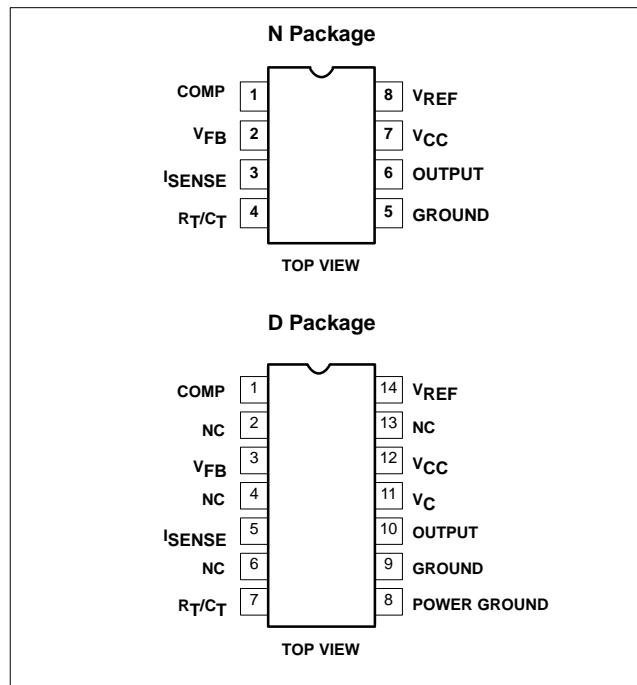


Current-mode PWM controller

UC3842

DESCRIPTION

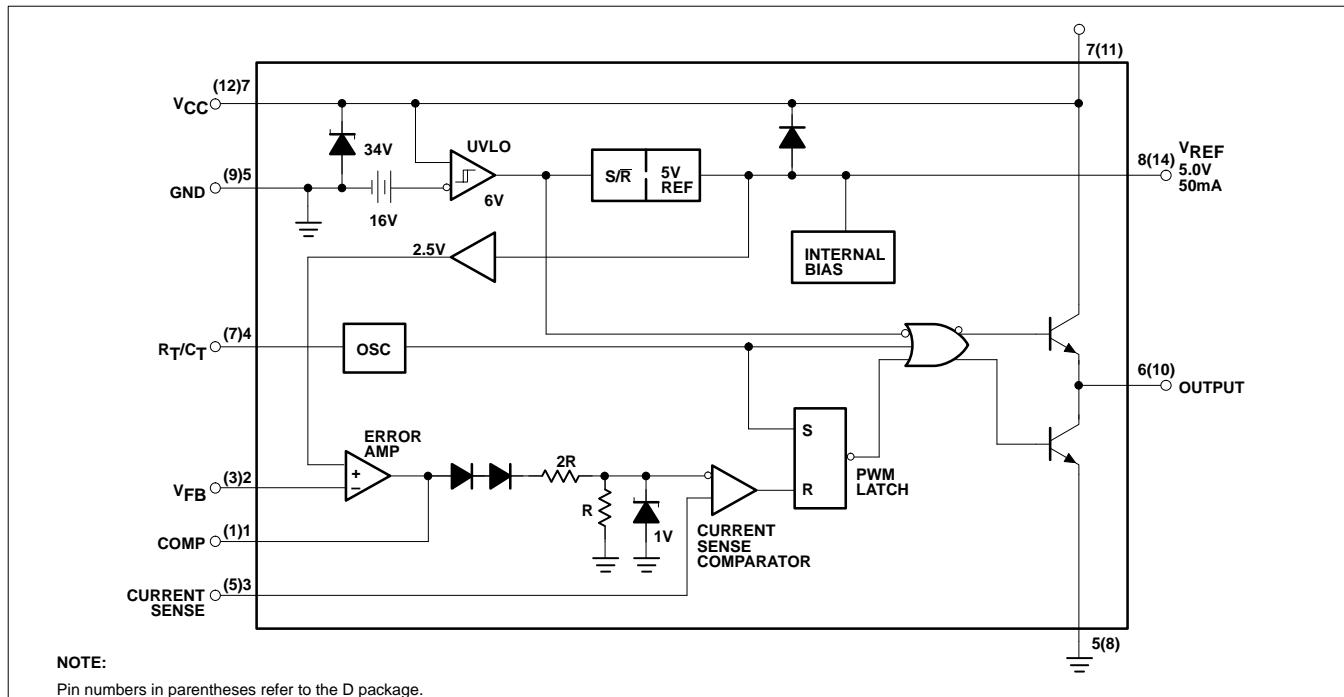
The UC3842 is available in an 8-Pin mini-DIP the necessary features to implement off-line, fixed-frequency current-mode control schemes with a minimal external parts count. This technique results in improved line regulation, enhanced load response characteristics, and a simpler, easier to design control loop. Topological advantages include inherent pulse-by-pulse current limiting.


