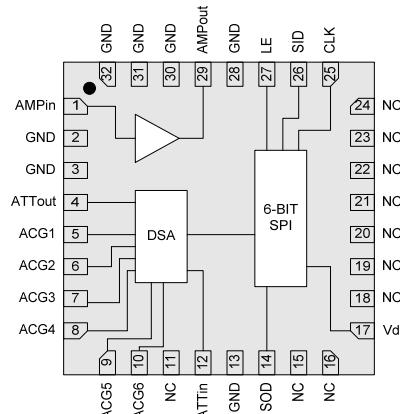


Applications

- Wireless Infrastructure
- Fixed Wireless
- Microwave and Satellite Radio
- General Purpose Wireless



32-pin 5x5mm leadless package

Product Features

- Integrates DSA + Amp Functionality
- 50-4000 MHz Broadband Performance
- 18 dB Gain @ 2.14 GHz
- 2.9 dB Noise Figure @ max gain setting
- +21 dBm P1dB
- +36.5 dBm OIP3
- +5 V Supply Voltage
- 88 mA Operating Current
- MTTF > 1000 Years

Functional Block Diagram

General Description

The TQM8M9075 is a digitally controlled variable gain amplifier (DVGA) with a broadband frequency range of 50 to 4000 MHz. The DVGA features high linearity and low noise while providing digital variable gain with a 31.5 dB of range in 0.5 dB steps through a 6-bit serial mode control interface. This combination of performance parameters makes the DVGA ideal for receiver applications requiring gain control with high IIP3.

The TQM8M9075 integrates a high performance digital step attenuator and a high linearity, broadband gain block. Both stages are internally matched to 50 Ohms and do not require any external matching components. A serial output port enables cascading with other serial controlled devices.

The TQM8M9075 is packaged in a RoHS-compliant, compact 5x5 mm surface-mount leadless package. Superior thermal design allows the product to have a minimum MTTF rating of 1000 years at a mounting temperature of +85° C.

The TQM8M9075 is targeted for use in wireless infrastructure, point-to-point, or can be used for any general purpose wireless application.

Pin Configuration

Pin #	Symbol
1	Ampin
2, 3, 13, 28, 30, 31, 32	GND (Ground)
4	ATTout
5, 6, 7, 8, 9, 10	ACG1-6
11, 15, 16, 18-24	NC (No Connect)
14	SOD
12	ATTin
17	Vdd
25	CLK
26	SID
27	LE
29	Ampout
Backside Paddle	RF/DC Ground

Ordering Information

Part No.	Description
TQM8M9075	Digital Variable Gain Amplifier
TQM8M9075-PCB	0.3-4.0 GHz Evaluation Board

Standard T/R size = 2500 pieces on a 13" reel.

Specifications

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-65 to 150 °C
RF Input Power, CW, 50Ω, T = 25°C	+24 dBm
Supply Voltage (V _{dd})	+6 V
Digital Input Voltage	V _{dd} +0.5 V

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Parameter	Min	Typ	Max	Units
V _{dd}	3.3	5	5.25	V
I _{dd}		88		mA
Operating Temp. Range	-40		+85	°C
T _{ch} (for >10 ⁶ hours MTTF)			190	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Test conditions unless otherwise noted: T_{LEAD}=+25°C, V_{dd}=+5V (Configured as DSA followed by Amp)

Parameter	Conditions	Min	Typical	Max	Units
Operational Frequency Range		50		4000	MHz
Test Frequency			2140		MHz
Gain		16	18		dB
Gain Control Range			31.5		dB
Gain Accuracy		± (0.3 + 4% of Atten. Setting) Max			dB
Attenuation Step			0.5		dB
Time _{rise / fall}	10% / 90% RF		90		ns
Time _{on} , Time _{off}	50% CTL to 10% / 90% RF		100		ns
Input Return Loss			-16		dB
Output Return Loss			-16.5		dB
Output P1dB			+20.5		dBm
Output IP3	See Note 1	+32.5	+36.5		dBm
Noise Figure	At max gain level		2.9		dB
Supply Voltage			5		V
Supply Current		70	88	110	mA
Thermal Resistance	Channel to case			41	°C/W

