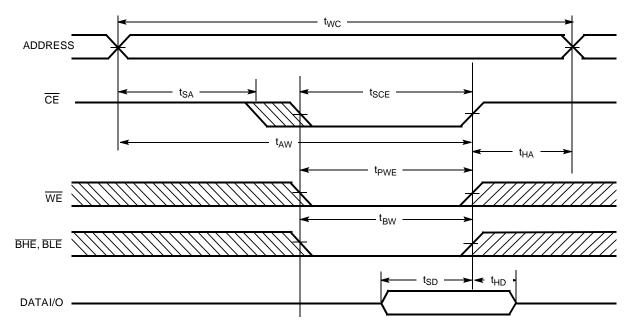
		-	-8		10	-12			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
t _{AW}	Address Set-up to Write End	6		7		8		ns	
t _{HA}	Address Hold from Write End	0		0		0		ns	
t _{SA}	Address Set-up to Write Start	0		0		0		ns	
t _{PWE}	WE Pulse Width	6		7		8		ns	
t _{SD}	Data Set-up to Write End	5		5.5		6		ns	
t _{HD}	Data Hold from Write End	0		0		0		ns	
t _{LZWE}	WE HIGH to Low-Z ^[6]	3		3		3		ns	
t _{HZWE}	WE LOW to High-Z ^[6]		5		5		6	ns	
t _{BW}	Byte Enable to End of Write	6		7		8		ns	

Data Retention Waveform

Switching Waveforms


Notes:

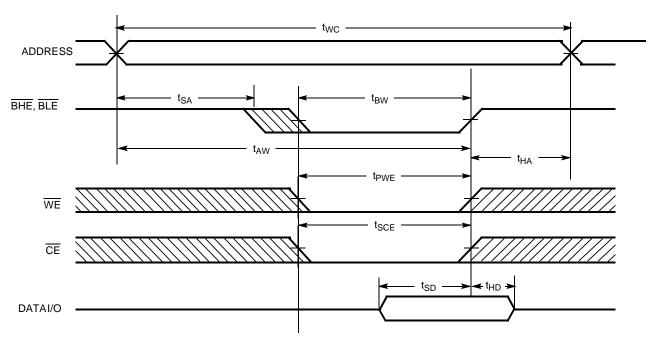
10. <u>Device</u> is continuously selected. <u>OE</u>, <u>CE</u>, <u>BHE</u> and/or <u>BHE</u> = V_{IL}. CE2 = V_{IH}.
11. WE is HIGH for Read cycle.

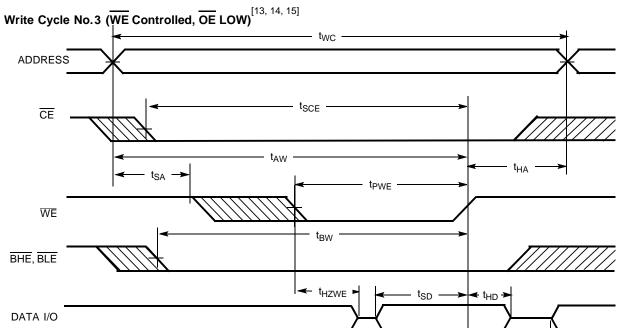


Switching Waveforms (continued)

Read Cycle No. 2 (OE Controlled)[11, 12]

Write Cycle No. 1 (CE Controlled) [13, 14, 15]


Notes:


- Address valid prior to or coincident with CE₁ transition LOW and CE₂ transition HIGH.
 Data I/O is high-impedance if OE or BHE and/or BLE = V_{IH}.
 If CE₁ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
 CE is a shorthand combination of both CE₁ and CE₂ combined. It is active LOW.

