Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS Integrated Circuit V850ES/FF2

32-bit single-chip micro controller

INTRODUCTION

The V850ES/FF2 are 32-bit single-chip microcontrollers that include the V850ES CPU core and integrate peripheral functions such as timers/counters, serial interfaces, and an A/D converter. These microcontrollers also incorporate a CAN (Controller Area Network) as an automotive LAN.

In addition to highly real-time responsive, 1-clock-pitch basic instructions, these microcontrollers have instructions ideal for digital servo applications, such as multiplication instructions using a hardware multiplier, sum-of-products operation instructions, and bit manipulation instructions. These microcontrollers can also realize a real-time control system that is highly cost effective and can be used in automotive instrumentation fields.

FEATURES

- Number of instructions: 83
- Minimum instruction execution time: 50 ns (main clock (fxx) = 20 MHz)
- General-purpose registers: 32 bits × 32
- Power-on clear function
- Low-voltage detection function
- Ring-OSC: 200 kHz (TYP.)
- Internal memory:
 - RAM: 6/12 KB
 - Flash memory: 128/256KB
 - Mask ROM: 128/256KB
- Interrupts/exceptions :
 - Non-maskable interrupts : 1 source
 - Maskable interrupts: 43 sources
 - Software exceptions: 2 sources
 - Exception trap: 1 source
- I/O lines I/O ports: 67
- Timer/counters:
 - 16-bit interval timer M (TMM): 1 ch
 - 16-bit timer/event counter P (TMP): 4 ch
 - 16-bit timer/event counter Q (TMQ): 1 ch
- Watch timer: 1 ch
- Watchdog timer 2: 1 ch
- Serial interface (SIO):
 - Asynchronous serial interface A (UART): 2 ch
 - 3-wire variable-length serial interface B (CSIB): 2 ch
- CAN controller: 1 ch
- A/D converter 10-bit resolution: 10 ch
- Clock generator Main clock/subclock operation:
 - CPU clock in seven steps (fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, fxt)
 - Clock-through mode/PLL mode selectable
 - Internal oscillator: 200 kHz (TYP.)
- Power save function: HALT/IDLE1/IDLE2/software STOP/subclock/sub-IDLE modes
- Package: 80-pin plastic TQFP (fine pitch) (12 × 12)

Part Number	Internal ROM	Internal RAM	CAN I/F
uPD703232	128KB (Mask ROM)	6KB	1 channel
uPD70F3232	128KB (Flash)	12KB	1 channel
uPF703233	256KB (Mask ROM)	12KB	1 channel
uPD70F3233	256KB (Flash)	12KB	1 channel

Table of Contents

1. Electrical Specifications	4
1. 1 Electrical Specifications of (A)-Grade	4
1. 1. 1 Absolute maximum ratings	4
1. 1. 2 Capacitance	8
1. 1. 3 Operating conditions	8
1. 1. 4 Oscillator Characteristics	9
1. 1. 5 PLL Characteristics	11
1. 1. 6 Ring-OSC Characteristics	11
1. 1. 7 Voltage Regulator Characteristics	11
1. 1. 8 DC Characteristics	12
1. 1. 9 Data Retention Characteristics	17
1. 1. 10 AC Characteristics	18
1. 2 Electrical Specifications of (A1)-Grade	29
1. 2. 1 Absolute maximum ratings	
1. 2. 2 Capacitance	33
1. 2. 3 Operating conditions	
1. 2. 4 Oscillator Characteristics	
1. 2. 5 PLL Characteristics	
1. 2. 6 Ring-OSC Characteristics	
1. 2. 7 Voltage Regulator Characteristics	
1. 2. 8 DC Characteristics	
1. 2. 9 Data Retention Characteristics	
1. 2. 10 AC Characteristics	
1. 3 Electrical Specifications of (A2)-Grade	
1. 3. 1 Absolute maximum ratings	
1. 3. 2 Capacitance	
1. 3. 3 Operating conditions	
1. 3. 4 Oscillator Characteristics	
1. 3. 5 PLL Characteristics	61
1. 3. 6 Ring-OSC Characteristics	61
1. 3. 7 Voltage Regulator Characteristics	
1. 3. 8 DC Characteristics	
1. 3. 9 Data Retention Characteristics	
1. 3. 10 AC Characteristics	
2. Injected Current Specification	79
2. 1 Injected Current Specification of (A)-Grade	79
2. 1. 1 Absolute Maximum Ratings	
2. 1. 2 DC Characteristics for overload current	79
2. 1. 3 DC Characteristics for pins influenced by injected current on an adjacent pin	80
2. 1. 4 A/D converter influenced by injected current on an adjacent pin	
2. 2 Injected Current Specification of (A1)-Grade	82
2. 2. 1 Absolute Maximum Ratings	82
2. 2. 2 DC Characteristics for overload current	82
2. 2. 3 DC Characteristics for pins influenced by injected current on an adjacent pin	83
2. 2. 4 A/D converter influenced by injected current on an adjacent pin	84
2. 3 Injected Current Specification of (A2)-Grade	85
2. 3. 1 Absolute Maximum Ratings	85

2. 3. 2 DC Characteristics for overload current	85
2. 3. 3 DC Characteristics for pins influenced by injected current on an adjacent pin	86
2. 3. 4 A/D converter influenced by injected current on an adjacent pin	87
3. Package Drawing	88
Figure 3-1: Package Drawing	88
4. Recommended Soldering Conditions	89
Table 4-1: Soldering Conditions	89

1. Electrical Specifications

1. 1 Electrical Specifications of (A)-Grade

1. 1. 1 Absolute maximum ratings

Absolute maximum ratings (Flash memory product) (T_A = 25°C) (1/2)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EV _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	AV _{REF0}		-0.5 to +6.5	V
	Vss	Vss = EVss = AVss	-0.5 to +0.5	V
	AVss	Vss = EVss = AVss	-0.5 to +0.5	٧
	EVss	Vss = EVss = AVss	-0.5 to +0.5	V
Input voltage	VII	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, RESET, FLMD0, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	-0.5 to EV _{DD} + 0.5 ^{Note}	V
	Vıз	X1, X2, XT1, XT2	-0.5 to V _{RO} + 0.5 Note	V
Analog input voltage	VIAN	P70 to P711	-0.5 to AV _{REF0} + 0.5 Note	V

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Absolute maximum ratings (Flash memory product) $(T_A = 25^{\circ}C)$ (2/2)

Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	loL	P00 to P06, P30 to P35, P38, P39, P40	Per pin	4	mA
		to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3 PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	Total of all pins	50	mA
		P70 to P711	Per pin	4	mA
			Total of all pins	20	mA
Output current, high	Іон	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3 PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	Per pin	-4	mA
, , ,			Total of all pins	-50	mA
		P70 to P711	Per pin	-4	mA
			Total of all pins	-20	mA
Operating ambient	TA	Normal operating mode		-40 to +85	°C
temperature		Flash programming mode			
Storage temperature	Tstg			-40 to +125	°C

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Absolute maximum ratings (Mask ROM product) ($T_A = 25$ °C) (1/2)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EV _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	AV _{REF0}		-0.5 to +6.5	V
	Vss	Vss = EVss = AVss	-0.5 to +0.5	V
	AVss	Vss = EVss = AVss	-0.5 to +0.5	V
	EVss	Vss = EVss = AVss	-0.5 to +0.5	V
Input voltage	VII	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, RESET, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	-0.5 to EV _{DD} + 0.5 ^{Note}	V
	Vıз	X1, X2, XT1, XT2	-0.5 to V _{RO} + 0.5 Note	V
Analog input voltage	VIAN	P70 to P711	-0.5 to AV _{REF0} + 0.5 Note	V

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Absolute maximum ratings (Mask ROM product) ($T_A = 25^{\circ}C$) (2/2)

Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	loL	P00 to P06, P30 to P35, P38, P39, P40	Per pin	4	mA
		to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	Total of all pins	50	mA
		P70 to P711	Per pin	4	mA
			Total of all pins	20	mA
Output current, high	tc P P	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	Per pin	-4	mA
			Total of all pins	–50	mA
		P70 to P711	Per pin	-4	mA
			Total of all pins	-20	mA
Operating ambient temperature	Та			-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

1. 1. 2 Capacitance

$(T_A = 25^{\circ}C, V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1} = V_{SS} = EV_{SS} = AV_{SS} = 0 V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
I/O capacitance	Сю	fx = 1 MHz,			10	pF
		Unmeasured pins returned to 0 V.				

1. 1. 3 Operating conditions

(Ta = -40 to +85°C, Vdd = EVdd = 3.5 V to 5.5 V, 4.0 V \leq AVREF0 \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Internal system clock frequency	fclk	REGC Capacity = 4.7 μ F, at operation with main clock	4		20	MHz
		REGC Capacity = 4.7 μ F, at operation with subclock (crystal resonator)	32		35	kHz
		REGC Capacity = 4.7 μ F, at operation with subclock (RC resonator)	12.5 Note		27.5 Note	kHz

Note The internal system clock frequency is half the oscillation frequency.

1. 1. 4 Oscillator Characteristics

Main clock oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	V1 V2	Oscillation frequency (fx) Note 1		4		5	MHz
	X1 X2	Oscillation	After reset release		216/fx		s
		stabilization time Note 2	After STOP mode release	0.5 ^{Note 3}	Note 4		ms
			After IDLE2 mode release	0.35	Note 4		ms
Crystal resonator	///	Oscillation frequency (fx) Note 1		4		5	MHz
			After reset release		2 ¹⁶ /fx		s
		stabilization time Note 2	After STOP mode release	0.5 ^{Note 3}	Note 4		ms
			After IDLE2 mode release	350	Note 4		μs

- Notes 1. Indicates only oscillator characteristics.
 - 2. Time required to stabilize the crystal resonator after reset or STOP mode is released.
 - 3. Time required to stabilize access to the internal flash memory.
 - 4. The value differs depending on the OSTS register settings.
- Cautions 1. When using the main clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - . Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - When the main clock is stopped and the device is operating on the subclock, wait until the oscillation stabilization time has been secured by the program before switching back to the main clock.

9

Subclock oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator Note 5	XT1 XT2	Oscillation frequency (fxr) Note 1		32	32.768	35	kHz
Notes	Q _U R'1	Oscillation stabilization time Note 2				10	S
RC resonator	XT1 XT2	Oscillation frequency (fxr) Notes1, 4	R = 390 k $\Omega \pm 5\%$ Note 3 C = 47 pF $\pm 10\%$ Note 3	25	40	55	kHz
	<i>m</i>	Oscillation stabilization time Note 2				100	μs

- Notes 1. Indicates only oscillator characteristics. Refer to 26. 1. 10 AC Characteristics for CPU operating clock.
 - 2. Time required from when VDD reaches oscillation voltage range (MIN.: 3.5 V) to when the crystal resonator stabilizes.
 - 3. In order to avoid the influence of wiring capacity, shorten wiring as much as possible.
 - **4.** RC oscillation frequency is 40 kHz (Typ.). This clock is divided (1/2) internally. In case of RC oscillator, internal system clock frequency (fxt) is 12.5 kHz (Min.), 20 kHz (Typ.), and 27.5 kHz (Max.).
 - **5.** The values of capacitors C1', C2' and resistors R'1 depend on the resonator used and must be specified in cooperation with the manufacturer.
- Cautions 1. When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - . Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - · Do not fetch signals from the oscillator.
 - 2. The subclock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main clock oscillator. Particular care is therefore required with the wiring method when the subclock is used.

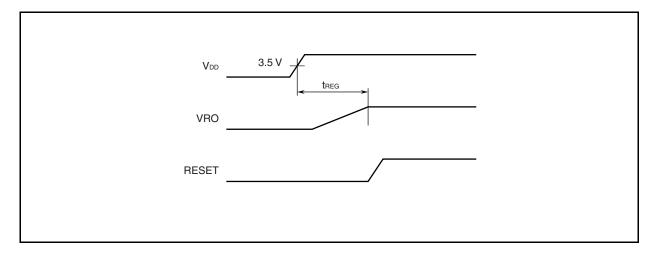
1. 1. 5 PLL Characteristics

(TA = -40 to +85°C, VDD = EVDD = 3.5 V to 5.5 V, 4.0 V \leq AVREF0 \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input frequency	fx		4		5	MHz
Output frequency	f _{xx}		16		20	MHz
Lock time	tPLL	After VDD reaches MIN.: 3.5 V			800	μs

1. 1. 6 Ring-OSC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output frequency	fr		100	200	400	kHz

1. 1. 7 Voltage Regulator Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	V _{DD}		3.5		5.5	V
Output voltage	VRO			2.5		V
Lock time Note 1	treg	After V _{DD} reaches MIN.: 3.5 V			1	ms
		Connect C = 4.7 μ F \pm 20% to REGC pin				

Note 1. The lock time does not have to be considered for devices that have POC.

11

1. 1. 8 DC Characteristics

(1) Input/Output level

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

(1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _I H1	P30, P34, P41, P38, P98, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0-PDL11	0.7EV _{DD}		EV _{DD}	V
	V _{IH2}	P00 to P06, P31 to P33, P35, P39, P40, P42, P50 to P55, P90, P91, P96, P97, P99, P910, P913 to P915	0.8EV _{DD}		EV _{DD}	V
	V _{IH4}	P70 to P711	0.7AVREF0		AV _{REF0}	V
	V _{IH5}	RESET, FLMD0	0.8EV _{DD}		EV _{DD}	٧
Input voltage, low	VIL1	P30, P34, P41, P38, P98, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0-PDL11	EVss		0.3EV _{DD}	V
	VIL2	P00 to P06, P31 to P33, P35, P39, P40, P42, P50 to P55, P90, P91, P96, P97, P99, P910, P913 to P915	EVss		0.2EV _{DD}	V
	V _{IL4}	P70 to P711	AVss		0.3AVREF0	V
	V _{IL5}	RESET, FLMD0	EVss		0.2EV _{DD}	V

(Ta = -40 to $+85^{\circ}$ C, Vdd = EVdd = 3.5 V to 5.5 V, 4.0 V \leq AVREF0 \leq 5.5 V, Vss = EVss = AVss = 0 V)

(2/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage,	V _{OH1}	P00 to P06, P30 to P35, P38,	Iон = −1.0 mA	EV _{DD} – 1.0		EV _{DD}	٧
Note 1		P39, P40 to P42, P50 to P55, P90, P91, P96, P99, P913 to P915, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL7	Іон = -0.1 mA	EV _{DD} - 0.5		EV _{DD}	V
	Vонз	P70 to P711	Iон = −1.0 mA	AVREFO - 1.0		AV _{REF0}	V
			Iон = -0.1 mA	AV _{REF0} – 0.5		AV _{REF0}	V
Output voltage, low Note 1	Vol1	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96, P99, P913 to P915, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL7	IoL = 1.0 mA	0		0.4	V
	Vol3	P70 to P711	IoL = 1.0 mA	0		0.4	٧
Pull-up resistor	R ₁	V1 = 0 V	V _I = 0 V			100	kΩ
Pull-down resistor Note 2	R ₂	$V_{I} = V_{DD}$		10	30	100	kΩ

Notes 1. Total IoH/IoL (Max.) is 20 mA/-20 mA each power supply terminal (EVDD and AVREFO).

