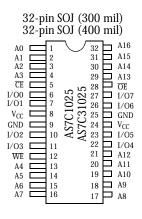


5V/3.3V 128Kx8 CMOS SRAM (Revolutionary pinout)

Features


- AS7C1025 (5V version)
- AS7C31025 (3.3V version)
- Industrial and commercial temperatures
- Organization: $131,072 \text{ words} \times 8 \text{ bits}$
- High speed
 - 12/15/20 ns address access time
 - 6, 7, 8 ns output enable access time
- Low power consumption: ACTIVE
 - 715 mW (AS7C1025) / max @ 12 ns (5V)
 - 360 mW (AS7C31025) / max @ 12 ns (3.3V)

Logic block diagram

- Low power consumption: STANDBY
- 27.5 mW (AS7C1025) / max CMOS (5V)
- 18 mW (AS7C31025) / max CMOS (3.3V)
- Easy memory expansion with \overline{CE} , \overline{OE} inputs
- Center power and ground
- TTL/LVTTL-compatible, three-state I/O
- JEDEC-standard packages
 - 32-pin, 300 mil SOJ
 - 32-pin, 400 mil SOJ
- ESD protection ≥ 2000 volts
- Latch-up current ≥ 200 mA

Pin arrangement

Selection guide

		-12	-15	-20	Unit
Maximum address access time		12	15	20	ns
Maximum output enable access time		6	7	8	ns
Maximum anapating aument	AS7C1025	130	120	110	mA
Maximum operating current	AS7C31025	100	85	80	mA
Maximum CMOS standby current	AS7C1025	5	5	5	mA
Waxiiidiii CiviO5 Stalluby Current	AS7C31025	5	5	5	mA

Functional description

The AS7C1025 and AS7C31025 are high-performance CMOS 1,048,576-bit Static Random Access Memory (SRAM) devices organized as 131,072 words \times 8 bits. They are designed for memory applications where fast data access, low power, and simple interfacing are desired.

Equal address access and cycle times $(t_{AA},\,t_{RC},\,t_{WC})$ of 12/15/20 ns with output enable access times (t_{OE}) of 6, 7, 8 ns are ideal for high-performance applications. The chip enable input \overline{CE} permits easy memory and expansion with multiple-bank memory systems.

When CE is high the devices enter standby mode. The standard AS7C1025 is guaranteed not to exceed 27.5 mW power consumption in standby mode, and typically requires only 5 mW.

A write cycle is accomplished by asserting write enable (WE) and chip enable (CE). Data on the input pins I/O0-I/O7 is written on the rising edge of WE (write cycle 1) or CE (write cycle 2). To avoid bus contention, external devices should drive I/O pins only after outputs have been disabled with output enable (OE) or write enable (WE).

A read cycle is accomplished by asserting output enable (OE) and chip enable (CE), with write enable (WE) high. The chips drive I/O pins with the data word referenced by the input address. When either chip enable or output enable is inactive, or write enable is active, output drivers stay in high-impedance mode.

All chip inputs and outputs are TTL-compatible, and operation is from a single 5V supply (AS7C1025) or 3.3V supply (AS7C31025). The AS7C1025 and AS7C31025 are packaged in common industry standard packages.

Absolute maximum ratings

Parameter	Device	Symbol	Min	Max	Unit
Voltage on V _{CC} relative to GND	AS7C1025	V_{t1}	-0.50	+7.0	V
voltage on vec relative to GND	AS7C31025	V _{t1}	-0.50	+5.0	V
Voltage on any pin relative to GND		V _{t2}	-0.50	$V_{CC} + 0.5$	V
Power dissipation		P_{D}	_	1.0	W
Storage temperature (plastic)		T _{stg}	-65	+150	οС
Ambient temperature with V _{CC} applied		T _{bias}	-55	+125	οС
DC current into outputs (low)		I _{OUT}	_	20	mA

NOTE: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Truth table

CE	WE	OE	Data	Mode
Н	X	X	High Z	Standby (I _{SB} , I _{SB1})
L	Н	Н	High Z	Output disable (I _{CC})
L	Н	L	D _{OUT}	Read (I _{CC})
L	L	X	$\mathrm{D_{IN}}$	Write (I _{CC})

