Signetics

74LS283 Adder

4-Bit Full Adder With Fast Carry Product Specification

Logic Products

FEATURES

- High-speed 4-bit binary addition
- Cascadable in 4-bit increments
- Fast internal carry lookahead

DESCRIPTION

The '283 adds two 4-bit binary words (A_n plus B_n) plus the incoming carry. The binary sum appears on the Sum outputs ($\Sigma_1 - \Sigma_4$) and the outgoing carry (C_{OUT}) according to the equation:

$$\begin{array}{l} C_{\text{IN}} + (A_1 + B_1) + 2(A_2 + B_2) \\ + 4(A_3 + B_3) + 8(A_4 + B_4) \\ = \Sigma_1 + 2\Sigma_2 + 4\Sigma_3 + 8\Sigma_4 + 16C_{\text{OUT}} \\ \text{Where (+)} = \text{plus.} \end{array}$$

Due to the symmetry of the binary add function, the '283 can be used with either all active HIGH operands (positive logic) or all active LOW operands (negative logic) – see Function Table. In case of all active LOW operands the results $\Sigma_1 - \Sigma_4$ and $C_{\rm OUT}$ should be interpreted also as active LOW. With active HIGH inputs, $C_{\rm IN}$ cannot be left open; it must be held LOW when no "carry in" is

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74LS283	13ns	20mA

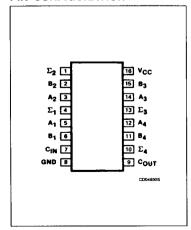
ORDERING CODE

PACKAGES	COMMERCIAL RANGE V _{CC} = 5V ±5%; T _A = 0°C to +70°C
Plastic DIP	N74LS283N
Plastic SO-16	N74LS283D

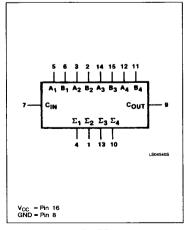
NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

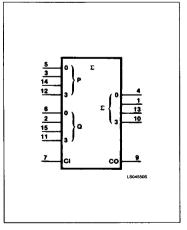
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE


PINS	DESCRIPTION	74LS
A, B	Inputs	2LSul
C _{IN}	Input	1LSul
All	Outputs	10LSul

NOTE:

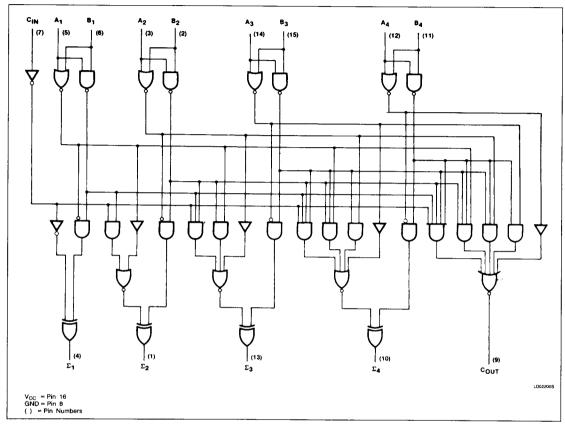

A 74LS unit load (LSul) is 20 µA IIH and -0.4mA IIL.

intended. Interchanging inputs of equal thus C_{IN} , A_1 , B_1 can arbitrarily be asweight does not affect the operation, signed to pins 5, 6, 7, etc.


PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)


December 4, 1985 5-475

853-0472 81500

Adder

74LS283

LOGIC DIAGRAM

FUNCTION TABLE

PINS	CIN	A ₁	A ₂	A ₃	A ₄	B ₁	B ₂	В3	B ₄	Σ1	Σ2	Σ3	Σ4	C _{OUT}
Logic levels	L	L	Н	L	Н	Н	L	L	Н	н	Н	L	L	Н
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

Example: 1001 1010 10011 (10 + 9 = 19) (carry + 5 + 6 = 12)

H = HIGH voltage level

L = LOW voltage level

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74LS	UNIT
V _{CC}	Supply voltage	7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	-30 to +1	mA
V _{OUT}	Voltage applied to output in HIGH output state	-0.5 to +V _{CC}	V
TA	Operating free-air temperature range	0 to 70	°C

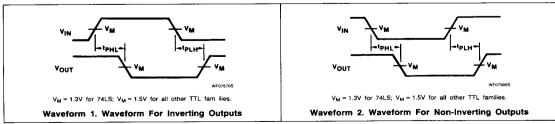
December 4, 1985

5-476

Adder 74LS283

RECOMMENDED OPERATING CONDITIONS

	PARAMETER	Min	Nom	Max	UNIT
V _{CC}	Supply voltage	4.75	5.0	5.25	٧
V _{1H}	HIGH-level input voltage	2.0			V
V _{IL}	LOW-level input voltage			+ 0.8	V
I _{IK}	Input clamp current			-18	mA
Гон	HIGH-level output current			-400	μА
lor	LOW-level output current			8	mA
TA	Operating free-air temperature	0		70	°C


DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

PARAMETER					74LS283		
		. TEST COND	Min	Typ ²	Max	UNIT	
V _{OH}	HIGH-level output voltage	V _{CC} = MIN, V _{IH} = MIN, V _I	V _{CC} = MIN, V _{IH} = MIN, V _{IL} = MAX, I _{OH} = MAX		3.4		٧
V _{OL}		V _{CC} = MIN, V _{IH} = MIN,	I _{OL} = MAX		0.35	0.5	٧
	LOW-level output voltage	V _{IL} = MAX	I _{OL} = 4mA (74LS)		0.25	0.4	٧
V _{IK}	Input clamp voltage	V _{CC} = MIN, I _I = I _{IK}				-1.5	٧
	Input current at maximum		A, B inputs			0.2	mA
l _l	input voltage	$V_{CC} = MAX, V_I = 7.0V$	C _{IN} input			0.1	mA
		V _{CC} = MAX, V _I = 2.7V	A, B inputs			40	μΑ
l _{iH}	HIGH-level input current		C _{IN} input			20	μΑ
			A, B inputs			-0.8	mA
ΉL	LOW-level input current	input current $V_{CC} = MAX, V_I = 0.4V$	C _{IN} input			-0.4	mA
los	Short-circuit output current ³	V _{CC} = MAX		-20		-100	mA
			Condition 1		22	39	mA
lcc	Supply current ⁴ (total)	V _{CC} = MAX	Condition 2		19	34	mA
_ 2			Condition 3	1	19	34	mA

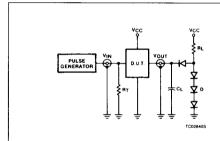
NOTES:

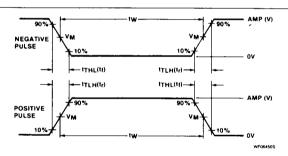
- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.
- 3. Ios is tested with V_{OUT} = +0.5V and V_{CC} = V_{CC} MAX +0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
- 4. I_{CC} should be measured with all outputs open and the following conditions:
 - Condition 1: All inputs grounded.
 - Condition 2: All B inputs LOW, other inputs at 4.5V.
 - Condition 3: All inputs at 4.5V.

AC WAVEFORMS

December 4, 1985

5-477


Adder


74LS283

AC ELECTRICAL CHARACTERISTICS TA = 25°C, VCC = 5.0V

				74LS		
	PARAMETER	TEST CONDITIONS	C _L = 15pF	UNIT		
			Min	Max	7	
t _{PLH} t _{PHL}	Propagation delay C_{IN} to Σ_1	Waveforms 1 & 2		24 24	ns	
t _{PLH} t _{PHL}	Propagation delay C_{IN} to Σ_2	Waveforms 1 & 2		24 24	ns	
t _{PLH} t _{PHL}	Propagation delay C_{IN} to Σ_3	Waveforms 1 & 2		24 24	ns	
t _{PLH} t _{PHL}	Propagation delay C_{IN} to Σ_4	Waveforms 1 & 2		24 24	ns	
t _{PLH} t _{PHL}	Propagation delay A_i or BV_i to Σ_i	Waveforms 1 & 2		24 24	ns	
t _{PLH} t _{PHL}	Propagation delay C _{IN} to C _{OUT}	Waveform 2		17 22	ns	
t _{PLH} t _{PHL}	Propagation delay A _I or B _I to C _{OUT}	Waveforms 1 & 2		17 17	ns	

TEST CIRCUITS AND WAVEFORMS

 $V_M = 1.3V$ for 74LS; $V_M = 1.5V$ for all other TTL families.

Input Pulse Definition

Test Circuit For 74 Totem-Pole Outputs

DEFINITIONS

R_L = Load resistor to V_{CC}; see AC CHARACTERISTICS for value.

C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

 R_T = Termination resistance should be equal to Z_{OUT} of Pulse Generators.

D = Diodes are 1N916, 1N3064, or equivalent.

 $t_{\mathsf{TLH}},\,t_{\mathsf{THL}}$ Values should be less than or equal to the table entries.

FAMILY	INPUT PULSE REQUIREMENTS								
FAMILI	Amplitude	Rep. Rate	Pulse Width	t _{TLH}	t _{THL}				
74	3.0V	1MHz	500ns	7ns	7ns				
74LS	3.0V	1MHz	500ns	15ns	6ns				
748	3.0V	1MHz	500ns	2.5ns	2.5ns				