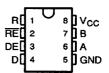
SN65ALS176, SN75ALS176, SN75ALS176B DIFFERENTIAL BUS TRANSCEIVERS

SLLS040D -- D3042, AUGUST 1987 -- REVISED AUGUST 1991

- Meets EIA Standards RS-422A and RS-485 and CCITT Recommendations V.11 and X.27
- Designed and Tested for Data Rates up to 35 MBaud
- SN65ALS176 Operating Temperature –40°C to 85°C
- Three Skew Limits Available:

'ALS176...10 ns
'ALS176A...7.5 ns
'ALS176B...5 ns


- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Low Supply Current Requirements 30 mA Max
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Hysteresis
- Glitch-Free Power-Up and Power-Down Protection
- Receiver Open-Circuit Fail-Safe Design

description

The SN65ALS176 and SN75ALS176 series differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines and meet EIA Standards RS-422-A and RS-485 and CCITT recommendations V.11 and X.27.

The SN65ALS176 and SN75ALS176 series combine a 3-state differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver

D OR P PACKAGE (TOP VIEW)

Function Tables

DRIVER

INPUT	ENABLE	OUTPUTS
D	DE	A B
H	Н	H L
L	н	LH
X	L	ZZ

RECEIVER

DIFFERENTIAL INPUTS A-B	ENABLE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
-0.2 V < V _{ID} < 0.2 V	L	?
V _{ID} ≤ -0.2 V	L	L
×	н	z
Inputs open	Ļ	н

H = high level, L = low level, ? = indeterminate.

X = irrelevant, Z = high impedance (off)

AVAILABLE OPTIONS

		PACK	AGE
[™] A	^t sk(LIM) [‡]	SMALL OUTLINE (D) †	PLASTIC DIP (P)
0°C to	10 7.5	SN75ALS176D SN75ALS176AD	SN75ALS176P SN75ALS176AP
70°C	5	SN75ALS176BD	SN75ALS176BP
-40°C to 85°C	10	SN65ALS176D	SN65ALS176P

† The D package is available taped and reeled. Add the suffix R to the device type, (e.g., SN75ALS176DR).

and receiver have active-high and active-low enables, respectively, which can be externally connected together to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form a differential input/output (I/O bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or $V_{CC} = 0$. This port features wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

The SN65ALS176 is characterized for operation from -40° C to 85°C, and the SN75ALS176 series is characterized for operation from 0°C to 70°C.

PRODUCTION DATA information is current as of publication data. Products conform to specifications per the terms of Texas instruments estandard warranty. Production processing does not necessarily include testing of all parameters.

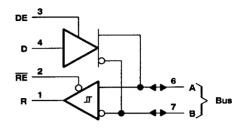
Copyright © 1991, Texas Instruments Incorporated

2-627

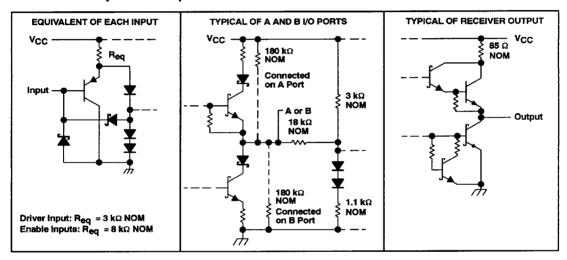
POST OFFICE BOX 655303 * DALLAS, TEXAS 75265

[‡]t_{sk(LIM)} is the greater of 1) the difference between the maximum and minimum specified values of tp_{LH} (or t_{dDH}), and 2) the difference between the maximum and minimum specified values of tp_{HL} (or t_{dDL}). This is the maximum range that the driver or receiver delay time will vary over temperature, V_{CC}, and device to device.

