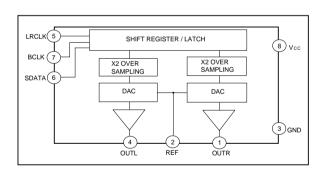
16-bit stereo D / A converter for audio applications **BU9480F**

The BU9480F is a 16-bit stereo D / A converter designed for audio applications, and has an internal $2 \times$ oversampling circuit.

Applications


16-bit stereo D / A converter for audio applications

Features

- 1) 3.0 to 5.5V operating voltage.
- Low current consumption because of the CMOS process.
- 3) Resistor strings method used.

- 4) 2-channel common phase output.
- 5) Internal 2 × oversampling interpolator.
- 6) 8 pin plastic package.
- 7) Supports 4fs. (200kHz operation)

Block diagram

Pin descriptions

Pin No.	Pin name	Function	1/0	Voltage
1	Rоит	Right channel analog signal output	Low-impedance output	1 / 2Vcc
2	REF	Connects the DA ref. voltage pin and ground	High-impedance input	1 / 2Vcc
3	GND	Ground	_	_
4	Lоuт	Left channel analog signal output	Low-impedance output	1 / 2Vcc
5	LRCK	The signal that distinguishes between left and right channels for serial data (left channe = high level, right channel = low level).	Logic input	_
6	SDAT	Serial data input Input with 2' compliment, MSB first.	Logic input	_
7	BCLK	Serial data shift clock input	Logic input	_
8	Vcc	Vcc	_	_

●Absolute maximum ratings (Ta = 25°C)

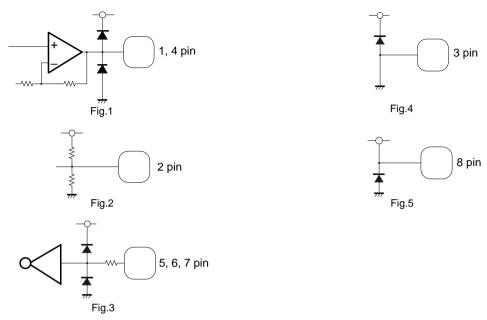
Parameter	Symbol	Limits	Unit
Applied voltage	V _{DDMax} .	7.0	V
Power dissipation	Pd	450*	mW
Operating temperature	Topr	- 10 ~ + 70	°C
Storage temperature	Tstg	- 55 ~ + 125	°C
Input voltage	Topt	- 0.3 ~ V _{DD} + 0.3	V

^{*} When unmounted, reduced by 4.5mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions

Parameter	Symbol	Limits	Unit
Power supply voltage	V _{DD}	3.0 ~ 5.5	V
Input low level voltage	VIL	0.0 ~ 0.2 × V _{DD}	V
Input high level voltage	ViH	0.8 × Vdd ~ Vdd	V

●Electrical characteristics (unless otherwise noted, Ta = 25°C, V_{DD} = + 5.0V) Analog unit characteristics


Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Current dissipation	IDD	_	3.6	6	mA	f = 1kHz, 0dB	Fig.6,7
Resolution	RES	_	_	16	BIT	_	Fig.6,7
Noise distortion 1	THD1	_	0.05	0.12	%	f = 1kHz, 0dB	Fig.6,7
Noise distortion 2	THD2	_	0.07	0.4	%	f = 1kHz, - 20dB	Fig.6,7
Full-scale output voltage	VFS	1.8	2	2.2	V _{P-P}	_	Fig.6,7
Crosstalk	С.Т	_	- 92	- 85	dB	Unmeasured channel output = 0 dB, f = 1kHz. DIN audio filter	Fig.6,7
S / N ratio	S/N	86	93	_	dB	DIN audio filter	Fig.6,7
Output pin load resistance	RL	10	_	_	kΩ	_	Fig.6,7

Logic input characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Input high level voltage	ViH	$0.7 \times V_{DD}$	_	V _{DD}	V	Pins 5,6 and 7	Fig.6,7
Input low level voltage	VIL	GND	_	$0.3 \times V_{DD}$	V	Pins 5,6 and 7	Fig.6,7
Leakage current, high level	Іін	_	_	- 10	μΑ	Pins 5,6 and 7 = VDD	Fig.6,7
Leakage current, low level	lıL	_	_	10	μΑ	Pins 5,6 and 7 = GND	Fig.6,7
DA conversion frequency	fsL	_	_	200	kHz	_	Fig.6,7
BCLK period	Твськ	60	_	_	ns	_	Fig.6,7
SDAT.LRCK settling time	Тѕт	60	_	_	ns	_	Fig.6,7
SDAT.LRCK holding time	THD	60	_	_	ns	_	Fig.6,7

Multimedia ICs BU9480F

Pin equivalent circuits

Measurement circuits

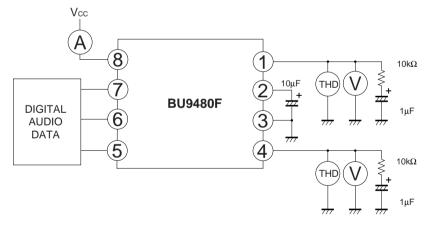


Fig. 6

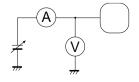
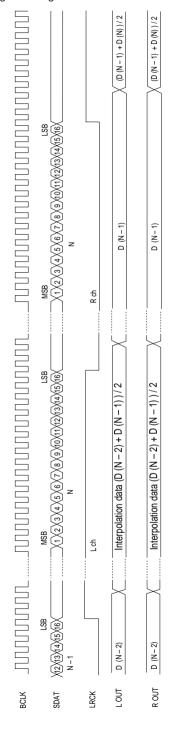



Fig. 7

Multimedia ICs BU9480F

●I / O signal timing chart

Interpolation and original data output are timed respectively to the leading edge and leading edge of LRCK, and so LRCK should be set to a duty of 50%.

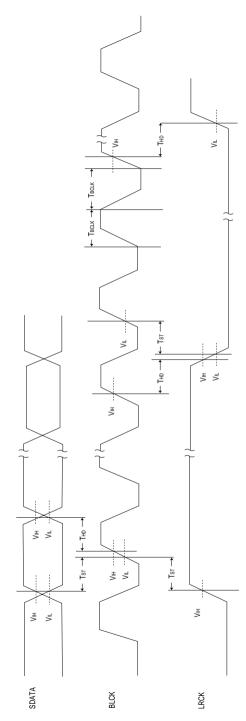
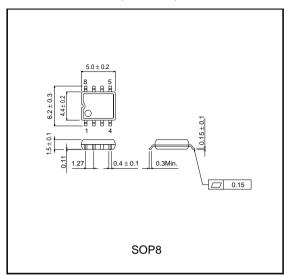



Fig. 8

ROHM

Multimedia ICs BU9480F

●External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

