

CYPRESS

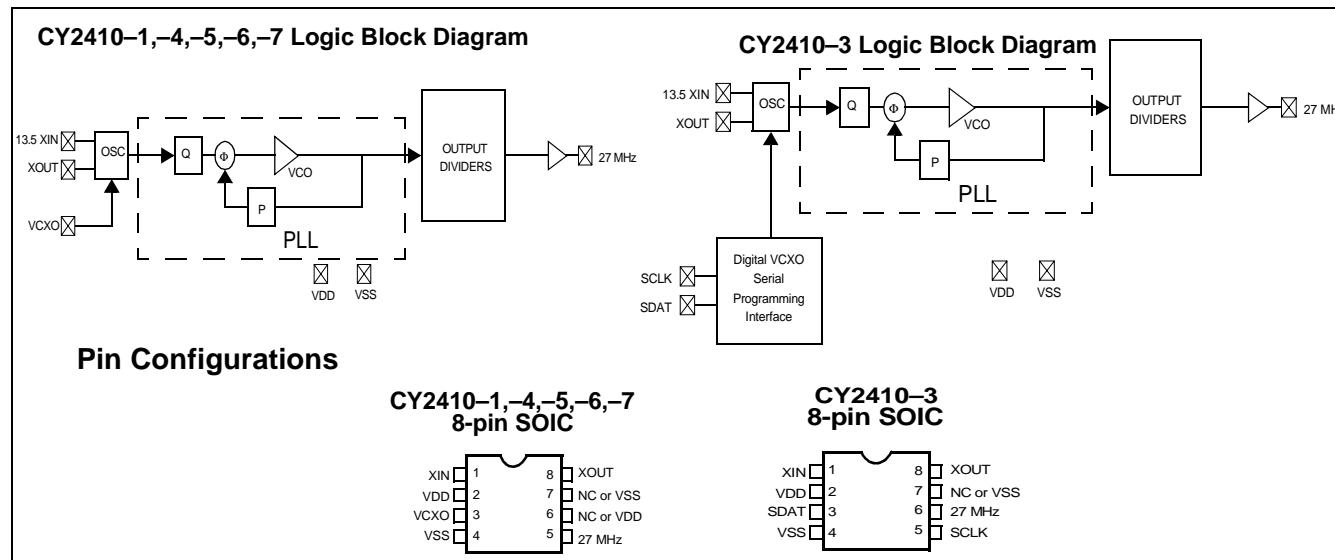
CY2410

MPEG Clock Generator with VCXO

Features

- Integrated phase-locked loop (PLL)
- Low-jitter, high-accuracy outputs
- VCXO with analog adjust
- 3.3V operation
- Compatible with MK3727 (-1, -4, -5, -6, -7)

Benefits


- Highest-performance PLL tailored for multimedia applications
- Meets critical timing requirements in complex system designs
- Large ± 150 -ppm range, better linearity

- Application compatibility for a wide variety of designs
- Enables design compatibility
- Advanced Features
- Serial programming interface (CY2410-3 only)
- Lower drive strength settings (CY2410-4, -6)
- Matches nonlinear MK3727A VCXO control curve (-5, -6)
- Matches nonlinear MK3727C VCXO control curve (-7)

Benefits

- Digital VCXO control
- Electromagnetic interference (EMI) reduction for standards compliance
- Second source for existing designs

Part Number	Outputs	Input Frequency Range	Output Frequencies	VCXO Control Curve	Other Features
CY2410-1	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Compatible with MK3727
CY2410-3	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Serial programming interface
CY2410-4	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Same as CY2410-1 except lower drive strength settings
CY2410-5	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	nonlinear	Matches MK3727A nonlinear VCXO Control Curve
CY2410-6	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	nonlinear	Same as CY2410-5 except lower drive strength
CY2410-7	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	nonlinear	Matches MK3727C nonlinear VCXO control curve