SN65ALS176, SN75ALS176, SN75ALS176A, SN75ALS176B DIFFERENTIAL BUS TRANSCEIVERS


SLLS040D - D3042, AUGUST 1987 - REVISED AUGUST 1991

logic symbol†


DE $\frac{3}{2}$ EN1 EN2 $\frac{4}{1}$ $\frac{6}{7}$ A B R $\frac{1}{2}$ $\frac{7}{2}$ $\frac{4}{2}$ $\frac{1}{2}$

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

2-628

POST OFFICE BOX 655303 * DALLAS, TEXAS 75265

■ 8961724 0090834 59T **■**

SN65ALS176, SN75ALS176, SN75ALS176B DIFFERENTIAL BUS TRANSCEIVERS

SLLS040D - D3042, AUGUST 1987 - REVISED AUGUST 1991

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Voltage range at any bus terminal	–7 V to 12 V
Enable input voltage	5.5 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, TA: SN65ALS176	
SN75ALS176 series	0°C to 70°C
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	٧
nput voltage at any bus terminal (separately or common mode), Vi or Vic				12	.,
mpat votage at any bus terminal (separately of co	Author model, at or AIC	4.75 5 5.26 12 -7 2 0.8 ±12 -60 -400 8 -40 85	٧		
High-level input voltage, VIH	D, DE, and RE	2			V
Low-level input voltage, V _{IL}	D, DE, and RE			0.8	>
Differential input voltage, V _{ID} (see Note 2)				±12	V
High-level output current loss	Driver			-60	mA
Tightiever output current, 10H	Receiver			-400	μΑ
Low-lovel output output	Driver		60		
con-level output current, IOC	Receiver			8	mA
Operating free-pir temperature. Te	SN65ALS176	-40		85	••
gh-level input voltage, V _{IH} w-level input voltage, V _{IL}	SN75ALS176	0		70	°C

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

2-629

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	DITIONST	MIN	TYP‡	MAX	UNIT
VIK	Input clamp voltage	lj = -18 mA				-1.5	>
V _O	Output voltage	IO = 0		0		6	>
VOD1	Differential output voltage	IO = 0		1.5		6	>
IVOD2 I	Differential output voltage	R _L = 100 Ω,	See Figure 1	1/2VOD1 or 21			>
1 10021		$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	٧
V _{OD3}	Differential output voltage	V _{test} = -7 V to 12 V,	See Figure 2	1.5		5	>
∆l Vod I	Change in magnitude of differential output voltage §					±0.2	>
Voc	Common-mode output voltage	$R_L = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1			3 -1	٧
∆l Voc l	Change in magnitude of common-mode output voltage§					±0.2	>
	Output current	Outputs disabled,	V _O = 12 V			1	mA
Ю		See Note 3	V _O = -7 V			-0.8	1110
ін	High-level input current	V _I = 2.4 V				20	μА
I _{IL}	Low-level input current	V _I = 0.4 V				-400	μA
		V _O = -4 V	SN65ALS176	050		-250	
		V _O = -6 V	SN75ALS176	l		-230]
los	Short-circuit output current	V _O = 0				150	mA
		Vo = Vcc				250	
		V _O = 8 V				200	
	0	No load	Outputs enabled		23	30	mA
ICC	Supply current	NO IOAG	Outputs disabled		19	26	

[†] The power-off measurement in EIA Standard RS-422-A applies to disabled outputs only and is not applied to combined inputs and outputs.

NOTE 3: This applies for both power on and power off; refer to EIA standard RS-485 for exact conditions. The RS-422-A limit does not apply for a combined driver and receiver terminal.

2-630

POST OFFICE BOX 655303 * DALLAS, TEXAS 75265

8961724 0090836 362 📟

[‡] All typical values are at V_{CC} = 5 V and T_A = 25°C.

[§] Δ | VOD | and Δ | VOC | are the changes in magnitude of VOD and VOC, respectively, that occur when the input is changed from one logic state to the other.

The minimum V_{OD2} with a 100-Ω load is either 1/2 V_{OD1} or 2 V, whichever is greater.