Key: X = Don't Care, L = Low, H = High

Recommended operating conditions

Parameter	Device	Symbol	Min	Nominal	Max	Unit
Supply voltage	AS7C1025	V_{CC}	4.5	5.0	5.5	V
Supply voltage	AS7C31025	V _{CC}	3.0	3.3	3.6	V
	AS7C1025	V _{IH}	2.2	-	$V_{CC} + 0.5$	V
Input voltage	AS7C31025	V_{IH}	2.0	-	$V_{CC} + 0.5$	V
		V_{IL}^{\dagger}	-0.5	-	0.8	V
Ambient operating temperature	commercial	T _A	0	_	70	оС
rambient operating temperature	industrial	T _A	-40	_	85	°C

 $[\]label{eq:VIL} \dagger^{\mbox{L}}_{\mbox{V_{IL} min}} = -3.0 \mbox{V for pulse width less than $t_{RC}/2$.}$

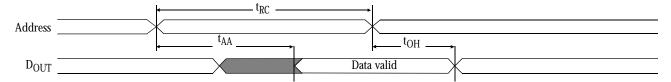
DC operating characteristics (over the operating range)¹

				-1	12	-1	15	-2	20	
Parameter	Sym	Test conditions	Device	Min	Max	Min	Max	Min	Max	Unit
Input leakage current	I _{LI}	$V_{CC} = Max$, $V_{IN} = GND$ to V_{CC}		_	1	-	1	-	1	μА
Output leakage current	I _{LO}	$V_{CC} = Max$, $CE = V_{IH}$, $V_{out} = GND$ to V_{CC}		-	1	-	1	-	1	μА
Operating			AS7C1025	_	130	_	120	_	110	
power supply current	I _{CC}	$\overline{\text{CE}} = \text{V}_{\text{IL}}, \ f = f_{\text{Max},} \ \text{I}_{\text{OUT}} = 0 \ \text{mA}$	AS7C31025	_	100	_	85	_	80	mA
C+ JI	I _{SB}	$\overline{\text{CE}} = V_{\text{IH}}, f = f_{\text{Max}}, f_{\text{OUT}} = 0$	AS7C1025	-	50	_	40	_	40	mA
Standby power	1SB	$CE = V_{IH}$, $I = I_{Max}$, $I_{OUT} = 0$	AS7C31025	_	50	_	40	_	40	ША
supply		$\overline{\text{CE}} \ge V_{\text{CC}} - 0.2 \text{V}, \ V_{\text{IN}} \le 0.2 \text{V or}$	AS7C1025	-	5	-	5	-	5	
current ¹	I _{SB1}	$V_{IN} \ge V_{CC} - 0.2V$, $f = 0$, $f_{OUT} = 0$	AS7C31025	_	5	-	5	-	5	mA
Output	V_{OL}	$I_{OL} = 8 \text{ mA}, V_{CC} = \text{Min}$		-	0.4	_	0.4	_	0.4	V
voltage	V_{OH}	$I_{OH} = -4$ mA, $V_{CC} = Min$		2.4	-	2.4	-	2.4	_	V

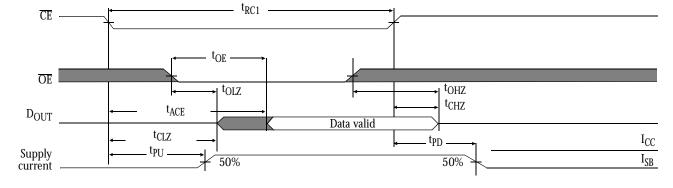
Shaded areas contain advance information.

Capacitance (f = 1 MHz, $T_a = 25$ °C, $V_{CC} = NOMINAL$)²

Parameter	Symbol	Signals	Test conditions	Max	Unit
Input capacitance	C _{IN}	A, CE, WE, OE	$V_{IN} = 0V$	5	pF
I/O capacitance	C _{I/O}	I/O	$V_{IN} = V_{OUT} = 0V$	7	pF