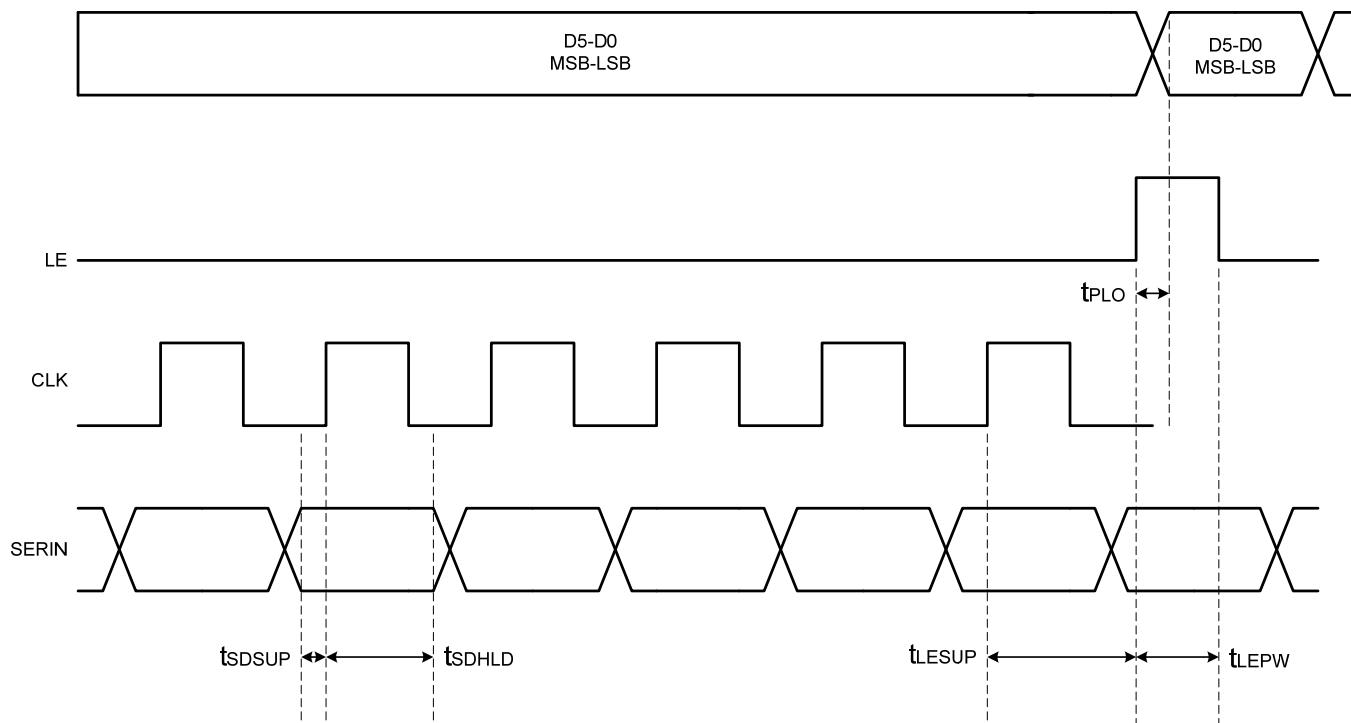
Notes:

1. OIP3 measured with two tones at an output power of +3 dBm / tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the OIP3 using a 2:1 rule.

Serial Control Interface

The TQM8M9075 has a CMOS SPI™ input compatible serial interface. This serial control interface converts the serial data input stream to parallel output word. The input is 3-wire (CLK, LE and SERIN) SPI™ input compatible. At power up, the serial control interface resets the DSA to the minimum gain state. The 6-bit SERIN word is loaded into the register on rising edge of the CLK, MSB first. When LE is high, CLK is disabled.

