

Vishay High Power Products

Phase Control Thyristors (Stud Version), 230 A

TO-209AB (TO-93)

FEATURES

- · Center amplifying gate
- International standard case TO-209AB (TO-93)

Hermetic metal case with ceramic insulator
 (Also available with glass-metal seal up to 1200 V)

- Compression bonded encapsulation for heavy duty operations such as severe thermal cycling
- Lead (Pb)-free
- Designed and qualified for industrial level

PRODUCT SUMMARY I_{T(AV)} 230 A

TYPICAL APPLICATIONS

- DC motor controls
- · Controlled DC power supplies
- AC controllers

MAJOR RATINGS AND CHARACTERISTICS					
PARAMETER	TEST CONDITIONS	VALUES	UNITS		
1		230	Α		
I _{T(AV)}	T _C	85	°C		
I _{T(RMS)}		360	Α		
1	50 Hz	5700	۸		
I _{TSM}	60 Hz	5970	A		
2t	50 Hz	163	kA ² s		
1-1	60 Hz	149	KA-S		
V _{DRM} /V _{RRM}		400 to 1600	V		
tq	Typical	100	μs		
T _J		- 40 to 125	°C		

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE VDRM/VRRM, MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V		V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	$\begin{aligned} & I_{DRM}/I_{RRM} \text{ MAXIMUM} \\ & \text{AT T}_{J} = \text{T}_{J} \text{ MAXIMUM} \\ & \text{mA} \end{aligned}$				
04		400	500					
ST230S	08	800	900	30				
312303	12	1200	1300	50				
	16	1600	1700					

ST230SPbF Series

Vishay High Power Products

Phase Control Thyristors (Stud Version), 230 A

ON-STATE CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average on-state current		190° condu	180° conduction, half sine wave			Α
at case temperature	$I_{T(AV)}$	160 Conduc				°C
Maximum RMS on-state current	I _{T(RMS)}	DC at 78 °C	case temperati	ure	360	
		t = 10 ms	No voltage		5700	A
Maximum peak, one-cycle	1	t = 8.3 ms	reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	5970	
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}		4800	
		t = 8.3 ms	reapplied		5000	
		t = 10 ms	No voltage reapplied		163	- kA ² s
Maximum I ² t for fusing	l ² t	t = 8.3 ms			148	
Maximum i-t for fusing		t = 10 ms			115	
		t = 8.3 ms	reapplied		105	
Maximum I $^2\sqrt{t}$ for fusing	I ² √t	t = 0.1 to 10 ms, no voltage reapplied		1630	kA²√s	
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}$), $T_J = T_J$ maximum		0.92	V	
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)})$	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$		0.98	ľ
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}$), $T_J = T_J$ maximum		0.88	mΩ	
High level value of on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$ 0.81		0.81	1115.2	
Maximum on-state voltage	V_{TM}	$I_{pk} = 720 \text{ A}, T_J = T_J \text{ maximum}, t_p = 10 \text{ ms sine pulse}$		1.55	V	
Maximum holding current	I _H	T 05 00 and to sound a 10 Wassistian I		600	mA	
Maximum (typical) latching current	Ι _L	T _J = 25 °C, anode supply 12 V resistive load 1000 (300)			1000 (300)	IIIA

SWITCHING						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum non-repetitive rate of rise of turned-on current	dl/dt	Gate drive 20 V, 20 Ω , $t_r \le 1~\mu s$ $T_J = T_J$ maximum, anode voltage $\le 80~\%~V_{DRM}$	1000	A/µs		
Typical delay time	t _d	Gate current 1 A, $dl_g/dt = 1$ A/ μ s $V_d = 0.67 \% V_{DRM}$, $T_J = 25 °C$	1.0			
Typical turn-off time	tq	$I_{TM} = 300 \text{ A, } T_J = T_J \text{ maximum, } dI/dt = 20 \text{ A/}\mu\text{s,}$ $V_R = 50 \text{ V, } dV/dt = 20 \text{ V/}\mu\text{s, } \text{gate } 0 \text{ V } 100 \Omega\text{, } t_p = 500 \mu\text{s}$	100	μs		

BLOCKING						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum linear to 80 % rated V_{DRM}	500	V/µs		
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	30	mA		

Phase Control Thyristors (Stud Version), 230 A

Vishay High Power Products

TRIGGERING						
DADAMETED	CVMDOL	TEST CONDITIONS		VALUES		
PARAMETER	SYMBOL			TYP.	MAX.	UNITS
Maximum peak gate power	P_{GM}	$T_J = T_J$ maximum, t	_p ≤ 5 ms	10.0		w
Maximum average gate power	P _{G(AV)}	$T_J = T_J$ maximum, f	= 50 Hz, d% = 50	2.0		VV
Maximum peak positive gate current	I _{GM}	$T_J = T_J$ maximum, t	_p ≤ 5 ms	3.	.0	Α
Maximum peak positive gate voltage	+ V _{GM}	$T_J = T_J$ maximum, $t_p \le 5$ ms		20		V
Maximum peak negative gate voltage	- V _{GM}			5.0		
	I _{GT}	T _J = - 40 °C	Maximum required gate trigger/current/voltage are the lowest value which will	180	-	
DC gate current required to trigger		T _J = 25 °C		90	150	mA
		T _J = 125 °C		40	-	
		T 40 °C	trigger all units 12 V anode	2.9	-	
DC gate voltage required to trigger	V_{GT}	T _J = 25 °C	to cathode applied	1.8	3.0	V
		T _J = 125 °C		1.2	-	
DC gate current not to trigger	I _{GD}	T. ₁ = T. ₁ maximum	Maximum gate current/ voltage not to trigger is the maximum value which will	10		mA
DC gate voltage not to trigger	V _{GD}	ij — ijinaximum	not trigger any unit with rated V _{DRM} anode to cathode applied	0.25		٧