SN65ALS176, SN75ALS176, SN75ALS176A, SN75ALS176B DIFFERENTIAL BUS TRANSCEIVERS

SLLS040D - D3042, AUGUST 1987 - REVISED AUGUST 1991

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

SN65ALS176

PARAMETER		TEST CONDITIONS	MIN TY	PT MAX	UNIT
^t dD	Differential output delay time		<u> </u>	15	ns
^t sk(p)	Pulse skew (tdDL - tdDH)	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3		0 2	ns
t _{tD}	Differential output transition time			8	ns
^t PZH	Output enable time to high level	R _L = 110 Ω, C _L = 50 pF, See Figure 4		80	ns
^t PZL	Output enable time to low level	R _L = 110 Ω, C _L = 50 pF, See Figure 5		30	ns
^t PHZ	Output disable time from high level	R _L = 110 Ω, C _L = 50 pF, See Figure 4		50	ns
^t PLZ	Output disable time from low level	R _L = 110 Ω, C _L = 50 pF, See Figure 5		30	ns

SN75ALS176, SN75ALS176A, SN75ALS176B

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		'ALS176		3	8	13	
t _{dD} [Differential output delay time	'ALS176A	7	4	7	11.5	ns
		'ALS176B	R _L = 54 Ω, C _L ≈ 50 pF, See Figure 3	5	8	10	
^t sk(p)	Pulse skew (t _{dDL} - t _{dDH})		7		0	2	ns
^t TD	Differential output transition time		7		8	-	ns
^t PZH	Output enable time to high level		R _L = 110 Ω, C _L = 50 pF, See Figure 4		23	50	ns
tPZL	Output enable time to low level		R _L = 110 Ω, C _L = 50 pF, See Figure 5		14	20	ns
^t PHZ	Output disable time from high le	vel	R _L = 110 Ω, C _L = 50 pF, See Figure 4		20	35	ns
^t PLZ	Output disable time from low lev	el	R _L = 110 Ω, C _L = 50 pF, See Figure 5	1	8	17	ns

[†] All typical values are at VCC = 5 V, TA = 25°C.

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-422-A	RS-485
Vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}
IVOD1	V _o	V _o
IVOD2 I	Vt (RL = 100 Ω)	V _t (R _L = 54 Ω)
I VOD3 I		V _t (Test Termination Measurement 2)
Δ V _{OD}	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	V _{os}	Vos
∆ Voc	V _{os} - V̄ _{os}	Vos - Vos
los	sa , sb	
lo	I _{xa} I _{xb}	lia, lib

SLLS040D - D3042, AUGUST 1987 - REVISED AUGUST 1991

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
VT+	Positive-going threshold voltage	V _O = 2.7 V,	I _O = -0.4 mA			0.2	٧
VT-	Negative-going threshold voltage	V _O = 0.5 V,	IO = 8 mA	-0.2‡			V
Vhys	Hysteresis (VT + - VT-)				60		mV
VIK	Enable-input clamp voltage	1 ₁ = -18 mA				-1.5	٧
Vон	High-level output voltage	V _{ID} = 200 mV, See Figure 6	I _{OH} = -400 μA,	2.7			>
VoL	Low-level output voltage	V _{ID} = -200 mV, See Figure 6	IOL = 8 mA,			0.45	>
loz	High-impedance-state output current	Vo = 0.4 V to 2.4 V	/			±20	μΑ
		Other input = 0 V,	V _i = 12 V			1	mA
VI	Line input current	See Note 4	V _I = -7 V			-0.8	ША
ΊΗ	High-level-enable input current	V _{IH} = 2.7 V				20	μΑ
<u>.,,</u> կլ	Low-level-enable input current	V _{IL} = 0.4 V				-100	μΑ
ri	Input resistance			12	20		kΩ
los	Short-circuit output current	V _{ID} = 200 mV,	V _O = 0	-15		-85	mA
		Maland	Outputs enabled	23	23	30	mΑ
1CC	Supply current	No load	Outputs disabled		19	26	

[†] All typical values are at VCC = 5 V, TA = 25°C.