Protection circuitry includes built-in undervoltage lock-out and current limiting. Other features include fully-latched operation, a 1% trimmed bandgap reference, and start-up current less than 1mA.

These devices feature a totem-pole output designed to source and sink high peak current from a capacitive load, such as the gate of a power MOSFET. Consistent with N-channel power devices, the output is low in the OFF-state.

FEATURES

- Low start-up current ($\leq 1\text{mA}$)
 - Automatic feed-forward compensation
 - Pulse-by-pulse current limiting
 - Enhanced load response characteristics
 - Undervoltage lock-out with hysteresis
 - Double pulse suppression
 - High current totem-pole output
 - Internally-trimmed bandgap reference
 - 400kHz operation, guaranteed min


PIN CONFIGURATIONS

APPLICATIONS

- Off-line switched mode power supplies
 - DC-to-DC converters UC3842

BLOCK DIAGRAM

Current-mode PWM controller

UC3842

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
8-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	UC3842N	0404B
14-Pin Plastic Small Outline (SO) Package	0 to +70°C	UC3842D	0405B

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage ($I_{CC} < 30\text{mA}$)		Self-Limiting
V _{CC}	Supply voltage (low impedance source)	30	V
I _{OUT}	Output current 2, 3	± 1	A
	Output energy (capacitive load)	5	μJ
	Analog inputs (Pin 2, Pin 3)	-0.3 to 6.3	V
	Error amp output sink current	10	mA
P _D	Power dissipation at $T_A \leq 70^\circ\text{C}$ (derate 12.5mW/°C for $T_A > 70^\circ\text{C}$) ²	1	W
T _{STG}	Storage temperature range	-65 to +150	°C
T _{SOLD}	Lead temperature (soldering, 10sec max)	300	°C

NOTES:

1. All voltages are with respect to Pin 5; all currents are positive into the specified terminal.
2. See section in application note on "Power Dissipation Calculation".
3. This parameter is guaranteed, but not 100% tested in production.

Current-mode PWM controller

UC3842

DC AND AC ELECTRICAL CHARACTERISTICS

0 ≤ T_J ≤ 70°C for UC3842; V_{CC}=15V; R_T=10kW; C_T=3.3nF, unless otherwise specified.