Switching Waveforms (continued)

Write Cycle No. 2 (BLE or BHE Controlled)

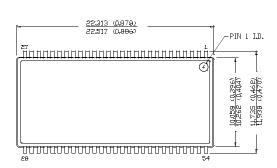
– t_{LZWE} →

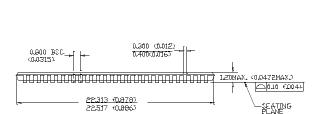
Truth Table

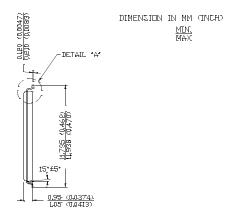
CE ₁	CE ₂	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Χ	Χ	Χ	Χ	Χ	High-Z	High-Z	Power-down	Standby (I _{SB})
Х	L	Χ	Χ	Χ	Χ	High-Z	High-Z	Power-down	Standby (I _{SB})
L	Н	L	Ι	Ш	┙	Data Out	Data Out	Read All Bits	Active (I _{CC})
L	Н	L	Ι	Ш	Η	Data Out	High-Z	Read Lower Bits Only	Active (I _{CC})
L	Н	L	Ι	Η	L	High-Z	Data Out	Read Upper Bits Only	Active (I _{CC})
L	Н	Χ	L	L	L	Data In	Data In	Write All Bits	Active (I _{CC})
L	Н	Χ	L	Ш	Η	Data In	High-Z	Write Lower Bits Only	Active (I _{CC})
L	Н	Χ	L	Η	L	High-Z	Data In	Write Upper Bits Only	Active (I _{CC})
L	Н	Н	Н	Χ	Χ	High-Z	High-Z	Selected, Outputs Disabled	Active (I _{CC})

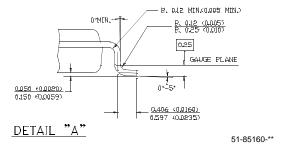
Ordering Information

Speed (ns)	Ordering Code ^[16]	Package Name	Package Type	Operating Range
8	CY7C1061AV25-8ZC	Z54	54-pin TSOP II	Commercial
	CY7C1061AV25-8ZI			Industrial
	CY7C1061AV25-8BAC	BA48	48-ball Mini BGA	Commercial
	CY7C1061AV25-8BAI			Industrial
10	CY7C1061AV25-10ZC	Z54	54-pin TSOP II	Commercial
	CY7C1061AV25-10ZI			Industrial
	CY7C1061AV25-10BAC	BA48	48-ball Mini BGA	Commercial
	CY7C1061AV25-10BAI			Industrial
12	CY7C1061AV25-12ZC	Z54	54-pin TSOP II	Commercial
	CY7C1061AV25-12ZI			Industrial
	CY7C1061AV25-12BAC	BA48	48-ball Mini BGA	Commercial
	CY7C1061AV25-12BAI	1		Industrial

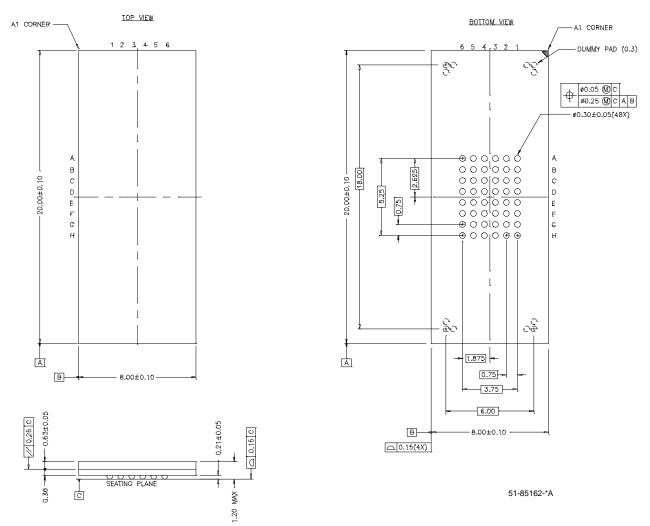

Note:


^{16.} Contact a Cypress Representative for availability of the 48-ball Mini BGA (BA48) package.




Package Diagrams

54-lead Thin Small Outline Package, Type II Z54-II



Package Diagrams (continued)

48-ball (8 mm x 20 mm x 1.2 mm) FBGA BA48G

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C1061AV25 1M x 16 Static RAM Document Number: 38-05331							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	119624	01/30/03	DFP	New Data Sheet			