NOTE 4: This applies for both power on and power off. Refer to EIA Standard RS-485 for exact conditions.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

SN65ALS176

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
t _{pd} Propagation time		1 4 5 1/4-				25	กร
tsk(p)	Pulse skew (tpHL - tpLH)	VID = -1.5 V to	V _{ID} = -1.5 V to 1.5 V, C _L = 15 pF, See Figure 7		0	2	ns
^t PZH	Output enable time to high level				11	18	ns
tPZL	Output enable time to low level	—	0 - 5 0		11	18	ns
tPHZ	Output disable time from high level	C _L = 15 pF,	See Figure 8			50	ns
tPLZ	Output disable time from low level					30	ns

SN75ALS176, SN75ALS176A, SN75ALS176B

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
^t pd	Propagation time	'ALS176	V _{ID} = −1.5 V to 1.5 V,		9	14	19	-
		'ALS176A		O AF AF CONFINENCE	10.5	14	18	ns
		'ALS176B		V, CL = 15 pr, See Figure	11.5	13	16.5	
t _{sk(p)}	Pulse skew (tpHL - tp	Pulse skew (tpHL - tpLH)				0	2	ns
tPZH	Output enable time to high level		- C _L = 15 pF, Se			7	14	ns
†PZL	Output enable time to low level			One Figure 0		20	35	ns
[†] PHZ	Output disable time from high level			See Figure 8		20	35	ns
†PLZ	Output disable time from low level		1			8	17	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

2-632

POST OFFICE BOX 655303 * DALLAS, TEXAS 75265

8961724 0090838 135

[‡] The algebraic convention, in which the less-positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

PARAMETER MEASUREMENT INFORMATION

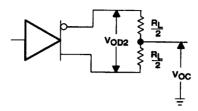


Figure 1. Driver V_{OD2} and V_{OC}

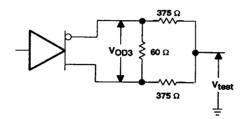
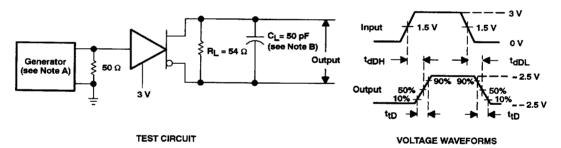



Figure 2. Driver V_{OD3}

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_f \leq$ 6 ns, $t_f \leq$ 7 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns, t_f

- B. CL includes probe and jig capacitance.
- C. $t_{dD} = t_{dDH}$ or t_{dDL}

Figure 3. Driver Test Circuit and Voltage Waveforms

2-633

PARAMETER MEASUREMENT INFORMATION

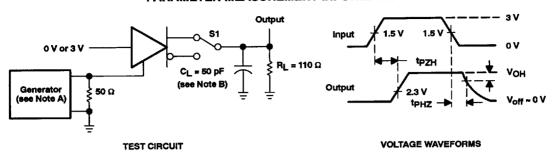


Figure 4. Driver Test Circuit and Voltage Waeforms

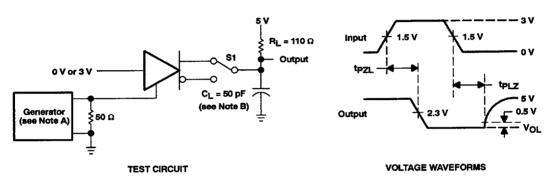


Figure 5. Driver Test Circuit and Voltage Waveforms

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_f ≤ 6 ns, t_f ≤ 6 ns, z_O = 50 Ω.

B. CL includes probe and jig capacitance.

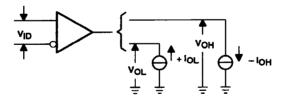


Figure 6. Receiver VOH and VOL Test Circuit

2-634

POST OFFICE BOX 655303 * DALLAS, TEXAS 75265

■ 8961724 0090840 893 ■

PARAMETER MEASUREMENT INFORMATION 3 V Output Generator (see Note A) **tPHL tPLH** C_L = 15 pF (see Note C) (see Note C) (see Note B) VOH Output - Vol **VOLTAGE WAVEFORMS TEST CIRCUIT**

