
- Members of the Texas Instruments *Widebus™* Family
- State-of-the-Art *EPIC-IIIB™* BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 1 V at $V_{CC} = 5$ V, $T_A = 25^\circ\text{C}$
- High-Impedance State During Power Up and Power Down
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs ($-32\text{-mA } I_{OH}$, $64\text{-mA } I_{OL}$)
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'ABTH16460 are 4-bit to 1-bit multiplexed registered transceivers used in applications where four separate data paths must be multiplexed onto or demultiplexed from a single data path. Typical applications include multiplexing and/or demultiplexing of address and data information in microprocessor or bus-interface applications. These devices also are useful in memory-interleaving applications.

Five 4-bit I/O ports (1A–4A, 1B1–4, 2B1–4, 3B1–4, and 4B1–4) are available for address and/or data transfer. The output-enable (OEB, OEB1–OEB4, and OEA) inputs control the bus-transceiver functions. These control signals also allow 4-bit or 16-bit control, depending on the OEB level.

SN54ABTH16460 . . . WD PACKAGE
 SN74ABTH16460 . . . DGG OR DL PACKAGE
 (TOP VIEW)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIIB are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1997, Texas Instruments Incorporated

**SN54ABTH16460, SN74ABTH16460
4-TO-1 MULTIPLEXED/DEMULTIPLEXED TRANSCEIVERS
WITH 3-STATE OUTPUTS**

SCBS207F – OCTOBER 1992 – REVISED MAY 1997

description (continued)

Address and/or data information can be stored using the internal storage latches/flip-flops. The latch-enable (LEB1–LEB4, LEBA, and LEAB1–LEAB4) and clock/clock-enable (CLK/CLKEN) inputs are used to control data storage. When either one of the latch-enable inputs is high, the latch is transparent (clock is a don't care as long as the latch enable is high). When the latch-enable input goes low (providing that the clock does not transit from low to high), the data present at the inputs is latched and remains latched until the latch-enable input is returned high. When the clock enable is low and the corresponding latch enable is low, data can be clocked on the low-to-high transition of the clock. When either the clock enable or the corresponding latch enable is high, the clock is a don't care.

Four select pins (SEL0, SEL1, CE_SEL0, and CE_SEL1) are provided to multiplex data (A port), or to select one of four clock enables (B port). This allows the user the flexibility of controlling one bit at a time.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABTH16460 is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74ABTH16460 is characterized for operation from -40°C to 85°C .

Function Tables

A-TO-B OUTPUT ENABLE[†]

INPUTS		OUTPUT Bn
<u>OEB</u>	<u>OEBn</u>	
H	H	Z
H	L	Z
L	H	Z
L	L	Active

[†] $n = 1, 2, 3, 4$

A-TO-B STORAGE
(assuming $\overline{OEB} = L$, $\overline{OEBn} = L$)[‡]

INPUTS								OUTPUTS			
CLKENAB	CE_SEL1	CE_SEL0	CLKAB	LEAB1	LEAB2	LEAB3	LEAB4	B1	B2	B3	B4
X	X	X	H or L	H	L	L	L	A	A_0	A_0	A_0
X	X	X	H or L	H	H	H	L	A	A	A	A_0
L	X	X	L	L	L	L	L	A_0	A_0	A_0	A_0
L	L	L	↑	L	L	L	L	A	A_0	A_0	A_0
L	L	H	↑	L	L	L	L	A_0	A	A_0	A_0
L	H	L	↑	L	L	L	L	A_0	A_0	A	A_0
L	H	H	↑	L	L	L	L	A_0	A_0	A_0	A
H	X	X	↑	L	L	L	L	A_0	A_0	A_0	A_0

[‡]This table does not cover all the latch-enable cases since they have similar results.