2. When used as DRST pin (Flash memory product only) (OCDM0 is the control register).

(2) Pin leakage current

(TA = -40 to +85°C, VDD = EVDD = 3.5 V to 5.5 V, 4.0 $V \le AVREFO \le 5.5 V$, VSS = EVSS = AVSS = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	$V_{\text{IN}} = V_{\text{DD}}$	Analog pins			+0.2	μΑ
			Other pins Note 1			+0.5	
Input leakage current, low	ILIL1	V _{IN} = 0 V	Analog pins			-0.2	μΑ
			Other pins Note 1			-0.5	
Output leakage current, high	ILOH1	Vo = VDD	Analog pins			+0.2	μΑ
			Other pins			+0.5	
Output leakage current, low	ILOL1	Vo = 0 V	Analog pins			-0.2	μΑ
			Other pins			-0.5	

Note 1. For flash memory product, specification of FLMD0 is as follows:

Input leakage current, high: $2 \mu A$ Input leakage current, low: $-2 \mu A$

(3) Supply current

Supply current (V850ES/FF2: *μ* PD70F3233)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Symbol Conditions			TYP.	MAX.	Unit
Flash memory products supply current Note 1	IDD1	Normal operation,	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		25	40	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		20		mA
	IDD2	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		14	24	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		9		mA
	Іррз	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.6	0.9	mA
	IDD4	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	0.7	mA
	I _{DD5}	Subclock operation mode Notes 2, 3	Crystal resonator fxT = 32.768 kHz		200	400	μΑ
			RC resonator fxt = 40 kHz Note 4		200	400	μΑ
	IDD6	Sub-IDLE mode Notes 2, 3	Crystal resonator fxT = 32.768 kHz		20	120	μΑ
			RC resonator fxt = 40 kHz Note 4		35	140	μΑ
	I _{DD7}	Stop mode Notes 2, 5	POC stopped, Ring-OSC stopped		7	50	μΑ
			POC operating, Ring-OSC stopped		10	55	μΑ
			POC stopped, Ring-OSC operating		15	65	μΑ
			POC operating, Ring-OSC operating		18	70	μА

- **Notes 1.** Total current of V_{DD} and EV_{DD} (all ports stopped). The current of AV_{REF0} and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.
 - 2. When the main OSC is stopped.
 - 3. POC operating, Ring-OSC operating.
 - **4.** The RC oscillation frequency is 40 kHz(TYP.). This clock is internally divided by 2.
 - 5. When the sub-OSC is not used.

Supply current (V850ES/FF2: μ PD703232, 703233)

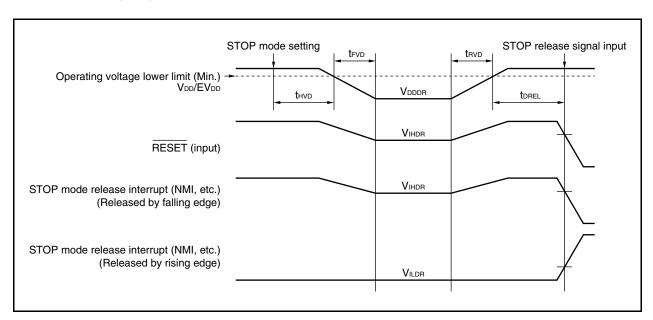
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Mask ROM products supply current Note 1	I _{DD1}	Normal operation,	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		20	35	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		16		mA
	IDD2	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		12	22	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		8		mA
	Іррз	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	0.7	mA
	IDD4	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.2	0.7	mA
	IDD5	Subclock operation mode Notes 2, 3	Crystal resonator fxT = 32.768 kHz		50	350	μΑ
	I _{DD6}	Sub-IDLE mode Notes 2, 3	Crystal resonator fxT = 32.768 kHz		20	120	μΑ
			RC resonator fxt = 40 kHz ^{Note} ⁴		35	140	μΑ
	I _{DD7}	Stop mode Notes 2, 5	POC stopped, Ring-OSC stopped		7	50	μΑ
			POC operating, Ring-OSC stopped		10	55	μΑ
			POC stopped, Ring-OSC operating		15	65	μΑ
			POC operating, Ring-OSC operating		18	70	μΑ

Notes 1. Total current of VDD and EVDD (all ports stopped).

The current of AV_{REF0} and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.

- 2. When the main OSC is stopped.
- 3. POC operating, Ring-OSC operating.
- **4.** The RC oscillation frequency is 40 kHz (TYP.). This clock is internally divided by 2.
- 5. When the sub-OSC is not used.

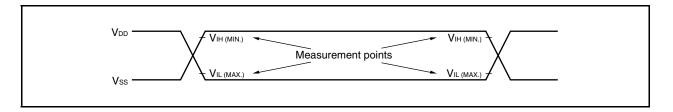


1. 1. 9 Data Retention Characteristics

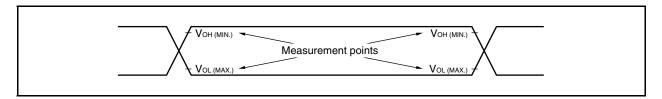
STOP Mode ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = \text{EV}_{DD} = 1.9 \text{ V to } 5.5 \text{ V}$, $V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	V _{DDDR}	In STOP mode	1.9		5.5	V
Data retention current	IDDDR	VDDDR = 2.0 V		6	45	μΑ
Supply voltage rise time	trvd		1			μs
Supply voltage fall time	trvd		1			μs
Supply voltage retention time	thvd	After STOP mode release	0			ms
STOP release signal input time	torel	After V _{DD} reaches MIN.: 3.5 V	0			μs
Data retention input voltage, high	VIHDR	All input ports	0.9Vdddr		V _{DDDR}	V
Data retention input voltage, low	VILDR	All input ports	0		0.1VDDDR	V

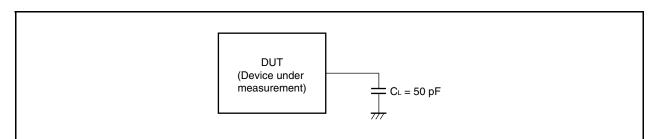
Caution Shifting to STOP mode and restoring from STOP mode must be performed within the rated operating range.



17



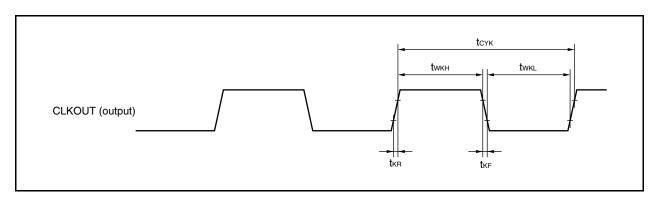
1. 1. 10 AC Characteristics


AC Test Input Measurement Points (VDD, AVDD, EVDD)

AC Test Output Measurement Points

Load Conditions

Caution If the load capacitance exceeds 50 pF due to the circuit configuration, bring the load capacitance of the device to 50 pF or less by inserting a buffer or by some other means.



(1) CLKOUT output timing

$(T_{A} = -40 \ to \ +85^{\circ}C, \ V_{DD} = EV_{DD} = 3.5 \ V \ to \ 5.5 \ V, \ 4.0 \ V \leq AV_{REF0} \leq 5.5 \ V, \ V_{SS} = EV_{SS} = AV_{SS} = 0 \ V, \ C_{L} = 50 \ pF)$

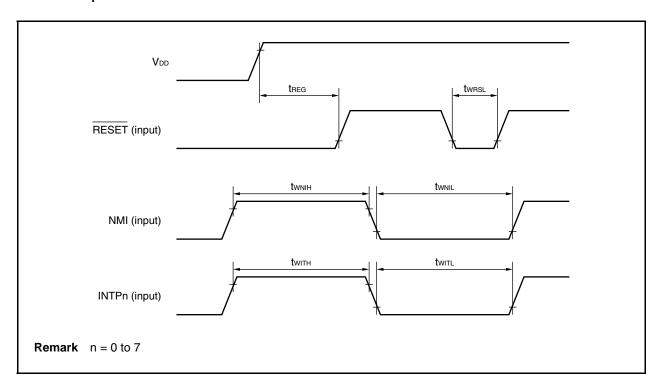
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output cycle	tcyk		50 ns	80 μs	
High-level width	twкн		tcyk/2 – 15		ns
Low-level width	twĸL		tcyk/2 – 15		ns
Rise time	t kr			15	ns
Fall time	tĸF			15	ns

Clock Timing

(2) Basic Operation

(a) Reset, Interrupt timing

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

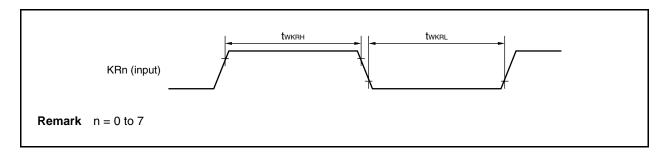

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
RESET low-level width	twrsl		500		ns
NMI high-level width	twnih	Analog noise elimination	500		ns
NMI low-level width twniL		Analog noise elimination	500		ns
INTPn ^{Note 1} high-level	twiтн	Analog noise elimination (n = 0 to 7)	500		ns
width		Digital noise elimination (n = 3)	Note 2		ns
INTPn ^{Note 1} low-level	twitl	Analog noise elimination (n = 0 to 7)	500		ns
width		Digital noise elimination (n = 3)	Note 2		ns

Notes 1. ADTRG is same spec (P03/INTP0/ADTRG). DRST is same spec (P05/INTP2/DRST).

2. 2Tsamp + 20 or 3Tsamp + 20

Tsamp: Sampling clock for noise elimination

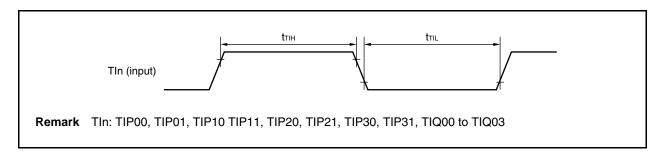
Reset/Interrupt



(b) Key return timing

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
KRn input high-level width	twkrh	Analog noise elimination (n = 0 to 7)	500		ns
KRn input low-level width	twkrl		500		ns


(c) Timer input timing

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \ \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} = 3.5 \text{ V to } 5.5 \text{ V}, \ 4.0 \text{ V} \leq \text{AV}_{\text{REF0}} \leq 5.5 \text{ V}, \ \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, \ \text{CL} = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
TIn high-level width	tтıн	TIP00, TIP01, TIP10, TIP11, TIP20, TIP21, TIP30, TIP31, TIQ00 to	Note		ns
TIn low-level width	tтı∟	TIQ03	Note		ns

Note 2Tsamp + 20 or 3Tsamp + 20

Tsamp: Sampling clock for noise elimination

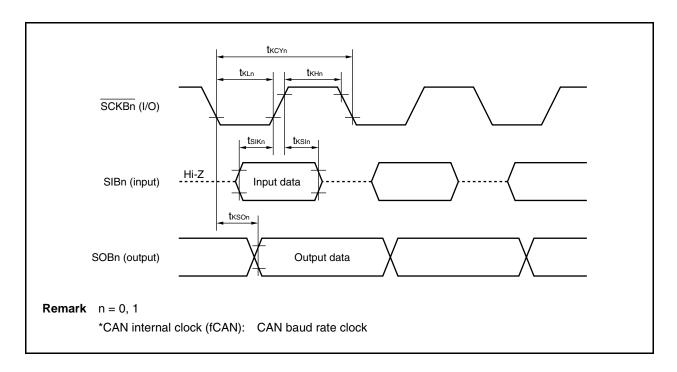
(d) CSIB timing

(i) Master mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ V_{DD} = \text{EV}_{DD} = 3.5 \ \text{V to } 5.5 \ \text{V}, \ 4.0 \ \text{V} \leq \text{AV}_{REF0} \leq 5.5 \ \text{V}, \ \text{Vss} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \ \text{V}, \ \text{CL} = 50 \ \text{pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	tkcyn		125		ns
SCKBn high-level width	tĸHn		tkcyn/2 - 15		ns
SCKBn low-level width	tĸĿn		tkcyn/2 - 15		ns
SIBn setup time (to SCKBn ↑)	t sıĸn		30		ns
SIBn hold time (from SCKBn ↑)	tksin		25		ns
Output delay time from SCKBn↓ to SOBn	tkson			25	ns

Remark n = 0, 1


(ii) Slave mode

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \ V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, \ 4.0 \text{ V} \leq \text{AV}_{REF0} \leq 5.5 \text{ V}, \ V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \ C_{L} = 50 \text{ pF})$

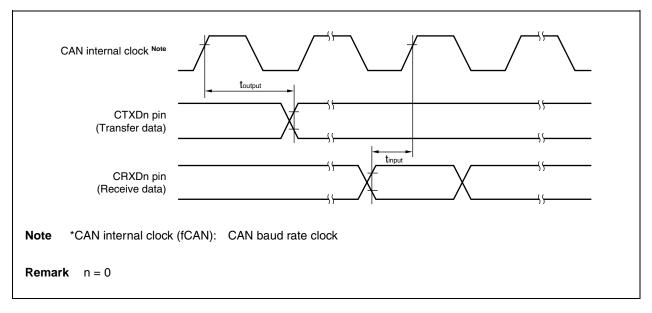
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t KCYn		200		ns
SCKBn high-level width	tĸнn		90		ns
SCKBn low-level width	tKLn		90		ns
SIBn setup time (to SCKBn ↑)	tsıĸn		50		ns
SIBn hold time (from SCKBn↑)	tksin		50		ns
Output delay time from SCKBn↓ to SOBn	t KSOn			50	ns