Pin Descriptions for CY2410-1, -4, -5, -6, -7

Name	Pin Number	Description
X _{IN}	1	Reference crystal input
V _{DD}	2	Voltage supply
V _{CXO}	3	Input analog control for V _{CXO}
V _{SS}	4	Ground
27 MHz	5	27-MHz clock output
NC/V _{DD}	6	No Connect or voltage supply
NC/V _{SS}	7	No Connect or ground
X _{OUT} ^[1]	8	Reference crystal output

Pin Description for CY2410-3

Name	Pin Number	Description
X _{IN}	1	Reference crystal input
V _{DD}	2	Voltage supply
SDAT	3	Serial data input for DCXO control
V _{SS}	4	Ground
SCLK	5	Serial clock input for DCXO control
27 MHz	6	27-MHz clock output
NC/V _{SS}	7	No Connect or ground
X _{OUT} ^[1]	8	Reference crystal output

Pullable Crystal Specifications^[2]


Parameter	Description	Condition	Min.	Typ.	Max.	Unit
F _{NOM}	Nominal crystal frequency	Parallel resonance, fundamental mode, AT cut	—	13.5	—	MHz
C _{LNOM}	Nominal load capacitance		—	14	—	pF
R ₁	Equivalent series resistance (ESR)	Fundamental mode	—	—	25	Ω
R _{3/R₁}	Ratio of third overtone mode ESR to fundamental mode ESR	Ratio used because typical R ₁ values are much less than the maximum spec.	3	—	—	
DL	Crystal drive level	No external series resistor assumed	—	0.5	2.0	mW
F _{3SEPHI}	Third overtone separation from 3*F _{NOM}	High side	300	—	—	ppm
F _{3SEPL0}	Third overtone separation from 3*F _{NOM}	Low side	—	—	-150	ppm
C ₀	Crystal shunt capacitance		—	—	7	pF
C _{0/C₁}	Ratio of shunt to motional capacitance		180	—	250	
C ₁	Crystal motional capacitance		14.4	18	21.6	pF

Notes:

1. Float X_{OUT} if X_{IN} is externally driven.
2. Crystals that meet this specification includes: Ecliptek ECX-5788-13.500M, Seward XTL001050A-13.5-14-400, Raltron A-13.500-14-CL, PDI HA13500XFSA14XC.

Serial Programmable Interface Protocol

The CY2410-3 utilizes a two-wire-interface SDAT and SCLK that operates up to 400 kbits/sec in Read or Write mode. The basic Write serial format is as follows: start bit; 7-bit device address (DA); R/W bit; slave clock acknowledge (ACK); 8-bit memory address (MA); ACK; 8-bit data; ACK; 8-bit data in MA+1 if desired; ACK; 8-bit data in MA+2; ACK; etc. until stop bit, as illustrated in *Figure 1*.

Figure 1. Data Frame Architecture

Data Valid

Data is valid when the clock is HIGH, and may only be transitioned when the clock is low as illustrated in *Figure 2*.

Data Frame

Every new data frame is indicated by a start and stop sequence, as illustrated in *Figure 3*.

Start Sequence

A start frame is indicated by SDAT going LOW when SCLK is HIGH. Every time a start signal is given, the next 8-bit data must be the device address (7 bits) and a R/W bit (0 for Write), followed by register address (8 bits) and register data (8 bits). See *Figure 3*.

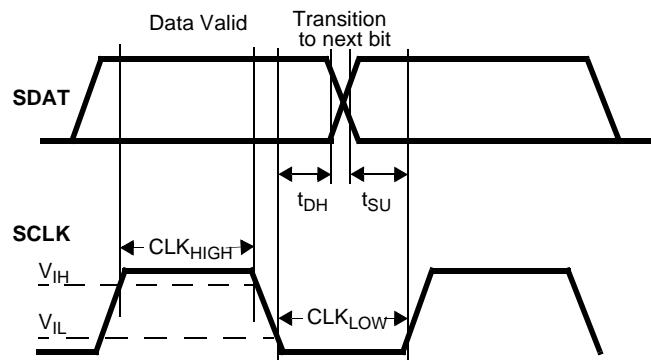
Stop Sequence

A stop frame is indicated by SDAT going HIGH when SCLK is HIGH. A stop frame frees the bus for writing to another part on the same bus or writing to another random register address. See *Figure 3*.