SN54ABTH16460, SN74ABTH16460
**4-TO-1 MULTIPLEXED/DEMULTIPLEXED TRANSCEIVERS
WITH 3-STATE OUTPUTS**

SCBS207F – OCTOBER 1992 – REVISED MAY 1997

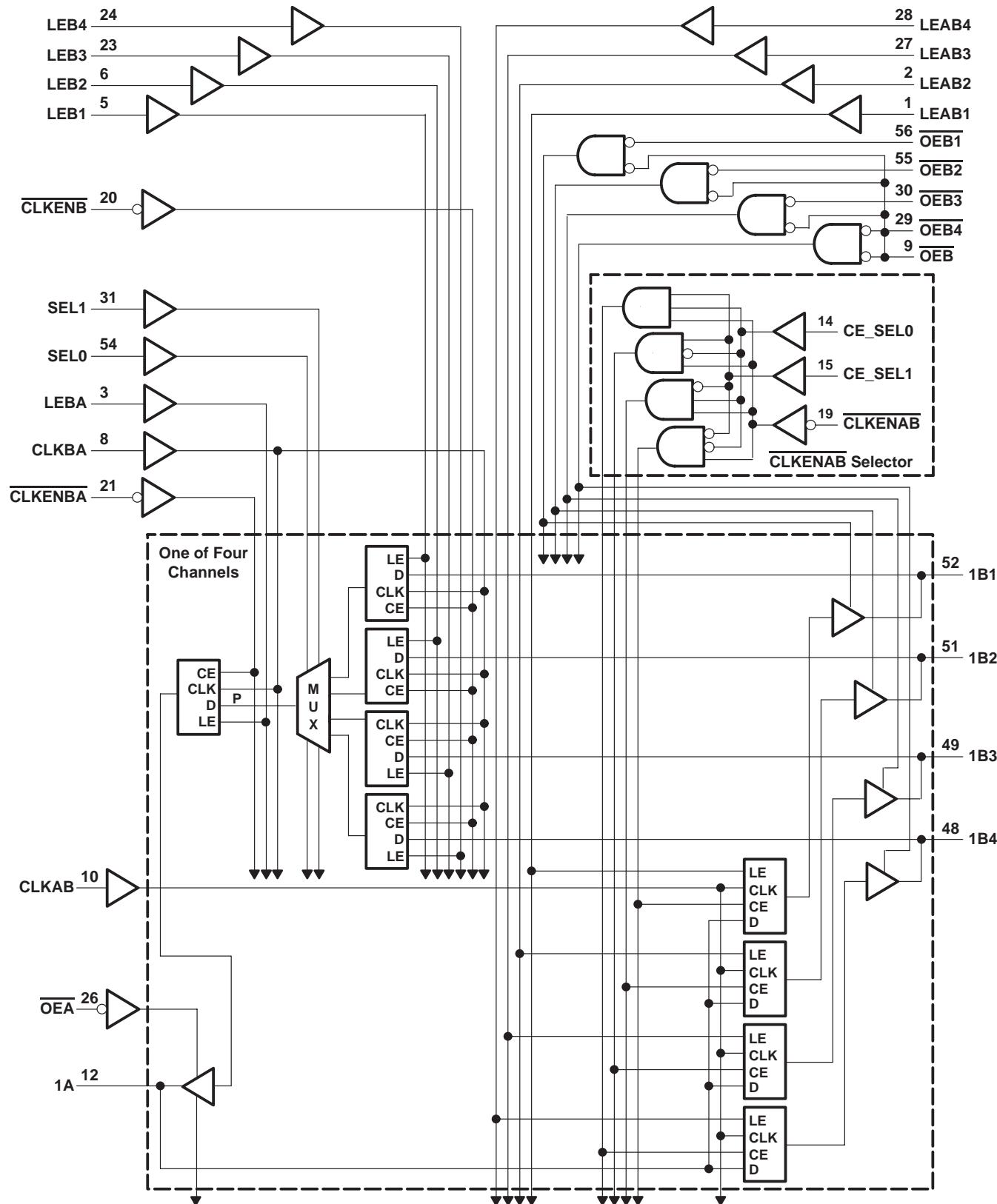
Function Tables (Continued)

**B-TO-A STORAGE
(before point P)**

INPUTS								P
CLKENB	CLKBA	LEB1	LEB2	LEB3	LEB4	SEL1	SEL0	
X	X	H	L	L	L	L	L	B1
X	X	L	H	L	L	L	H	B2
X	X	L	L	H	L	H	L	B3
X	X	L	L	L	H	H	H	B4
L ↑ L L L L						L L	L H	B1
L L L L L L						H L	H H	B2
L L L L L L						L L	L H	B3
L L L L L L						H L	H H	B4
L L L L L L						L L	L H	B10 [†]
L L L L L L						H L	H H	B20 [†]
L L L L L L						L L	L H	B30 [†]
L L L L L L						H H	H H	B40 [†]

[†] Output level before the indicated steady-state input conditions were established