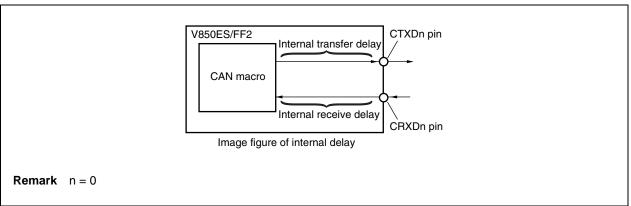
Remark n = 0, 1

(e) UART timing

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Communication rate				312.5	kbps
ASCK0 cycle time				10	MHz




(f) CAN timing

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, \ 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \ V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \ C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate				1	Mbps
Internal delay time Note				100	ns

Note Internal delay time (tnode) = Internal transfer delay time (toutput) + Internal receive delay time (tnput)

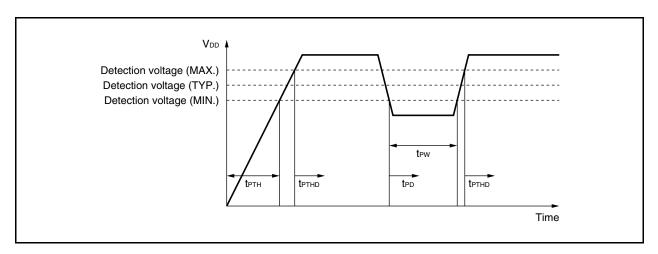
(g) A/D converter

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					10	bit
Overall error Note		$4.0 \leq \text{AV}_{\text{REF0}} \leq 5.5 \text{ V}$		±0.15	±0.3	%FSR
Conversion time	tconv		3.1		16	μs
Analog input voltage	VIAN		AVss		AV _{REF0}	٧
AVREFO current	IAREF0	When using A/D converter		5	10	mA
		When not using A/D converter		1	10	μΑ

Note Excluding quantization error (±0.05%FSR). Indicates the ratio to the full-scale value (%FSR).

Remark FSR: Full Scale Range

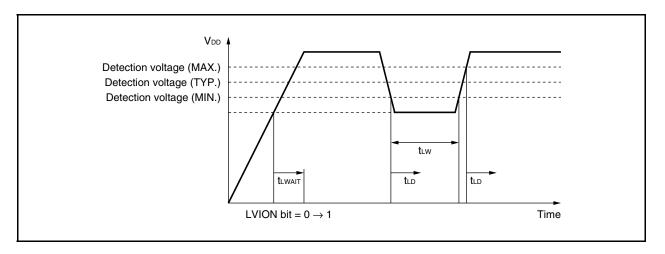

(h) POC circuit characteristics

(T_A = -40 to +85°C, V_{DD} = EV_{DD} = 3.5 V to 5.5 V, 4.0 V ≤ AV_{REF0} ≤ 5.5 V, V_{SS} = EV_{SS} = AV_{SS} = 0 V, C_L = 50 pF)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POC0}		3.5	3.7	3.9	V
Power supply startup time	tртн	$V_{DD} = 0 \text{ V} \rightarrow 3.5 \text{ V}$	0.002			ms
Response delay time 1 Note 1	t PTHD	In case of power on.			3.0	ms
		After VDD reaches 3.9 V.				
Response delay time 2 Note	tpD	In case of power off.			1	ms
2		After VDD drops 3.5 V.				
Minimum VDD width	tpw		0.2			ms

Notes 1. From detect voltage to release reset signal.

2. From detect voltage to output reset signal.

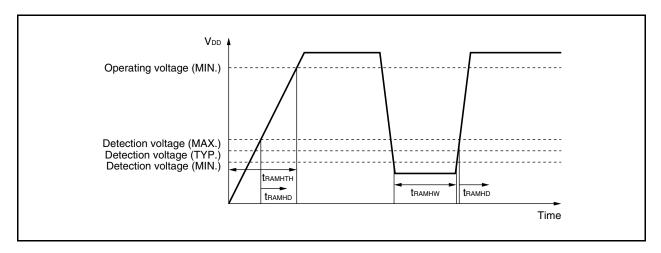

(i) LVI circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, \ 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \ V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \ C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{LVI0}		4.2	4.4	4.6	V
	V LVI1		4.0	4.2	4.4	V
Response time Note 1	t LD	After Vdd reaches VLVI0/VLVI1 (Max.). After Vdd drops VLVI0/VLVI1 (Min.).		0.2	2.0	ms
Minimum VDD width	tьw		0.2			ms
Reference voltage stabilization wait time Note 2	tlwait	After V _{DD} reaches 3.5 V. After LVION bit (LVIM.bit7) = $0 \rightarrow 1$		0.1	0.2	ms

Notes 1. The time required to output an interrupt/reset after the detection voltage is detected.

2. Unnecessary when the POC function is used.



(j) RAM retention flag characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ V_{DD} = \text{EV}_{DD} = 1.9 \ \text{V to } 5.5 \ \text{V}, \ 4.0 \ \text{V} \leq \text{AV}_{REF0} \leq 5.5 \ \text{V}, \ \text{Vss} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \ \text{V}, \ \text{CL} = 50 \ \text{pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{RAMH}		1.9	2.0	2.1	V
Supply voltage rise time	tramhth	$V_{DD} = 0 \text{ V} \rightarrow 3.5 \text{ V}$	0.002		1,800	ms
Response time ^{Note}	tramhd	After the supply voltage reaches the detection voltage (MAX.)		0.2	2.0	ms
Minimum V _{DD} width	tramhw		0.2			ms

Note Time required to set the RAMF bit after the detection voltage is detected.

(k) Flash memory programming characteristics

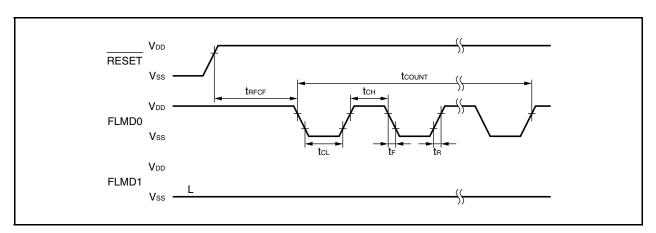
(i) Basic characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fcpu		4		20	MHz
Supply voltage	V _{DD}		3.5		5.5	V
Number of writes	Cwrt				100	Times
Input voltage, high	VIH	FLMD0	0.8EV _{DD}		EV _{DD}	V
Input voltage, low	VIL	FLMD0	EVss		0.2EV _{DD}	V
Write time + erase time	tiwrt + terase	Flash: 256 KB (µPD70F3233)			T.B.D	s
Programming temperature	t PRG		-40		+85	°C

Note The initial write when the product is shipped, any erase → write set of operations, or any programming operation is counted as one rewrite.

Example: P: Write, E: Erase


Shipped product \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites Shipped product \rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites

(ii) Serial Write Operation Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
FLMD0 setup time from RESET↑	trece		500/fx + α			s
Count execution time	tcount				3	ms
FLMD0 high-level width	tсн		10		100	μs
FLMD0 low-level width	tcL		10		100	μs
FLMD rise time	tR				50	ns
FLMD fall time	tF				50	ns

Note " " represents the oscillation stabilization time.

1. 2 Electrical Specifications of (A1)-Grade

1. 2. 1 Absolute maximum ratings

Absolute Maximum Ratings (Flash memory product) (TA = 25°C) (1/2)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	٧
	EV _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	٧
	AV _{REF0}		-0.5 to +6.5	٧
	Vss	Vss = EVss = AVss	-0.5 to +0.5	٧
	AVss	Vss = EVss = AVss	-0.5 to +0.5	٧
	EVss	Vss = EVss = AVss	-0.5 to +0.5	٧
Input voltage	VII	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, RESET, FLMD0, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	-0.5 to EV _{DD} + 0.5 ^{Note}	V
	Vıз	X1, X2, XT1, XT2	-0.5 to V _{RO} + 0.5 Note	٧
Analog input voltage	VIAN	P70 to P711	-0.5 to AV _{REF0} + 0.5 Note	٧

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.

2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Absolute maximum ratings (Flash memory product) $(T_A = 25^{\circ}C)$ (2/2)

Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	lol	P00 to P06, P30 to P35, P38, P39, P40	Per pin	4	mA
		to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3 PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	Total of all pins	50 ^{Note 1}	mA
		P70 to P711	Per pin	4	mA
			Total of all pins	20 Note 2	mA
Output current, high	Іон	P00 to P06, P30 to P35, P38, P39, P40	Per pin	-4	mA
		to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3 PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	Total of all pins	_50 Note 1	mA
		P70 to P711	Per pin	-4	mA
			Total of all pins	-20 Note 2	mA
Operating ambient	TA	Normal operating mode		-40 to +110	°C
temperature		Flash programming mode		-40 to +85	
Storage temperature	Tstg			-40 to +125	°C

Notes 1. At $T_A = 25$ °C. 20 mA/-20 mA at $T_A = 110$ °C. **2.** At $T_A = 25$ °C. 10 mA/-10 mA at $T_A = 110$ °C.

Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.

2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Absolute Maximum Ratings (Mask ROM product) $(T_A = 25^{\circ}C)$ (1/2)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EV _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	AV _{REF0}		-0.5 to +6.5	V
	Vss	Vss = EVss = AVss	-0.5 to +0.5	V
	AVss	Vss = EVss = AVss	-0.5 to +0.5	V
	EVss	Vss = EVss = AVss	-0.5 to +0.5	V
Input voltage	VII	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, RESET, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	-0.5 to EV _{DD} + 0.5 ^{Note}	V
	Vıз	X1, X2, XT1, XT2	-0.5 to V _{RO} + 0.5 Note	V
Analog input voltage	VIAN	P70 to P711	-0.5 to AV _{REF0} + 0.5 Note	V

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Absolute maximum ratings (Mask ROM product) ($T_A = 25$ °C) (2/2)

Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	lou	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3 PCS0. PCS1, PCT0, PCT1PCT4, PCT6, PDL0 to PDL11	Per pin	4	mA
			Total of all pins	50 ^{Note 1}	mA
		P70 to P711	Per pin	4	mA
			Total of all pins	20 Note 2	mA
Output current, high	Іон	P00 to P06, P30 to P35, P38, P39, P40	Per pin	-4	mA
		to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3 PCS0. PCS1, PCT0, PCT1PCT4, PCT6, PDL0 to PDL11	Total of all pins	_50 Note 1	mA
		P70 to P711	Per pin	-4	mA
			Total of all pins	-20 Note 2	mA
Operating ambient temperature	Та			-40 to +110	°C
Storage temperature	T _{stg}			-65 to +150	°C

Notes 1. At $T_A = 25^{\circ}C$. 20 mA/-20 mA at $T_A = 110^{\circ}C$.

2. At $T_A = 25$ °C. 10 mA/-10 mA at $T_A = 110$ °C.

Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.

2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

1. 2. 2 Capacitance

$(T_A = 25^{\circ}C, V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1} = V_{SS} = EV_{SS} = AV_{SS} = 0 V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
I/O capacitance	Сю	fx = 1 MHz,			10	pF
		Unmeasured pins returned to 0 V.				

1. 2. 3 Operating conditions

(Ta = -40 to +110°C, Vdd = EVdd = 3.5 V to 5.5 V, 4.0 V \leq AVREF0 \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Internal system clock frequency	fclk	REGC Capacity = 4.7 μ F at operation with main clock	4		20	MHz
		REGC Capacity = 4.7 μ F at operation with subclock (RC resonator)	12.5 Note		27.5 Note	kHz

Note The internal system clock frequency is half the oscillation frequency.

33

1. 2. 4 Oscillator Characteristics

Main clock oscillator characteristics

 $(T_A = -40 \text{ to } +110 ^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \leq \text{AV}_{REF0} \leq 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	_{X1}	Oscillation frequency (fx) Note 1		4		5	MHz
	X1 X2	Oscillation stabilization time Note 2	After reset release		2 ¹⁶ /fx		s
			After STOP mode release	0.5 ^{Note 3}	Note 4		ms
			After IDLE2 mode release	0.35	Note 4		ms
Crystal resonator	7/17	Oscillation frequency (fx) Note 1		4		5	MHz
		Oscillation stabilization time Note 2	After reset release		2 ¹⁶ /fx		s
			After STOP mode release	0.5 ^{Note} ³	Note 4		ms
			After IDLE2 mode release	350	Note 4		μS

- Notes 1. Indicates only oscillator characteristics.
 - 2. Time required to stabilize the crystal resonator after reset or STOP mode is released.
 - 3. Time required to stabilize access to the internal flash memory.
 - 4. The value differs depending on the OSTS register settings.
- Cautions 1. When using the main clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - . Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - . Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - When the main clock is stopped and the device is operating on the subclock, wait until the oscillation stabilization time has been secured by the program before switching back to the main clock.

Subclock Oscillator Characteristics

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
RC resonator	nator XT1 XT2	Oscillation frequency (fxr) Notes1, 4	R = 390 k $\Omega \pm 5\%$ Note 3 C = 47 pF $\pm 10\%$ Note 3	25	40	55	kHz
		Oscillation stabilization time Note 2				100	μs

- Notes 1. Indicates only oscillator characteristics. Refer to 26. 2. 10 AC Characteristics for CPU operating clock.
 - 2. Time required from when VDD reaches oscillation voltage range (MIN.: 3.5 V) to when the crystal resonator stabilizes.
 - 3. In order to avoid the influence of wiring capacity, shorten wiring as much as possible.
 - **4.** RC oscillation frequency is 40 kHz (Typ.). This clock is divided (1/2) internally. In case of RC oscillator, internal system clock frequency (fxt) is 12.5 kHz (Min.), 20 kHz (Typ.), and 27.5 kHz (Max.).
- Cautions 1. When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - . Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - · Do not fetch signals from the oscillator.
 - 2. The subclock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main clock oscillator. Particular care is therefore required with the wiring method when the subclock is used.