Read cycle (over the operating range)^{3,9}

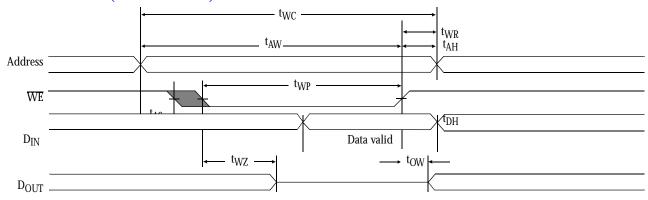
		-1	.2	-1	15	-2	20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	12	_	15	-	20	-	ns	
Address access time	t _{AA}	-	12	-	15	-	20	ns	3
Chip enable (CE) access time	t _{ACE}	-	12	-	15	-	20	ns	3
Output enable (OE) access time	t _{OE}	-	6	-	7	-	8	ns	
Output hold from address change	t _{OH}	3	-	3	-	3	-	ns	5
CE Low to output in low Z	t_{CLZ}	0	-	0	-	0	-	ns	4, 5
CE Low to output in high Z	t _{CHZ}	-	3	-	4	-	5	ns	4, 5
OE Low to output in low Z	t _{OLZ}	0	-	0	-	0	-	ns	4, 5
OE High to output in high Z	t _{OHZ}	-	3	-	4	-	5	ns	4, 5
Power up time	t _{PU}	0	-	0	-	0	-	ns	4, 5
Power down time	t _{PD}	_	12	-	15	-	20	ns	4, 5

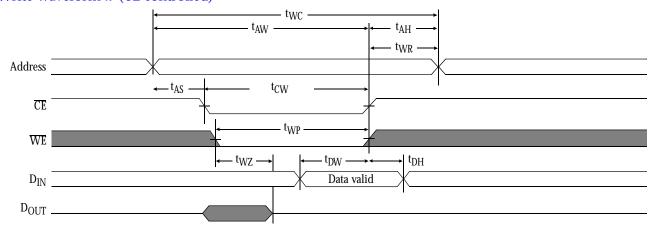

Key to switching waveforms

Rising input Falling input Undefined/don't care

Read waveform 1 (address controlled) 3,6,7,9

Read waveform 2 ($\overline{\text{CE}}$ and $\overline{\text{OE}}$ controlled)^{3,6,8,9}

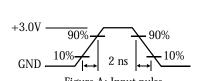



Write cycle (over the operating range)¹¹

		-12		-15		-20			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{WC}	12	-	15	-	20	-	ns	
Chip enable (CE) to write end	t_{CW}	8	_	12	-	12	_	ns	
Address setup to write end	t _{AW}	8	_	12	-	12	_	ns	
Address setup time	t _{AS}	0	_	0	-	0	_	ns	
Write pulse width	t _{WR}	8	_	9	-	12	_	ns	
Write recovery time	t_{WP}	0	_	0	_	0	_	ns	
Address hold from end of write	t _{AH}	0	_	0	-	0	_	ns	
Data valid to write end	t _{DW}	6	_	8	-	12	_	ns	
Data hold time	t _{DH}	0	_	0	_	0	_	ns	4, 5
Write enable to output in high Z	t_{WZ}	_	5	_	5	-	5	ns	4, 5
Output active from write end	t _{OW}	3	_	3	_	3	_	ns	4, 5

Write waveform 1 ($\overline{\text{WE}}$ controlled)^{10,11}

Write waveform 2 (CE controlled)^{10,11}


AC test conditions

- 5V output load: see Figure B or Figure C.

- Input pulse level: GND to 3.0V. See Figure A.

- Input rise and fall times: 2 ns. See Figure A.

- Input and output timing reference levels: 1.5V.

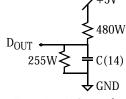


Figure B: 5V Output load

Thevenin equivalent:

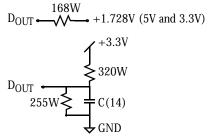
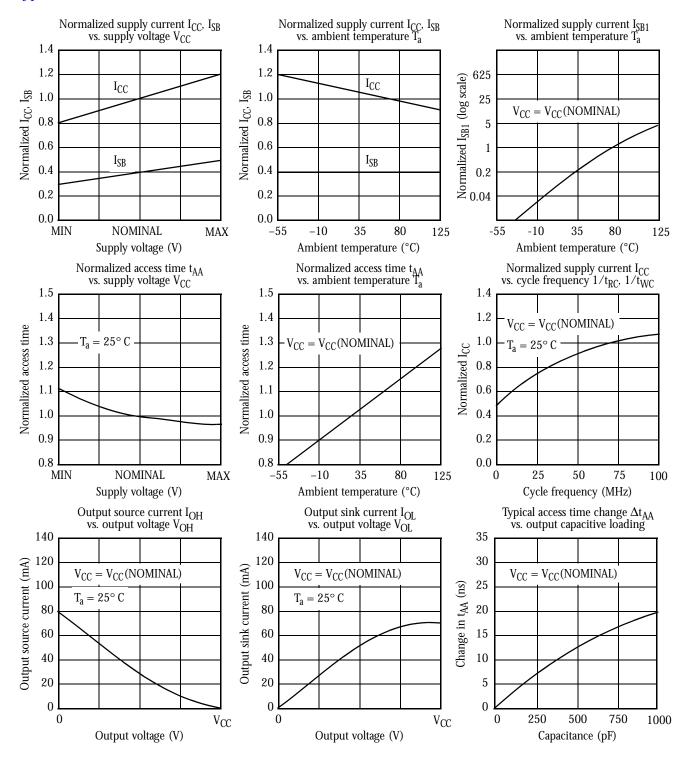


