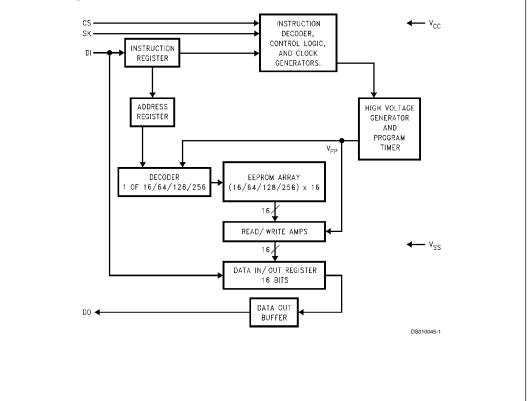
NM93C46L/C56L/C66L 256-/1024-/2048-/4096-Bit Serial EEPROM with Extended Voltage (2.7V to 5.5V) (MICROWIRE Bus Interface)

March 1997

NM93C06L/C46L/C56L/C66L 256-/1024-/2048-/4096-Bit Serial EEPROM with Extended Voltage (2.7V to 5.5V) (MICROWIRE™ Bus Interface)

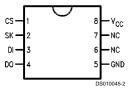
General Description


The NM93C06L/C46L/C56L/C66L devices are 256/1024/ 2048/4096 bits, respectively, of non-volatile electrically erasable memory divided into 16/64/128/256 x 16-bit registers (addresses). The NM93CxxL Family functions in an extended voltage operating range, requires only a single power supply and is fabricated using Fairchild Semiconductor's floating gate CMOS technology for high reliability, high endurance and low power consumption. These devices are available in both SO and TSSOP packages for small space considerations.

The EEPROM Interfacing is MICROWIRE compatible for simple interface to standard microcontrollers and microprocessors. There are 7 instructions that control these devices: Read, Erase/Write Enable, Erase, Erase All, Write, Write All, and Erase/Write Disable. The ready/busy status is available on the DO pin during programming.

Features

- 2.7V to 5.5V operation in all modes
- Typical active current of 100 µA; Typical standby current of 1 µA
- No erase required before write
- Reliable CMOS floating gate technology
- MICROWIRE compatible serial I/O
- Self-timed programming cycle
- Device status during programming mode
- 40 years data retention
- Endurance: 10⁶ data changes
- Packages available: 8-pin SO, 8-pin DIP, and 8-pin


Block Diagram

© 1997 Fairchild Semiconductor Corporation

Connection Diagram

Dual-In-Line Package (N) 8-Pin SO (M8) and 8-Pin TSSOP (MT8)

Pin Names

CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
V _{cc}	Power Supply

Top View Package Number N08E, M08A or MTC08

Ordering Information

Commercial Temp. Range (0°C to +70°C)

Order Number				
NM93C06LN/NM93C46LN				
NM93C56LN/NM93C66LN				
NM93C06LM8/NM93C46LM8				
NM93C56LM8/NM93C66LM8				
NM93C06LMT8/NM93C46LMT8				
NM93C56LMT8/NM93C66LMT8				

Extended Temp. Range (-40°C to +85°C)

Order Number
NM93C06LEN/NM93C46LEN
NM93C56LEN/NM93C66LEN
NM93C06LEM8/NM93C46LEM8
NM93C56LEM8/NM93C66LEM8
NM93C06LEMT8/NM93C46LEMT8
NM93C56LEMT8/NM93C66LEMT8

Automotive Temp. Range (-40°C to +125°C)

Order Number
NM93C06LVN/NM93C46LVN
NM93C56LVN/NM93C66TLVN
NM93C06LVM8/NM93C46LVM8
NM93C56LVM8/NM93C66LVM8
NM93C06LVMT8/NM93C46LVMT8
NM93C56LVMT8/NM93C66LVMT8

Absolute Maximum Ratings (Note 1)

Operating Conditions

Ambient Storage Temperature All Input or Output Voltages with Respect to Ground

-65°C to +150°C +6.5V to -0.3V Ambient Operating Temperature

0°C to +70°C NM93C06L-NM93C66L NM93C06LE-NM93C66LE NM93C06LV-NM93C66LV Power Supply (V_{CC}) Range