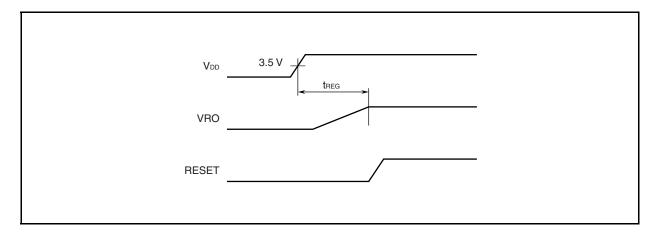
1. 2. 5 PLL Characteristics

(Ta = -40 to +110°C, Vdd = EVdd = 3.5 V to 5.5 V, 4.0 V \leq AVREF0 \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input frequency	fx		4		5	MHz
Output frequency	f _{xx}		16		20	MHz
Lock time	t _{PLL}	After V _{DD} reaches MIN.: 3.5 V			800	μs

1. 2. 6 Ring-OSC Characteristics

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output frequency	fr		100	200	400	kHz

1. 2. 7 Voltage Regulator Characteristics

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	V _{DD}		3.5		5.5	V
Output voltage	VRO			2.5		V
Lock time Note 1	treg	After V _{DD} reaches MIN.: 3.5 V			1	ms
		Connect C = 4.7 μ F \pm 20% to REGC pin				

Note 1. The lock time does not have to be considered for devices that have POC.

1. 2. 8 DC Characteristics

(1) Input/Output level

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

(1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P30, P34, P38, P41, P98, PCM0 to PCM3, PCS0. PCS1, PCT0, PCT1, PCT4, PCT6, PDL0-PDL11	0.7EV _{DD}		EV _{DD}	٧
	V _{IH2}	P00 to P06, P31 to P33, P35, P39, P40, P42, P50 to P55, P90, P91, P96, P97, P99, P910, P913 to P915	0.8EV _{DD}		EV _{DD}	V
	V _{IH4}	P70 to P711	0.7AV _{REF0}		AV _{REF0}	V
	V _{IH5}	RESET, FLMD0	0.8EV _{DD}		EV _{DD}	٧
Input voltage, low Vit	V _{IL1}	P30, P34, P38, P41, P98, PCM0 to PCM3, PCS0. PCS1, PCT0, PCT1, PCT4, PCT6, PDL0-PDL11	EVss		0.3EV _{DD}	٧
	V _{IL2}	P00 to P06, P31 to P33, P35, P39, P40, P42, P50 to P55, P90, P91, P96, P97, P99, P910, P913 to P915	EVss		0.2EV _{DD}	V
	VIL4	P70 to P711	AVss		0.3AVREF0	V
	V _{IL5}	RESET, FLMD0	EVss		0.2EV _{DD}	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

37

(Ta = -40 to +110°C, Vdd = EVdd = 3.5 V to 5.5 V, 4.0 V \leq AVREF0 \leq 5.5 V, Vss = EVss = AVss = 0 V)

(2/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high ^{Note 1}	V _{OH1}	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55,	Iон = −1.0 mA	EV _{DD} – 1.0		EV _{DD}	٧
		P90, P91, P96, P99, P913 to	Iон = −0.1 mA	EV _{DD} – 0.5		EV _{DD}	V
		P915, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4,					
		PCT6, PDL0 to PDL11					
	Vонз	P70 to P711	lон = −1.0 mA	AVREFO - 1.0		AV _{REF0}	V
			lон = −0.1 mA	AVREFO - 0.5		AV _{REF0}	V
Output voltage, low Note 1	Vol1	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96, P99, P913 to P915, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	loL = 1.0 mA	0		0.4	V
	Vol3	P70 to P711	loL = 1.0 mA	0		0.4	V
Pull-up resistor	R ₁	V _I = 0 V		10	30	100	kΩ
Pull-down resistor Note 2	R ₂	$V_{I} = V_{DD}$		10	30	100	kΩ

Notes 1. Total IoH/IoL (Max.) is 20 mA/-20 mA each power supply terminal (EVDD and AVREFO).

2. When used as DRST pin (Flash memory product only) (OCDM0 is the control register).

(2) Pin leakage current

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = EV_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V})$

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	$V_{\text{IN}} = V_{\text{DD}}$	Analog pins			+0.3	μΑ
			Other pins Note 1			+2.0	
Input leakage current, low	ILIL1	VIN = 0 V	Analog pins			-0.3	μ A
			Other pins Note 1			-2.0	
Output leakage current, high	ILOH1	Vo = VDD	Analog pins			+0.3	μΑ
			Other pins			+2.0	
Output leakage current, low	ILOL1	Vo = 0 V	Analog pins			-0.2	μΑ
			Other pins			-2.0	

Note 1. For flash memory product, specification of FLMD0 is as follows:

Input leakage current, high: 4 μ A Input leakage current, low: -4 μ A

(3) Supply current

Supply current (V850ES/FF2: μ PD70F3233)

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Flash memory products supply current ^{Note} ¹	I _{DD1}	Normal operation,	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		25	40	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		20		mA
	I _{DD2}	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		14	26	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		9		mA
	IDD3	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.6	1.2	mA
	I _{DD4}	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	0.9	mA
	I _{DD5}	Subclock operation mode Notes 2, 3	RC resonator fxT = 40 kHz Note 4		200	600	μА
	I _{DD6}	Sub-IDLE mode Notes 2, 3	RC resonator fxt = 40 kHz ^{Note} ⁴		35	340	μΑ
	I _{DD7}	Stop mode Notes 2, 5	POC stopped, Ring-OSC stopped		7	250	μΑ
			POC operating, Ring-OSC stopped		10	255	μΑ
			POC stopped, Ring-OSC operating		15	265	μΑ
			POC operating, Ring-OSC operating		18	270	μΑ

Notes 1. Total current of V_{DD} and EV_{DD} (all ports stopped). The current of AV_{REF0} and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.

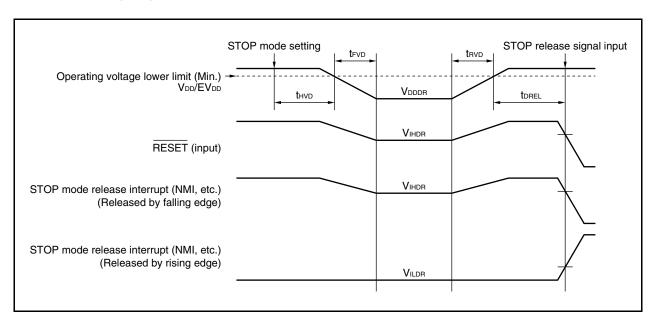
- 2. When the main OSC is stopped.
- 3. POC operating, Ring-OSC operating.
- **4.** The RC oscillation frequency is 40 kHz (TYP.). This clock is internally divided by 2.
- 5. When the sub-OSC is not used.

Supply current (V850ES/FF2: *μ* PD703232, 703233)

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Mask ROM products supply current Note 1	I _{DD1}	Normal operation,	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		20	35	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		16		mA
	I _{DD2}	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		12	24	mA
	(e f	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		8		mA	
	IDD3	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	0.9	mA
	IDD4	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.2	0.9	mA
	IDD5	Subclock operation mode Notes 2, 3	RC resonator fxT = 40 kHz Note 4		50	550	μΑ
	I _{DD6}	Sub-IDLE mode Notes 2, 3	RC resonator fxT = 40 kHz Note 4		35	340	μΑ
	I _{DD7}	Stop mode Notes 2, 5	POC stopped, Ring-OSC stopped		7	250	μΑ
			POC operating, Ring-OSC stopped		10	255	μΑ
			POC stopped, Ring-OSC operating		15	265	μΑ
			POC operating, Ring-OSC operating		18	270	μΑ

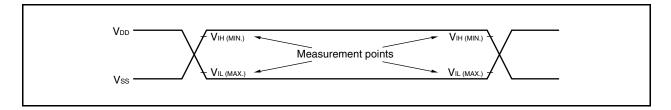
- **Notes 1.** Total current of V_{DD} and EV_{DD} (all ports stopped). The current of AV_{REF0} and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.
 - 2. When the main OSC is stopped.
 - 3. POC operating, Ring-OSC operating.
 - **4.** The RC oscillation frequency is 40 kHz(TYP.). This clock is internally divided by 2.
 - **5.** When the sub-OSC is not used.

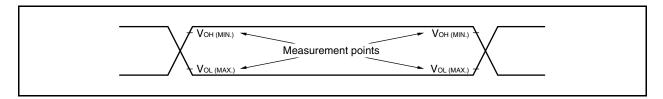


1. 2. 9 Data Retention Characteristics

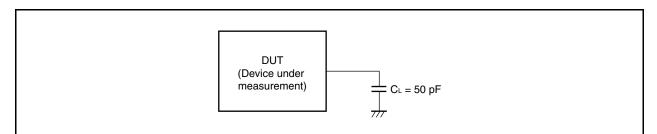
STOP Mode ($T_A = -40 \text{ to } +110^{\circ}\text{C}$, $V_{DD} = EV_{DD} = 1.9 \text{ V to } 5.5 \text{ V}$, $V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	In STOP mode	1.9		5.5	V
Data retention current	IDDDR	VDDDR = 2.0 V		6	230	μΑ
Supply voltage rise time	trvd		1			μs
Supply voltage fall time	t _{FVD}		1			μs
Supply voltage retention time	thvd	After STOP mode release	0			ms
STOP release signal input time	torel	After V _{DD} reaches MIN.: 3.5 V	0			μS
Data retention input voltage, high	VIHDR	All input ports	0.9VDDDR		V _{DDDR}	V
Data retention input voltage, low	VILDR	All input ports	0		0.1VDDDR	V


Caution Shifting to STOP mode and restoring from STOP mode must be performed within the rated operating range.



1. 2. 10 AC Characteristics

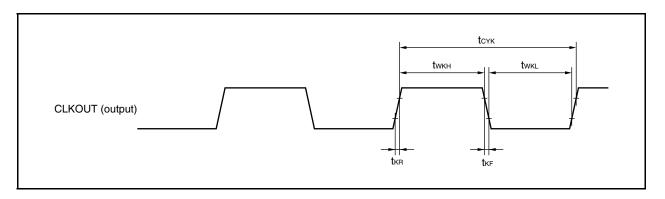

AC Test Input Measurement Points (VDD, AVDD, EVDD)

AC Test Output Measurement Points

Load Conditions

Caution If the load capacitance exceeds 50 pF due to the circuit configuration, bring the load capacitance of the device to 50 pF or less by inserting a buffer or by some other means.

43



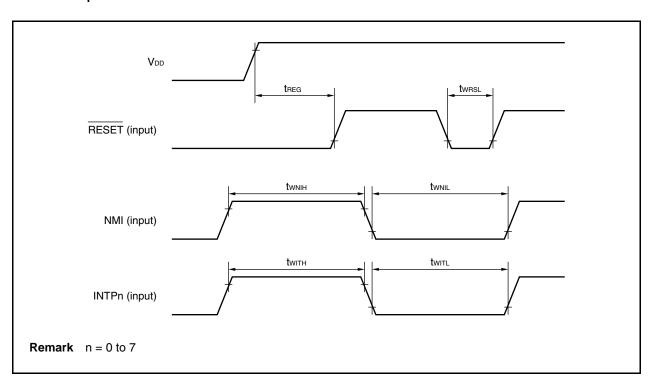
(1) CLKOUT output timing

$(T_{\text{A}} = -40 \text{ to } +110^{\circ}\text{C}, \ V_{\text{DD}} = \text{EV}_{\text{DD}} = 3.5 \ \text{V to } 5.5 \ \text{V}, \ 4.0 \ \text{V} \leq \text{AV}_{\text{REF0}} \leq 5.5 \ \text{V}, \ \text{Vss} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \ \text{V}, \ C_{\text{L}} = 50 \ \text{pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output cycle	tсук		50 ns	80 μs	
High-level width	twкн		tсук/2 – 15		ns
Low-level width	twĸL		tсук/2 – 15		ns
Rise time	tĸĸ			15	ns
Fall time	tkf			15	ns

Clock Timing

(2) Basic Operation

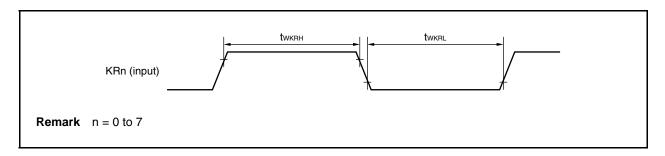

(a) Reset, Interrupt timing

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
RESET low-level width	twrsL		500		ns
NMI high-level width	twnih	Analog noise elimination	500		ns
NMI low-level width	twniL	Analog noise elimination	500		ns
INTPn ^{Note 1} high-level	twiтн	Analog noise elimination (n = 0 to 7)	500		ns
width		Digital noise elimination (n = 3)	Note 2		ns
INTPn ^{Note 1} low-level	twitl	Analog noise elimination (n = 0 to 7)	500		ns
width		Digital noise elimination (n = 3)	Note 2		ns

- Notes 1. ADTRG is same spec (P03/INTP0/ADTRG). DRST is same spec (P05/INTP2/DRST).
 - 2. 2Tsamp + 20 or 3Tsamp + 20 Tsamp: Sampling clock for noise elimination

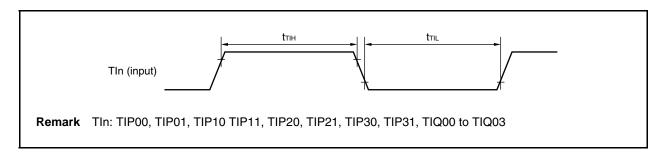
Reset/Interrupt



(b) Key return timing

$(T_{A} = -40 \text{ to } +110 ^{\circ}\text{C}, \ V_{DD} = EV_{DD} = 3.5 \ V \ \text{to } 5.5 \ V, \ 4.0 \ V \leq AV_{REF0} \leq 5.5 \ V, \ V_{SS} = EV_{SS} = AV_{SS} = 0 \ V, \ C_{L} = 50 \ pF)$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
KRn input high-level width	twkrh	Analog noise elimination (n = 0 to 7)	500		ns
KRn input low-level width	twkrl		500		ns