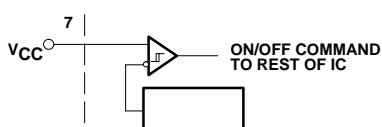
SYMBOL	PARAMETER	TEST CONDITIONS	UC3842			UNIT
			Min	Typ	Max	
Reference section						
V _{OUT}	Output voltage	T _J =25°C, I _O =1mA	4.90	5.00	5.10	V
	Line regulation	12 ≤ V _{IN} ≤ 25V		6	20	mV
	Load regulation	1 ≤ I _O ≤ 20mA		6	25	mV
	Temp. stability ¹			0.2	0.4	mV/°C
	Total output variation ¹	Line, load, temp.	4.82		5.18	V
V _{NOISE}	Output noise voltage ¹	10Hz ≤ f ≤ 10kHz, T _J =25°C		50		µV
	Long-term stability ¹	T _J =125°C, 1000 Hrs.		5	25	mV
	Output short-circuit	T _J =25	-30	-100	-130	mA
	Output short-circuit	-55 < T _J ≤ 0°C	-30	-100	-180	mA
Oscillator section						
	Initial accuracy	T _J =25°C	47	52	57	kHz
	Voltage stability	12 ≤ V _{CC} ≤ 25V		0.2	1	%
	Temp. stability ¹	T _{MIN} ≤ T _J ≤ T _{MAX}		5		%
	Amplitude	V _{PIN 4} peak-to-peak		1.7		V
Error amp section						
	Input voltage	V _{PIN 1} =2.5V	2.42	2.50	2.58	V
I _{BIAS}	Input bias current			-0.3	-2	µA
A _{VOL}		2 ≤ V _O ≤ 4V	65	90		dB
	Unity gain bandwidth ¹	T _J =25°C	0.7	1		MHz
	Unity gain bandwidth	T _{MIN} < T _J < T _{MAX}	0.5			MHz
PSRR	Power supply rejection ratio	12 ≤ V _{CC} ≤ 25V	60	70		dB
I _{SINK}	Output sink current	V _{PIN 2} =2.7V, V _{PIN 1} =1.1V	2	6		mA
I _{SOURCE}	Output source current	V _{PIN 2} =2.3V, V _{PIN 1} =5V	-0.5	-0.8		mA
	V _{OUT} High	V _{PIN 2} =2.3V, R _L =15k to ground	5	6		V
	V _{OUT} Low	V _{PIN 2} =2.7V, R _L =15k to Pin 8		0.7	1.1	V
Current sense section						
	Gain 2, 3		2.85	3	3.15	V/V
	Maximum input signal ²	V _{PIN 1} =5V	0.9	1	1.1	V
PSRR	Power supply rejection ratio ²	12 ≤ V _{CC} ≤ 25V		70		dB
I _{BIAS}	Input bias current			-2	-10	µA
	Delay to output ¹			150	300	ns

Current-mode PWM controller

UC3842

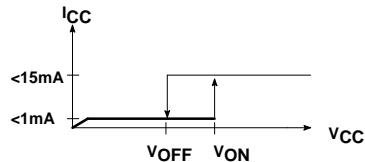
DC AND AC ELECTRICAL CHARACTERISTICS

0 ≤ T_J ≤ 70°C for UC3842; V_{CC} = 15⁴; R_T = 10kΩ; C_T = 3.3nF, unless otherwise specified


SYMBOL	PARAMETER	TEST CONDITIONS	UC3842			UNIT
			Min	Typ	Max	
Output section						
V _{OL}	Output Low-Level	I _{SINK} = 20mA		0.1	0.4	V
		I _{SINK} = 200mA		1.5	2.2	
V _{OH}	Output High-Level	I _{SOURCE} = 20mA	13	13.5		V
		I _{SOURCE} = 200mA	12	13.5		
t _R	Rise time	C _L = 1nF		50	150	ns
t _F	Fall time	C _L = 1nF		50	150	ns
Undervoltage lockout section						
	Start threshold		14.5	16	17.5	V
	Min. operating voltage after turn on		8.5	10	11.5	V
PWM section						
	Maximum duty cycle		93	97	100	%
	Minimum duty cycle				0	
Total standby current						
	Start-up current			0.5	1	mA
I _{CC}	Operating supply current	V _{PIN 2} = V _{PIN 3} = 0V		11	17	mA
	V _{CC} zener voltage	I _{CC} = 25mA		34		V
Maximum operating frequency section						
	Maximum operating frequency for all functions operating cycle-by-cycle		400			kHz

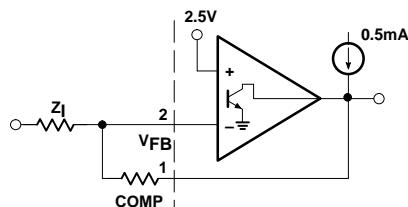
NOTES:

1. These parameters, although guaranteed, are not 100% tested in production.
2. Parameter measured at trip point of latch with V_{PIN 2} = 0.