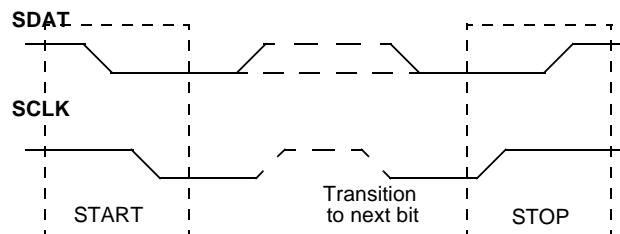
Acknowledge Pulse

During Write mode, the CY2410-3 will respond with an ACK pulse after every 8 bits. This is accomplished by pulling the SDAT line LOW during the next clock cycle after the eighth bit is shifted in.

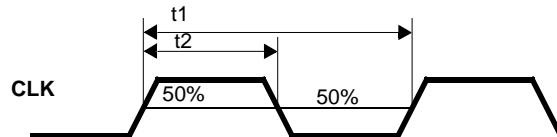
Device Address


The 7-bit device address is 1101001.

Register Address


The 8-bit address for the VCXO register is 00010011.

Register Data


The register data can be any value between 00H–FFH. As you increase the value, the capacitance on the X_{IN} and X_{OUT} pins will increase, thereby decreasing the xtal frequency.

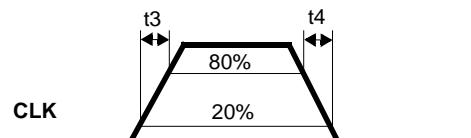

Figure 2. Data Valid and Data Transition Periods

Figure 3. Start and Stop Frame

Figure 4. Duty Cycle Definition; $DC = t_2/t_1$

Figure 5. Rise and Fall Time Definitions: $ER = 0.6 \times VDD / t_3$, $EF = 0.6 \times VDD / t_4$

Absolute Maximum Conditions

Parameter	Description	Min.	Max.	Unit
V_{DD}	Supply Voltage	-0.5	7.0	V
T_S	Storage Temperature ^[3]	-65	125	°C
T_J	Junction Temperature	-	125	°C
	Digital Inputs	$V_{SS} - 0.3$	$V_{DD} + 0.3$	V
	Digital Outputs referred to V_{DD}	$V_{SS} - 0.3$	$V_{DD} + 0.3$	V
	Electrostatic Discharge	2000		V

Recommended Operating Conditions

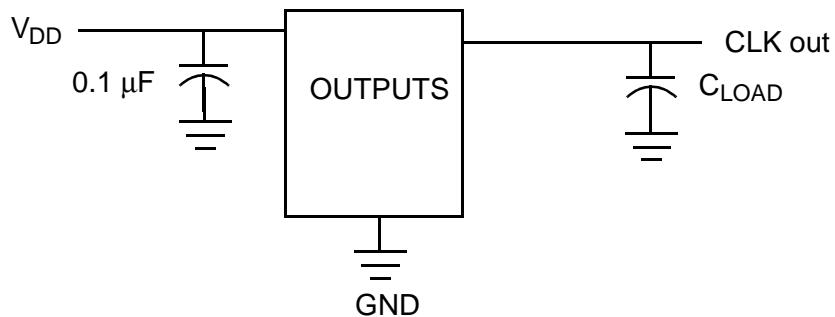
Parameter	Description	Min.	Typ.	Max.	Unit
V_{DD}	Operating Voltage	3.135	3.3	3.465	V
T_A	Ambient Temperature	0	-	70	°C
C_{LOAD}	Max. Load Capacitance	-	-	15	pF
f_{REF}	Reference Frequency	-	13.5	-	MHz
t_{PU}	Power up time for V_{DD} to reach minimum specified voltage (power ramp must be monotonic)	0.05	-	500	ms