 -40°C to $+85^{\circ}\text{C}$ -40°C to +125°C 2.7V to 5.5V

+300°C Lead Temp. (Soldering, 10 sec.) **ESD** Rating 2000V

DC and AC Electrical Characteristics: 2.7V < $\rm V_{\rm CC}$ < 4.5V

Symbol	Parameter	Part Number	Conditions	Min	Max	Units
I _{CCA}	Operating Current		CS = V _{IH} , SK = 250 kHz		1	mA
I _{ccs}	Standby Current		CS = V _{IL}		10	μΑ
I _{IL}	Input Leakage		V _{IN} = 0V to V _{CC}		±1	μΑ
I_{OL}	Output Leakage					
V _{IL}	Input Low Voltage			-0.1	0.15 V _{CC}	V
V_{IH}	Input High Voltage			0.8 V _{CC}	V _{CC} + 1	
V _{OL}	Output Low Voltage		I _{OL} = 10 μA		0.1 V _{CC}	V
V_{OH}	Output High Voltage		I _{OH} = -10 μA	0.9 V _{CC}		
f _{sk}	SK Clock Frequency			0	250	kHz
t _{skH}	SK High Time			1		μs
t _{SKL}	SK Low Time			1		μs
t _{sks}	SK Setup Time		SK Must Be at V _{IL} for	0.2		μs
			t _{SKS} before CS goes high			
t _{cs}	Minimum CS		(Note 2)	1		μs
	Low Time					
t _{css}	CS Setup Time			0.2		μs
t _{DH}	DO Hold Time			70		ns
t _{DIS}	DI Setup Time			0.4		μs
t _{CSH}	CS Hold Time			0		μs
t _{DIH}	DI Hold Time			0.4		μs
t _{PD1}	Output Delay to "1"				2	μs
t _{PD0}	Output Delay to "0"				2	μs
t _{sv}	CS to Status Valid				1	μs
t _{DF}	CS to DO in		CS = V _{IL}		0.4	μs
	TRI-STATE®					
t _{WP}	Write Cycle Time				15	ms

DC and AC Electrical Characteristics: 4.5V < $\rm V_{\rm CC}$ < 5.5V

Symbol	Parameter	Part Number	Conditions	Min	Max	Units
I _{CCA}	Operating Current		CS = V _{IH} , SK = 1 MHz		1	mA
I _{ccs}	Standby Current		CS = V _{IL}		50	μA
I _{IL}	Input Leakage		V_{IN} = 0V to V_{CC}		±1	μA
I _{OL}	Output Leakage		(Note 4)			
V _{IL}	Input Low Voltage			-0.1	0.8	V
V _{IH}	Input High Voltage			2	V _{CC} + 1	
V _{OL1}	Output Low Voltage		I _{OL} = 2.1 mA		0.4	V
V _{OH1}	Output High Voltage		I _{OH} = -400 μA	2.4		
V _{OL2}	Output Low Voltage		I _{OL} = 10 μA		0.2	V
V _{OH2}	Output High Voltage		$I_{OL} = -10\mu A$	V _{CC} - 0.2		
f _{SK}	SK Clock Frequency		(Note 5)	0	1	MHz
t _{SKH}	SK High Time	NM93C06L-NM93C66L		250		ns
		NM93C06LE-NM93C66LE		300		

DC and AC Electrical Characteristics: 4.5V < $\rm V_{CC}$ < 5.5V (Continued)

Symbol	Parameter	Part Number	Conditions	Min	Max	Units
t _{SKL}	SK Low Time			250		ns
t _{SKS}	SK Setup TIme		SK Must Be at V _{IL} for	50		ns
			t _{SKS} before CS goes high			
t _{CS}	Minimum CS		(Note 2)	250		ns
	Low Time					
t _{CSS}	CS Setup Time			50		ns
t _{DH}	DO Hold Time			70		ns
t _{DIS}	DI Setup Time	NM93C06L-NM93C66L		100		ns
		NM93C06LE-NM93C66LE		200		
t _{CSH}	CS Hold Time			0		ns
t _{DIH}	DI Hold Time			20		ns
t _{PD1}	Output Delay to "1"				500	ns
t _{PD0}	Output Delay to "0"				500	ns
t _{SV}	CS to Status Valid				500	ns
t _{DF}	CS to DO in				100	ns
	TRI-STATE		CS = V _{IL}			
t _{WP}	Write Cycle Time				10	ms

Capacitance (Note 3)

 $T_A = 25^{\circ}C$, f = 1 MHz

Symbol	Test	Тур	Max	Units
C _{OUT}	Output Capacitance		5	pF
C _{IN}	Input Capacitance		5	pF

Note 1: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: CS (Chip Select) must be brought low (to $V_{\rm IL}$) for an interval of $t_{\rm CS}$ in order to reset all internal device registers (device reset) prior to beginning another operations. code cycle (this is shown in the opcode diagrams in the following pages)

Note 3: This parameter is periodically sampled and not 100% tested.