**B-TO-A STORAGE
(after point P)**


INPUTS					OUTPUT A
CLKENBA	CLKBA	LEBA	OE _A	B	
X	X	X	H	X	Z
X	X	H	L	L	L
X	X	H	L	H	H
H	X	L	L	X	A ₀ [†]
L	↑	L	L	L	L
L	↑	L	L	H	H
L	L	L	L	X	A ₀ [†]

[†] Output level before the indicated steady-state input conditions were established

SN54ABTH16460, SN74ABTH16460
4-TO-1 MULTIPLEXED/DEMULTIPLEXED TRANSCEIVERS
WITH 3-STATE OUTPUTS

SCBS207F – OCTOBER 1992 – REVISED MAY 1997

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

recommended operating conditions (see Note 3)

		SN54ABTH16460		SN74ABTH16460		UNIT	
		MIN	MAX	MIN	MAX		
V _{CC}	Supply voltage	4.5	5.5	4.5	5.5	V	
V _{IH}	High-level input voltage	2		2		V	
V _{IL}	Low-level input voltage		0.8		0.8	V	
V _I	Input voltage	0	V _{CC}	0	V _{CC}	V	
I _{OH}	High-level output current		-24		-32	mA	
I _{OL}	Low-level output current		48		64	mA	
Δt/Δv	Input transition rise or fall rate	Outputs enabled		10		ns/V	
Δt/ΔV _{CC}	Power-up ramp rate		200		200	μs/V	
T _A	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused control pins must be held high or low to prevent them from floating.

**SN54ABTH16460, SN74ABTH16460
4-TO-1 MULTIPLEXED/DEMUTIPLEXED TRANSCEIVERS
WITH 3-STATE OUTPUTS**

SCBS207F – OCTOBER 1992 – REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TA = 25°C			SN54ABTH16460		SN74ABTH16460		UNIT	
		MIN	TYPT†	MAX	MIN	MAX	MIN	MAX		
VIK	VCC = 4.5 V, I _I = -18 mA			-1.2		-1.2		-1.2	V	
VOH	VCC = 4.5 V, I _{OH} = -3 mA	2.5			2.5		2.5		V	
	VCC = 5 V, I _{OH} = -3 mA	3			3		3			
	VCC = 4.5 V	I _{OH} = -24 mA	2		2					
		I _{OH} = -32 mA	2*				2			
VOL	VCC = 4.5 V	I _{OL} = 48 mA	0.36		0.5				V	
		I _{OL} = 64 mA		0.55*			0.55			
V _{hys}		100							mV	
I _I	Control inputs	VCC = 0 to 5.5 V, V _I = VCC or GND			±1		±1	±1	µA	
	A or B ports	VCC = 2.1 V to 5.5 V, V _I = VCC or GND			±20		±20	±20		
I _{I(hold)}	A or B ports	VCC = 4.5 V	V _I = 0.8 V	75	500	75	500	75	500	µA
			V _I = 2 V	-75	-500	-75	-500	-75	-500	
I _{OZPU} ‡	VCC = 0 to 2.1 V, V _O = 0.5 V to 2.7 V, OE = X			±50		±50		±50	µA	
I _{OZPD} ‡	VCC = 2.1 V to 0, V _O = 0.5 V to 2.7 V, OE = X			±50		±50		±50	µA	
I _{off}	VCC = 0, V _I or V _O ≤ 4.5 V			±100				±100	µA	
I _{CEX}	VCC = 5.5 V, V _O = 5.5 V	Outputs high			50		50	50	µA	
I _O §	VCC = 5.5 V, V _O = 2.5 V	-50	-100	-200	-50	-200	-50	-200	mA	
I _{CC}	VCC = 5.5 V, I _O = 0, V _I = VCC or GND	Outputs high			1.5		1.5	1.5	mA	
		A outputs low			10		10	10		
		B outputs low			32		32	32		
		Outputs disabled			1.5		1.5	1.5		
ΔI _{CC} ¶	VCC = 5.5 V, One input at 3.4 V, Other inputs at VCC or GND			1.5		1.5		1.5	mA	
C _i	Control inputs	V _I = 2.5 V or 0.5 V			8				pF	
C _{io}	A or B ports	V _O = 2.5 V or 0.5 V			3.5				pF	

* On products compliant to MIL-PRF-38535, this parameter does not apply.

† All typical values are at V_{CC} = 5 V.

‡ This parameter is characterized but not production tested.