(c) Timer input timing

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
TIn high-level width	tтıн	TIP00, TIP01, TIP10, TIP11, TIP20, TIP21, TIP30, TIP31, TIQ00 to	Note		ns
TIn low-level width	tтı∟	TIQ03	Note		ns

Note 2Tsamp + 20 or 3Tsamp + 20

Tsamp: Sampling clock for noise elimination

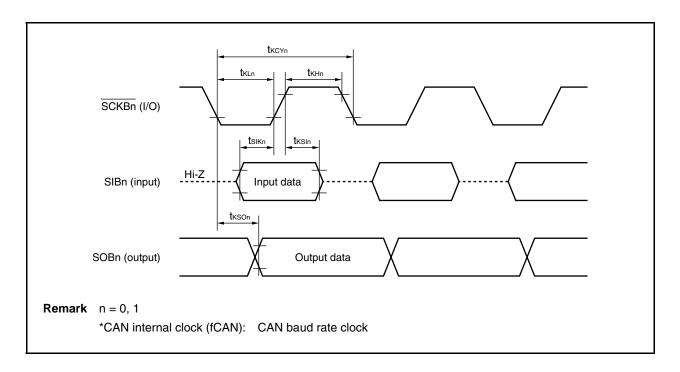
(d) CSIB timing

(i) Master mode

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = EV_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t KCYn		125		ns
SCKBn high-level width	t KHn		tkcyn/2 - 15		ns
SCKBn low-level width	t KLn		tkcyn/2 - 15		ns
SIBn setup time (to SCKBn ↑)	t SIKn		30		ns
SIBn hold time (from SCKBn ↑)	t KSIn		25		ns
Output delay time from SCKBn↓ to SOBn	tkson			25	ns

Remark n = 0, 1


(ii) Slave mode

 $(T_{\text{A}} = -40 \text{ to } +110^{\circ}\text{C}, \ V_{\text{DD}} = \text{EV}_{\text{DD}} = 3.5 \text{ V to } 5.5 \text{ V}, \ 4.0 \text{ V} \leq \text{AV}_{\text{REF0}} \leq 5.5 \text{ V}, \ V_{\text{SS}} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, \ C_{\text{L}} = 50 \text{ pF})$

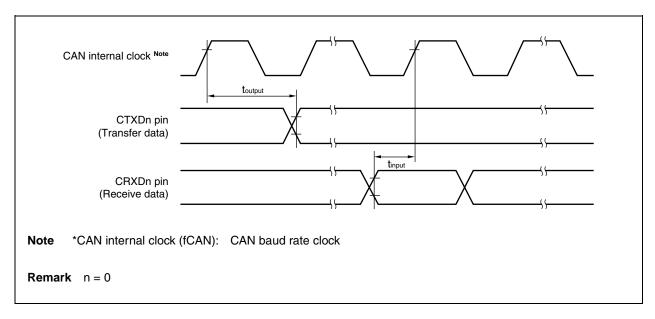
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t KCYn		200		ns
SCKBn high-level width	t KHn		90		ns
SCKBn low-level width	tKLn		90		ns
SIBn setup time (to SCKBn ↑)	t sıĸn		50		ns
SIBn hold time (from SCKBn ↑)	t KSIn		50		ns
Output delay time from SCKBn↓ to SOBn	tkson			50	ns

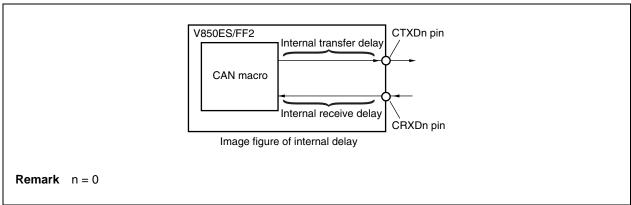
Remark n = 0, 1

(e) UART timing

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \leq \text{AV}_{REF0} \leq 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Communication rate				312.5	kbps
ASCK0 cycle time				10	MHz




(f) CAN timing

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate				1	Mbps
Internal delay time Note				100	ns

Note Internal delay time (tnode) = Internal transfer delay time (toutput) + Internal receive delay time (tnput)

49

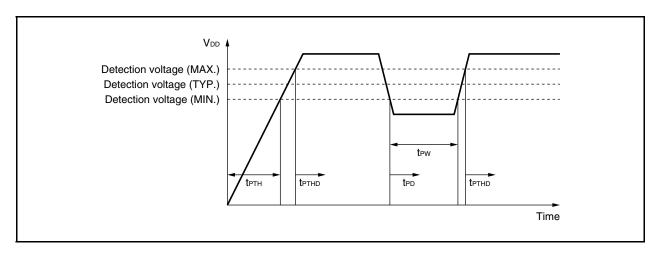
(g) A/D converter

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					10	bit
Overall error Note		$4.0 \leq \text{AV}_{\text{REF0}} \leq 5.5 \text{ V}$		±0.15	±0.3	%FSR
Conversion time	tconv		3.1		16	μs
Analog input voltage	VIAN		AVss		AV _{REF0}	V
AVREFO current	IAREF0	When using A/D converter		5	10	mA
		When not using A/D converter		1	10	μΑ

Note Excluding quantization error ($\pm 0.05\%$ FSR). Indicates the ratio to the full-scale value (%FSR).

Remark FSR: Full Scale Range

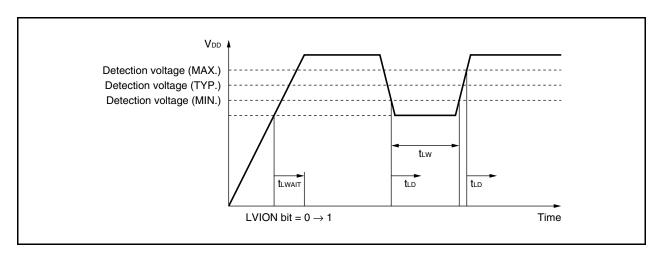

(h) POC circuit characteristics

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \leq \text{AV}_{REF0} \leq 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POC0}		3.5	3.7	3.9	V
Power supply startup time	tртн	$V_{DD} = 0 \text{ V} \rightarrow 3.5 \text{ V}$	0.002			ms
Response delay time 1 Note 1	tртно	In case of power on.			3.0	ms
		After VDD reaches 3.9 V.				
Response delay time 2 Note 2	tpD	In case of power off.			1	ms
		After VDD drops 3.5 V.				
Minimum V _{DD} width	tpw		0.2			ms

Notes 1. From detect voltage to release reset signal.

2. From detect voltage to output reset signal.

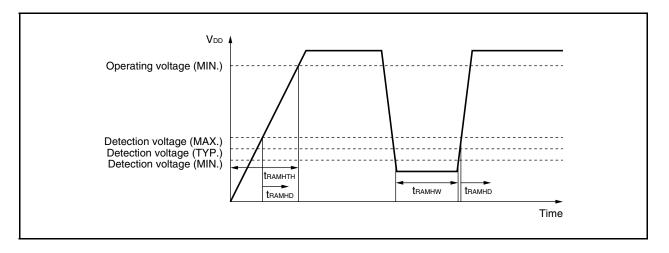


(i) LVI circuit characteristics

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = EV_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVIO		4.2	4.4	4.6	V
	V _{LVI1}		4.0	4.2	4.4	V
Response time Note 1	t LD	After Vdd reaches VLvio/VLvi1 (Max.). After Vdd drops VLvio/VLvi1 (Min.).		0.2	2.0	ms
Minimum VDD width	tuw		0.2			ms
Reference voltage stabilization wait time Note 2	tlwait	After V _{DD} reaches 3.5 V. After LVION bit (LVIM.bit7) = $0 \rightarrow 1$		0.1	0.2	ms

- Notes 1. The time required to output an interrupt/reset after the detection voltage is detected.
 - 2. Unnecessary when the POC function is used.



(j) RAM retention flag characteristics

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = EV_{DD} = 1.9 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VRAMH		1.9	2.0	2.1	V
Supply voltage rise time	t RAMHTH	$V_{DD} = 0 \text{ V} \rightarrow 3.5 \text{ V}$	0.002		1,800	ms
Response time ^{Note}	tramhd	After the supply voltage reaches the detection voltage (MAX.)		0.2	2.0	ms
Minimum VDD width	tramhw		0.2			ms

Note Time required to set the RAMF bit after the detection voltage is detected.

(k) Flash memory programming characteristics

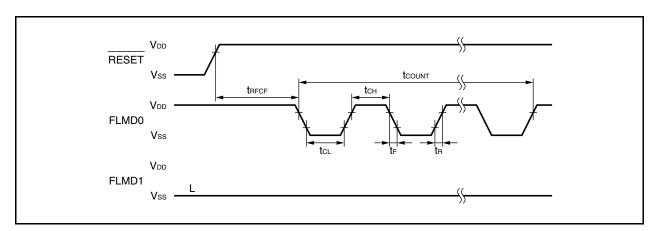
(i) Basic characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fcpu		4		20	MHz
Supply voltage	V _{DD}		3.5		5.5	V
Number of writes	Cwrt Note				100	Times
Input voltage, high	VIH	FLMD0	0.8EV _{DD}		EV _{DD}	V
Input voltage, low	VIL	FLMD0	EVss		0.2EVss	٧
Write time + erase time	tiwrt + terase	Flash: 256 KB (µPD70F3233)			T.B.D	s
Programming temperature	t PRG		-40		+85	°C

Note The initial write when the product is shipped, any erase → write set of operations, or any programming operation is counted as one rewrite.

Example: P: Write, E: Erase


Shipped product \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites Shipped product \rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites

(ii) Serial Write Operation Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
FLMD0 setup time from RESET↑	t rfcf		500/fx + α			s
Count execution time	tcount				3	ms
FLMD0 high-level width	tсн		10		100	μs
FLMD0 low-level width	tcL		10		100	μs
FLMD rise time	tr				50	ns
FLMD fall time	tr				50	ns

Note " " represents the oscillation stabilization time.

1. 3 Electrical Specifications of (A2)-Grade

1. 3. 1 Absolute maximum ratings

Absolute Maximum Ratings (Flash memory product) (T_A = 25°C) (1/2)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	٧
	EV _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	٧
	AV _{REF0}		-0.5 to +6.5	٧
	Vss	Vss = EVss = AVss	-0.5 to +0.5	V
	AVss	Vss = EVss = AVss	-0.5 to +0.5	V
	EVss	Vss = EVss = AVss	-0.5 to +0.5	V
Input voltage	VII	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, RESET, FLMD0, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	-0.5 to EV _{DD} + 0.5 Note	V
	Vıз	X1, X2, XT1, XT2	-0.5 to V _{RO} + 0.5 Note	V
Analog input voltage	VIAN	P70 to P711	-0.5 to AV _{REF0} + 0.5 Note	V

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.

2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Absolute maximum ratings (Flash memory product) $(T_A = 25^{\circ}C)$ (2/2)

Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	loL	P00 to P06, P30 to P35, P38, P39, P40	Per pin	4	mA
		to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3 PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	Total of all pins	50 ^{Note 1}	mA
		P70 to P711	Per pin	4	mA
			Total of all pins	20 Note 2	mA
Output current, high	Іон	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3 PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	Per pin	-4	mA
3			Total of all pins	_50 Note 1	mA
		P70 to P711	Per pin	-4	mA
			Total of all pins	-20 Note 2	mA
Operating ambient	Та	Normal operating mode		-40 to +125	°C
temperature		Flash programming mode		-40 to +85	
Storage temperature	T _{stg}			-40 to +125	°C

Notes 1. At $T_A = 25^{\circ}C$. 20 mA/-20 mA at $T_A = 125^{\circ}C$.

2. At $T_A = 25^{\circ}C$. 10 mA/-10 mA at $T_A = 125^{\circ}C$.

Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.

2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Absolute Maximum Ratings (Mask ROM product) (T_A = 25°C) (1/2)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EV _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	AV _{REF0}		-0.5 to +6.5	V
	Vss	Vss = EVss = AVss	-0.5 to +0.5	V
	AVss	Vss = EVss = AVss	-0.5 to +0.5	V
	EVss	Vss = EVss = AVss	-0.5 to +0.5	V
Input voltage	VI1	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, RESET, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	-0.5 to EV _{DD} + 0.5 ^{Note}	V
	Vıз	X1, X2, XT1, XT2	-0.5 to V _{RO} + 0.5 Note	V
Analog input voltage	VIAN	P70 to P711	-0.5 to AV _{REF0} + 0.5 Note	V

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Absolute maximum ratings (Mask ROM product) ($T_A = 25^{\circ}C$) (2/2)

Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	loL	P00 to P06, P30 to P35, P38, P39, P40	Per pin	4	mA
		to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3 PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	Total of all pins	50 Note 1	mA
		P70 to P711	Per pin	4	mA
			Total of all pins	20 Note 2	mA
Output current, high	Іон	P00 to P06, P30 to P35, P38, P39, P40	Per pin	-4	mA
		to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0 to PCM3 PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	Total of all pins	_50 Note 1	mA
		P70 to P711	Per pin	-4	mA
			Total of all pins	-20 Note 2	mA
Operating ambient temperature	Та			-40 to +125	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. At $T_A = 25^{\circ}C$. 20 mA/-20 mA at $T_A = 125^{\circ}C$.

2. At $T_A = 25$ °C. 10 mA/-10 mA at $T_A = 125$ °C.

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

1. 3. 2 Capacitance

$(T_A = 25^{\circ}C, V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1} = V_{SS} = EV_{SS} = AV_{SS} = 0 V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
I/O capacitance	Сю	fx = 1 MHz,			10	pF
		Unmeasured pins returned to 0 V.				

1. 3. 3 Operating conditions

(Ta = -40 to +125°C, Vdd = EVdd = 3.5 V to 5.5 V, 4.0 V \leq AVREF0 \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Internal system clock frequency	fclk	REGC Capacity = 4.7 μ F, at operation with main clock	4		20	MHz
		REGC Capacity = 4.7 μ F, at operation with subclock (RC resonator)	12.5		27.5	kHz

Note The internal system clock frequency is half the oscillation frequency.