Figure 7. Receiver Test Circuit and Voltage Waveforms

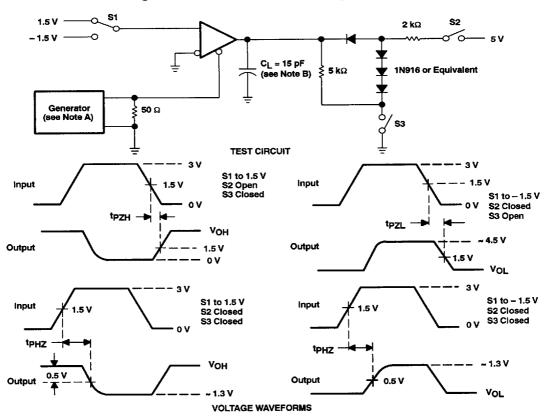
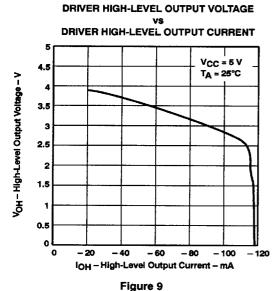


Figure 8. Receiver Test Circuit and Voltage Waveforms

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \le 1 MHz, 50% duty cycle, $t_f \le$ 6 ns, $t_f \le$ 6 ns, $t_{f} \le$ 7 ns, $t_{f} \le$ 8 ns, $t_{f} \le$ 9 ns, $t_{f} \ge$ 9 ns, $t_{f} \ge$ 9 ns, t_{f}


- B. CL includes probe and jig capacitance.
- C. tpd = tpLH or tpHL

2-635

■ 8961724 0090841 72T **■**

TYPICAL CHARACTERISTICS

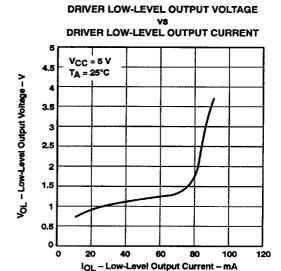


Figure 10

DRIVER DIFFERENTIAL OUTPUT VOLTAGE

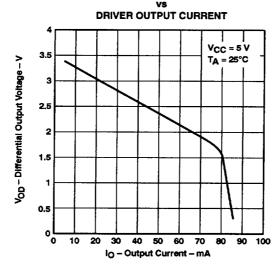


Figure 11

2-636

8961724 0090842 666

TYPICAL CHARACTERISTICS

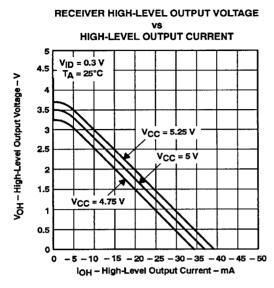


Figure 12

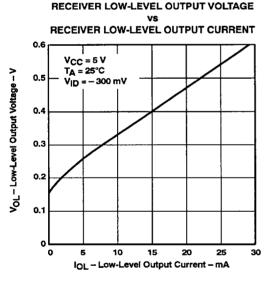


Figure 14

RECEIVER HIGH-LEVEL OUTPUT VOLTAGE VS FREE-AIR TEMPERATURE

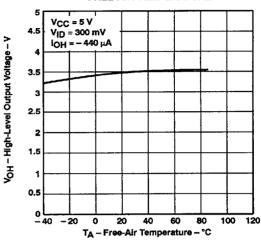


Figure 13

RECEIVER LOW-LEVEL OUTPUT VOLTAGE vs

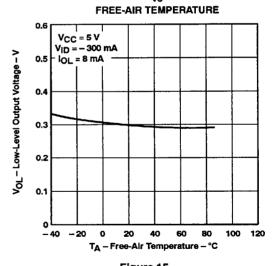
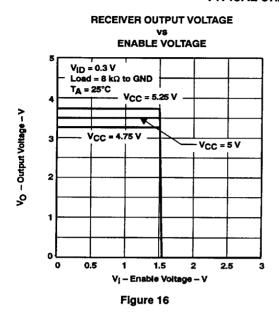



Figure 15

2-637

TYPICAL CHARACTERISTICS

ENABLE VOLTAGE

6
V_{ID} = 0.3 V
Load = 1 kΩ to V_{CC}

7
V_{CC} = 5.25 V

V_{CC} = 4.75 V

V_{CC} = 4.75 V

RECEIVER OUTPUT VOLTAGE

Figure 17

V_i - Enable Voltage - V

APPLICATION INFORMATION

NOTE: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

Up to 53 Transceivers

Figure 18. Typical Application Circuit

2-638

POST OFFICE BOX 655303 * DALLAS, TEXAS 75265

8961724 0090844 439