SERIN (MSB in First 6-Bit Word) Control Logic Truth Table


Test conditions: 25°C, $V_{dd} = +5V$

6-Bit Control Word to DSA						Gain Relative to Maximum Gain		
LSB	D5	D4	D3	D2	D1	D0	MSB	
1	1	1	1	1	1	1		Reference : IL
1	1	1	1	1	1	0		0.5 dB
1	1	1	1	1	0	1		1 dB
1	1	1	1	0	1	1		2 dB
1	1	1	0	1	1	1		4 dB
1	0	1	1	1	1	1		8 dB
0	1	1	1	1	1	1		16 dB
0	0	0	0	0	0	0		31.5 dB

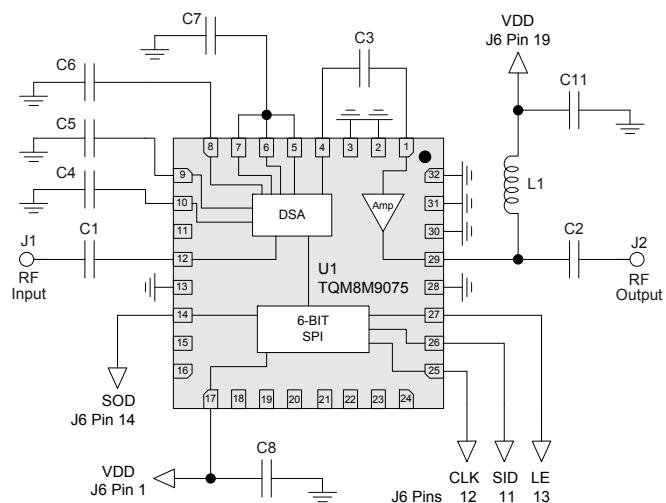
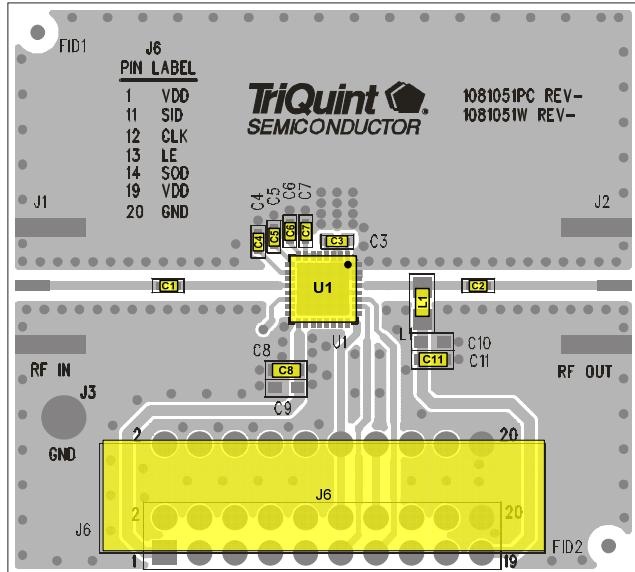
Any combination of the possible 64 states will provide a reduction in gain of approximately the sum of the bits selected.

Serial Control Interface Timing Diagram

CLK is disabled when LE is high

Serial Control Timing Characteristics

Test conditions: 25°C, V_{dd} = +5V



Parameter	Condition	Min	Max	Units
Maximum Clock Frequency	50% Duty Cycle		10	MHz
Minimum LE Setup Time, t _{LESUP}	after last CLK rising edge	10		ns
LE Minimum Pulse Width, t _{LEPW}		30		ns
Minimum SERIN set-up time, t _{SDSUP}	before CLK rising edge	10		ns
Minimum SERIN hold-time, t _{SDHLD}	after CLK rising edge	10		ns
Minimum LE Pulse Spacing t _{LE}	LE to LE pulse spacing	630		ns
Propagation Delay t _{PLO}	LE to Parallel output valid		30	ns

Serial Control DC Logic Characteristics

Test conditions: 25°C, V_{dd} = +5V

Parameter	Condition	Min	Max	Units
Maximum Input Low Voltage, V _{ILmax}			0.8	V
Minimum Input High Voltage, V _{IHmin}		2.1		V
Minimum Output High Voltage, V _{OHmin}	On SEROUT	2.0		V
Maximum Output Low Voltage, V _{OLmax}	On SEROUT		0.8	V
Input Current, I _{IH} / I _{IL}	On SERIN, LE and CLK	-10	+10	µA

Reference Design 300-4000 MHz

Notes:

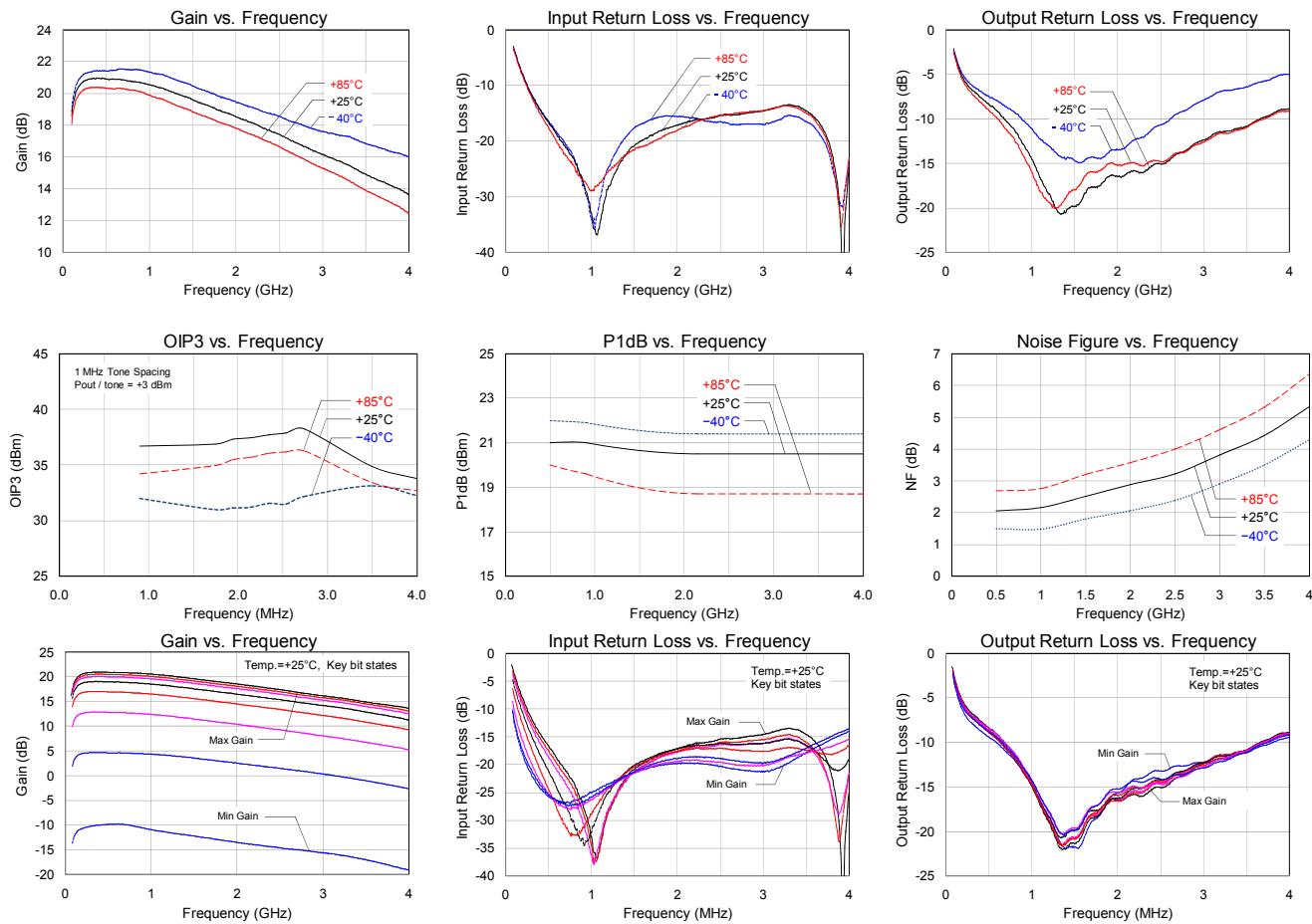
1. See PC Board Layout on page 5 for more information.
2. C4, C5, C6 and C7 may be removed for operation above 700 MHz.