1. 3. 4 Oscillator Characteristics

Main clock oscillator characteristics

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	al X1 X2	Oscillation frequency (fx) Note 1		4		5	MHz
		Oscillation stabilization time Note 2	After reset release		216/fx		s
			After STOP mode release	0.5 ^{Note 3}	Note 4		ms
			After IDLE2 mode release	0.35	Note 4		ms
Crystal resonator		Oscillation frequency (fx) Note 1		4		5	MHz
		Oscillation	After reset release		2 ¹⁶ /fx		s
		stabilization time Note 2	After STOP mode release	0.5 ^{Note 3}	Note 4		ms
			After IDLE2 mode release	350	Note 4		μs

- Notes 1. Indicates only oscillator characteristics.
 - 2. Time required to stabilize the crystal resonator after reset or STOP mode is released.
 - 3. Time required to stabilize access to the internal flash memory.
 - 4. The value differs depending on the OSTS register settings.
- Cautions 1. When using the main clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - . Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - When the main clock is stopped and the device is operating on the subclock, wait until the oscillation stabilization time has been secured by the program before switching back to the main clock.

59

Subclock Oscillator Characteristics

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
RC resonator	XT1 XT2	Oscillation frequency (fxr) Notes1, 4	R = 390 k $\Omega \pm 5\%$ Note 3 C = 47 pF $\pm 10\%$ Note 3	25	40	55	kHz
		Oscillation stabilization time Note 2				100	μs

- Notes 1. Indicates only oscillator characteristics. Refer to 26. 3. 10 AC Characteristics for CPU operating clock.
 - 2. Time required from when VDD reaches oscillation voltage range (MIN.: 3.5 V) to when the crystal resonator stabilizes.
 - 3. In order to avoid the influence of wiring capacity, shorten wiring as much as possible.
 - **4.** RC oscillation frequency is 40 kHz (Typ.). This clock is divided (1/2) internally. In case of RC oscillator, internal system clock frequency (fxt) is 12.5 kHz (Min.), 20 kHz (Typ.), and 27.5 kHz (Max.).
- Cautions 1. When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - . Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - · Do not fetch signals from the oscillator.
 - 2. The subclock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main clock oscillator. Particular care is therefore required with the wiring method when the subclock is used.

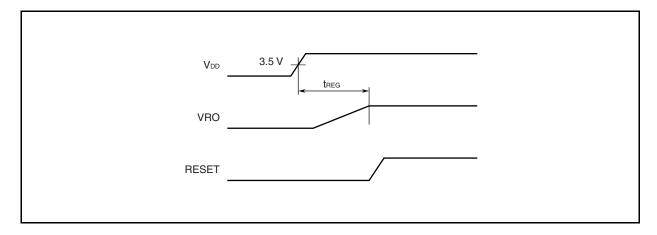
1. 3. 5 PLL Characteristics

(Ta = -40 to +125°C, Vdd = EVdd = 3.5 V to 5.5 V, 4.0 V \leq AVREF0 \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input frequency	fx		4		5	MHz
Output frequency	f _{xx}		16		20	MHz
Lock time	tPLL	After VDD reaches MIN.: 3.5 V			800	μs

1. 3. 6 Ring-OSC Characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output frequency	fr		100	200	400	kHz

1. 3. 7 Voltage Regulator Characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	V _{DD}		3.5		5.5	V
Output voltage	VRO			2.5		V
Lock time Note 1	treg	After V _{DD} reaches MIN.: 3.5 V			1	ms
		Connect C = 4.7 mF \pm 20% to REGC pin				

Note 1. The lock time does not have to be considered for devices that have POC.

61

1. 3. 8 DC Characteristics

(1) Input/Output level

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

(1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _I H1	P30, P34, P38, P41, P98, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PCM0, PCM1, PDL0-PDL11	0.7EV _{DD}		EV _{DD}	V
	V _{IH2}	P00 to P06, P31 to P33, P35, P39, P40, P42, P50 to P55, P90, P91, P96, P97, P99, P910, P913 to P915	0.8EV _{DD}		EV _{DD}	V
	V _{IH4}	P70 to P711	0.7AVREF0		AV _{REF0}	V
	V _{IH5}	RESET, FLMD0	0.8EV _{DD}		EV _{DD}	٧
Input voltage, low	VIL1	P30, P34, P38, P41, P98, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PCM0, PCM1, PDL0-PDL11	EVss		0.3EV _{DD}	V
	VIL2	P00 to P06, P31 to P33, P35, P39, P40, P42, P50 to P55, P90, P91, P96, P97, P99, P910, P913 to P915	EVss		0.2EV _{DD}	V
	V _{IL4}	P70 to P711	AVss		0.3AVREF0	V
	V _{IL5}	RESET, FLMD0	EVss		0.2EV _{DD}	V

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

(2/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage,	V _{OH1}	P00 to P06, P30 to P35, P38,	Iон = −1.0 mA	EV _{DD} - 1.0		EV _{DD}	V
high Note 1		P39, P40 to P42, P50 to P55, P90, P91, P96, P99, P913 to P915, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	Іон = -0.1 mA	EV _{DD} - 0.5		EV _{DD}	V
	Vонз	P70 to P711	Iон = −1.0 mA	AVREFO - 1.0		AV _{REF0}	V
			Iон = -0.1 mA	AVREFO - 0.5		AV _{REF0}	٧
Output voltage, low Note 1	VoL1	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96, P99, P913 to P915, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL11	IoL = 1.0 mA	0		0.4	V
	V _{OL3}	P70 to P711	IoL = 1.0 mA	0		0.4	٧
Pull-up resistor	R ₁	V _I = 0 V	10	30	100	kΩ	
Pull-down resistor	R ₂	$V_{I} = V_{DD}$	10	30	100	kΩ	

Notes 1. Total IoH/IoL (Max.) is 20 mA/-20 mA each power supply terminal (EVDD and AVREFO).

2. When used as DRST pin (Flash memory product only) (OCDM0 is the control register).

(2) Pin leakage current

(TA = -40 to +125°C, VDD = EVDD = 3.5 V to 5.5 V, 4.0 V \leq AVREF0 \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішнт	$V_{\text{IN}} = V_{\text{DD}}$	Analog pins			+1.0	μΑ
			Other pins			+5.0	
Input leakage current, low	ILIL1	VIN = 0 V	Analog pins			-1.0	μΑ
			Other pins			-5.0	
Output leakage current, high	ILOH1	Vo = VDD	Analog pins			+1.0	μ A
			Other pins			+5.0	
Output leakage current, low	ILOL1	Vo = 0 V	Analog pins			-1.0	μ A
			Other pins			-5.0	

(3) Supply current

Supply current (V850ES/FF2: *μ* PD70F3233)

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol Cond		Conditions	MIN.	TYP.	MAX.	Unit
Flash memory products supply current Note 1	I _{DD1}	Normal operation,	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		25	40	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		20		mA
	I _{DD2}	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		14	26	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		9		mA
	Іррз	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.6	1.5	mA
	I _{DD4}	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	1.15	mA
	IDD5	Subclock operation mode Notes 2,	RC resonator fxT = 40 kHz Note 4		200	850	μΑ
	IDD6	Sub-IDLE mode Notes 2,	RC resonator f _{XT} = 40 kHz ^{Note} ⁴		35	590	μΑ
	I _{DD7}	Stop mode Notes 2,	POC stopped, Ring-OSC stopped		7	500	μΑ
			POC operating, Ring-OSC stopped		10	505	μΑ
			POC stopped, Ring-OSC operating		15	515	μΑ
			POC operating, Ring-OSC operating		18	520	μΑ

- **Notes 1.** Total current of V_{DD} and EV_{DD} (all ports stopped). The current of AV_{REF0} and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.
 - 2. When the main OSC is stopped.
 - **3.** POC operating, Ring-OSC operating.
 - 4. The RC oscillation frequency is 40 kHz(TYP.). This clock is internally divided by 2.
 - 5. When the sub-OSC is not used.

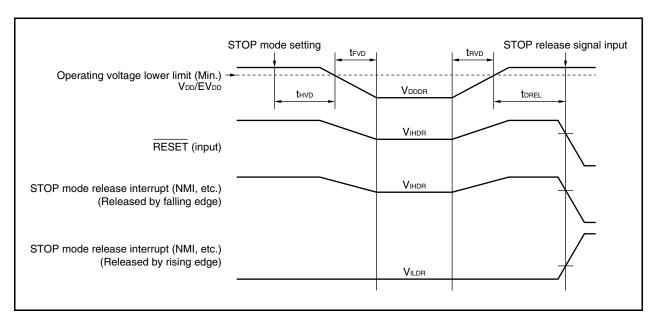
Supply current (V850ES/FF2: μ PD703232, 703233)

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = EV_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REFO} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V})$

Parameter	Symbol C		Conditions	MIN.	TYP.	MAX.	Unit
Mask ROM products supply current Note i	I _{DD1}	Normal operation,	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		20	35	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		16		mA
	IDD2	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		12	24	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		8		mA
	Іррз	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	1.15	mA
	IDD4	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.2	1.15	mA
	IDD5	Subclock operation mode Notes 2,	RC resonator fxT = 40 kHz Note 4		50	800	μΑ
	IDD6	Sub-IDLE mode Notes 2,	RC resonator fxt = 40 kHz ^{Note} ⁴		35	590	μΑ
	I _{DD7}	Stop mode Notes 2,	POC stopped, Ring-OSC stopped		7	500	μΑ
			POC operating, Ring-OSC stopped		10	505	μΑ
			POC stopped, Ring-OSC operating		15	515	μΑ
			POC operating, Ring-OSC operating		18	520	μΑ

Notes 1. Total current of V_{DD} and EV_{DD} (all ports stopped). The current of AV_{REF0} and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.

- 2. When the main OSC is stopped.
- **3.** POC operating, Ring-OSC operating.
- **4.** The RC oscillation frequency is 40 kHz(TYP.). This clock is internally divided by 2.
- 5. When the sub-OSC is not used.

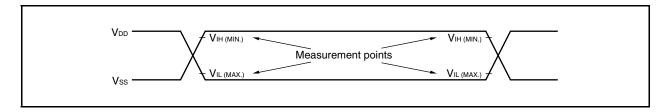


1. 3. 9 Data Retention Characteristics

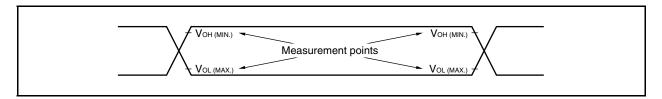
STOP Mode ($T_A = -40 \text{ to } +125^{\circ}\text{C}$, $V_{DD} = EV_{DD} = 1.9 \text{ V to } 5.5 \text{ V}$, $V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	In STOP mode	1.9		5.5	٧
Data retention current	IDDDR	VDDDR = 2.0 V		6	450	μΑ
Supply voltage rise time	trvd		1			μs
Supply voltage fall time	trvd		1			μs
Supply voltage retention time	thvd	After STOP mode release	0			ms
STOP release signal input time	torel	After V _{DD} reaches MIN.: 3.5 V	0			μS
Data retention input voltage, high	VIHDR	All input ports	0.9VDDDR		V _{DDDR}	V
Data retention input voltage, low	VILDR	All input ports	0		0.1VDDDR	V

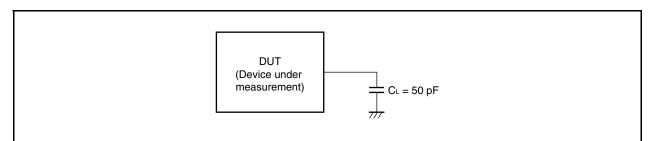
Caution Shifting to STOP mode and restoring from STOP mode must be performed within the rated operating range.



67



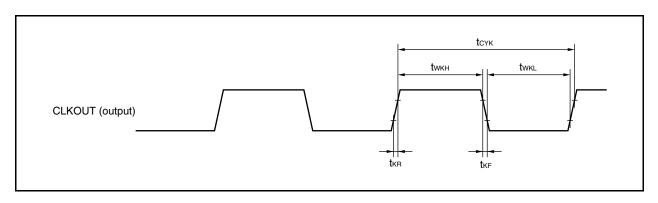
1. 3. 10 AC Characteristics


AC Test Input Measurement Points (VDD, AVDD, EVDD)

AC Test Output Measurement Points

Load Conditions

Caution If the load capacitance exceeds 50 pF due to the circuit configuration, bring the load capacitance of the device to 50 pF or less by inserting a buffer or by some other means.



(1) CLKOUT output timing

$(T_{\text{A}} = -40 \text{ to } +125^{\circ}\text{C}, \ V_{\text{DD}} = \text{EV}_{\text{DD}} = 3.5 \text{ V to } 5.5 \text{ V}, \ 4.0 \text{ V} \leq \text{AV}_{\text{REF0}} \leq 5.5 \text{ V}, \ V_{\text{SS}} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, \ C_{\text{L}} = 50 \text{ pF})$

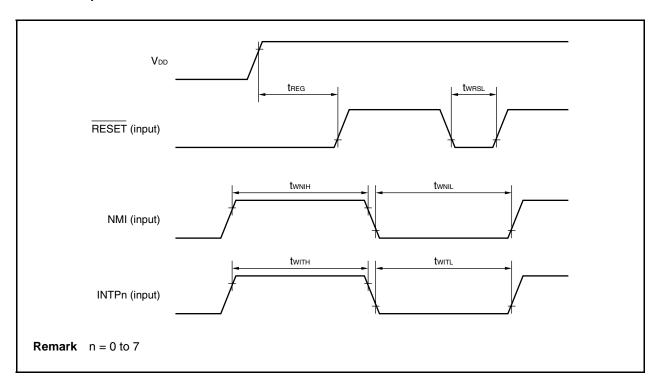
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output cycle	tсүк		50 ns	80 μs	
High-level width	twкн		tcvк/2 – 15		ns
Low-level width	twĸL		tcvк/2 – 15		ns
Rise time	tĸĸ			15	ns
Fall time	tĸF			15	ns

Clock Timing

(2) Basic Operation

(a) Reset, Interrupt timing

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

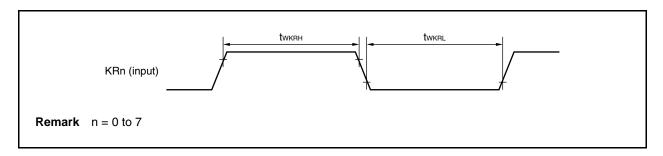

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
RESET low-level width twrsu			500		ns
NMI high-level width twnн		Analog noise elimination	500		ns
NMI low-level width	twnil	Analog noise elimination	500		ns
INTPn ^{Note 1} high-level	twiтн	Analog noise elimination (n = 0 to 7)	500		ns
width		Digital noise elimination (n = 3)	Note 2		ns
INTPn ^{Note 1} low-level	twitl	Analog noise elimination (n = 0 to 7)	500		ns
width		Digital noise elimination (n = 3)	Note 2		ns

Notes 1. ADTRG is same spec (P03/INTP0/ADTRG). DRST is same spec (P05/INTP2/DRST).