§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

¶ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN54ABTH16460, SN74ABTH16460
**4-TO-1 MULTIPLEXED/DEMULTIPLEXED TRANSCEIVERS
 WITH 3-STATE OUTPUTS**

SCBS207F – OCTOBER 1992 – REVISED MAY 1997

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		SN54ABTH16460		SN74ABTH16460		UNIT
		MIN	MAX	MIN	MAX	
f_{clock}	Clock frequency	0	160	0	160	MHz
t_w	Pulse duration	CLKAB high or low	3.8	3.8	3.8	ns
		CLKBA high or low	4.5	4.5	4.5	
		LEAB1, 2, 3, or 4 high	2.2	2.2	2.2	
		LEBA high	2.1	2.1	2.1	
		LEB1, 2, 3, or 4 high	2.4	2.4	2.4	
t_{su}	Setup time	Before CLKAB \uparrow	A bus	2.5	2.5	ns
			CE_SEL0/1	3.2	3.2	
			<u>CLKENAB</u>	3.2	3.2	
		Before CLKBA \uparrow	A bus	3.6	3.6	
			B bus	3.8	3.8	
			<u>CLKENB</u>	2.3	2.3	
			<u>CLKENBA</u>	2.5	2.5	
			LEB1, 2, 3, or 4	4.3	4.3	
			SEL0/1	4.5	4.5	
		Before LEB1, 2, 3, or 4 \downarrow	B bus	3.2	3.2	
			B bus	4	4	
			LEB1, 2, 3, or 4	4.4	4.4	
			SEL0/1	4.3	4.3	
t_h	Hold time	After CLKAB \uparrow	A bus	0.5	0.5	ns
			CE_SEL0/1	1.1	1.1	
			<u>CLKENAB</u>	0.5	0.5	
		After CLKBA \uparrow	A bus	1.2	1.2	
			B bus	1.3	1.3	
			<u>CLKENB</u>	1	1	
			<u>CLKENBA</u>	1	1	
		After LEB1, 2, 3, or 4 \downarrow	SEL0/1	0	0	
			B bus	1.5	1.5	
		After LEBA \downarrow	B bus	0.4	0.4	
			SEL0/1	0.1	0.1	

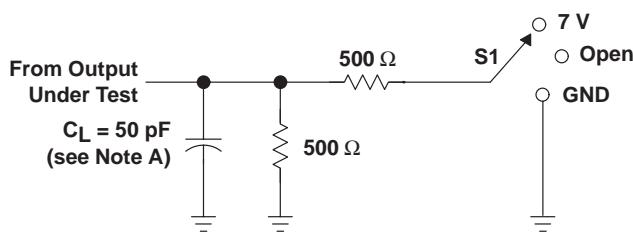
PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

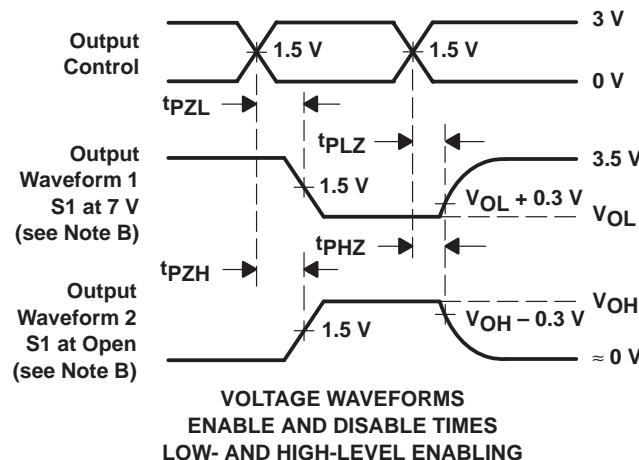
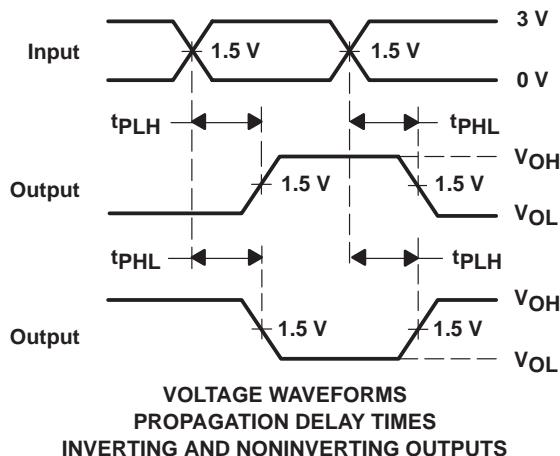
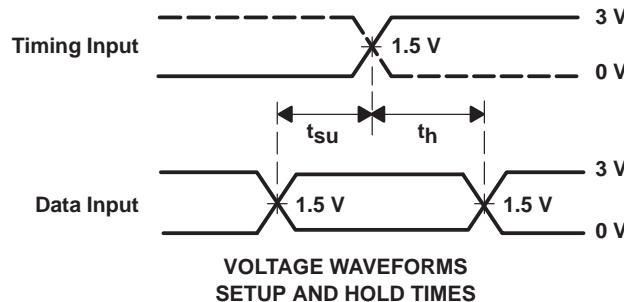
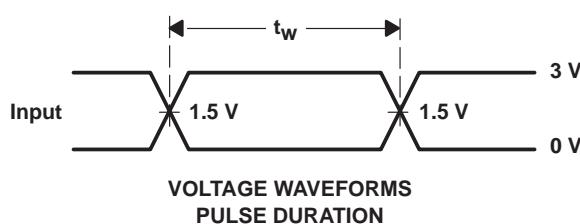
SN54ABTH16460, SN74ABTH16460**4-TO-1 MULTIPLEXED/DEMULTIPLEXED TRANSCEIVERS****WITH 3-STATE OUTPUTS**