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum operating junction temperature range	TJ		- 40 to 125	°C		
Maximum storage temperature range	T _{Stg}		- 40 to 150			
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.10	- K/W		
Maximum thermal resistance, case to heatsink	R _{thC-hs}	Mounting surface, smooth, flat and greased	0.04	7 10 10		
Mounting torque, ± 10 %		Non-lubricated threads	31 (275)	N · m		
Mounting torque, ± 10 %		Lubricated threads	24.5 (210)	(lbf · in)		
Approximate weight			280	g		
Case style		See dimensions - link at the end of datasheet	TO-209AB (ГО-93)		

△R _{thJC} CONDUCTION							
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS			
180°	0.016	0.012					
120°	0.019	0.020					
90°	0.025	0.027	$T_J = T_J$ maximum	K/W			
60°	0.036	0.037					
30°	0.060	0.060					

Note

Vishay High Power Products

Phase Control Thyristors (Stud Version), 230 A

• The table above shows the increment of thermal resistance RthJC when devices operate at different conduction angles than DC

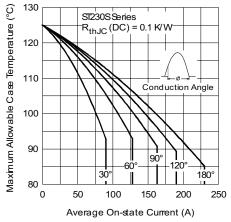


Fig. 1 - Current Ratings Characteristics

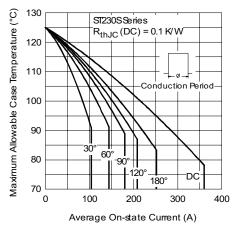


Fig. 2 - Current Ratings Characteristics

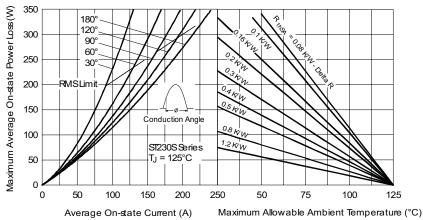


Fig. 3 - On-State Power Loss Characteristics

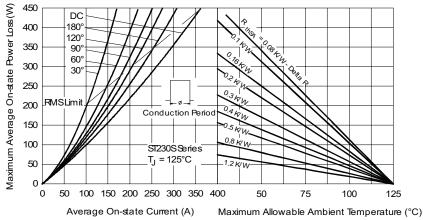


Fig. 4 - On-State Power Loss Characteristics

Phase Control Thyristors (Stud Version), 230 A

Vishay High Power Products

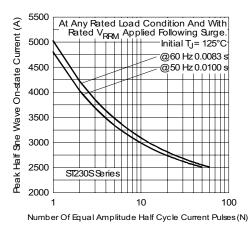


Fig. 5 - Maximum Non-Repetitive Surge Current

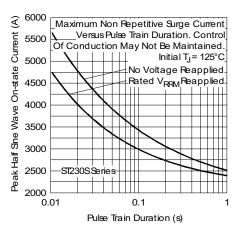


Fig. 6 - Maximum Non-Repetitive Surge Current

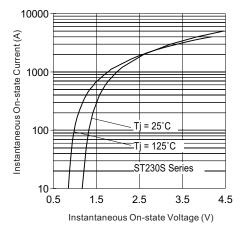


Fig. 7 - On-State Voltage Drop Characteristics

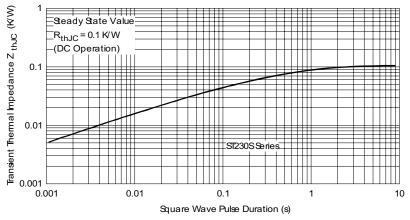


Fig. 8 - Thermal Impedance Z_{thJC} Characteristics

Vishay High Power Products

Phase Control Thyristors (Stud Version), 230 A

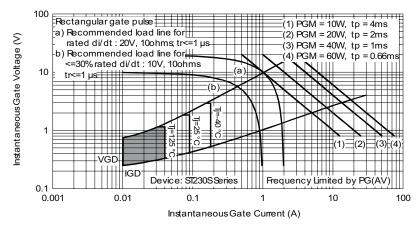
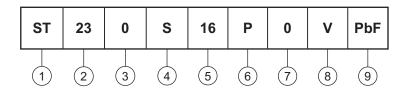



Fig. 9 - Gate Characteristics

ORDERING INFORMATION TABLE

Device code

1 - Thyristor

2 - Essential part number

3 - 0 = Converter grade

4 - S = Compression bonding stud

5 - Voltage code x 100 = V_{RRM} (see Voltage Ratings table)

6 - P = Stud base 3/4"-16UNF2A threads

7 - 0 = Eyelet terminals (gate and auxiliary cathode leads)

1 = Fast-on terminals (gate and auxiliary cathode leads)

8 - • V = Glass-metal seal (only up to 1200 V)

• None = Ceramic housing (over 1200 V)

9 - Lead (Pb)-free

Note: For metric device M16 x 1.5 contact factory

LINKS TO RELATED DOCUMENTS		
Dimensions	http://www.vishay.com/doc?95077	

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com
Revision: 12-Mar-07 1