2. 2Tsamp + 20 or 3Tsamp + 20

Tsamp: Sampling clock for noise elimination

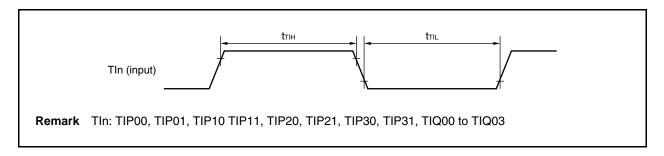
Reset/Interrupt



(b) Key return timing

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
KRn input high-level width	twkrh	Analog noise elimination (n = 0 to 7)	500		ns
KRn input low-level width	twkrl		500		ns


(c) Timer input timing

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = EV_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
TIn high-level width	tтін	TIP00, TIP01, TIP10, TIP11, TIP20, TIP21, TIP30, TIP31, TIQ00 to	Note		ns
TIn low-level width	tтı∟	TIQ03	Note		ns

Note 2Tsamp + 20 or 3Tsamp + 20

Tsamp: Sampling clock for noise elimination

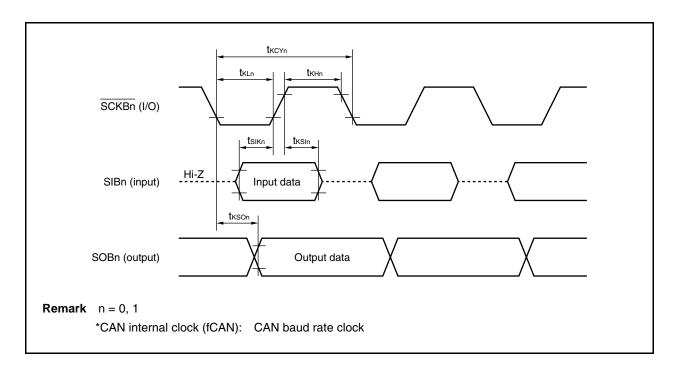
(d) CSIB timing

(i) Master mode

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t KCYn		125		ns
SCKBn high-level width	tĸĸn		tkcyn/2 - 15		ns
SCKBn low-level width	tKLn		tkcyn/2 - 15		ns
SIBn setup time (to SCKBn ↑)	t SIKn		30		ns
SIBn hold time (from SCKBn ↑)	tksin		25		ns
Output delay time from SCKBn	tkson			25	ns

Remark n = 0, 1


(ii) Slave mode

 $(T_{\text{A}} = -40 \text{ to } +125^{\circ}\text{C}, \ V_{\text{DD}} = \text{EV}_{\text{DD}} = 3.5 \text{ V to } 5.5 \text{ V}, \ 4.0 \text{ V} \leq \text{AV}_{\text{REF0}} \leq 5.5 \text{ V}, \ \text{Vss} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, \ C_{\text{L}} = 50 \text{ pF})$

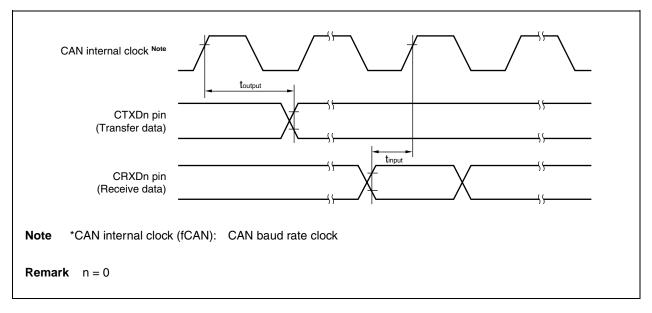
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	tkcyn		200		ns
SCKBn high-level width	tĸHn		90		ns
SCKBn low-level width	tKLn		90		ns
SIBn setup time (to SCKBn ↑)	t sıĸn		50		ns
SIBn hold time (from SCKBn ↑)	tksin		50		ns
Output delay time from SCKBn↓ to SOBn	tkson			50	ns

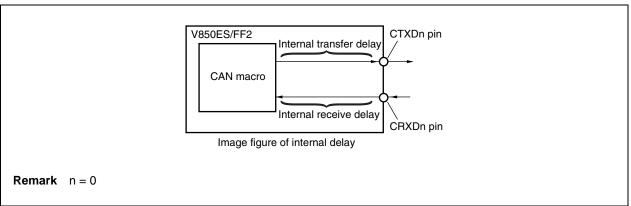
Remark n = 0, 1

(e) UART timing

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = EV_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Communication rate				312.5	kbps
ASCK0 cycle time				10	MHz




(f) CAN timing

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate				1	Mbps
Internal delay time Note				100	ns

Note Internal delay time (tnode) = Internal transfer delay time (toutput) + Internal receive delay time (tnput)

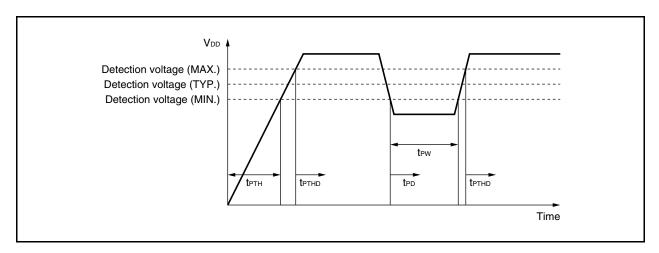
(g) A/D converter

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					10	bit
Overall error Note		$4.0 \leq \text{AV}_{\text{REF0}} \leq 5.5 \text{ V}$		±0.15	±0.35	%FSR
Conversion time	tconv		3.1		16	μs
Analog input voltage	VIAN		AVss		AV _{REF0}	٧
AVREFO current	IAREF0	When using A/D converter		5	10	mA
		When not using A/D converter		1	10	μΑ

Note Excluding quantization error (±0.05%FSR). Indicates the ratio to the full-scale value (%FSR).

Remark FSR: Full Scale Range

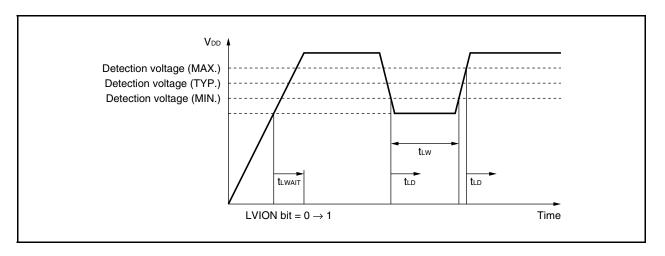

(h) POC circuit characteristics

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POC0}		3.5	3.7	3.9	V
Power supply startup time	tртн	$V_{DD} = 0 \text{ V} \rightarrow 3.5 \text{ V}$	0.002			ms
Response delay time 1 Note	tртно	In case of power on. After Vpp reaches 3.9 V.			3.0	ms
Response delay time 2 Note 2	t _{PD}	In case of power off. After VDD drops 3.5 V.			1	ms
Minimum VDD width	tpw		0.2			ms

Notes 1. From detect voltage to release reset signal.

2. From detect voltage to output reset signal.

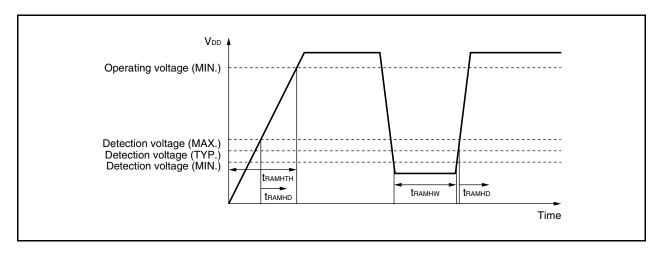

(i) LVI circuit characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{LVI0}		4.2	4.4	4.6	V
	V LVI1		4.0	4.2	4.4	V
Response time Note 1	t LD	After Vdd reaches VLVI0/VLVI1 (Max.). After Vdd drops VLVI0/VLVI1 (Min.).		0.2	2.0	ms
Minimum V _{DD} width	tuw		0.2			ms
Reference voltage stabilization wait time Note 2	tlwait	After V _{DD} reaches 3.5 V. After LVION bit (LVIM.bit7) = $0 \rightarrow 1$		0.1	0.2	ms

Notes 1. The time required to output an interrupt/reset after the detection voltage is detected.

2. Unnecessary when the POC function is used.



(j) RAM retention flag characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = EV_{DD} = 1.9 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VRAMH		1.9	2.0	2.1	V
Supply voltage rise time	t RAMHTH	$V_{DD} = 0 \text{ V} \rightarrow 3.5 \text{ V}$	0.002		1,800	ms
Response time ^{Note}	tramhd	After the supply voltage reaches the detection voltage (MAX.)		0.2	2.0	ms
Minimum V _{DD} width	tramhw		0.2			ms

Note Time required to set the RAMF bit after the detection voltage is detected.

(k) Flash memory programming characteristics

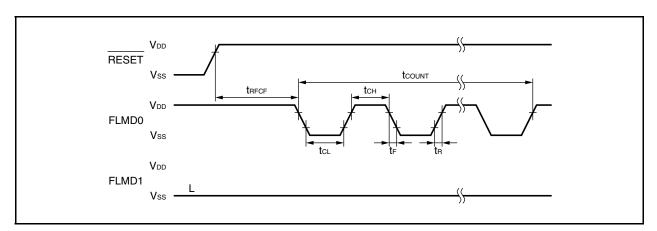
(i) Basic characteristics

(T_A = -40 to +85°C, V_{DD} = EV_{DD} = 3.5 V to 5.5 V, 4.0 V ≤ AV_{REF0} ≤ 5.5 V, V_{SS} = EV_{SS} = AV_{SS} = 0 V, C_L = 50 pF)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fсри		4		20	MHz
Supply voltage	V _{DD}		3.5		5.5	V
Number of writes	Cwrt				100	Times
Input voltage, high	ViH	FLMD0	0.8EV _{DD}		EV _{DD}	V
Input voltage, low	VIL	FLMD0	EVss		0.2EVss	V
Write time + erase time	tiwrt + terase	Flash: 256 KB (μPD70F3233)			T.B.D	s
Programming temperature	t PRG		-40		+85	°C

Note The initial write when the product is shipped, any erase → write set of operations, or any programming operation is counted as one rewrite.

Example: P: Write, E: Erase


Shipped product \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites Shipped product \rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites

(ii) Serial Write Operation Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
FLMD0 setup time from RESET↑	trfcf		$500/fx + \alpha$			S
Count execution time	tcount				3	ms
FLMD0 high-level width	tсн		10		100	μs
FLMD0 low-level width	tcL		10		100	μs
FLMD rise time	tr				50	μs
FLMD fall time	tF				50	μs

Note " " represents the oscillation stabilization time.

2. Injected Current Specification

2.1 Injected Current Specification of (A)-Grade

2. 1. 1 Absolute Maximum Ratings

 $(Ta = +25 \, {}^{\circ}C)$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Pos. Overload Current	I _{INJPM}	Digital input pins	Per pin			4	mA
$V_{IN} > V_{DD}$			Total			50	mA
		Analog input pins	Per pin			4	mA
			Total			20	mA
Neg. Overload Current	I _{INJNM}	Digital input pins	Per pin			-4	mA
$V_{IN} < V_{SS}$			Total			-50	mA
		Analog input pins	Per pin			-4	mA
			Total			-20	mA

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

Remark: Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.

2. 1. 2 DC Characteristics for overload current

(Ta = -40 to +85 °C, $V_{pp} = EV_{pp} = BV_{pp} = 3.5V$ to 5.5V, $AV_{pep} = 4.0V$ to 5.5V, $V_{ss} = EV_{ss} = BV_{ss} = AV_{ss} = 0V$)

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Pos. Overload Current	I _{INJP}	Digital input pins	Per pin			2	mA
$V_{IN} > V_{DD}$			Total			16	mA
		Analog input pins	Per pin			0.5	mA
			Total			2	mA
Neg. Overload Current	I _{INJN}	Digital input pins Note1	Per pin			-0.3	mA
$V_{IN} < V_{SS}$			Total			-2.4	mA
		Analog input pins	Per pin			-0.3	mA
			Total			-1.2	mA

Remark(s):

- 1. Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.
- 2. These specifications are not tested in outgoing inspection, but specified based on the device characterization.
- 3. Refer to the next pages for Input leakage current and A/D characteristics.

