

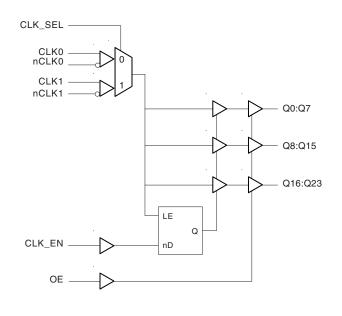
ICS8344I-01

Low Skew, 1-TO-24

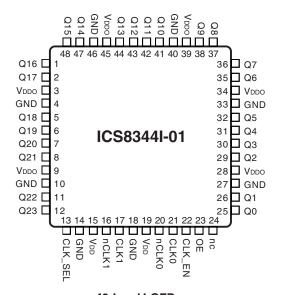
DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

GENERAL DESCRIPTION

The ICS8344I-01 is a low voltage, low skew fanout buffer and a member of the HiPerClockS[™] family of High Performance Clock Solutions from ICS. The ICS8344I-01 has two selectable clock inputs. The CLKx, nCLKx pairs can accept most


standard differential input levels. The ICS8344I-01 is designed to translate any differential signal level to LVCMOS/LVTTL levels. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased to 48 by utilizing the ability of the outputs to drive two series terminated lines. Redundant clock applications can make use of the dual clock inputs, which also facilitate board level testing. The clock enable is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/deassertion of the clock enable pin. The outputs are driven low when disabled. The ICS8344I-01 is characterized at full 3.3V, full 2.5V and mixed 3.3V input and 2.5V output operating supply modes.

Guaranteed output and part-to-part skew characteristics make the ICS8344I-01 ideal for those clock distribution applications demanding well defined performance and repeatability.


FEATURES

- 24 LVCMOS/LVTTL outputs, 7Ω typical output impedance
- 2 selectable CLKx, nCLKx inputs
- CLK0, nCLK0 and CLK1, nCLK1 pairs can accept the following input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL
- Maximum output frequency: 200MHz
- Translates any single ended input signal to LVCMOS/LVTTL with resistor bias on nCLK input
- Synchronous clock enable
- Output skew: 250ps (maximum)
- Part-to-part skew: 1ns (maximum)
- Bank skew: 125ps (maximum)
- Propagation delay: 5.25ns (maximum)
- Full 3.3V or 2.5V, and 3.3V Core/2.5V output operating supply modes
- Lead-Free package available
- -40°C to 85°C Industrial ambient operating temperature

BLOCK DIAGRAM

PIN ASSIGNMENT

48-Lead LQFP 7mm x 7mm x 1.4mm package body **Y Package** Top View

The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.

ICS8344I-01

Low Skew, 1-to-24 DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ty	/ре	Description
1, 2, 5, 6 7, 8, 11, 12	Q16, Q17, Q18, Q19 Q20, Q21, Q22, Q23	Output		Q16 thru Q23 outputs. 7Ω typical output impedance.
3, 9, 28, 34, 39, 45	$V_{\scriptscriptstyle DDO}$	Power		Output supply pins.
4, 10, 14,18, 27, 33, 40, 46	GND	Power		Power supply ground.
13	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects CLK1, nCLK inputs, When LOW, selects CLK0, nCLK0 inputs. LVCMOS / LVTTL interface levelss.
15, 19	V _{DD}	Power		Core supply pins.
16	nCLK1	Input	Pullup	Inverting differential LVPECL clock input.
17	CLK1	Input	Pulldown	Non-inverting differential LVPECL clock input.
20	nCLK0	Input	Pullup	Inverting differential LVPECL clock input.
21	CLK0	Input	Pulldown	Non-inverting differential LVPECL clock input.
22	CLK_EN	Input	Pullup	Synchronizing control for enabling and disabling clock outputs. LVCMOS interface levels.
23	OE	Input	Pullup	Output enable. Controls enabling and disabling of outputs Q0 thru Q23. LVCMOS / LVTTL interface levels.
24	nc	Unused		No connect.
25, 26, 29, 30 31, 32, 35, 36	Q0, Q1, Q2, Q3 Q4, Q5, Q6, Q7	Output		Q0 thru Q7 outputs. 7Ω typical output impedance.
37, 38, 41, 42 43, 44, 47, 48	Q8, Q9, Q10, Q11 Q12, Q13, Q14, Q15	Output		Q8 thru Q15 outputs. 7Ω typical output impedance.

NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance (per output)					pF
R _{PULLUP}	Input Pullup Resistor			51		ΚΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		ΚΩ
R _{out}	Output Impedance		5	7	12	Ω

ICS8344I-01

Low Skew, 1-to-24 DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

TABLE 3A. OUPUT ENABLE FUNCTION TABLE

Bank 1		Bank 2		Bank 3	
Input	Output	Input	Output	Input	Output
OE	Q0:Q7	OE	Q8:Q15	OE	Q16:Q23
0	Hi-Z	0	Hi-Z	0	Hi-Z
1	Enabled	1	Enabled	1	Enabled

TABLE 3B. CLOCK SELECT FUNCTION TABLE

Control Input	Clock			
CLK_SEL	SEL CLK0, nCLK0 CLK1, nC			
0	Selected	De-selected		
1	De-selected	Selected		

TABLE 3C. CLOCK INPUT FUNCTION TABLE

	Inputs		Outputs	Input to Output Mode	Polarity
OE	CLK0, CLK1	nCLK0, nCLK1	Q0:Q23	mpat to Oatput Mode	Polarity
1	0	1	LOW	Differential to Single Ended	Non Inverting
1	1	0	HIGH	Differential to Single Ended	Non Inverting
1	0	Biased; NOTE 1	LOW	Single Ended to Differential	Non Inverting
1	1	Biased; NOTE 1	HIGH	Single Ended to Differential	Non Inverting
1	Biased; NOTE 1	0	HIGH	Single Ended to Differential	Inverting
1	Biased; NOTE 1	1	LOW	Single Ended to Differential	Inverting

NOTE 1: Please refer to the Application Information section, Wiring the Differential Input to Accept Single Ended Levels.

ICS8344I-01

Low Skew, 1-TO-24

DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_1 -0.5V to V_{DD} + 0.5 V

Outputs, V_O -0.5V to $V_{DDO} + 0.5V$

Package Thermal Impedance, θ_{IA} 47.9°C/W (0 lfpm)

Storage Temperature, T_{STG} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, or $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$; Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
	Core Supply Voltage		3.135	3.3	3.465	V
V _{DD}			2.375	2.5	2.625	V
.,	Output Supply Voltage		3.135	3.3	3.465	V
V _{DDO}			2.375	2.5	2.625	V
I _{DD}	Power Supply Current				70	mA
I _{DDO}	Output Supply Current				25	mA

Table 4B. LVCMOS DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, or $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$; $V_{DDO} = 2.5V \pm 5\%$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	CLK_SEL, CLK_EN, OE		2		V _{DD} + 0.3	٧
V _{IL}	Input Low Voltage	CLK_SEL, CLK_EN, OE		-0.3		0.8	V
	Input High Current	CLK_EN, OE	$V_{DD} = V_{IN} = 3.465V \text{ or } 2.625V$			5	μΑ
I _{IH}	Imput riigh Current	CLK_SEL	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			150	μΑ
,	Input Low Current	CLK_EN, OE	$V_{DD} = 3.465 \text{ or } 2.625 \text{V}, V_{IN} = 0 \text{V}$	-150			μΑ
' _{IL}	Input Low Current	CLK_SEL	$V_{DD} = 3.465 \text{ or } 2.625 \text{V}, V_{IN} = 0 \text{V}$	-5			μΑ
V	Output High Voltage		$V_{DDO} = 3.135V, I_{OH} = -36mA$	2.6			٧
V _{OH}			$V_{DDO} = 2.375V, I_{OH} = -27mA$	1.8			V
V	Output Low Voltage		$V_{DDO} = 3.135V, I_{OL} = 36mA$			0.5	V
V _{OL}	Odiput Low Voltage		$V_{DDO} = 2.375V, I_{OL} = 27mA$			0.5	>

Integrated Circuit Systems, Inc.

ICS8344I-01

Low Skew, 1-TO-24

DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

Table 4C. Differential DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, or $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$; Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input	nCLK0, nCLK1	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			5	μΑ
I IIH	High Current	CLK0, CLK1	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			150	μΑ
	Input	nCLK0, nCLK1	$V_{DD} = 3.465 \text{V or } 2.625 \text{V}, V_{IN} = 0 \text{V}$	-150			μΑ
¹ L	Low Current	CLK0, CLK1	$V_{DD} = 3.465 \text{V or } 2.625 \text{V}, V_{IN} = 0 \text{V}$	-5			μΑ
V _{PP}	Peak-to-Peak Input Voltage			0.15		1.3	V
V _{CMR}	Common Mode Input Voltage: NOTE 1, 2			GND + 0.5		V _{DD} - 0.85	V

NOTE 1: For single ended applications, the maximum input voltage for CLK0, nCLK0 and CLK1, nCLK1 is V_{np} + 0.3V.