3. Gain defined as: $A = \frac{\Delta V_{PIN 1}}{\Delta V_{PIN 3}}$; $0 \leq V_{PIN 3} \leq 0.8V$

UNDERVOLTAGE LOCKOUT

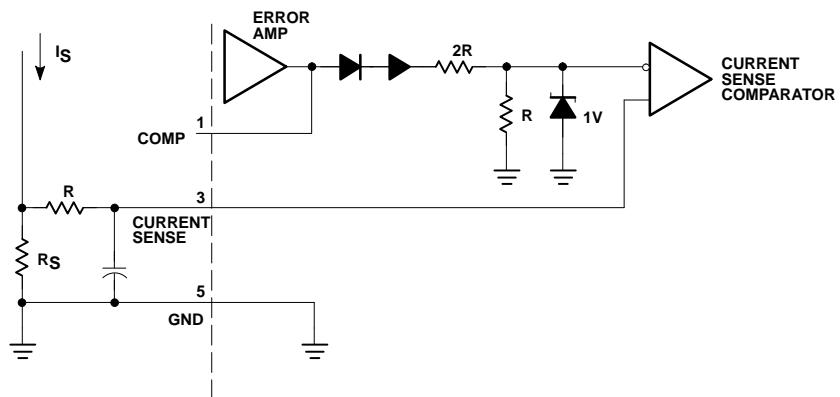
UC3842
V _{ON}
16V


V _{OFF}
10V

NOTE:

During Undervoltage Lock-Out, the output driver is biased to a high impedance state. Pin 6 should be shunted to ground with a bleeder resistor to prevent activating the power switch with output leakage current.

ERROR AMP CONFIGURATION

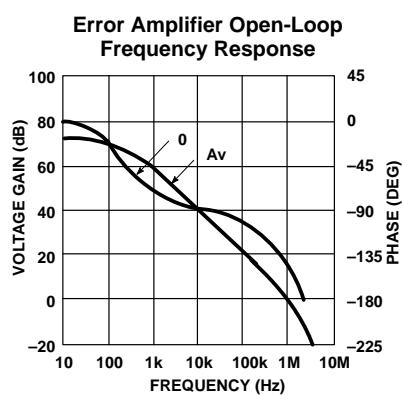
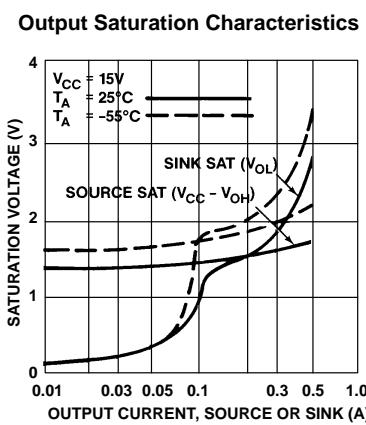


NOTE:
Error AMP can source or sink up to 0.5mA.