Bill of Material

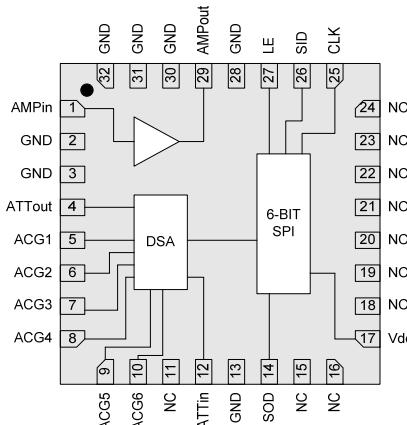
Ref Des	Value	Description	Manufacturer	Part Number
U1	n/a	Digital Variable Gain Amp	TriQuint	TQM8M9075
L1 (Note 3)	68 nH	Inductor, 0603	Coilcraf	0603CS-47NXJLW
C1, C2, C3	68 pF	Capacitor, 0402	various	
C4, C5, C6, C7	330 pF	Capacitor, 0402	various	
C8	1000 pF	Capacitor, 0603	various	
C11	0.01 uF	Capacitor, 0603	various	

Notes:

3: For IF applications (<300 MHz) increase L1 to 330 nH.


Typical Performance

Test Conditions: $V_{dd}=+5$ V, Temp.=+25°C


Frequency	MHz	500	900	2140	2700	3500	4000
Gain ⁽¹⁾	dB	20.7	20.5	18.0	16.7	14.7	13.4
Input Return Loss	dB	-16.6	-27.2	-16.5	-15.2	-14.6	-25.0
Output Return Loss	dB	-8.3	-12.9	-16.0	-13.9	-10.9	-8.9
Output P1dB	dBm	+21	+21	+20.5	+20.1	+19.7	+19.0
Output IP3 ⁽²⁾	dBm		+36.7	+36.5	+38.0	+34.9	+33.8
Noise Figure ⁽³⁾	dB	1.9	2.0	2.9	3.3	4.1	4.9
Amplifier Current	mA			88			

Notes:

1. Gain values reflect de-embedding of 0.4 dB eval board RF I/O line losses that would not be present in target applications.
2. OIP3 measured with two tones at an output power of +3 dBm / tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the OIP3 using 2:1 rule.
3. NF values reflect de-embedding of eval board RF I/O line losses that would not be present in target applications.
4. Unless otherwise stated, performance plots shown below for DVGA maximum gain state.

Pin Description

Pin #	Symbol	Description
1	Ampin	Amp RF input
2, 3, 13, 28, 30, 31, 32	GND (Ground)	DC ground
11, 15, 16, 18-24	NC (No Connect)	No electrical connection. Provide land pads for PCB mounting integrity.
29	Ampout	Amp RF output / DC supply
12	ATTin	DSA Input
4	ATTout	DSA Output
5, 6, 7, 8, 9, 10	ACG1-6	Place external capacitor to Ground for applications below 700 MHz.
14	SOD	Serial Data Out
17	Vdd	DC supply
25	CLK	Serial Clock
26	SID	Serial Data In
27	LE	Latch Enable
Backside Paddle	RF/DC Ground	RF/DC ground. Provide recommended via pattern (see page 8) and ensure good solder attach for best thermal and electrical performance.

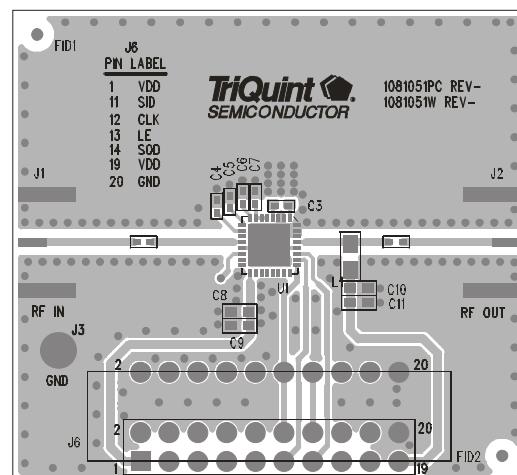
PC Board Specifications

PCB Material (stackup):

1/2oz. Cu top layer

0.014 inch Nelco N-4000-13 ($\varepsilon_f = 3.7$ typ.)