NOTE 2: Common mode voltage is defined as $V_{_{\mbox{\scriptsize IH}}}$.

Table 5. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, or $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$; $V_{DDO} = 2.5V \pm 5\%$; $V_{DDO} = 2.5V \pm 5\%$

Symbol	Parameter		Test Conditions		Typical	Maximum	Units
f _{MAX}	Output Frequ	uency				200	MHz
t _{PD}	Propagation	Delay, NOTE 1	f ≤ 200MHz	2.5		5.25	ns
		Q0:Q7				125	ps
tsk(b)	Bank Skew; NOTE 2, 6	Q8:Q15	Measured on the rising edge of $V_{\rm DDO}/2$			200	ps
	NOTE 2, 0	Q16:Q23				175	ps
tsk(o)	Output Skew; NOTE 3, 6		Measured on the rising edge of $V_{\tiny DDO}/2$			250	ps
tsk(pp)	Part-to-Part	Skew; NOTE 4, 6	Measured on the rising edge of $V_{\tiny DDO}/2$			1	ns
t _R	Output Rise	Time; NOTE 5	30% to 70%	200		800	ps
t _F	Output Fall Time; NOTE 5		30% to 70%	200		800	ps
odc	Output Duty Cycle		f ≤ 200MHz	40%		60%	%
t _{EN}	Output Enable Time; NOTE 5		f = 10MHz			5	ns
t _{DIS}	Output Disal	ole Time; NOTE 5	f = 10MHz			4	ns

All parameters measured at 200MHz and $V_{\rm pp}$ typ unless noted otherwise.

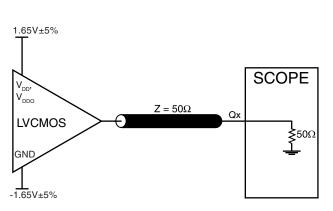
NOTE 1: Measured from the differential input crossing point to V_{DDO}/2.

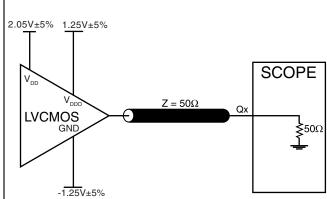
NOTE 2: Defined as skew within a bank of outputs at the same voltages and with equal load conditions.

NOTE 3: Defined as skew across banks of outputs at the same supply voltages and with equal load conditions.

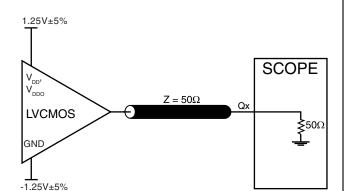
NOTE 4: Defined as between outputs at the same supply voltages and with equal load conditions. Measured at V_{DDO}/2.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

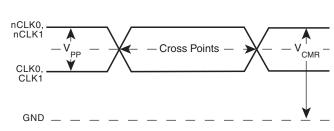

NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.

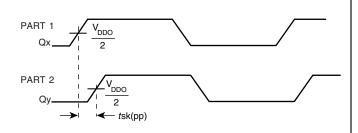


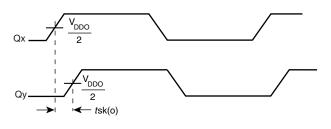
ICS8344I-01


Low Skew, 1-to-24 DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

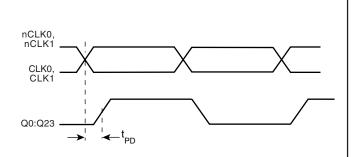
PARAMETER MEASUREMENT INFORMATION

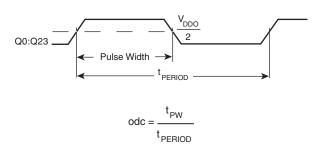



3.3V OUTPUT LOAD AC TEST CIRCUIT


3.3V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT

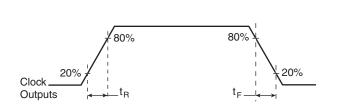
2.5V OUTPUT LOAD AC TEST CIRCUIT


DIFFERENTIAL INPUT LEVEL



PART-TO-PART SKEW

ICS8344I-01


Low Skew, 1-to-24 DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

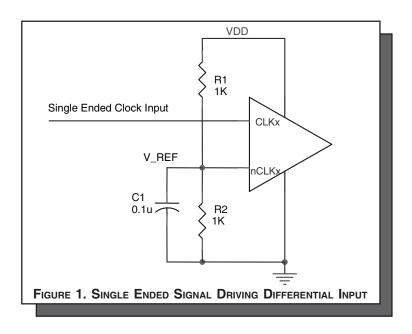
PROPAGATION DELAY

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

ICS8344I-01

Low Skew, 1-TO-24


DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{\rm DD}$ = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