Current-mode PWM controller

UC3842

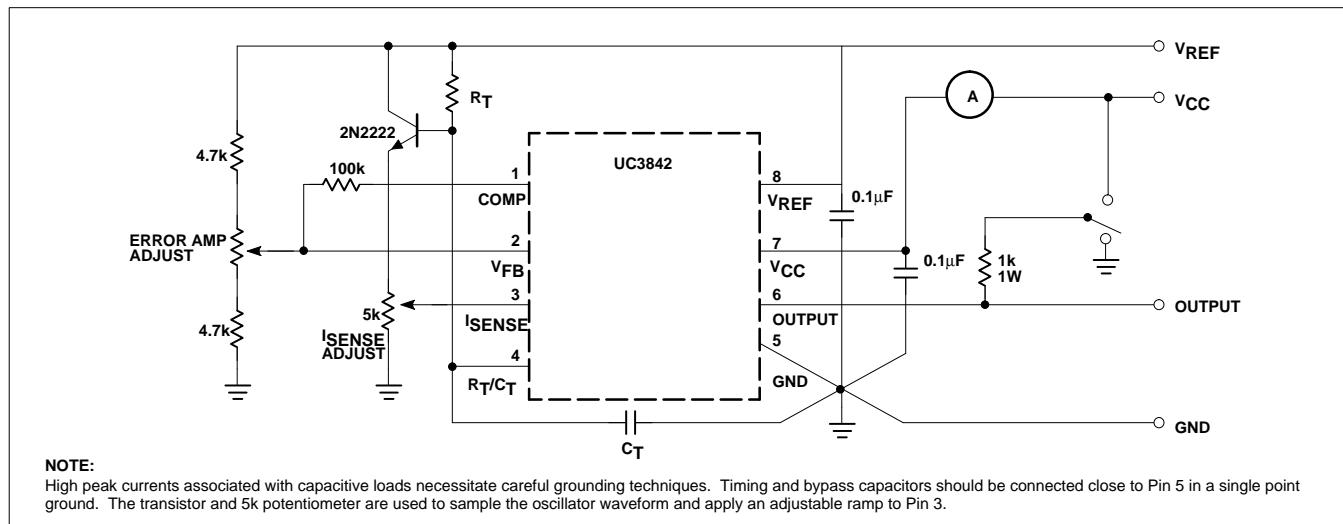
CURRENT SENSE CIRCUIT



NOTE:

Peak current (I_S) is determined by the formula:

$$I_S \text{ MAX} = \frac{1.0V}{R_S}$$

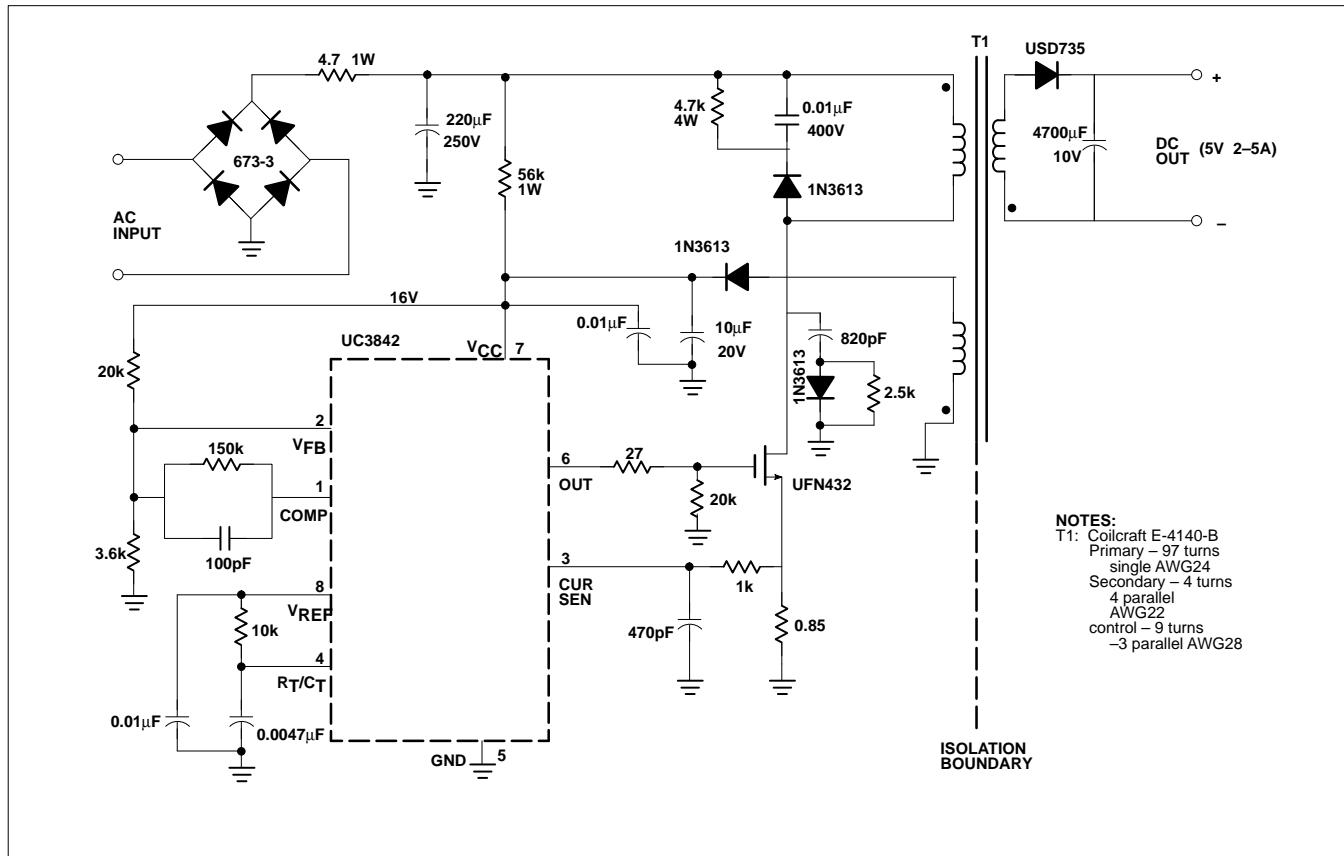
A small RC filter may be required to suppress switch transients.