1/2oz. Cu middle layer 1


Core Nelco N-4000-13

1/2 Cu middle layer 2

0.014 inch Nelco N-400

1/2oz. Cu bottom layer

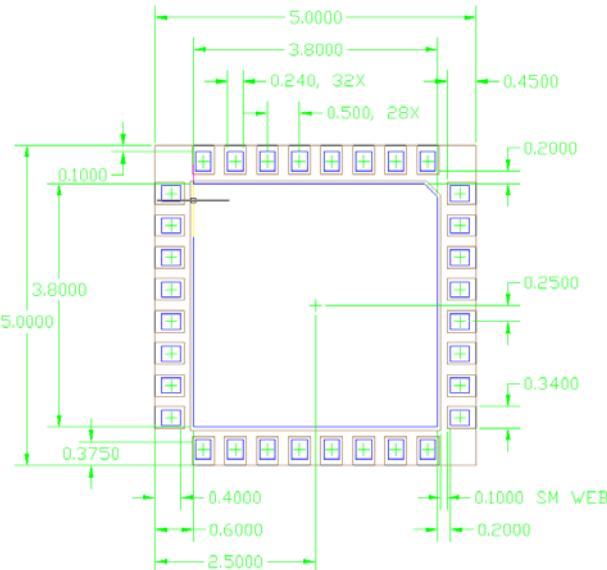
The pad pattern shown has been developed and tested for optimized assembly at TriQuint Semiconductor. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

Mechanical Information

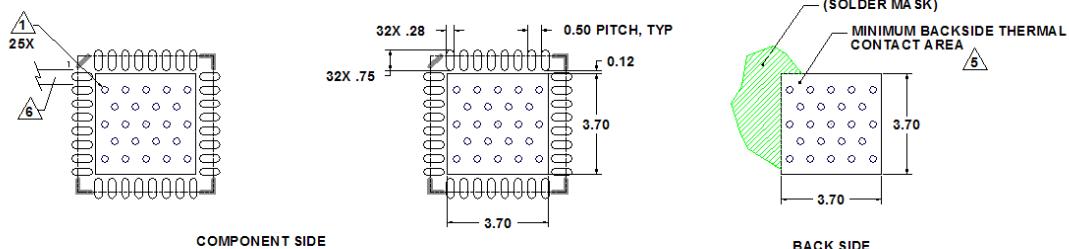
Package Information & Dimensions

Material:

RoHS-compliant


Contact plating: Electrolytic plated Au over Ni

Package Marking:


Part number - TQM8M9075

Year, week, country code - YYWW CCCC

Assembly code - AaXXXX

Mounting Configuration

NOTES:

- 1. GROUND/ THERMAL VIAS ARE CRITICAL FOR THE PROPER PERFORMANCE OF THIS DEVICE. VIAS SHOULD USE A .35mm (#80/.0138") DIAMETER DRILL AND HAVE A FINAL, PLATED THRU DIAMETER OF .25mm (.010").
- 2. ADD AS MUCH COPPER AS POSSIBLE TO INNER AND OUTER LAYERS NEAR THE PART TO ENSURE OPTIMAL THERMAL PERFORMANCE.
- 3. TO ENSURE RELIABLE OPERATION, DEVICE GROUND PADDLE-TO-GROUND PAD SOLDER JOINT IS CRITICAL.
- 4. ADD MOUNTING SCREWS NEAR THE PART TO FASTEN THE BOARD TO A HEATSINK. ENSURE THAT THE GROUND/ THERMAL VIA REGION CONTACTS THE HEATSINK.
- 5. DO NOT PUT SOLDER MASK ON THE BACK SIDE OF THE PC BOARD IN THE REGION WHERE THE BOARD CONTACTS THE HEATSINK.
- 6. RF TRACE WIDTH DEPENDS UPON THE PC BOARD MATERIAL AND CONSTRUCTION.
- 7. USE 1 OZ. COPPER MINIMUM.
- 8. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.

Product Compliance Information

ESD Information

Caution! ESD-Sensitive Device

ESD Rating: Class 1A
Value: $\geq 250V$ to $< 500V$
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV
Value: $> 1000V$
Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating

Level 3 at $+260^{\circ}\text{C}$ convection reflow per JEDEC standard
IPC/JEDEC J-STD-020.

Solderability

Compatible with both J-STD-020 lead-free (maximum 260°C reflow temperature) and lead (maximum 245°C reflow temperature) soldering processes.

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A ($\text{C}_{15}\text{H}_{12}\text{Br}_4\text{O}_2$) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Email: info-sales@tqs.com

Tel: +1.503.615.9000
Fax: +1.503.615.8902

For technical questions and application information:

Email: sjcapplications.engineering@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.