ICS8344I-01

Low Skew, 1-TO-24

DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 2A to 2E show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested

here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in *Figure 4A*, the input termination applies for ICS HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

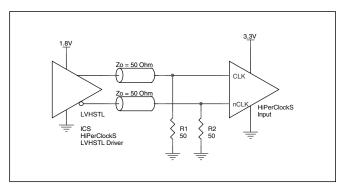


FIGURE 2A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY ICS HIPERCLOCKS LVHSTL DRIVER

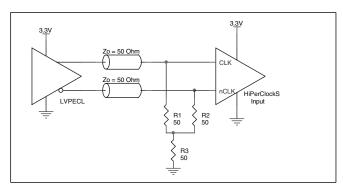


FIGURE 2B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

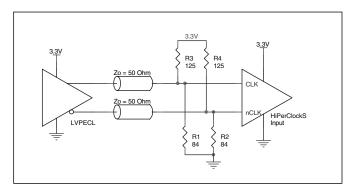


FIGURE 2C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

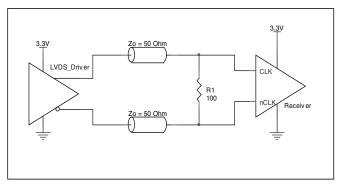


FIGURE 2D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY 3.3V LVDS DRIVER

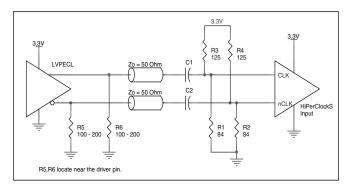


FIGURE 2E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER WITH AC COUPLE

ICS8344I-01

Low Skew, 1-to-24 DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

RELIABILITY INFORMATION

Table 6. $\theta_{\text{JA}} \text{vs. Air Flow Table for 48 Lead LQFP}$

θ_{1A} by Velocity (Linear Feet per Minute)

0 200 500 Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W 55.9°C/W 50.1°C/W Multi-Layer PCB, JEDEC Standard Test Boards 39.4°C/W 47.9°C/W 42.1°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for ICS8344I-01 is: 1503

ccc C

ICS8344I-01

Low Skew, 1-to-24 DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

PACKAGE OUTLINE - Y SUFFIX FOR 48 LEAD LQFP D D2 Ref. INDEX E2 ΕÏ AREA Ref. E е Dī **SEATING PLANE**

TABLE 7. PACKAGE DIMENSIONS

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS							
SYMBOL	BBC						
SYMBOL	MINIMUM	NOMINAL	MAXIMUM				
N		48					
Α			1.60				
A1	0.05		0.15				
A2	1.35	1.40	1.45				
b	0.17	0.22	0.27				
С	0.09	0.09 0.20					
D		9.00 BASIC					
D1		7.00 BASIC					
D2		5.50 Ref.					
E		9.00 BASIC					
E1		7.00 BASIC					
E2		5.50 Ref.					
е		0.50 BASIC					
L	0.45	0.60	0.75				
θ	0°		7°				
ccc			0.08				

Reference Document: JEDEC Publication 95, MS-026

ICS8344I-01

Low Skew, 1-to-24 DIFFERENTIAL-TO-LVCMOS/LVTTL FANOUT BUFFER

Table 8. Ordering Information

Part/Order Number	Marking	Package	Count	Temperature
ICS8344AYI-01	ICS8344AYI-01	48 Lead LQFP	250 per tray	-40°C to 85°C
ICS8344AYI-01T	ICS8344AYI-01	48 Lead LQFP on Tape and Reel	1000	-40°C to 85°C
ICS8344AYI-01LF	ICS8344AI01L	"Lead Free" 48 Lead LQFP	250 per tray	-40°C to 85°C
ICS8344AYI-01LFT	ICS8344AI01L	"Lead Free" 48 Lead LQFP on Tape and Reel	1000	-40°C to 85°C

The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.