TYPICAL PERFORMANCE CHARACTERISTICS


Current-mode PWM controller

UC3842

OPEN-LOOP LABORATORY TEST FIXTURE


SHUTDOWN TECHNIQUES

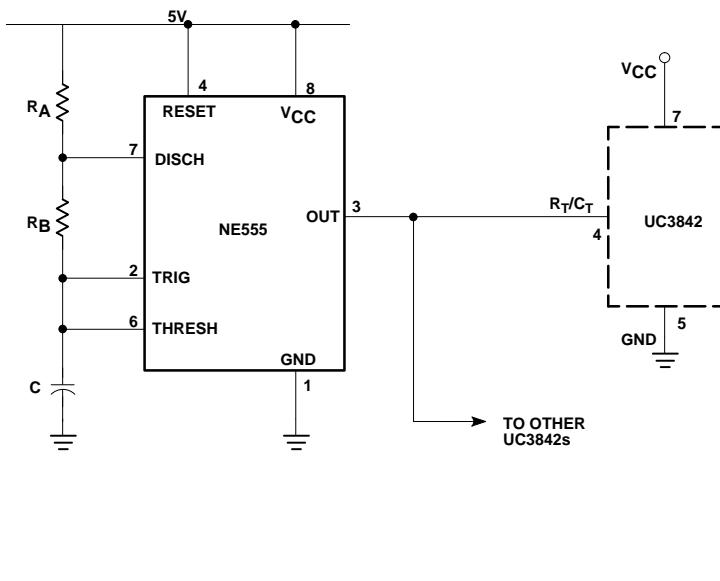
Current-mode PWM controller

UC3842

OFF-LINE FLYBACK REGULATOR

SPECIFICATIONS

Input line voltage:	90V _{AC} to 130V _{AC}
Input frequency:	50 or 60Hz
Switching frequency:	40kHz±10%
Output power:	25W maximum
Output voltage:	5V±5%
Output current:	2 to 5A
Line regulation:	0.01%/V
Load regulation:	8%/A*
Efficiency @ 25 W,	
V _{IN} =90V _{AC} :	70%
V _{IN} =130V _{AC} :	65%
Output short-circuit current:	2.5A average


NOTE:

This circuit uses a low-cost feedback scheme in which the DC voltage developed from the primary-side control winding is sensed by the UC3842 error amplifier. Load regulation is therefore dependent on the coupling between secondary and control windings, and on transformer leakage inductance. For applications requiring better load regulation, a UC1901 Isolated Feedback Generator can be used to directly sense the output voltage.

Current-mode PWM controller

UC3842

SYNCHRONIZATION AND MAXIMUM DUTY CYCLE CLAMP