SCBS207F – OCTOBER 1992 – REVISED MAY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$			SN54ABTH16460	SN74ABTH16460	UNIT	
			MIN	TYP	MAX	MIN	MAX		
f_{max}			160			160	160	MHz	
t_{PLH}	B	A	2.5	3.6	5.9	2.5	7.1	2.5	6.5
t_{PHL}			2	3.5	5.8	2	6.8	2	6.5
t_{PZH}	\overline{OEA}	A	1.5	2.8	4.8	1.5	5.9	1.5	5.6
t_{PZL}			1.5	2.6	4.6	1.5	5.5	1.5	5.2
t_{PHZ}	\overline{OEA}	A	2.5	3.8	5.3	2.5	6	2.5	5.9
t_{PLZ}			1.5	4.6	6.1	1.5	7	1.5	6.5
t_{PLH}	A	B	2	3.2	5.2	2	6.2	2	5.7
t_{PHL}			1.5	3.1	5.2	1.5	6.1	1.5	5.7
t_{PZH}	\overline{OEB}	B	1.5	3.3	5.7	1.5	6.7	1.5	6.4
t_{PZL}			1.5	3.2	5.5	1.5	6.6	1.5	6.3
t_{PHZ}	\overline{OEB}	B	3	4.7	6.3	3	7.1	3	7
t_{PLZ}			2	4	5.5	2	6.6	2	6.1
t_{PZH}	$\overline{OEB1, \bar{2}, \bar{3}, \bar{4}}$	B	1.5	3	5.2	1.5	6	1.5	5.8
t_{PZL}			1.5	2.9	4.9	1.5	5.9	1.5	5.6
t_{PHZ}	$\overline{OEB1, \bar{2}, \bar{3}, \bar{4}}$	B	2.5	4	5.7	2.5	6.2	2.5	6.1
t_{PLZ}			1.5	3.5	4.8	1.5	5.8	1.5	5.3
t_{PLH}	CLKBA	A	1.5	4.2	6.7	1.5	8.1	1.5	7.4
t_{PHL}			1.5	4.4	6.9	1.5	8.4	1.5	7.7
t_{PLH}	CLKAB	B	2	3.4	5.6	2	6.8	2	6.2
t_{PHL}			2	3.4	5.3	2	6.3	2	5.9
t_{PLH}	LEBA	A	2	3	5	2	6.1	2	5.6
t_{PHL}			2	3.1	4.8	2	5.8	2	5.3
t_{PLH}	LEAB1, 2, 3, 4	B	2	3.2	5.2	2	6.3	2	5.8
t_{PHL}			2	3.3	5	2	6.1	2	5.6
t_{PLH}	LEBA1, 2, 3, 4	A	2.5	4	6.5	2.5	7.8	2.5	7.2
t_{PHL}			2.5	4	6.1	2.5	7.5	2.5	6.8
t_{PLH}	SEL	A	2	4.1	6.7	2	8.1	2	7.5
t_{PHL}			2	3.8	6.2	2	7.3	2	6.9

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.





POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	7 V
t_{PHZ}/t_{PZH}	Open

LOAD CIRCUIT

NOTES:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$.
- The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.