DC Electrical Specifications

Parameter	Name	Description	Min.	Typ.	Max.	Unit
I_{OH}	Output HIGH Current -1,3,5,7	$V_{OH} = V_{DD} - 0.5$, $V_{DD} = 3.3V$	12	24	-	mA
I_{OL}	Output LOW Current -1,3,5,7	$V_{OL} = 0.5$, $V_{DD} = 3.3V$	12	24	-	mA
I_{OH}	Output HIGH Current -4,6	$V_{OH} = V_{DD} - 0.5$, $V_{DD} = 3.3V$	6	18	-	mA
I_{OL}	Output LOW Current -4,6	$V_{OL} = 0.5$, $V_{DD} = 3.3V$	6	18	-	mA
C_{IN}	Input Capacitance		-	-	7	pF
I_{IZ}	Input Leakage Current		-	5	-	µA
$f_{\Delta X0}$	V_{CXO} pullability range: -1, -3, -4, -5, -6		± 150	-	-	ppm
	V_{CXO} pullability range: -7		± 115	-	-	ppm
V_{VCXO}	V_{CXO} input range		0	-	V_{DD}	V
I_{VDD}	Supply Current		-	30	35	mA

AC Electrical Specifications ($V_{DD} = 3.3V$)^[4]

Parameter ^[4]	Name	Description	Min.	Typ.	Max.	Unit
DC	Output Duty Cycle	Duty Cycle is defined in Figure 4, 50% of V_{DD}	45	50	55	%
ER_{OR}	Rising Edge Rate -1, -3, -5, -7	Output Clock Edge Rate, Measured from 20% to 80% of V_{DD} , CLOAD = 15 pF See Figure 5.	0.8	1.4	-	V/ns
ER_{OF}	Falling Edge Rate -1, -3, -5, -7	Output Clock Edge Rate, Measured from 80% to 20% of V_{DD} , CLOAD = 15 pF See Figure 5.	0.8	1.4	-	V/ns
ER_{OR}	Rising Edge Rate -4, -6	Output Clock Edge Rate, Measured from 20% to 80% of V_{DD} , CLOAD = 15 pF See Figure 5.	0.7	1.1	-	V/ns
ER_{OF}	Falling Edge Rate -4, -6	Output Clock Edge Rate, Measured from 80% to 20% of V_{DD} , CLOAD = 15 pF See Figure 5.	0.7	1.1	-	V/ns
t_9	Clock Jitter -1, -3, -5, -7	Peak-to-peak period jitter	-	140	-	ps
t_9	Clock Jitter -4, -6	Peak-to-peak period jitter	-	150	-	ps
t_{10}	PLL Lock Time		-	-	3	ms