Note 4: Typical leakage values are in the 20 nA range.

Note 5: The shortest allowable SK clock period = $1/f_{SK}$ (as shown under the f_{SK} parameter). Maximum SK clock speed (minimum SK period) is determined by the interaction of several AC parameters stated in the datasheet. Within this SK period, both t_{SKH} and t_{SKL} limits must be observed. Therefore, it is not allowable to set $1/t_{SK} = t_{SKH \text{ (minimum)}} + t_{SKL \text{ (minimum)}}$ for shorter SK cycle time operation.

AC Test Conditions

V _{CC} Range	V _{IL} /V _{IH} Input Levels	V _{IL} /V _{IH} Timing Levels	V _{OL} /V _{OH} Timing Levels	I _{oL} /I _{oH}
2.7V ≤ V _{CC} < 4.5V (Extended Voltage Levels)	0.3V/1.8V	1.0V	0.8V/1.5V	±10 μA
$4.5V \le V_{CC} \le 5.5V$ (TTL Levels)	0.4V/2.4V	1.0V/2.0V	0.4V/2.4V	-2.1 mA/0.4 mA

Output Load: 1 TTL Gate (C_L = 100 pF)

Functional Description

The NM93C06L/C46L/C56L/C66L device have 7 instructions as described below. Note that the MSB of any instruction is a "1" and is viewed as a start bit in the interface sequence. For the C06 and C46 the next 8 bits carry the op code and the 6-bit address for register selection. For the C56 and C66 the next 10-bits carry the op code and the 8-bit address for register selection.

Read (READ):

The READ instruction outputs serial data on the DO pin. After a READ instruction is received, the instruction and address are decoded, followed by data transfer from the selected memory register into a 16-bit serial-out shift register. A

Functional Description (Continued)

dummy bit (logical 0) precedes the 16-bit data output string. Output data changes are initiated by a low to high transition of the SK clock.

Erase/Write Enable (WEN):

When $V_{\rm CC}$ is applied to the part, it powers up in the Erase/Write Disable (WDS) state. Therefore, all programming modes must be preceded by an Erase/Write Enable WEN instruction. Once an Erase/Write Enable instruction is executed, programming remains enabled until an Erase/Write Disable (WDS) instruction is executed or $V_{\rm CC}$ is completely removed from the part.

Erase (ERASE):

The ERASE instruction will program all bits in the selected register to the logical "1" state. CS is brought low following the loading of the last address bit. This falling edge of the CS pin initiates the self-timed programming cycle.

The DO pin indicates the READY/BUSY status of the chip if CS is brought high after the $t_{\rm CS}$ interval. DO = logical "0" indicates that programming is still in progress. DO = logical "1" indicates that the register, at the address specified in the instruction, has been erased, and the part is ready for another instruction.

Write (WRITE):

The WRITE instruction is followed by 16 bits of data to be written into the specificed address. After the last bit of data is put on the data-in (DI) pin, CS must be brought low before the next rising edge of the SK clock. This falling edge of CS

initiates the self-timed programming cycle. The DO pin indicates the READY/BUSY status of the chip if CS is brought high after the $t_{\rm CS}$ interval. DO = logical 0 indicates that programming is still in progress. DO = logical 1 indicates that the register at the address specified in the instruction has been written with the data pattern specified in the instruction and the part is ready for another instruction.

Erase All (ERAL):

The ERAL instruction will simultaneously program all registers in the memory array and set each bit to the logical "1" state. The Erase All cycle is identical to the ERASE cycle except for the different op-code. As in the ERASE mode, the DO pin indicates the READY/BUSY status of the chip if CS is brought high after the $t_{\rm CS}$ interval.

Write All (WRALL):

The WRALL instruction will simultaneously program all registers with the data pattern specified in the instruction. As in the WRITE mode, the DO pin indicates the READY/BUSY status of the chip if CS is brought high after the $t_{\rm CS}$ interval.

Write Disable (WDS):

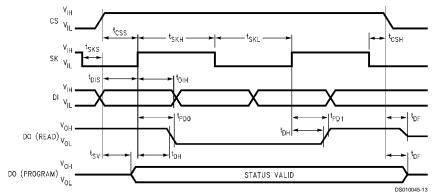
To protect against accidental data distrub, the WDS instruction disables all programming modes and should follow all programming operations. Execution of a READ instruction is independent of both the WEN and WDS instructions.