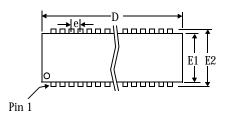
Figure C: 3.3V Output load

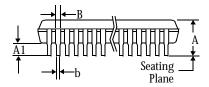
Notes

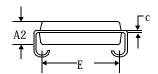

- 1 During V_{CC} power-up, a pull-up resistor to V_{CC} on \overline{CE} is required to meet I_{SB} specification.
- 2 This parameter is sampled, but not 100% tested.
- 3 For test conditions, see AC Test Conditions, Figures A, B, and C.
- $4~t_{CLZ}$ and t_{CHZ} are specified with CL=5pF, as in Figure C. Transition is measured $\pm 500mV$ from steady-state voltage.
- 5 This parameter is guaranteed, but not 100% tested.
- 6 WE is High for read cycle.
- 8 Address valid prior to or coincident with $\overline{\text{CE}}$ transition Low.
- 9 All read cycle timings are referenced from the last valid address to the first transitioning address.
- 10 CE or WE must be High during address transitions. Either CE or WE asserting high terminates a write cycle.
- 11 All write cycle timings are referenced from the last valid address to the first transitioning address.
- 12 NA.
- 13 C=30pF, except all high Z and low Z parameters, where C=5pF.

P. 7 of 9

Typical DC and AC characteristics


9/20/01; v.1.3





Package dimensions

32-pin SOJ 300 mil/400 mil

	32-pi 300	n SOJ mil	32-pin SOJ 400 mil		
Symbol	Min	Max	Min	Max	
A	-	0.145	-	0.145	
A1	0.025	-	0.025	-	
A2	0.086	0.105	0.086	0.115	
В	0.026	0.032	0.026	0.032	
b	0.014	0.020	0.015	0.020	
С	0.006	0.013	0.007	0.013	
D	0.820	0.830	0.820	0.830	
E	0.250	0.275	0.360	0.380	
E1	0.292	0.305	0.395	0.405	
E2	0.330	0.340	0.435	0.445	
e	0.050) BSC	0.050) BSC	

Ordering codes

Package \ Access time	Voltage	Temperature	12 ns	15 ns	20 ns
	5V	Commercial	AS7C1025-12TJC	AS7C1025-15TJC	AS7C1025-20TJC
300-mil SOJ	31	Industrial	AS7C1025-12TJI	AS7C1025-15TJI	AS7C1025-20TJI
300 1111 303	3.3V	Commercial	AS7C31025-12TJC	AS7C31025-15TJC	AS7C31025-20TJC
	3.5 v	Industrial	AS7C31025-12TJI	AS7C31025-15TJI	AS7C31025-20TJI
	5V	Commercial	AS7C1025-12JC	AS7C1025-15JC	AS7C1025-20JC
400-mil SOJ	31	Industrial	AS7C1025-12JI	AS7C1025-15JI	AS7C1025-20JI
100 1111 503	3.3V	Commercial	AS7C31025-12JC	AS7C31025-15JC	AS7C31025-20JC
	5.5 V	Industrial	AS7C31025-12JI	AS7C31025-15JI	AS7C31025-20JI

Part numbering system

AS7C	X	1025	-XX	X	X
SRAM prefix	Voltage: Blank=5V CMOS 3=3.3V CMOS	Device number	Access time	Package: TJ = SOJ 300 mil J = SOJ 400 mil	Temperature range C = Commercial, 0°C to 70°C I = Industrial, -40°C to 85°C

9/20/01; v.1.3 Alliance Semiconductor P. 9 of 9