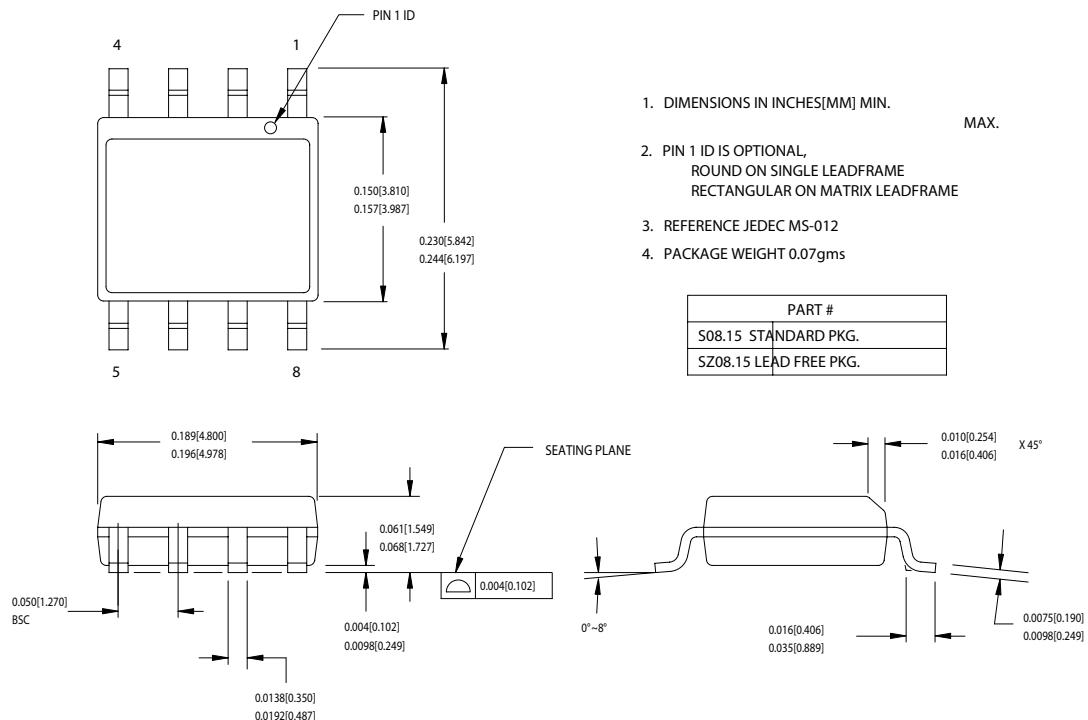

Notes:

3. Rated for ten years.
4. Not 100% tested.

Serial Programming Interface Timing Specifications

Parameter	Description	Min.	Max.	Unit
f_{SCL}	Frequency of SCLK		400	kHz
	Start mode time from SDAT LOW to SCLK LOW	0.6		μ s
CLK_{LOW}	SCLK LOW period	1.3		μ s
CLK_{HIGH}	SCLK HIGH period	0.6		μ s
t_{SU}	Data transition to SCLK HIGH	100		ns
t_{DH}	Data hold (SCLK LOW to data transition)	0		ns
	Rise time of SCLK and SDAT		300	ns
	Fall time of SCLK and SDAT		300	ns
	Stop mode time from SCLK HIGH to SDA HIGH	0.6		μ s
	Stop mode to start mode	1.3		μ s

Test and Measurement Set-up



Ordering Information

Ordering Code	Package Type	Operating Range	Operating Voltage	Features
CY2410SC-1	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY2410SC-1T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Linear VCXO control curve
CY2410SC-3	8-pin SOIC	Commercial	3.3V	Digital VCXO control
CY2410SC-3T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Digital VCXO control
CY2410SC-4	8-pin SOIC	Commercial	3.3V	Lower drive strength (reduced EMI)
CY2410SC-4T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Lower drive strength (reduced EMI)
CY2410SC-5	8-pin SOIC	Commercial	3.3V	Matches nonlinear MK3727A VCXO control curve
CY2410SC-5T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Matches nonlinear MK3727A VCXO control curve
CY2410SC-6	8-pin SOIC	Commercial	3.3V	Lower drive strength version of CY2410-5
CY2410SC-6T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Lower drive strength version of CY2410-5
CY2410SC-7	8-pin SOIC	Commercial	3.3V	Matches MK3727C nonlinear VCXO control curve
CY2410SC-7T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Matches MK3727C nonlinear VCXO control curve

Package Drawing and Dimensions

8-lead (150-Mil) SOIC S8

51-85066-*C

All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page**Document Title: CY2410 MPEG Clock Generator with VCXO**
Document Number: 38-07317

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	111553	02/12/02	CKN	New Data Sheet
*A	114937	09/24/02	CKN	Added -6 to data sheet, Advance Information to Final
*B	121418	12/06/02	CKN	Updated the Pullable Crystal Specifications table on page 2
*C	126905	06/17/03	RGL	Added -7 part to data sheet Added new parameter on the Pullable Crystal table Power-up requirements added to the operating conditions
*D	131100	01/20/03	RGL	Added VCXO –7 pullability range in the DC Specs with min. value of $\pm 115\text{ppm}$