Note: NSC CMOS EEPROMs do not require an "ERASE" or "ERASE ALL" operation prior to the "WRITE" and "WRITE ALL" instructions. The "ERASE" and "ERASE ALL" instructions are included to maintain compatibility with earlier technology EEPROMs.

Instruction Set for the NM93C06L and NM93C46L

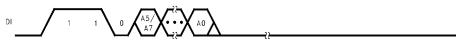
Instruction	SB	Op Code	Address	Data	Comments
READ	1	10	A5-A0		Reads data stored in memory at specified address.
WEN	1	00	11XXXX		Enable all programming modes.
ERASE	1	11	A5-A0		Erase selected register.
WRITE	1	01	A5-A0	D15–D0 Writes selected register.	
ERAL	1	00	10XXXX	Erases all registers.	
WRALL	1	00	01XXXX	D15-D0	Writes all registers.
WDS	1	00	00XXXX		Disables all programming modes.

Note: Address bits A5 and A4 become "Don't Care" for the NM93C06L.

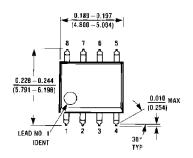

Instruction Set for the NM93C56L and NM93C66L

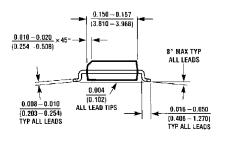
Instruction	SB	Op Code	Address	Data	Comments
READ	1	10	A7-A0		Reads data stored in memory at specified address.
WEN	1	00	11XXXXXX		Enable all programming modes.
ERASE	1	11	A7-A0		Erase selected register.
WRITE	1	01	A7-A0	D15-D0	Writes selected register.
ERAL	1	00	10XXXXXX	Erases all registers.	
WRALL	1	00	01XXXXXX	D15-D0	Writes all registers.
WDS	1	00	00XXXXXX		Disables all programming modes.

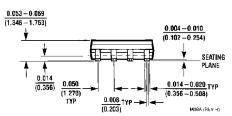
Note: Address bit A7 is "Don't Care" for the NM93C56L.


Timing Diagrams

Synchronous Data Timing

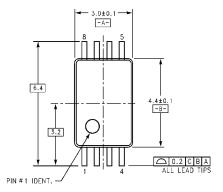


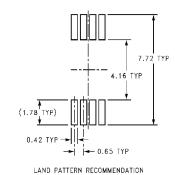

Book Extract End

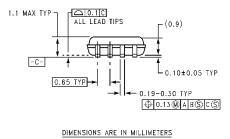

PrintDate=1997/07/16 PrintTime=17:23:50 10430 ds010045 Rev. No. 6 **Proof**

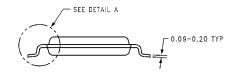
THIS PAGE IS IGNORED IN THE DATABOOK

Physical Dimensions inches (millimeters) unless otherwise noted

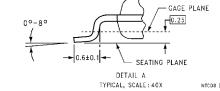



Molded Small Out-Line Package (M8) Package Number M08A

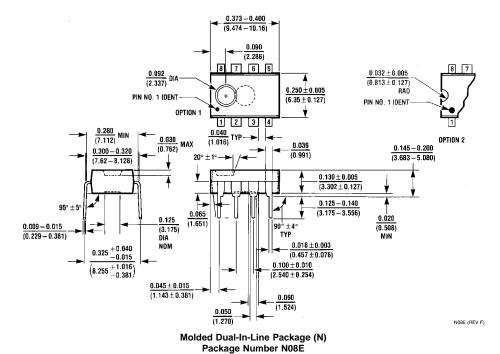

www.fairchildsemi.com


10

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



MTCO8 (REV A)


Notes: Unless otherwise specified. 1. Reference JEDEC Registration M0-153, Variation AA. Dated 7/93.

8-Pin Molded TSSOP, JEDEC (MT8) Package Number MTC08

www.fairchildsemi.com

11

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

ww

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild	Fairchild	Fairchild	National Semiconducto
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Tsimshatsui, Kowloon	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Hong Kong	
	Français Tel: +49 (0) 1 80-532 93 58	Tel: (852) 2737-1600	
ww.fairchildsemi.com	Italiano Tel: +49 (0) 1 80-534 16 80	Fax: (852) 2736-9960	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.