Note(s):

1. In case of using Sub clock, an adjacent pin of XT2 pin is the following specification.

Parameter	Symbol	Condit	Conditions			MAX.	Unit
Neg. Overload Current	I	an adjacent pin	Per pin			-0.1	mA
$V_{IN} < V_{SS}$		of XT2 pin Note2					

Note(s):

2. An adjacent pin of XT2 pin is as follows:

V850ES/FE2: P00 pin, V850ES/FF2: P05 pin, V850ES/FG2: P02 pin, V850ES/FJ2: P02 pin

2. 1. 3 DC Characteristics for pins influenced by injected current on an adjacent pin

(Ta = -40 to +85 °C, $V_{pp} = EV_{pp} = BV_{pp} = 3.5V$ to 5.5V, $AV_{geo} = 4.0V$ to 5.5V, $V_{gg} = EV_{gg} = BV_{gg} = AV_{gg} = 0V$)

Parameter	Symbol	11	Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	I _{LIH}	$V_{l} = V_{DD}$	Digital input pins				
High			I _{INIP} : 2mA(per pin), 4mA(total)		-	0.5	uA
			Analog input pins				
			I _{INJP} : 0.5mA(per pin), 1mA(total)		-	0.2	uA
Input leakage current	I	V ₁ = 0	Digital input pins				
Low			I _{INJN} :-0.3mA(per pin), -0.6mA(total)		5	40	uA
			I _{IN.IN} : -0.1mA(per pin), -0.2mA(total)		1	10	uA
			Aṇalog input pins				
			I _{INJN} :-0.3mA(per pin), -0.6mA(total)		5	40	uA
			I _{INJN} :-0.1mA(per pin), -0.2mA(total)		1	10	uA

Remark(s):

- 1. Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.
- 2. These specifications are not tested in outgoing inspection, but specified based on the device characterization.
- 3. Measurement conditions are shown in Figure 1.
- 4. TYP. is the value of Ta=+25 °C.

2. 1. 4 A/D converter influenced by injected current on an adjacent pin

 $(Ta = -40 \text{ to } +85 \text{ °C}, V_{pp} = EV_{pp} = BV_{pp} = 3.5V \text{ to } 5.5V, AV_{ecc} = 4.0V \text{ to } 5.5V, V_{ec} = EV_{ec} = BV_{ec} = AV_{ec} = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Degradation of Overall error Note1		I _{NJP} : 0.5mA(per pin), 1mA(total)			+/- 0.10	%FSR
		I _{NJN} : -0.3mA(per pin), -0.6mA(total)			+/- 0.25	%FSR

Remark(s):

- 1. These specifications are not tested in outgoing inspection, but specified based on the device characterization.
- 2. Measurement conditions are shown in Figure 1.

Note(s):

This value is the degradation by injected current on an adjacent pin. Therefore, this value is added to the specification of A/D converter's overall error defined separately as the electrical specifications.

Caution(s):

When there is a leakage current, the effect on the ADC accuracy depends on the external analog source impedance.

Example) Conditions: AVREF0 = 5.0V, external analog source impedance = 10K ohm

If there is a leakage current of 10uA by injected current, the effect on the ADC accuracy is $10(uA) \times 10K(ohm) / 5(V) = 2 \%FSR$

Injected current current

DUT (device under test)

2.2 Injected Current Specification of (A1)-Grade

2. 2. 1 Absolute Maximum Ratings

 $(Ta = +25 \, {}^{\circ}C)$

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Pos. Overload Current	I _{INJPM}	Digital input pins	Per pin			4	mA
$V_{IN} > V_{DD}$			Total			50	mA
		Analog input pins	Per pin			4	mA
			Total			20	mA
Neg. Overload Current	I _{INJNM}	Digital input pins	Per pin			-4	mA
$V_{IN} < V_{SS}$			Total			-50	mA
		Analog input pins	Per pin			-4	mA
			Total			-20	mA

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

Remark: Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.

2. 2. 2 DC Characteristics for overload current

(Ta = -40 to +110 °C, $V_{DD} = BV_{DD} = 3.5V$ to 5.5V, $AV_{BFED} = 4.0V$ to 5.5V, $V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0V$)

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Pos. Overload Current	I	Digital input pins	Per pin			2	mA
$V_{IN} > V_{DD}$			Total			16	mA
		Analog input pins	Per pin			0.5	mA
			Total			2	mA
Neg. Overload Current	I _{INJN}	Digital input pins Note1	Per pin			-0.3	mA
$V_{IN} < V_{SS}$			Total			-2.4	mA
		Analog input pins	Per pin			-0.3	mA
			Total			-1.2	mA

Remark(s):

- 1. Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.
- 2. These specifications are not tested in outgoing inspection, but specified based on the device characterization.
- 3. Refer to the next pages for Input leakage current and A/D characteristics.

Note(s):

1. In case of using Sub clock, an adjacent pin of XT2 pin is the following specification.

Parameter	Symbol	Condit	Conditions		TYP.	MAX.	Unit
Neg. Overload Current	I _{INJN}	an adjacent pin	Per pin			-0.1	mA
V.,, < V.,		of XT2 pin Note2					

Note(s):

2. An adjacent pin of XT2 pin is as follows.

V850ES/FE2: P00 pin, V850ES/FF2: P05 pin, V850ES/FG2: P02 pin, V850ES/FJ2: P02 pin

2. 2. 3 DC Characteristics for pins influenced by injected current on an adjacent pin

 $(Ta = -40 \text{ to } +110 \text{ °C}, V_{pp} = BV_{pp} = BV_{pp} = 3.5 \text{V to } 5.5 \text{V}, AV_{ppp} = 4.0 \text{V to } 5.5 \text{V}, V_{se} = EV_{se} = BV_{se} = AV_{se} = 0 \text{V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	I	$V_{I} = V_{DD}$	Digital input pins				
High			I _{INJP} : 2mA(per pin), 4mA(total)		-	2	uA
			Analog input pins				
			I _{INJP} : 0.5mA(per pin), 1mA(total)		-	2	uA
Input leakage current	I	V ₁ = 0	Digital input pins				
Low			I _{IMJN} :-0.3mA(per pin),-0.6mA(total)		5	60	uA
			I _{INJIN} : -0.1mA(per pin), -0.2mA(total)		1	15	uA
			Analog input pins				
			ا ا _{اماما} : -0.3mA(per pin), -0.6mA(total)		5	60	uA
			I _{INJIN} : -0.1mA(per pin), -0.2mA(total)		1	15	uA

Remark(s):

- 1. Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.
- 2. These specifications are not tested in outgoing inspection, but specified based on the device characterization.
- 3. Measurement conditions are shown in Figure 2.
- 4. TYP. is the value of Ta=+25 °C.

2. 2. 4 A/D converter influenced by injected current on an adjacent pin

 $(Ta = -40 \text{ to } +110 \text{ °C}, V_{po} = EV_{po} = BV_{po} = 3.5 \text{ V to } 5.5 \text{ V}, AV_{peo} = 4.0 \text{ V to } 5.5 \text{ V}, V_{sc} = EV_{sc} = BV_{sc} = AV_{sc} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Degradation of Overall error Note1		I _{INJP} : 0.5mA(per pin), 1mA(total)			+/- 0.10	%FSR
		I _{IN.IN} : -0.3mA(per pin), -0.6mA(total)			+/- 0.25	%FSR

Remark(s):

- 1. These specifications are not tested in outgoing inspection, but specified based on the device characterization.
- 2. Measurement conditions are shown in Figure 2.

Note(s):

This value is the degradation by injected current on an adjacent pin. Therefore, this value is added to the specification of A/D converter's overall error defined separately as the electrical specifications.

Caution(s):

When there is a leakage current, the effect on the ADC accuracy depends on the external analog source impedance.

Example) Conditions: AVREF0 = 5.0V, external analog source impedance = 10K ohm

If there is a leakage current of 10uA by injected current, the effect on the ADC accuracy is $10(uA) \times 10K(ohm) / 5(V) = 2 \%FSR$

Measurement
Injected Injected current

DUT
(device under test)

2.3 Injected Current Specification of (A2)-Grade

2. 3. 1 Absolute Maximum Ratings

 $(Ta = +25 \, ^{\circ}C)$

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Pos. Overload Current	I _{INJPM}	Digital input pins	Per pin			4	mA
$V_{IN} > V_{DD}$			Total			50	mA
		Analog input pins	Per pin			4	mA
			Total			20	mA
Neg. Overload Current	I _{INJNM}	Digital input pins	Per pin			-4	mA
$V_{IN} < V_{SS}$			Total			-50	mA
		Analog input pins	Per pin			-4	mA
			Total			-20	mA

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

Remark: Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.

2. 3. 2 DC Characteristics for overload current

(Ta = -40 to +125 °C, $V_{nn} = EV_{nn} = BV_{nn} = 3.5V$ to 5.5V, $AV_{geen} = 4.0V$ to 5.5V, $V_{se} = EV_{ss} = BV_{se} = AV_{ss} = 0V$)

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Pos. Overload Current	I _{INJP}	Digital input pins	Per pin			2	mA
$V_{IN} > V_{DD}$			Total			16	mA
		Analog input pins	Per pin			0.5	mA
			Total			2	mA
Neg. Overload Current	I _{INJN}	Digital input pins Note1	Per pin			-0.3	mA
$V_{IN} < V_{SS}$			Total			-2.4	mA
		Analog input pins	Per pin			-0.3	mA
			Total			-1.2	mA

Remark(s):

- 1. Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.
- 2. These specifications are not tested in outgoing inspection, but specified based on the device characterization.
- 3. Refer to the next pages for Input leakage current and A/D characteristics.

Note(s):

1. In case of using Sub clock, an adjacent pin of XT2 pin is the following specification.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Neg. Overload Current	I _{INJN}	an adjacent pin	Per pin			-0.1	mA
V < V		of XT2 pin Note2					

Note(s):

2. An adjacent pin of XT2 pin is as follows.

V850ES/FE2: P00 pin, V850ES/FF2: P05 pin, V850ES/FG2: P02 pin, V850ES/FJ2: P02 pin

2. 3. 3 DC Characteristics for pins influenced by injected current on an adjacent pin

(Ta = -40 to +125 °C, V_{DD} =E V_{DD} =B V_{DD} = 3.5V to 5.5V, A V_{REED} = 4.0V to 5.5V, V_{SS} =E V_{SS} =B V_{SS} =A V_{SS} =0V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current	I _{LIH}	$V_{l} = V_{DD}$	Digital input pins				
High			I _{INJP} : 2mA(per pin), 4mA(total)		-	5	uA
			Analog input pins				
			I _{INJP} : 0.5mA(per pin), 1mA(total)		-	3	uA
Input leakage current	I	$V_{i} = 0$	Digital input pins				
Low			ا _{امام} : -0.3mA(per pin), -0.6mA(total)		5	60	uA
			I _{IN.IN} : -0.1mA(per pin), -0.2mA(total)		1	15	uA
			Analog input pins				
			ا _{ساس} : -0.3mA(per pin), -0.6mA(total)		5	60	uA
			I _{INJN} : -0.1mA(per pin), -0.2mA(total)		1	15	uA

Remark(s):

- 1. Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.
- 2. These specifications are not tested in outgoing inspection, but specified based on the device characterization.
- 3. Measurement conditions are shown in Figure 3.
- 4. TYP. is the value of Ta=+25 °C.

2. 3. 4 A/D converter influenced by injected current on an adjacent pin

(Ta = -40 to +125 °C, V_{pp}=EV_{pp}=BV_{pp}= 3.5V to 5.5V, AV_{ppp}= 4.0V to 5.5V, V_{pp}=EV_{pp}=BV_{pp}=AV_{pp}=0V)

14 - 10 to 1120 0, 1 _{DD}	100 100	- 0.0	3 33		1	
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Degradation of Overall error Note1		I _{NJP} : 0.5mA(per pin), 1mA(total)			+/- 0.10	%FSR
		I _{NJN} : -0.3mA(per pin), -0.6mA(total)			+/- 0.25	%FSR

Remark(s):

- 1. These specifications are not tested in outgoing inspection, but specified based on the device characterization.
- 2. Measurement conditions are shown in Figure 3.

Note(s):

This value is the degradation by injected current on an adjacent pin. Therefore, this value is added to the specification of A/D converter's overall error defined separately as the electrical specifications.

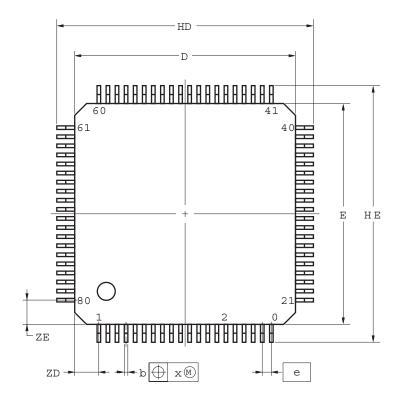
Caution(s):

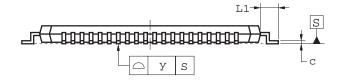
When there is a leakage current, the effect on the ADC accuracy depends on the external analog source impedance.

Example) Conditions: AVREF0 = 5.0V, external analog source impedance = 10K ohm

If there is a leakage current of 10uA by injected current, the effect on the ADC accuracy is $10(uA) \times 10K(ohm) / 5(V) = 2 \%FSR$

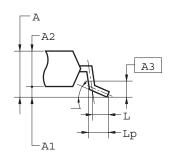
Injected current current


DUT (device under test)



3. Package Drawing

Figure 3-1: Package Drawing


80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

NOTE Each lead centerline is located within 0.08 mm of $\pm s$ true position at maximum material condition.

detail of lead end

	(UNIT:mm
TTEM	DIMENSIONS
D	12.000.20
E	12.000.20
A2	1.00
HD	14.000.20
HE	14.000.20
A	1.10_0.10
A1	0.100.05
A3	0.25
Lp	0.600.15
b	0.220.05
С	$0.17^{+0.03}_{0.07}$
	3°+4°
е	0.50
x	0.08
У	0.08
ZD	1.25
ZE	1.25
L	0.50
L1	1.00-0.20
	K80GK-50-9E

4. Recommended Soldering Conditions

Table 4-1: Soldering Conditions

(1) µPD70F3233MxGK(Ax)-9EU, µPD70F3232MxGK(Ax)-9EU

Soldering Method	Soldering Condition	Symbol of Recommended Soldering	
		Condition	
Infrared Reflow	Package Peak Temperature: 260°C		
	Time: 30 seconds max. (210°C min.)	IR60-207-3	
	Count: 3 max	IR60-207-3	
	Exposure Limit: 7 days Note		

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period. After that, prebaking is necessary at 125 °C for 20 to 72 hours.

5. Revision History

Version	Date	Author	Remarks
1.0	2005/11/20		First released version of this document
2.0	2005/12/20	V. Istin	Package drawing changed to 80-Pin
3.0	2005/04/25	V. Istin	RAM size of µPD70F3232 changed to 12KB